language:
- af
- ar
- de
- en
- es
- ha
- hi
- id
- ig
- jv
- mr
- pcm
- pt
- ro
- ru
- rw
- su
- sv
- sw
- tt
- uk
- vmw
- xh
- yo
- zh
- zu
license: cc-by-4.0
dataset_info:
- config_name: afr
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: train
num_bytes: 257404.26472547714
num_examples: 1222
- name: dev
num_bytes: 37574.10095882685
num_examples: 196
- name: test
num_bytes: 443868.5512994609
num_examples: 2130
download_size: 253496
dataset_size: 738846.9169837649
- config_name: arq
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: train
num_bytes: 189788.25083277814
num_examples: 901
- name: dev
num_bytes: 38340.919345741684
num_examples: 200
- name: test
num_bytes: 375933.7401616091
num_examples: 1804
download_size: 242601
dataset_size: 604062.9103401289
- config_name: ary
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: train
num_bytes: 338711.9948269781
num_examples: 1608
- name: dev
num_bytes: 102370.2546531303
num_examples: 534
- name: test
num_bytes: 338423.72174193634
num_examples: 1624
download_size: 324284
dataset_size: 779505.9712220447
- config_name: chn
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: train
num_bytes: 556515.6034408434
num_examples: 2642
- name: dev
num_bytes: 76681.83869148337
num_examples: 400
- name: test
num_bytes: 1101127.4296086156
num_examples: 5284
download_size: 1145616
dataset_size: 1734324.8717409424
- config_name: deu
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: train
num_bytes: 548300.5737155621
num_examples: 2603
- name: dev
num_bytes: 76681.83869148337
num_examples: 400
- name: test
num_bytes: 1085289.866275865
num_examples: 5208
download_size: 1298256
dataset_size: 1710272.2786829104
- config_name: eng
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: train
num_bytes: 583056.4687071365
num_examples: 2768
- name: dev
num_bytes: 44475.46644106035
num_examples: 232
- name: test
num_bytes: 1153224.6774137167
num_examples: 5534
download_size: 568875
dataset_size: 1780756.6125619134
- config_name: esp
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: train
num_bytes: 420441.0085041345
num_examples: 1996
- name: dev
num_bytes: 70547.2915961647
num_examples: 368
- name: test
num_bytes: 706438.6802371701
num_examples: 3390
download_size: 284253
dataset_size: 1197426.9803374694
- config_name: hau
features:
- name: id
dtype: string
- name: text
dtype: string
- name: anger
dtype: int64
- name: disgust
dtype: int64
- name: fear
dtype: int64
- name: joy
dtype: int64
- name: sadness
dtype: int64
- name: surprise
dtype: int64
- name: emotions
sequence: string
splits:
- name: train
num_bytes: 451826.6348904652
num_examples: 2145
- name: dev
num_bytes: 136493.67287084038
num_examples: 712
- name: test
num_bytes: 450120.221036073
num_examples: 2160
download_size: 327029
dataset_size: 1038440.5287973785
configs:
- config_name: afr
data_files:
- split: train
path: afr/train-*
- split: dev
path: afr/dev-*
- split: test
path: afr/test-*
- config_name: arq
data_files:
- split: train
path: arq/train-*
- split: dev
path: arq/dev-*
- split: test
path: arq/test-*
- config_name: ary
data_files:
- split: train
path: ary/train-*
- split: dev
path: ary/dev-*
- split: test
path: ary/test-*
- config_name: chn
data_files:
- split: train
path: chn/train-*
- split: dev
path: chn/dev-*
- split: test
path: chn/test-*
- config_name: deu
data_files:
- split: train
path: deu/train-*
- split: dev
path: deu/dev-*
- split: test
path: deu/test-*
- config_name: eng
data_files:
- split: train
path: eng/train-*
- split: dev
path: eng/dev-*
- split: test
path: eng/test-*
- config_name: esp
data_files:
- split: train
path: esp/train-*
- split: dev
path: esp/dev-*
- split: test
path: esp/test-*
- config_name: hau
data_files:
- split: train
path: hau/train-*
- split: dev
path: hau/dev-*
- split: test
path: hau/test-*
BRIGHTER Emotion Categories Dataset
This dataset contains the emotion categories data from the BRIGHTER paper: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages.
Dataset Description
The BRIGHTER Emotion Categories dataset is a comprehensive multi-language, multi-label emotion classification dataset with separate configurations for each language. It represents one of the largest human-annotated emotion datasets across multiple languages.
- Total languages: 28 languages
- Total examples: 139595
- Splits: train, dev, test
About BRIGHTER
BRIGHTER addresses the gap in human-annotated textual emotion recognition datasets for low-resource languages. While most existing emotion datasets focus on English, BRIGHTER covers multiple languages, including many low-resource ones. The dataset was created by selecting text from various sources and having annotators label six categorical emotions: anger, disgust, fear, joy, sadness, and surprise.
The dataset contains text in the following languages: Afrikaans, Algerian Arabic, Moroccan Arabic, Mandarin Chinese, German, English, Spanish (Ecuador, Colombia, Mexico), Hausa, Hindi, Igbo, Indonesian, Javanese, Kinyarwanda, Marathi, Nigerian Pidgin, Portuguese (Brazil), Portuguese (Mozambique), Romanian, Russian, Sundanese, Swahili, Swedish, Tatar, Ukrainian, Makhuwa, Xhosa, Yoruba, and Zulu.
Language Configurations
Each language is available as a separate configuration with the following statistics:
Original Code | ISO Code | Train Examples | Dev Examples | Test Examples | Total |
---|---|---|---|---|---|
afr | af | 1222 | 196 | 2130 | 3548 |
arq | ar | 901 | 200 | 1804 | 2905 |
ary | ar | 1608 | 534 | 1624 | 3766 |
chn | zh | 2642 | 400 | 5284 | 8326 |
deu | de | 2603 | 400 | 5208 | 8211 |
eng | en | 2768 | 232 | 5534 | 8534 |
esp | es | 1996 | 368 | 3390 | 5754 |
hau | ha | 2145 | 712 | 2160 | 5017 |
hin | hi | 2556 | 200 | 2020 | 4776 |
ibo | ig | 2880 | 958 | 2888 | 6726 |
ind | id | 0 | 156 | 851 | 1007 |
jav | jv | 0 | 151 | 837 | 988 |
kin | rw | 2451 | 814 | 2462 | 5727 |
mar | mr | 2415 | 200 | 2000 | 4615 |
pcm | pcm | 3728 | 1240 | 3740 | 8708 |
ptbr | pt | 2226 | 400 | 4452 | 7078 |
ptmz | pt | 1546 | 514 | 1552 | 3612 |
ron | ro | 1241 | 246 | 2238 | 3725 |
rus | ru | 2679 | 398 | 2000 | 5077 |
sun | su | 924 | 398 | 1852 | 3174 |
swa | sw | 3307 | 1102 | 3312 | 7721 |
swe | sv | 1187 | 400 | 2376 | 3963 |
tat | tt | 1000 | 400 | 2000 | 3400 |
ukr | uk | 2466 | 498 | 4468 | 7432 |
vmw | vmw | 1551 | 516 | 1554 | 3621 |
xho | xh | 0 | 682 | 1594 | 2276 |
yor | yo | 2992 | 994 | 3000 | 6986 |
zul | zu | 0 | 875 | 2047 | 2922 |
Features
- id: Unique identifier for each example
- text: Text content to classify
- anger, disgust, fear, joy, sadness, surprise: Presence of emotion
- emotions: List of emotions present in the text
Dataset Characteristics
This dataset provides binary labels for emotion presence, making it suitable for multi-label classification tasks. For regression tasks or fine-grained emotion analysis, please see the companion BRIGHTER-emotion-intensities dataset.
Usage
from datasets import load_dataset
# Load all data for a specific language
eng_dataset = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-categories", "eng")
# Or load a specific split for a language
eng_train = load_dataset("YOUR_USERNAME/BRIGHTER-emotion-categories", "eng", split="train")
Citation
If you use this dataset, please cite the following papers:
@misc{muhammad2025brighterbridginggaphumanannotated,
title={BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages},
author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine de Kock and Nirmal Surange and Daniela Teodorescu and Ibrahim Said Ahmad and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino D. M. A. Ali and Ilseyar Alimova and Vladimir Araujo and Nikolay Babakov and Naomi Baes and Ana-Maria Bucur and Andiswa Bukula and Guanqun Cao and Rodrigo Tufiño and Rendi Chevi and Chiamaka Ijeoma Chukwuneke and Alexandra Ciobotaru and Daryna Dementieva and Murja Sani Gadanya and Robert Geislinger and Bela Gipp and Oumaima Hourrane and Oana Ignat and Falalu Ibrahim Lawan and Rooweither Mabuya and Rahmad Mahendra and Vukosi Marivate and Andrew Piper and Alexander Panchenko and Charles Henrique Porto Ferreira and Vitaly Protasov and Samuel Rutunda and Manish Shrivastava and Aura Cristina Udrea and Lilian Diana Awuor Wanzare and Sophie Wu and Florian Valentin Wunderlich and Hanif Muhammad Zhafran and Tianhui Zhang and Yi Zhou and Saif M. Mohammad},
year={2025},
eprint={2502.11926},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.11926},
}
@misc{muhammad2025semeval2025task11bridging,
title={SemEval-2025 Task 11: Bridging the Gap in Text-Based Emotion Detection},
author={Shamsuddeen Hassan Muhammad and Nedjma Ousidhoum and Idris Abdulmumin and Seid Muhie Yimam and Jan Philip Wahle and Terry Ruas and Meriem Beloucif and Christine De Kock and Tadesse Destaw Belay and Ibrahim Said Ahmad and Nirmal Surange and Daniela Teodorescu and David Ifeoluwa Adelani and Alham Fikri Aji and Felermino Ali and Vladimir Araujo and Abinew Ali Ayele and Oana Ignat and Alexander Panchenko and Yi Zhou and Saif M. Mohammad},
year={2025},
eprint={2503.07269},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2503.07269},
}
License
This dataset is licensed under CC-BY 4.0.