Datasets:
image
imagewidth (px) 3.84k
3.84k
| label
class label 7
classes |
---|---|
1001_tagging
|
|
1001_tagging
|
|
1001_tagging
|
|
1001_tagging
|
|
1001_tagging
|
|
1001_tagging
|
|
5002_legoassemble
|
|
5002_legoassemble
|
|
5002_legoassemble
|
|
5002_legoassemble
|
|
5002_legoassemble
|
|
0001_fencing
|
|
0001_fencing
|
|
0001_fencing
|
|
0001_fencing
|
|
0001_fencing
|
|
4002_basketball
|
|
4002_basketball
|
|
4002_basketball
|
|
4002_basketball
|
|
4002_basketball
|
|
3001_volleyball
|
|
3001_volleyball
|
|
3001_volleyball
|
|
3001_volleyball
|
|
3001_volleyball
|
|
6029_badminton
|
|
6029_badminton
|
|
6029_badminton
|
|
6029_badminton
|
|
6029_badminton
|
|
2001_tennis
|
|
2001_tennis
|
|
2001_tennis
|
|
2001_tennis
|
|
2001_tennis
|
Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs
Dataset Card for All-Angles Bench
Dataset Description
The dataset presents a comprehensive benchmark consisting of over 2,100 human-annotated multi-view question-answer (QA) pairs, spanning 90 real-world scenes. Each scene is captured from multiple viewpoints, providing diverse perspectives and context for the associated questions.
Dataset Sources
- EgoHumans - Egocentric multi-view human activity understanding dataset
- Ego-Exo4D - Large-scale egocentric and exocentric video dataset for multi-person interaction understanding
Usage
from datasets import load_dataset
dataset = load_dataset("ch-chenyu/All-Angles-Bench")
We provide the image files for the EgoHumans dataset. For the Ego-Exo4D dataset, due to licensing restrictions, you will need to first sign the license agreement from the official Ego-Exo4D repository at https://ego4ddataset.com/egoexo-license/. After signing the license, you can download the dataset and then use the preprocessing scripts provided in our GitHub repository to extract the corresponding images.
Dataset Structure
The JSON data contains the following key-value pairs:
Key | Type | Description |
---|---|---|
index |
Integer | Unique identifier for the data entry (e.g. 1221 ) |
folder |
String | Directory name where the scene is stored (e.g. "05_volleyball" ) |
category |
String | Task category (e.g. "counting" ) |
pair_idx |
String | Index of a corresponding paired question (if applicable) |
image_path |
List | Array of input image paths |
question |
String | Natural language query about the scene |
A /B /C |
String | Multiple choice options |
answer |
String | Correct option label (e.g. "B" ) |
sourced_dataset |
String | Source dataset name (e.g. "EgoHumans" ) |
Citation
@article{yeh2025seeing,
title={Seeing from Another Perspective: Evaluating Multi-View Understanding in MLLMs},
author={Chun-Hsiao Yeh, Chenyu Wang, Shengbang Tong, Ta-Ying Cheng, Ruoyu Wang, Tianzhe Chu, Yuexiang Zhai, Yubei Chen, Shenghua Gao and Yi Ma},
journal={arXiv preprint arXiv:2504.15280},
year={2025}
}
Acknowledgements
You may refer to related work that serves as foundations for our framework and code repository, EgoHumans, Ego-Exo4D, VLMEvalKit. Thanks for their wonderful work and data.
- Downloads last month
- 60