seq_id
stringlengths 7
7
| seq_name
stringlengths 4
573
| sequence
sequencelengths 1
348
| keywords
sequencelengths 1
8
| score
int64 1
2.31k
| offset_a
int64 0
0
| offset_b
int64 5
5
| cross_references
sequencelengths 1
128
⌀ | former_ids
sequencelengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-04-25 01:21:50
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A383146 | Number of medial GL-racks of order n, up to isomorphism. | [
"1",
"1",
"4",
"13",
"61",
"298",
"2087",
"16941",
"187160"
] | [
"hard",
"more",
"nonn",
"new"
] | 4 | 0 | 5 | [
"A165200",
"A176077",
"A177886",
"A178432",
"A179010",
"A181769",
"A181770",
"A181771",
"A193024",
"A196111",
"A198147",
"A225744",
"A226172",
"A226173",
"A226174",
"A226193",
"A236146",
"A242044",
"A242275",
"A243931",
"A248908",
"A254434",
"A257351",
"A374939",
"A374942",
"A374943",
"A374944",
"A374945",
"A374946",
"A374947",
"A383144",
"A383145",
"A383146"
] | null | Luc Ta, Apr 17 2025 | 2025-04-24T16:51:03 | oeisdata/seq/A383/A383146.seq | 080d15f91f595573cb592c4eebf09e4b |
A383147 | Sum of odd divisors m of n such that there is a divisor d of n with d < m < 2*d. | [
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"3",
"0",
"0",
"5",
"0",
"0",
"12",
"0",
"5",
"0",
"0",
"0",
"3",
"0",
"0",
"0",
"7",
"0",
"23",
"0",
"0",
"0",
"0",
"7",
"12",
"0",
"0",
"0",
"5",
"0",
"31",
"0",
"0",
"29",
"0",
"0",
"3",
"0",
"0",
"0",
"0",
"0",
"39",
"0",
"7",
"0",
"0",
"0",
"23",
"0",
"0",
"9",
"0",
"0",
"47",
"0",
"0",
"0",
"7",
"0",
"12",
"0",
"0",
"30",
"0",
"11",
"42",
"0",
"5",
"0",
"0",
"0",
"31",
"0",
"0",
"0",
"11",
"0",
"77",
"13",
"0",
"0",
"0",
"0"
] | [
"nonn",
"new"
] | 14 | 0 | 5 | [
"A000593",
"A237270",
"A237271",
"A237593",
"A239657",
"A379379",
"A383147"
] | null | Omar E. Pol, Apr 17 2025 | 2025-04-18T21:16:27 | oeisdata/seq/A383/A383147.seq | 3eb6ee1228cebdf5135f2fbce0bd3455 |
A383148 | k-facile numbers: Numbers m such that the sum of the divisors of m is equal to 2*m+s where s is a product of distinct divisors of m. | [
"12",
"18",
"20",
"24",
"30",
"40",
"42",
"54",
"56",
"60",
"66",
"78",
"84",
"88",
"90",
"102",
"104",
"114",
"120",
"132",
"138",
"140",
"168",
"174",
"186",
"196",
"204",
"222",
"224",
"234",
"246",
"252",
"258",
"264",
"270",
"280",
"282",
"308",
"312",
"318",
"348",
"354",
"360",
"364",
"366",
"368",
"380",
"402",
"414",
"420",
"426",
"438",
"440",
"456",
"464",
"468",
"474",
"476"
] | [
"nonn",
"new"
] | 22 | 0 | 5 | [
"A000203",
"A000396",
"A005101",
"A181595",
"A383148"
] | null | Joshua Zelinsky, Apr 17 2025 | 2025-04-24T18:27:20 | oeisdata/seq/A383/A383148.seq | bccfa6402c91903971ea22f2d4eb13bb |
A383149 | Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k). | [
"1",
"0",
"1",
"0",
"3",
"1",
"0",
"12",
"9",
"1",
"0",
"66",
"75",
"18",
"1",
"0",
"480",
"690",
"255",
"30",
"1",
"0",
"4368",
"7290",
"3555",
"645",
"45",
"1",
"0",
"47712",
"88536",
"52290",
"12705",
"1365",
"63",
"1",
"0",
"608016",
"1223628",
"831684",
"249585",
"36120",
"2562",
"84",
"1",
"0",
"8855040",
"19019664",
"14405580",
"5073012",
"915705",
"87696",
"4410",
"108",
"1"
] | [
"nonn",
"tabl",
"new"
] | 35 | 0 | 5 | [
"A000007",
"A001787",
"A122704",
"A123227",
"A129062",
"A178987",
"A209849",
"A383140",
"A383149",
"A383150",
"A383151",
"A383152",
"A383155",
"A383163",
"A383164"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:44:21 | oeisdata/seq/A383/A383149.seq | eff235d093ef437e9cb10448b7a719e5 |
A383150 | a(n) = Sum_{k=0..n} k^3 * (-1)^k * 3^(n-k) * binomial(n,k). | [
"0",
"-1",
"2",
"18",
"64",
"160",
"288",
"224",
"-1024",
"-6912",
"-28160",
"-95744",
"-294912",
"-851968",
"-2351104",
"-6266880",
"-16252928",
"-41222144",
"-102629376",
"-251527168",
"-608174080",
"-1453326336",
"-3437232128",
"-8055160832",
"-18723373056",
"-43201331200",
"-99019128832",
"-225586446336"
] | [
"sign",
"easy",
"new"
] | 13 | 0 | 5 | [
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:45:24 | oeisdata/seq/A383/A383150.seq | 7c9c26968814be061ace0c137038934c |
A383151 | a(n) = Sum_{k=0..n} k^4 * (-1)^k * 3^(n-k) * binomial(n,k). | [
"0",
"-1",
"10",
"36",
"40",
"-160",
"-1152",
"-4480",
"-13568",
"-34560",
"-74240",
"-123904",
"-92160",
"425984",
"2867200",
"11796480",
"40763392",
"128122880",
"378667008",
"1070858240",
"2928148480",
"7795113984",
"20300431360",
"51900317696",
"130610626560",
"324219699200",
"795206483968",
"1929715384320"
] | [
"sign",
"easy",
"new"
] | 18 | 0 | 5 | [
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-23T16:21:30 | oeisdata/seq/A383/A383151.seq | c632c98bfd0182ec23e2989544a42ebe |
A383152 | a(n) = Sum_{k=0..n} k^5 * (-1)^k * 3^(n-k) * binomial(n,k). | [
"0",
"-1",
"26",
"18",
"-272",
"-1400",
"-4032",
"-7168",
"-1024",
"55296",
"294400",
"1086976",
"3354624",
"9132032",
"22249472",
"47923200",
"85983232",
"99155968",
"-102629376",
"-1237712896",
"-5688524800",
"-20775960576",
"-67868033024",
"-207022456832",
"-602167836672",
"-1690304512000",
"-4613767954432"
] | [
"sign",
"easy",
"new"
] | 17 | 0 | 5 | [
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T12:10:07 | oeisdata/seq/A383/A383152.seq | 1061d6a3a92c047ea09528855c1bf79b |
A383153 | The number of 2m-by-2n fers-wazir tours, a square array read by antidiagonals. | [
"2",
"1",
"1",
"1",
"2",
"1",
"1",
"4",
"4",
"1",
"1",
"9",
"22",
"9",
"1",
"1",
"23",
"124",
"124",
"23",
"1",
"1",
"62",
"818",
"1620",
"818",
"62",
"1",
"1",
"170",
"6004",
"25111",
"25111",
"6004",
"170",
"1"
] | [
"nonn",
"tabl",
"more",
"new"
] | 21 | 0 | 5 | [
"A339190",
"A383153",
"A383154"
] | null | Don Knuth, Apr 18 2025 | 2025-04-18T13:57:40 | oeisdata/seq/A383/A383153.seq | be69e8286e760372db20520b740a2c89 |
A383154 | The number of 2n-by-2n fers-wazir tours. | [
"2",
"2",
"22",
"1620",
"882130",
"3465050546"
] | [
"nonn",
"more",
"new"
] | 13 | 0 | 5 | [
"A140519",
"A383153",
"A383154"
] | null | Don Knuth, Apr 18 2025 | 2025-04-18T13:57:51 | oeisdata/seq/A383/A383154.seq | d5b6fc08e418e963cbd652185c69d2c9 |
A383155 | a(n) = Sum_{k=0..n} k^6 * (-1)^k * 3^(n-k) * binomial(n,k). | [
"0",
"-1",
"58",
"-180",
"-1304",
"-2920",
"1008",
"34496",
"163840",
"525312",
"1285120",
"2241536",
"1124352",
"-12113920",
"-72052736",
"-282378240",
"-924581888",
"-2699493376",
"-7201751040",
"-17666670592",
"-39507722240",
"-77918109696",
"-121883328512",
"-78622228480",
"453588811776",
"2904974950400",
"11885785120768"
] | [
"sign",
"easy",
"new"
] | 15 | 0 | 5 | [
"A001787",
"A178987",
"A383150",
"A383151",
"A383152",
"A383155"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-23T13:24:30 | oeisdata/seq/A383/A383155.seq | be46b60b1d637d6eb4d74567473c5ecf |
A383156 | The sum of the maximum exponents in the prime factorizations of the divisors of n. | [
"0",
"1",
"1",
"3",
"1",
"3",
"1",
"6",
"3",
"3",
"1",
"7",
"1",
"3",
"3",
"10",
"1",
"7",
"1",
"7",
"3",
"3",
"1",
"13",
"3",
"3",
"6",
"7",
"1",
"7",
"1",
"15",
"3",
"3",
"3",
"13",
"1",
"3",
"3",
"13",
"1",
"7",
"1",
"7",
"7",
"3",
"1",
"21",
"3",
"7",
"3",
"7",
"1",
"13",
"3",
"13",
"3",
"3",
"1",
"15",
"1",
"3",
"7",
"21",
"3",
"7",
"1",
"7",
"3",
"7",
"1",
"22",
"1",
"3",
"7",
"7",
"3",
"7",
"1",
"21",
"10",
"3",
"1"
] | [
"nonn",
"easy",
"new"
] | 10 | 0 | 5 | [
"A000005",
"A001221",
"A001620",
"A005117",
"A013661",
"A033150",
"A034444",
"A051903",
"A073184",
"A118914",
"A252505",
"A306016",
"A309307",
"A383156",
"A383157",
"A383158",
"A383159"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:39:02 | oeisdata/seq/A383/A383156.seq | 9f63fb68db5f5346f96b5b85998ba4f9 |
A383157 | a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the divisors of n. | [
"0",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"7",
"1",
"3",
"3",
"2",
"1",
"7",
"1",
"7",
"3",
"3",
"1",
"13",
"1",
"3",
"3",
"7",
"1",
"7",
"1",
"5",
"3",
"3",
"3",
"13",
"1",
"3",
"3",
"13",
"1",
"7",
"1",
"7",
"7",
"3",
"1",
"21",
"1",
"7",
"3",
"7",
"1",
"13",
"3",
"13",
"3",
"3",
"1",
"5",
"1",
"3",
"7",
"3",
"3",
"7",
"1",
"7",
"3",
"7",
"1",
"11",
"1",
"3",
"7",
"7",
"3",
"7",
"1",
"21",
"2",
"3",
"1",
"5",
"3"
] | [
"nonn",
"easy",
"frac",
"new"
] | 10 | 0 | 5 | [
"A000005",
"A001248",
"A051903",
"A118914",
"A308043",
"A345231",
"A361062",
"A383156",
"A383157",
"A383158"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:39:14 | oeisdata/seq/A383/A383157.seq | 448f038bf717f5aedd12186906513b37 |
A383158 | a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the divisors of n. | [
"1",
"2",
"2",
"1",
"2",
"4",
"2",
"2",
"1",
"4",
"2",
"6",
"2",
"4",
"4",
"1",
"2",
"6",
"2",
"6",
"4",
"4",
"2",
"8",
"1",
"4",
"2",
"6",
"2",
"8",
"2",
"2",
"4",
"4",
"4",
"9",
"2",
"4",
"4",
"8",
"2",
"8",
"2",
"6",
"6",
"4",
"2",
"10",
"1",
"6",
"4",
"6",
"2",
"8",
"4",
"8",
"4",
"4",
"2",
"4",
"2",
"4",
"6",
"1",
"4",
"8",
"2",
"6",
"4",
"8",
"2",
"6",
"2",
"4",
"6",
"6",
"4",
"8",
"2",
"10",
"1",
"4",
"2",
"4",
"4",
"4",
"4"
] | [
"nonn",
"easy",
"frac",
"new"
] | 7 | 0 | 5 | [
"A000005",
"A051903",
"A056798",
"A118914",
"A383156",
"A383157",
"A383158"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:39:40 | oeisdata/seq/A383/A383158.seq | b785937053b5aad9edf7d7e6a4674b73 |
A383159 | The sum of the maximum exponents in the prime factorizations of the unitary divisors of n. | [
"0",
"1",
"1",
"2",
"1",
"3",
"1",
"3",
"2",
"3",
"1",
"5",
"1",
"3",
"3",
"4",
"1",
"5",
"1",
"5",
"3",
"3",
"1",
"7",
"2",
"3",
"3",
"5",
"1",
"7",
"1",
"5",
"3",
"3",
"3",
"6",
"1",
"3",
"3",
"7",
"1",
"7",
"1",
"5",
"5",
"3",
"1",
"9",
"2",
"5",
"3",
"5",
"1",
"7",
"3",
"7",
"3",
"3",
"1",
"11",
"1",
"3",
"5",
"6",
"3",
"7",
"1",
"5",
"3",
"7",
"1",
"8",
"1",
"3",
"5",
"5",
"3",
"7",
"1",
"9",
"4",
"3",
"1",
"11",
"3",
"3",
"3"
] | [
"nonn",
"easy",
"new"
] | 11 | 0 | 5 | [
"A005117",
"A032741",
"A034444",
"A051903",
"A056671",
"A077610",
"A305611",
"A325770",
"A365498",
"A365499",
"A383156",
"A383159",
"A383160",
"A383161"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:40:04 | oeisdata/seq/A383/A383159.seq | 0c9e730c0ed1cce953b4e2e8bb5674b1 |
A383160 | a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n. | [
"0",
"1",
"1",
"1",
"1",
"3",
"1",
"3",
"1",
"3",
"1",
"5",
"1",
"3",
"3",
"2",
"1",
"5",
"1",
"5",
"3",
"3",
"1",
"7",
"1",
"3",
"3",
"5",
"1",
"7",
"1",
"5",
"3",
"3",
"3",
"3",
"1",
"3",
"3",
"7",
"1",
"7",
"1",
"5",
"5",
"3",
"1",
"9",
"1",
"5",
"3",
"5",
"1",
"7",
"3",
"7",
"3",
"3",
"1",
"11",
"1",
"3",
"5",
"3",
"3",
"7",
"1",
"5",
"3",
"7",
"1",
"2",
"1",
"3",
"5",
"5",
"3",
"7",
"1",
"9",
"2",
"3",
"1",
"11",
"3",
"3",
"3"
] | [
"nonn",
"easy",
"frac",
"new"
] | 9 | 0 | 5 | [
"A000961",
"A001248",
"A005117",
"A034444",
"A051903",
"A077610",
"A118914",
"A126706",
"A296082",
"A345288",
"A383057",
"A383058",
"A383157",
"A383158",
"A383159",
"A383160",
"A383161"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:40:20 | oeisdata/seq/A383/A383160.seq | 3d6d9fe55a5a05d4952150a43a74af38 |
A383161 | a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n. | [
"1",
"2",
"2",
"1",
"2",
"4",
"2",
"2",
"1",
"4",
"2",
"4",
"2",
"4",
"4",
"1",
"2",
"4",
"2",
"4",
"4",
"4",
"2",
"4",
"1",
"4",
"2",
"4",
"2",
"8",
"2",
"2",
"4",
"4",
"4",
"2",
"2",
"4",
"4",
"4",
"2",
"8",
"2",
"4",
"4",
"4",
"2",
"4",
"1",
"4",
"4",
"4",
"2",
"4",
"4",
"4",
"4",
"4",
"2",
"8",
"2",
"4",
"4",
"1",
"4",
"8",
"2",
"4",
"4",
"8",
"2",
"1",
"2",
"4",
"4",
"4",
"4",
"8",
"2",
"4",
"1",
"4",
"2",
"8",
"4",
"4",
"4",
"4"
] | [
"nonn",
"easy",
"frac",
"new"
] | 8 | 0 | 5 | [
"A034444",
"A051903",
"A056798",
"A077610",
"A118914",
"A383158",
"A383159",
"A383160",
"A383161"
] | null | Amiram Eldar, Apr 18 2025 | 2025-04-20T02:38:27 | oeisdata/seq/A383/A383161.seq | bd12334096a94cad98b9143f4bd32410 |
A383163 | Expansion of e.g.f. log(1 - (exp(2*x) - 1)/2)^2 / 2. | [
"0",
"0",
"1",
"9",
"75",
"690",
"7290",
"88536",
"1223628",
"19019664",
"328908720",
"6268688448",
"130615236576",
"2954657491968",
"72128519473920",
"1890266313945600",
"52937770062975744",
"1577901064699594752",
"49877742373556336640",
"1666688195869095124992",
"58704547943954039672832"
] | [
"nonn",
"new"
] | 12 | 0 | 5 | [
"A000254",
"A383149",
"A383163"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T10:05:53 | oeisdata/seq/A383/A383163.seq | c1abf99705a60bb9195b1650938bfded |
A383164 | Expansion of e.g.f. -log(1 - (exp(2*x) - 1)/2)^3 / 6. | [
"0",
"0",
"0",
"1",
"18",
"255",
"3555",
"52290",
"831684",
"14405580",
"271688580",
"5562400800",
"123123764808",
"2933953637472",
"74953425290016",
"2044855241694720",
"59361121229581440",
"1827578437315965696",
"59494057195888597248",
"2042194772007257103360",
"73731225467600254686720"
] | [
"nonn",
"new"
] | 11 | 0 | 5 | [
"A000399",
"A383149",
"A383164",
"A383166"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T10:10:32 | oeisdata/seq/A383/A383164.seq | a73997622f9f2522b788c64e4067a2e1 |
A383165 | Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^2 / 2. | [
"0",
"0",
"1",
"3",
"3",
"-10",
"-30",
"112",
"588",
"-2448",
"-18960",
"87296",
"911328",
"-4599296",
"-61152000",
"335523840",
"5464904448",
"-32363874304",
"-627708979200",
"3987441516544",
"90133968949248",
"-610866587369472",
"-15823700431503360",
"113884455221854208",
"3334995367266582528",
"-25385597162671308800"
] | [
"sign",
"new"
] | 10 | 0 | 5 | [
"A009392",
"A209849",
"A383163",
"A383165"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:44:46 | oeisdata/seq/A383/A383165.seq | f0510b47f341ce8c08a51e577b91b52f |
A383166 | Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^3 / 6. | [
"0",
"0",
"0",
"1",
"6",
"15",
"-15",
"-210",
"28",
"5292",
"4140",
"-208560",
"-369864",
"11847264",
"33630688",
"-917280000",
"-3642944640",
"92903375616",
"479824306944",
"-11926470604800",
"-76477342307840",
"1892813347934208",
"14591875555074048",
"-363945109924577280",
"-3293838565260693504",
"83374884181664563200"
] | [
"sign",
"new"
] | 9 | 0 | 5 | [
"A209849",
"A383164",
"A383166"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:44:42 | oeisdata/seq/A383/A383166.seq | a9b8ba869c87f46a2c5423a7cfd36bb0 |
A383170 | Expansion of e.g.f. -log(1 + log(1 - 2*x)/2). | [
"0",
"1",
"3",
"16",
"122",
"1208",
"14704",
"212336",
"3547984",
"67337728",
"1430990976",
"33664165632",
"868592478720",
"24390846882816",
"740570519159808",
"24177326011834368",
"844599686386919424",
"31438092340685144064",
"1242230898248798896128",
"51933512200489564962816",
"2290351520336982559358976"
] | [
"nonn",
"new"
] | 11 | 0 | 5 | [
"A003713",
"A227917",
"A383170",
"A383171",
"A383172"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T10:16:21 | oeisdata/seq/A383/A383170.seq | d1dd1e6d07134eb48f4e70788739a599 |
A383171 | Expansion of e.g.f. log(1 + log(1 - 2*x)/2)^2 / 2. | [
"0",
"0",
"1",
"9",
"91",
"1090",
"15298",
"247352",
"4537132",
"93195696",
"2120623984",
"52973194560",
"1441635171040",
"42464913775232",
"1346297567292416",
"45715740985471744",
"1655552663185480448",
"63698261991541393408",
"2595107348458704209920",
"111613055867327344582656"
] | [
"nonn",
"new"
] | 11 | 0 | 5 | [
"A341587",
"A383163",
"A383170",
"A383171",
"A383172"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T10:22:17 | oeisdata/seq/A383/A383171.seq | 199666d43613f71ebf585fb16347362a |
A383172 | Expansion of e.g.f. -log(1 + log(1 - 2*x)/2)^3 / 6. | [
"0",
"0",
"0",
"1",
"18",
"295",
"5115",
"96838",
"2012724",
"45825148",
"1137703140",
"30643915984",
"891001127016",
"27835772321344",
"930387252759328",
"33141746095999552",
"1253756533365348992",
"50210676392866266880",
"2122613151692627299584",
"94470824166941637093376"
] | [
"nonn",
"new"
] | 10 | 0 | 5 | [
"A341588",
"A383164",
"A383170",
"A383171",
"A383172"
] | null | Seiichi Manyama, Apr 18 2025 | 2025-04-18T08:44:28 | oeisdata/seq/A383/A383172.seq | a4177df8c5dd281840e933f98f8be9b0 |
A383173 | Decimal expansion of the area of the biggest little decagon. | [
"7",
"4",
"9",
"1",
"3",
"7",
"3",
"4",
"5",
"8",
"7",
"7",
"8",
"3",
"0",
"2",
"7",
"0",
"6",
"2",
"2",
"7",
"1",
"9",
"8",
"2",
"7",
"8",
"8",
"2",
"7",
"0",
"1",
"4",
"5",
"1",
"9",
"4",
"9",
"1",
"5",
"2",
"5",
"8",
"0",
"8",
"1",
"5",
"0",
"2",
"5",
"4",
"5",
"7",
"7",
"2",
"1",
"0",
"5",
"5",
"3",
"8",
"2",
"3",
"2",
"4",
"2",
"9",
"2",
"7",
"8",
"5",
"6",
"1",
"1",
"1",
"9",
"0",
"0",
"7",
"7",
"5",
"1",
"9",
"8",
"6",
"0",
"3",
"7",
"2",
"5",
"7",
"6",
"8",
"5",
"8",
"6",
"8",
"5",
"8",
"7",
"7",
"2",
"7",
"5",
"6",
"7",
"7",
"8",
"9",
"3",
"0",
"8",
"6",
"7",
"7",
"6",
"2",
"3"
] | [
"nonn",
"cons",
"new"
] | 7 | 0 | 5 | [
"A111969",
"A381252",
"A383173"
] | null | Eric W. Weisstein, Apr 18 2025 | 2025-04-20T08:40:11 | oeisdata/seq/A383/A383173.seq | 3902cceab8050a4105088c7c63dba86f |
A383175 | Number of compositions of n such that any fixed point k can be k different colors. | [
"1",
"1",
"2",
"5",
"10",
"22",
"48",
"101",
"213",
"450",
"945",
"1961",
"4064",
"8385",
"17242",
"35332",
"72141",
"146924",
"298552",
"605377",
"1225277",
"2475912",
"4995754",
"10067848",
"20267680",
"40762951",
"81916919",
"164504411",
"330155437",
"662265817",
"1327860471",
"2661376529",
"5332341881",
"10680912173"
] | [
"nonn",
"easy",
"new"
] | 13 | 0 | 5 | [
"A011782",
"A088305",
"A238349",
"A238350",
"A238351",
"A335713",
"A352512",
"A383175"
] | null | John Tyler Rascoe, Apr 18 2025 | 2025-04-21T16:27:11 | oeisdata/seq/A383/A383175.seq | 8fea309d1fda96b8bd8298beeae4bbde |
A383190 | a(2n) and a(2n+1) are the square spiral numbers of the position on which the (n+1)th domino is placed, when tiling the plane by placing the dominos always as near as possible to the origin and so that no two dominos share a long side. Inverse permutation of A383191. | [
"0",
"1",
"3",
"4",
"5",
"6",
"7",
"22",
"2",
"11",
"8",
"9",
"10",
"27",
"14",
"13",
"18",
"17",
"15",
"16",
"19",
"20",
"21",
"44",
"23",
"46",
"12",
"29",
"24",
"25",
"33",
"34",
"39",
"40",
"45",
"76",
"28",
"53",
"32",
"31",
"38",
"37",
"26",
"51",
"35",
"36",
"41",
"42",
"43",
"74",
"47",
"78",
"52",
"85",
"60",
"59",
"68",
"67",
"61",
"62",
"69",
"70",
"75",
"114",
"77",
"116",
"30",
"55",
"48",
"49",
"54",
"87",
"58",
"57",
"66",
"65"
] | [
"nonn",
"new"
] | 20 | 0 | 5 | [
"A174344",
"A316328",
"A383190",
"A383191"
] | null | M. F. Hasler, Apr 18 2025 | 2025-04-23T10:35:15 | oeisdata/seq/A383/A383190.seq | 8c36f39c5cb2e770db3864c19e7348c2 |
A383191 | a(n) is the number on the n-th position on the square spiral on the plane tiled with dominoes always placed nearest to the origin and so that no two dominos share a long side. Inverse permutation of A383190. | [
"0",
"1",
"8",
"2",
"3",
"4",
"5",
"6",
"10",
"11",
"12",
"9",
"26",
"15",
"14",
"18",
"19",
"17",
"16",
"20",
"21",
"22",
"7",
"24",
"28",
"29",
"42",
"13",
"36",
"27",
"66",
"39",
"38",
"30",
"31",
"44",
"45",
"41",
"40",
"32",
"33",
"46",
"47",
"48",
"23",
"34",
"25",
"50",
"68",
"69",
"76",
"43",
"52",
"37",
"70",
"67",
"108",
"73",
"72",
"55",
"54",
"58",
"59",
"80",
"81",
"75",
"74",
"57",
"56",
"60",
"61",
"84",
"85",
"86",
"49",
"62"
] | [
"nonn",
"new"
] | 13 | 0 | 5 | [
"A174344",
"A316328",
"A316667",
"A383190",
"A383191"
] | null | M. F. Hasler, Apr 18 2025 | 2025-04-23T10:35:36 | oeisdata/seq/A383/A383191.seq | 3f9b94064b18d9c2d90800da699e8261 |
A383196 | Expansion of e.g.f. (1/(1 - 3*x)^(1/3) - 1)^3 / 6. | [
"0",
"0",
"0",
"1",
"24",
"520",
"11880",
"295960",
"8090880",
"242280640",
"7912262400",
"280384720000",
"10727852889600",
"441104638374400",
"19407654326860800",
"910140650683264000",
"45332366929833984000",
"2390437704451084288000",
"133060566042200788992000",
"7797805996570952986624000"
] | [
"nonn",
"new"
] | 8 | 0 | 5 | [
"A001754",
"A035119",
"A143169",
"A371080",
"A383196"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:03:38 | oeisdata/seq/A383/A383196.seq | 5ff144e7eabed98c0b77e4d1037584a1 |
A383197 | Number of positive integers with n digits in which adjacent digits differ by at most 2. | [
"9",
"41",
"188",
"867",
"4010",
"18574",
"86096",
"399225",
"1851529",
"8587802",
"39833891",
"184770640",
"857073208",
"3975623218",
"18441391129",
"85542653145",
"396800342804",
"1840608838251",
"8537899488042",
"39604141848678",
"183708898915088",
"852157340908409",
"3952841397780937",
"18335763176322738"
] | [
"nonn",
"base",
"easy",
"new"
] | 17 | 0 | 5 | [
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null | Edwin Hermann, Apr 19 2025 | 2025-04-23T13:10:04 | oeisdata/seq/A383/A383197.seq | db14b75ff51e69749e2a07f8ee8ce42f |
A383198 | Number of positive integers with n digits in which adjacent digits differ by at most 3. | [
"9",
"54",
"328",
"2000",
"12202",
"74458",
"454366",
"2772710",
"16920138",
"103253214",
"630091042",
"3845059318",
"23464039746",
"143186649814",
"873780342786",
"5332145758694",
"32538816680050",
"198564450196598",
"1211717109125762",
"7394366670845606",
"45123286657530514",
"275359755529253142"
] | [
"nonn",
"base",
"easy",
"new"
] | 9 | 0 | 5 | [
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null | Edwin Hermann, Apr 19 2025 | 2025-04-24T17:36:03 | oeisdata/seq/A383/A383198.seq | d20750c30b94493db3e9ab707d4eca59 |
A383199 | Number of positive integers with n digits in which adjacent digits differ by at most 4. | [
"9",
"65",
"475",
"3465",
"25282",
"184463",
"1345887",
"9819916",
"71648478",
"522764591",
"3814216651",
"27829445433",
"203050351876",
"1481504383412",
"10809413614854",
"78868091114176",
"575440631436879",
"4198553757680021",
"30633661742154286",
"223510591001999469",
"1630787227154056312"
] | [
"nonn",
"base",
"easy",
"new"
] | 11 | 0 | 5 | [
"A235163",
"A383197",
"A383198",
"A383199",
"A383200",
"A383201",
"A383202"
] | null | Edwin Hermann, Apr 19 2025 | 2025-04-24T17:35:49 | oeisdata/seq/A383/A383199.seq | 0967cae534d0ff7d8a8c230963d0d135 |
A383203 | Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(2*x) - 1)/2. | [
"0",
"1",
"4",
"19",
"104",
"641",
"4380",
"32803",
"266768",
"2337505",
"21925236",
"218946003",
"2316939256",
"25878593313",
"304020964876",
"3745210267939",
"48248600421664",
"648460085178689",
"9072650530778084",
"131884007007981075",
"1988341404357799048",
"31040812899065995073",
"501049583881525932028"
] | [
"nonn",
"new"
] | 9 | 0 | 5 | [
"A154602",
"A383203"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:05:04 | oeisdata/seq/A383/A383203.seq | 90f43e78acefe02bf7ddbde67f06b357 |
A383204 | Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(2*x) - 1)/2. | [
"0",
"0",
"1",
"9",
"70",
"550",
"4531",
"39515",
"365324",
"3575820",
"36971461",
"402741581",
"4610187154",
"55316069874",
"694067320311",
"9087012399007",
"123889735839000",
"1755654433460248",
"25816120675972105",
"393285627390135313",
"6198118449550830302",
"100916786871955767998",
"1695424878199285059003"
] | [
"nonn",
"new"
] | 7 | 0 | 5 | [
"A154602",
"A383204"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:04:10 | oeisdata/seq/A383/A383204.seq | dea61c70da77c30d4f1a5ead912f598c |
A383205 | Expansion of e.g.f. f(x)^3 * exp(f(x)) / 6, where f(x) = (exp(2*x) - 1)/2. | [
"0",
"0",
"0",
"1",
"16",
"190",
"2080",
"22491",
"247072",
"2792476",
"32659840",
"396255541",
"4991365808",
"65268062938",
"885442472096",
"12451577262671",
"181326192307264",
"2731564737248696",
"42522062246582784",
"683301050932028777",
"11322975536640636240",
"193300021823406703990",
"3396381539718451143200"
] | [
"nonn",
"new"
] | 7 | 0 | 5 | [
"A154602",
"A383205"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:03:29 | oeisdata/seq/A383/A383205.seq | b82135b49135a4bf58ab9bb9f2fd670b |
A383206 | Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * Stirling2(j,k). | [
"1",
"0",
"1",
"0",
"3",
"1",
"0",
"11",
"9",
"1",
"0",
"49",
"71",
"18",
"1",
"0",
"257",
"575",
"245",
"30",
"1",
"0",
"1539",
"4957",
"3120",
"625",
"45",
"1",
"0",
"10299",
"45829",
"39697",
"11480",
"1330",
"63",
"1",
"0",
"75905",
"454015",
"517790",
"201677",
"33250",
"2506",
"84",
"1",
"0",
"609441",
"4804191",
"6999785",
"3513762",
"770007",
"81774",
"4326",
"108",
"1"
] | [
"nonn",
"tabl",
"new"
] | 11 | 0 | 5 | [
"A000007",
"A004211",
"A130191",
"A380228",
"A383206",
"A383207",
"A383208"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:04:05 | oeisdata/seq/A383/A383206.seq | 2a5b883974d1e689b6b16d6028a27e64 |
A383207 | Expansion of e.g.f. (exp(f(x)) - 1)^2 / 2, where f(x) = (exp(2*x) - 1)/2. | [
"0",
"0",
"1",
"9",
"71",
"575",
"4957",
"45829",
"454015",
"4804191",
"54094749",
"645720757",
"8142419727",
"108110708511",
"1506969153757",
"21993472779461",
"335257957315199",
"5325979566073919",
"87999598425114045",
"1509471498829147637",
"26835040585117438415",
"493677094649876461759",
"9384926300821643459133"
] | [
"nonn",
"new"
] | 9 | 0 | 5 | [
"A000558",
"A383206",
"A383207"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:04:14 | oeisdata/seq/A383/A383207.seq | c26309b6d936535663680bb36987d700 |
A383208 | Expansion of e.g.f. (exp(f(x)) - 1)^3 / 6, where f(x) = (exp(2*x) - 1)/2. | [
"0",
"0",
"0",
"1",
"18",
"245",
"3120",
"39697",
"517790",
"6999785",
"98520060",
"1445923149",
"22129416210",
"352932509085",
"5859167661256",
"101122879922313",
"1811960841148774",
"33662625853200337",
"647550189266734452",
"12881675626292023173",
"264677402162135670554",
"5610552395871699336453"
] | [
"nonn",
"new"
] | 8 | 0 | 5 | [
"A000559",
"A383206",
"A383208"
] | null | Seiichi Manyama, Apr 19 2025 | 2025-04-19T10:04:18 | oeisdata/seq/A383/A383208.seq | 57b73a4753c5f5f7106df4dcfa7c2254 |
A383211 | Numbers of the form p^e where p is prime and e > 1 is squarefree. | [
"4",
"8",
"9",
"25",
"27",
"32",
"49",
"64",
"121",
"125",
"128",
"169",
"243",
"289",
"343",
"361",
"529",
"729",
"841",
"961",
"1024",
"1331",
"1369",
"1681",
"1849",
"2048",
"2187",
"2197",
"2209",
"2809",
"3125",
"3481",
"3721",
"4489",
"4913",
"5041",
"5329",
"6241",
"6859",
"6889",
"7921",
"8192",
"9409",
"10201",
"10609",
"11449",
"11881",
"12167"
] | [
"nonn",
"new"
] | 6 | 0 | 5 | [
"A053810",
"A144338",
"A383211",
"A383266"
] | null | Peter Luschny, Apr 21 2025 | 2025-04-22T02:42:59 | oeisdata/seq/A383/A383211.seq | 477ca3c00b28421373a164a1967b3347 |
A383212 | a(n) = permanent of the n-th principal submatrix of the rectangular array whose odd-numbered rows are (2,1,2,1,2,1,2,1,...) and even-numbered rows are (1,2,1,2,1,2,1,2,...). | [
"1",
"2",
"5",
"24",
"132",
"1032",
"8820",
"95616",
"1106496",
"15327360",
"223560000",
"3768768000",
"66305952000",
"1316927808000",
"27127003680000",
"620221722624000",
"14638710417408000",
"378633583448064000",
"10073602372700160000",
"290788929384726528000",
"8609476463579013120000",
"274361332654900592640000",
"8946658680536444313600000"
] | [
"nonn",
"new"
] | 18 | 0 | 5 | [
"A204252",
"A383212"
] | null | Clark Kimberling, Apr 19 2025 | 2025-04-24T09:01:55 | oeisdata/seq/A383/A383212.seq | ebd385abe2a7cc993a7a119e6b99610c |
A383217 | Lexicographically earliest strictly increasing sequence such that no term is a substring of the product of all previous terms. | [
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"16",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"27",
"28",
"29",
"30",
"32",
"33",
"34",
"35",
"36",
"37",
"40",
"41",
"44",
"45",
"46",
"48",
"49",
"53",
"54",
"55",
"56",
"57",
"59",
"61",
"63",
"64",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"76",
"79",
"80",
"84",
"85",
"87",
"90",
"91",
"97",
"98"
] | [
"nonn",
"base",
"new"
] | 8 | 0 | 5 | [
"A033180",
"A383217",
"A383218"
] | null | Dominic McCarty, Apr 19 2025 | 2025-04-19T18:07:27 | oeisdata/seq/A383/A383217.seq | aa2ce0f0772886f96b3d1d59238a3d4c |
A383218 | The product of the first n terms of A383217. | [
"1",
"2",
"6",
"24",
"120",
"720",
"5760",
"51840",
"518400",
"5702400",
"68428800",
"889574400",
"12454041600",
"186810624000",
"2988969984000",
"50812489728000",
"914624815104000",
"17377871486976000",
"347557429739520000",
"7298706024529920000",
"160571532539658240000",
"3693145248412139520000"
] | [
"nonn",
"base",
"new"
] | 5 | 0 | 5 | [
"A033180",
"A383217",
"A383218"
] | null | Dominic McCarty, Apr 19 2025 | 2025-04-19T18:07:34 | oeisdata/seq/A383/A383218.seq | 320642fd5e8fa7259d0287ac13f5ae1a |
A383221 | Coefficient of x^3 in expansion of (x+2) * (x+5) * ... * (x+3*n-1). | [
"0",
"0",
"0",
"1",
"26",
"595",
"14155",
"363944",
"10206700",
"312193524",
"10380710220",
"373619597736",
"14490750497432",
"603032132116336",
"26818416624389936",
"1269883590624201344",
"63806666669904903808",
"3391580011320726010880",
"190174443042558311293440",
"11220246602286014617751040"
] | [
"nonn",
"new"
] | 7 | 0 | 5 | [
"A225470",
"A383221"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:40:40 | oeisdata/seq/A383/A383221.seq | c6d3d626ae03bbfdd72830474511690b |
A383222 | Coefficient of x^4 in expansion of (x+2) * (x+5) * ... * (x+3*n-1). | [
"0",
"0",
"0",
"0",
"1",
"40",
"1275",
"39655",
"1276009",
"43382934",
"1570298610",
"60630265740",
"2495678898636",
"109326548645600",
"5085420626585936",
"250576924194171120",
"13046999027750243984",
"716156618057417103008",
"41347880768363832470304",
"2505655766070932929630464"
] | [
"nonn",
"new"
] | 7 | 0 | 5 | [
"A225470",
"A383222"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:40:36 | oeisdata/seq/A383/A383222.seq | e8503b36f1533fe034fb09134f2d5f08 |
A383227 | a(n) is the product of first n even numbers not divisible by 5 (cf. A217562) | [
"1",
"2",
"8",
"48",
"384",
"4608",
"64512",
"1032192",
"18579456",
"408748032",
"9809952768",
"255058771968",
"7141645615104",
"228532659683328",
"7770110429233152",
"279723975452393472",
"10629511067190951936",
"446439464822019981312",
"19643336452168879177728",
"903593476799768442175488",
"43372486886388885224423424"
] | [
"nonn",
"new"
] | 8 | 0 | 5 | [
"A217562",
"A356858",
"A383227"
] | null | Stefano Spezia, Apr 20 2025 | 2025-04-21T17:05:33 | oeisdata/seq/A383/A383227.seq | 563e6cddff133efd665648e566220a0a |
A383228 | a(n) is the number of cases where both j and k (1 <= j < k <= n), are divisors of Sum_{i=j..k} i^i. | [
"0",
"0",
"0",
"1",
"1",
"2",
"2",
"2",
"3",
"3",
"3",
"3",
"3",
"3",
"4",
"4",
"5",
"5",
"6",
"6",
"6",
"6",
"6",
"6",
"6",
"7",
"7",
"7",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"8",
"9",
"9",
"10",
"11",
"11",
"11",
"11",
"12",
"12",
"12",
"12",
"12",
"12",
"12",
"14",
"14",
"14",
"14",
"15",
"15",
"15",
"16",
"16",
"16",
"16",
"16",
"16",
"16",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17",
"17"
] | [
"nonn",
"new"
] | 20 | 0 | 5 | [
"A000312",
"A001923",
"A128981",
"A383228"
] | null | Jean-Marc Rebert, Apr 20 2025 | 2025-04-22T07:49:18 | oeisdata/seq/A383/A383228.seq | 0a3c1fec736f3d8202d0936b265e2776 |
A383231 | Expansion of e.g.f. f(x) * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5). | [
"0",
"1",
"7",
"83",
"1394",
"30330",
"810756",
"25710012",
"943434288",
"39324264624",
"1835297984160",
"94813760519136",
"5371462318747392",
"331125138305434368",
"22065681276731119104",
"1580617232453691210240",
"121117633854691036502016",
"9885823380533972300470272",
"856279708828545483688808448"
] | [
"nonn",
"new"
] | 8 | 0 | 5 | [
"A004041",
"A024216",
"A024382",
"A383231",
"A383232",
"A383233",
"A383234"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:57:13 | oeisdata/seq/A383/A383231.seq | e89c953c6f09dd06448b4d169186cabc |
A383232 | Expansion of e.g.f. f(x)^2 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5). | [
"0",
"1",
"9",
"122",
"2242",
"52180",
"1471692",
"48790608",
"1859539344",
"80109265824",
"3849497255520",
"204138860091264",
"11842095171021696",
"745962168915065088",
"50708105952635996928",
"3699802551156676392960",
"288399758863879774476288",
"23919432333548949807869952",
"2103184085769044913951461376"
] | [
"nonn",
"new"
] | 8 | 0 | 5 | [
"A383231",
"A383232",
"A383233",
"A383234"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:57:09 | oeisdata/seq/A383/A383232.seq | 6241beba3ecb939b393ddb7e987560b0 |
A383233 | Expansion of e.g.f. f(x)^3 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5). | [
"0",
"1",
"11",
"167",
"3318",
"81930",
"2423208",
"83582568",
"3295488816",
"146241365904",
"7214605476480",
"391735046081664",
"23216763331632384",
"1491431668108800768",
"103230214859003968512",
"7659080261784464808960",
"606407304545822037952512",
"51033731719180664212641792",
"4549228202963725560906891264"
] | [
"nonn",
"new"
] | 13 | 0 | 5 | [
"A383231",
"A383232",
"A383233",
"A383234"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T10:39:38 | oeisdata/seq/A383/A383233.seq | 467038ecaa06b02f2849739ad5ec11d8 |
A383234 | Expansion of e.g.f. f(x)^4 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5). | [
"0",
"1",
"13",
"218",
"4646",
"121080",
"3741144",
"133863792",
"5447294352",
"248518603584",
"12566268267840",
"697632464382336",
"42189230206182528",
"2760816706845539328",
"194381535085933095936",
"14652311175996819978240",
"1177370323796943823325184",
"100466288729505689717809152"
] | [
"nonn",
"new"
] | 7 | 0 | 5 | [
"A383231",
"A383232",
"A383233",
"A383234"
] | null | Seiichi Manyama, Apr 20 2025 | 2025-04-20T08:40:53 | oeisdata/seq/A383/A383234.seq | 7107bef1eabbcadc835482d59c33ce22 |
A383235 | Triangle read by rows: T(n,k) = 2*floor(k/2)*T(n-1,k) + T(n-1,k-1), 0 <= k <= n. | [
"1",
"0",
"1",
"0",
"0",
"1",
"0",
"0",
"2",
"1",
"0",
"0",
"4",
"4",
"1",
"0",
"0",
"8",
"12",
"8",
"1",
"0",
"0",
"16",
"32",
"44",
"12",
"1",
"0",
"0",
"32",
"80",
"208",
"92",
"18",
"1",
"0",
"0",
"64",
"192",
"912",
"576",
"200",
"24",
"1",
"0",
"0",
"128",
"448",
"3840",
"3216",
"1776",
"344",
"32",
"1",
"0",
"0",
"256",
"1024",
"15808",
"16704",
"13872",
"3840",
"600",
"40",
"1"
] | [
"nonn",
"tabl",
"new"
] | 12 | 0 | 5 | [
"A000079",
"A001787",
"A007472",
"A007590",
"A048993",
"A100575",
"A158681",
"A383235"
] | null | Ven Popov, Apr 20 2025. | 2025-04-24T13:26:59 | oeisdata/seq/A383/A383235.seq | c4f2641c84f06bab672053ffc3a43041 |
A383236 | The least number of applications of Ackermann-Péter functions to reach n, starting from 0. | [
"1",
"2",
"3",
"4",
"4",
"5",
"5",
"6",
"6",
"7",
"7",
"8",
"5",
"6",
"7",
"8",
"8",
"9",
"9",
"10",
"9",
"10",
"10",
"11",
"10",
"11",
"11",
"12",
"6",
"7",
"8",
"9",
"10",
"11",
"11",
"12",
"11",
"12",
"12",
"13",
"12",
"13",
"13",
"14",
"12",
"13",
"13",
"14",
"13",
"14",
"14",
"15",
"13",
"14",
"14",
"15",
"14",
"15",
"15",
"16",
"7",
"8",
"9",
"10"
] | [
"nonn",
"look",
"new"
] | 20 | 0 | 5 | [
"A143796",
"A368423",
"A383236"
] | null | Hendrik Ballhausen, Apr 20 2025 | 2025-04-24T13:34:55 | oeisdata/seq/A383/A383236.seq | 302999f7dff310f03b7ef61c8005e50a |
A383237 | Primes p such that x^5+x+1 has no roots modulo p. | [
"2",
"29",
"41",
"47",
"71",
"131",
"179",
"197",
"233",
"239",
"257",
"269",
"311",
"353",
"443",
"461",
"491",
"509",
"587",
"647",
"653",
"683",
"761",
"857",
"863",
"887",
"929",
"947",
"1013",
"1061",
"1223",
"1277",
"1283",
"1289",
"1301",
"1361",
"1373",
"1409",
"1427",
"1439",
"1499",
"1511",
"1559",
"1619",
"1637",
"1733",
"1823",
"1973",
"1979"
] | [
"nonn",
"new"
] | 11 | 0 | 5 | [
"A003627",
"A383237"
] | null | Jayde S. Massmann, Apr 20 2025 | 2025-04-24T13:22:49 | oeisdata/seq/A383/A383237.seq | cca30d3fde094657d68247a5fd870943 |
A383255 | Number of n X n {0,1,2,3} matrices having no 1's to the right of any 0's and no 3's above any 2's. | [
"1",
"4",
"194",
"107080",
"672498596",
"48104236145168",
"39202958861329453384",
"364022757339778569993689888",
"38513979937284562006371342202842000",
"46429021191757554279412904483559912259714112",
"637737721080296383894709847744103523361428384973270816"
] | [
"nonn",
"new"
] | 13 | 0 | 5 | [
"A002416",
"A006506",
"A014235",
"A060757",
"A181213",
"A213977",
"A381857",
"A383255"
] | null | John Tyler Rascoe, Apr 20 2025 | 2025-04-23T14:57:45 | oeisdata/seq/A383/A383255.seq | 3562c878bc234934c9845c610a7097b0 |
A383256 | Number of n X n matrices of nonnegative entries with all columns summing to n and no horizontally adjacent zeros. | [
"1",
"1",
"7",
"343",
"125465",
"366908001",
"8698468668251",
"1708834003295306868",
"2810884261025802145414705",
"39088555382409783097546399456477",
"4626844513673581956954679383115038810744",
"4688191496359773864437279635019555242588548880831"
] | [
"nonn",
"new"
] | 10 | 0 | 5 | [
"A008300",
"A120733",
"A145839",
"A261780",
"A382923",
"A383256"
] | null | John Tyler Rascoe, Apr 21 2025 | 2025-04-23T17:02:34 | oeisdata/seq/A383/A383256.seq | 41ca71d0c44fc52446a4e63aee51386d |
A383258 | LCM-transform of A064664 (the inverse of the EKG-sequence). | [
"1",
"2",
"5",
"3",
"1",
"2",
"7",
"2",
"1",
"3",
"1",
"1",
"1",
"13",
"11",
"17",
"1",
"1",
"37",
"1",
"1",
"19",
"43",
"2",
"1",
"3",
"1",
"1",
"1",
"23",
"61",
"31",
"1",
"2",
"5",
"1",
"67",
"1",
"29",
"1",
"1",
"1",
"3",
"41",
"1",
"1",
"89",
"1",
"1",
"1",
"1",
"47",
"1",
"1",
"53",
"7",
"1",
"1",
"107",
"1",
"1",
"1",
"1",
"2",
"1",
"59",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"71",
"1",
"1",
"151",
"1",
"1",
"73",
"1",
"1",
"1",
"1",
"1",
"79",
"167",
"83",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"197"
] | [
"nonn",
"new"
] | 14 | 0 | 5 | [
"A064413",
"A064664",
"A064954",
"A265576",
"A368900",
"A383258"
] | null | Antti Karttunen, Apr 21 2025 | 2025-04-21T11:15:51 | oeisdata/seq/A383/A383258.seq | 39d33e0ac6da2b58fcfa0f656e2fea63 |
A383260 | Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(3*x) - 1)/3. | [
"0",
"1",
"5",
"30",
"211",
"1691",
"15126",
"148975",
"1599401",
"18563832",
"231317677",
"3076301471",
"43448641176",
"648950825173",
"10212710942609",
"168797691270438",
"2921824286030527",
"52833169082034839",
"995732022426733782",
"19519908917429511307",
"397294691005861642805",
"8381466690394292755896"
] | [
"nonn",
"new"
] | 13 | 0 | 5 | [
"A024216",
"A138378",
"A383203",
"A383260",
"A383261",
"A383262"
] | null | Seiichi Manyama, Apr 21 2025 | 2025-04-21T09:53:11 | oeisdata/seq/A383/A383260.seq | 70c47c38cb39c1192f988f4c70b770f4 |
A383261 | Expansion of e.g.f. f(x) * exp(2 * f(x)), where f(x) = (exp(3*x) - 1)/3. | [
"0",
"1",
"7",
"57",
"527",
"5441",
"61959",
"770281",
"10364671",
"149854545",
"2313932471",
"37963374329",
"658873048623",
"12050610195937",
"231496456566631",
"4657345160220681",
"97873704021590111",
"2143496712532350833",
"48821033290172899095",
"1154261436241093805593",
"28279753601438144211343"
] | [
"nonn",
"new"
] | 9 | 0 | 5 | [
"A024395",
"A383260",
"A383261"
] | null | Seiichi Manyama, Apr 21 2025 | 2025-04-21T09:54:00 | oeisdata/seq/A383/A383261.seq | a08f460c8b0fbab071b00a663fa891a3 |
A383262 | Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(3*x) - 1)/3. | [
"0",
"0",
"1",
"12",
"123",
"1270",
"13776",
"158718",
"1944685",
"25294338",
"348340491",
"5064749074",
"77528735868",
"1246096312188",
"20976610875949",
"368984700979440",
"6767792258171547",
"129182459141936566",
"2561529454871582772",
"52676675861728386114",
"1121762199908797394977"
] | [
"nonn",
"new"
] | 11 | 0 | 5 | [
"A003128",
"A286721",
"A383204",
"A383262"
] | null | Seiichi Manyama, Apr 21 2025 | 2025-04-21T09:55:09 | oeisdata/seq/A383/A383262.seq | f4d2993b16891d1dae25aaf7d8fb36fb |
A383265 | a(n) = Sum_{k=0..n} A383266(n, k). | [
"0",
"2",
"7",
"14",
"24",
"35",
"48",
"63",
"81",
"101",
"122",
"145",
"170",
"197",
"226",
"257",
"292",
"327",
"364",
"403",
"444",
"487",
"532",
"579",
"628",
"680",
"733",
"789",
"846",
"905",
"966",
"1029",
"1095",
"1162",
"1231",
"1302",
"1376",
"1451",
"1528",
"1607",
"1688",
"1771",
"1856",
"1943",
"2032",
"2123",
"2216",
"2311",
"2408",
"2508",
"2609"
] | [
"nonn",
"new"
] | 5 | 0 | 5 | [
"A383265",
"A383266"
] | null | Peter Luschny, Apr 21 2025 | 2025-04-21T16:04:25 | oeisdata/seq/A383/A383265.seq | 0f018042c024fdaf911dffc386b5fb40 |
A383266 | Triangle read by rows: For n, k >= 2 T(n, k) is defined as the exponent of the highest power e of k such that k^e <= n. Otherwise T(n, 0) = n^2 and T(n, 1) = n. | [
"0",
"1",
"1",
"4",
"2",
"1",
"9",
"3",
"1",
"1",
"16",
"4",
"2",
"1",
"1",
"25",
"5",
"2",
"1",
"1",
"1",
"36",
"6",
"2",
"1",
"1",
"1",
"1",
"49",
"7",
"2",
"1",
"1",
"1",
"1",
"1",
"64",
"8",
"3",
"1",
"1",
"1",
"1",
"1",
"1",
"81",
"9",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"100",
"10",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"121",
"11",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"144",
"12",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1"
] | [
"nonn",
"tabl",
"new"
] | 7 | 0 | 5 | [
"A000196",
"A383265",
"A383266"
] | null | Peter Luschny, Apr 21 2025 | 2025-04-21T17:08:49 | oeisdata/seq/A383/A383266.seq | e6412498774c23d0766334fdb4156935 |
A383271 | Number of primes (excluding n) that may be generated by replacing any binary digit of n with a digit from 0 to 1. | [
"0",
"0",
"1",
"1",
"1",
"1",
"2",
"2",
"0",
"2",
"2",
"1",
"1",
"1",
"0",
"3",
"1",
"1",
"2",
"3",
"0",
"4",
"1",
"3",
"0",
"2",
"0",
"3",
"1",
"2",
"1",
"2",
"0",
"2",
"1",
"2",
"1",
"2",
"0",
"3",
"1",
"1",
"1",
"4",
"0",
"5",
"1",
"1",
"0",
"2",
"0",
"2",
"1",
"2",
"0",
"2",
"0",
"3",
"1",
"1",
"1",
"2",
"0",
"4",
"0",
"3",
"2",
"3",
"0",
"3",
"1",
"4",
"1",
"1",
"0",
"5",
"0",
"4",
"1",
"1",
"0",
"4",
"1",
"2",
"0",
"0",
"0",
"3",
"1",
"1"
] | [
"nonn",
"base",
"new"
] | 27 | 0 | 5 | [
"A070939",
"A145667",
"A209252",
"A352942",
"A383271"
] | null | Michael S. Branicky, Apr 21 2025 | 2025-04-23T19:31:05 | oeisdata/seq/A383/A383271.seq | 90af0b86eb34029de4e2dd474e7d824f |
A383272 | Positions of records in A383271. | [
"0",
"2",
"6",
"15",
"21",
"45",
"111",
"261",
"1605",
"1995",
"4935",
"8295",
"69825",
"268155",
"550725",
"4574955",
"12024855",
"39867135",
"398467245",
"1698754365",
"16351800465"
] | [
"nonn",
"base",
"new"
] | 19 | 0 | 5 | [
"A276694",
"A322743",
"A383271",
"A383272"
] | null | Michael S. Branicky, Apr 21 2025 | 2025-04-23T02:38:52 | oeisdata/seq/A383/A383272.seq | bdbfebccceb4887776cd21e2aa932ca1 |
A383275 | Number of compositions of n such that any part 1 can be k different colors where k is the current record having appeared in the composition. | [
"1",
"1",
"2",
"5",
"14",
"42",
"134",
"454",
"1634",
"6245",
"25321",
"108779",
"494443",
"2374288",
"12024257",
"64100444",
"358948674",
"2106756217",
"12931155910",
"82823317389",
"552400947902",
"3829070637080",
"27534807426150",
"205066734143893",
"1579309451332366",
"12559941159979791",
"103013928588389695"
] | [
"nonn",
"easy",
"new"
] | 12 | 0 | 5 | [
"A000108",
"A011782",
"A088305",
"A382312",
"A382991",
"A383101",
"A383175",
"A383275"
] | null | John Tyler Rascoe, Apr 21 2025 | 2025-04-24T09:39:13 | oeisdata/seq/A383/A383275.seq | 167b6a068c4654dc99287a2d568d2a3e |
A383276 | Numbers of the form A034444(k) * k. | [
"1",
"4",
"6",
"8",
"10",
"14",
"16",
"18",
"22",
"24",
"26",
"32",
"34",
"38",
"40",
"46",
"48",
"50",
"54",
"56",
"58",
"60",
"62",
"64",
"72",
"74",
"80",
"82",
"84",
"86",
"88",
"94",
"96",
"98",
"104",
"106",
"112",
"118",
"122",
"128",
"132",
"134",
"136",
"140",
"142",
"144",
"146",
"152",
"156",
"158",
"160",
"162",
"166",
"176",
"178",
"180",
"184",
"192",
"194",
"200"
] | [
"nonn",
"easy",
"new"
] | 8 | 0 | 5 | [
"A005087",
"A007814",
"A034444",
"A036438",
"A100484",
"A138929",
"A151821",
"A298473",
"A383276",
"A383277",
"A383278",
"A383279"
] | null | Amiram Eldar, Apr 21 2025 | 2025-04-22T02:45:50 | oeisdata/seq/A383/A383276.seq | d62615598d7dbab61c8985cc4fbdee01 |
A383277 | The number of divisors d of n for which A034444(d)*d is equal to n. | [
"1",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"1",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0"
] | [
"nonn",
"easy",
"new"
] | 7 | 0 | 5 | [
"A005087",
"A007814",
"A034444",
"A327166",
"A383276",
"A383277",
"A383278",
"A383279"
] | null | Amiram Eldar, Apr 21 2025 | 2025-04-22T02:46:10 | oeisdata/seq/A383/A383277.seq | b2b1d8c25f9d78827dcc50cfeed78add |
A383278 | The number of integers k such that A034444(k) * k <= n. | [
"1",
"1",
"1",
"2",
"2",
"3",
"3",
"4",
"4",
"5",
"5",
"5",
"5",
"6",
"6",
"7",
"7",
"8",
"8",
"8",
"8",
"9",
"9",
"10",
"10",
"11",
"11",
"11",
"11",
"11",
"11",
"12",
"12",
"13",
"13",
"13",
"13",
"14",
"14",
"15",
"15",
"15",
"15",
"15",
"15",
"16",
"16",
"17",
"17",
"18",
"18",
"18",
"18",
"19",
"19",
"20",
"20",
"21",
"21",
"22",
"22",
"23",
"23",
"24",
"24",
"24",
"24",
"24",
"24",
"24",
"24"
] | [
"nonn",
"easy",
"new"
] | 11 | 0 | 5 | [
"A034444",
"A087197",
"A345288",
"A356005",
"A383276",
"A383277",
"A383278",
"A383279"
] | null | Amiram Eldar, Apr 21 2025 | 2025-04-22T02:47:18 | oeisdata/seq/A383/A383278.seq | fa7eb3f5290cbd13d780bbae99e9b2dd |
A383279 | The unique solution to x * A034444(x) = A383276(n). | [
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"11",
"6",
"13",
"16",
"17",
"19",
"10",
"23",
"12",
"25",
"27",
"14",
"29",
"15",
"31",
"32",
"18",
"37",
"20",
"41",
"21",
"43",
"22",
"47",
"24",
"49",
"26",
"53",
"28",
"59",
"61",
"64",
"33",
"67",
"34",
"35",
"71",
"36",
"73",
"38",
"39",
"79",
"40",
"81",
"83",
"44",
"89",
"45",
"46",
"48",
"97",
"50",
"101",
"51",
"103",
"52",
"107",
"54",
"109"
] | [
"nonn",
"easy",
"new"
] | 10 | 0 | 5 | [
"A000265",
"A005087",
"A007814",
"A034444",
"A383276",
"A383277",
"A383278",
"A383279"
] | null | Amiram Eldar, Apr 21 2025 | 2025-04-22T02:43:27 | oeisdata/seq/A383/A383279.seq | 5f1e908aab5e6cf92da2d08906d584e3 |
A383280 | a(n) = (3/2)^n * Sum_{k=0..n} (1/6)^k * (2*k)! * (n-k)! * binomial(n,k)^2. | [
"1",
"2",
"9",
"72",
"954",
"19980",
"624510",
"27420120",
"1607036760",
"120942324720",
"11351106055800",
"1298791163577600",
"177888712528573200",
"28728740092874421600",
"5401708378739722249200",
"1169716267087957140552000",
"288993599402729842084464000",
"80796133625685147464322528000"
] | [
"nonn",
"new"
] | 15 | 0 | 5 | [
"A000681",
"A001499",
"A383280"
] | null | Seiichi Manyama, Apr 22 2025 | 2025-04-24T04:22:44 | oeisdata/seq/A383/A383280.seq | 79ee57fee2b899e39d385d945db6bba6 |
A383281 | a(n) = Sum_{k=0..n} (2*k+1) * (1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2. | [
"1",
"2",
"11",
"120",
"2202",
"61260",
"2407770",
"127116360",
"8680455000",
"744631438320",
"78393873940200",
"9938444069030400",
"1493483322288157200",
"262511581007832156000",
"53360641241377862792400",
"12420661873849173800856000",
"3282370875452495120806512000",
"977378127650967704776130016000"
] | [
"nonn",
"new"
] | 16 | 0 | 5 | [
"A002018",
"A383281"
] | null | Seiichi Manyama, Apr 22 2025 | 2025-04-24T04:34:28 | oeisdata/seq/A383/A383281.seq | 2fe6871b660170469a02255d806853fd |
A383282 | a(n) = Sum_{k=0..n} (2*k+1) * (-1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2. | [
"1",
"1",
"5",
"51",
"906",
"24690",
"956790",
"49993650",
"3387124440",
"288755250840",
"30247310482200",
"3818739956308200",
"571858101118458000",
"100218359688123877200",
"20319306632495415745200",
"4719164981053010642154000",
"1244680987088062472732784000",
"369981708267221405777101680000"
] | [
"nonn",
"new"
] | 13 | 0 | 5 | [
"A383281",
"A383282"
] | null | Seiichi Manyama, Apr 22 2025 | 2025-04-24T04:37:56 | oeisdata/seq/A383/A383282.seq | 49323e257bc53f5d253e10a3dc7569f7 |
A383284 | Lexicographically earliest infinite sequence such that a(i) = a(j) => A265576(i) = A265576(j), for all i, j >= 1, where A265576 is the LCM-transform of EKG-sequence. | [
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"4",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"2",
"1",
"6",
"1",
"1",
"3",
"1",
"4",
"1",
"1",
"7",
"1",
"1",
"1",
"2",
"8",
"1",
"1",
"1",
"9",
"1",
"1",
"1",
"1",
"1",
"10",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"1",
"1",
"1",
"11",
"1",
"1",
"1",
"12",
"1",
"1",
"1",
"2",
"1",
"13",
"1",
"1",
"1",
"1",
"1",
"1",
"14",
"1",
"1",
"3",
"1",
"1",
"1",
"15",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"16",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"17"
] | [
"nonn",
"new"
] | 12 | 0 | 5 | [
"A000720",
"A064413",
"A064423",
"A265576",
"A383284",
"A383285"
] | null | Antti Karttunen, Apr 22 2025 | 2025-04-22T09:09:42 | oeisdata/seq/A383/A383284.seq | 55d55dea9ff85006f967d55106b58063 |
A383285 | Positions of terms > 1 in A265576, where A265576 is the LCM-transform of EKG-sequence. | [
"2",
"3",
"4",
"6",
"8",
"9",
"13",
"17",
"19",
"22",
"24",
"27",
"31",
"32",
"36",
"42",
"50",
"56",
"60",
"64",
"66",
"73",
"76",
"80",
"88",
"99",
"106",
"112",
"114",
"122",
"124",
"127",
"133",
"137",
"150",
"159",
"166",
"171",
"181",
"188",
"196",
"202",
"206",
"215",
"232",
"235",
"240",
"252",
"258",
"263",
"278",
"286",
"290",
"296",
"304",
"313",
"319",
"327",
"335",
"343",
"359",
"362",
"370",
"376",
"380",
"400",
"419",
"429",
"437",
"443"
] | [
"nonn",
"new"
] | 10 | 0 | 5 | [
"A064413",
"A064423",
"A265576",
"A383284",
"A383285",
"A383295"
] | null | Antti Karttunen, Apr 22 2025 | 2025-04-22T15:26:27 | oeisdata/seq/A383/A383285.seq | b3879e39a842ff950c8c898a209a2df4 |
A383292 | Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s) + 1/p^(3*s)). | [
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"2",
"1",
"3",
"2",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"3",
"1",
"1",
"1",
"2",
"2",
"1",
"1",
"3",
"2",
"2",
"1",
"2",
"1",
"3",
"1",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"1",
"1",
"2",
"1",
"1",
"1",
"6",
"1",
"1",
"2",
"2",
"1",
"1",
"1",
"3",
"3",
"1",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"1",
"2",
"1",
"1",
"1",
"3",
"1",
"2",
"2",
"4"
] | [
"nonn",
"mult",
"easy",
"new"
] | 18 | 0 | 5 | [
"A001694",
"A046100",
"A073184",
"A095691",
"A330595",
"A365498",
"A365552",
"A368105",
"A380922",
"A383292"
] | null | Vaclav Kotesovec, Apr 22 2025 | 2025-04-22T14:17:11 | oeisdata/seq/A383/A383292.seq | c26a2c15ef62306e5801aac6653f3114 |
A383293 | Exponential of Mangoldt function applied to EKG-sequence: a(n) = A014963(A064413(n)). | [
"1",
"2",
"2",
"1",
"3",
"3",
"1",
"2",
"1",
"5",
"1",
"1",
"1",
"7",
"1",
"1",
"2",
"1",
"1",
"11",
"1",
"3",
"1",
"5",
"1",
"1",
"1",
"13",
"1",
"1",
"2",
"1",
"17",
"1",
"1",
"1",
"19",
"1",
"1",
"1",
"1",
"1",
"23",
"1",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"1",
"1",
"1",
"29",
"1",
"1",
"1",
"31",
"1",
"1",
"2",
"1",
"1",
"37",
"1",
"1",
"1",
"1",
"1",
"1",
"41",
"1",
"3",
"1",
"1",
"1",
"1",
"43",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"47",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"53"
] | [
"nonn",
"new"
] | 7 | 0 | 5 | [
"A014963",
"A064413",
"A265576",
"A383293",
"A383294"
] | null | Antti Karttunen, Apr 22 2025 | 2025-04-22T13:33:23 | oeisdata/seq/A383/A383293.seq | 9c6eeb49dc6f74eec39a39244533aa09 |
A383294 | Positions of prime powers (A246655) in EKG-sequence. | [
"2",
"3",
"5",
"6",
"8",
"10",
"14",
"17",
"20",
"22",
"24",
"28",
"31",
"33",
"37",
"43",
"50",
"57",
"61",
"64",
"67",
"74",
"76",
"81",
"89",
"100",
"107",
"112",
"115",
"122",
"124",
"128",
"134",
"138",
"151",
"160",
"167",
"171",
"182",
"189",
"197",
"203",
"207",
"216",
"232",
"236",
"240",
"253",
"259",
"264",
"279",
"287",
"290",
"297",
"305",
"314",
"319",
"328",
"336",
"344",
"359",
"363",
"371",
"377",
"381",
"401",
"420",
"430",
"438",
"444"
] | [
"nonn",
"new"
] | 8 | 0 | 5 | [
"A064413",
"A064955",
"A246655",
"A383293",
"A383294",
"A383295"
] | null | Antti Karttunen, Apr 22 2025 | 2025-04-22T13:33:27 | oeisdata/seq/A383/A383294.seq | 42f50d90fa3c0d082acb232fd02a7802 |
A383295 | Positions of proper prime powers (A246547) in EKG-sequence. | [
"3",
"6",
"8",
"17",
"22",
"24",
"31",
"50",
"64",
"76",
"112",
"122",
"124",
"171",
"232",
"240",
"290",
"319",
"359",
"485",
"521",
"595",
"696",
"823",
"947",
"982",
"1279",
"1313",
"1642",
"1810",
"1961",
"2090",
"2096",
"2168",
"2306",
"2736",
"3002",
"3398",
"3638",
"3932",
"4379",
"4733",
"4913",
"5207",
"6072",
"6312",
"6583",
"6710",
"7717",
"7898",
"9165",
"9929",
"10298",
"11144",
"11568",
"11786",
"12430",
"14138"
] | [
"nonn",
"new"
] | 9 | 0 | 5 | [
"A064413",
"A064955",
"A246547",
"A265576",
"A383285",
"A383294",
"A383295"
] | null | Antti Karttunen, Apr 22 2025 | 2025-04-22T13:33:18 | oeisdata/seq/A383/A383295.seq | 4f71d46f385230f869a133f5fefcf4e3 |
A383313 | Expansion of e.g.f. exp(-x/2) / (1-2*x)^(1/4). | [
"1",
"0",
"1",
"4",
"27",
"232",
"2455",
"30852",
"449113",
"7432624",
"137829249",
"2830911220",
"63796168579",
"1565078980536",
"41521403685463",
"1184510408920468",
"36158133322895985",
"1176012432875399008",
"40599110984252798017",
"1482736219224857910756",
"57115359439245403771051"
] | [
"nonn",
"new"
] | 12 | 0 | 5 | [
"A002801",
"A383313",
"A383314",
"A383315"
] | null | Seiichi Manyama, Apr 23 2025 | 2025-04-23T05:42:22 | oeisdata/seq/A383/A383313.seq | 0e02f27c13eee347df56a7bb683a3a58 |
A383314 | Expansion of e.g.f. exp(-x/2) / (1-4*x)^(1/8). | [
"1",
"0",
"2",
"16",
"204",
"3392",
"69880",
"1717824",
"49077392",
"1597961728",
"58410015264",
"2368359845120",
"105492853521088",
"5120497605295104",
"269008689666893696",
"15207860554294309888",
"920541893947665404160",
"59401332750388003782656",
"4070589051420604880962048"
] | [
"nonn",
"new"
] | 13 | 0 | 5 | [
"A383313",
"A383314",
"A383315"
] | null | Seiichi Manyama, Apr 23 2025 | 2025-04-23T10:25:47 | oeisdata/seq/A383/A383314.seq | e0a759a6c303e0fa600a7c40934ba9f7 |
A383315 | Expansion of e.g.f. exp(-x/2) / (1-6*x)^(1/12). | [
"1",
"0",
"3",
"36",
"675",
"16632",
"509085",
"18626436",
"793001097",
"38511087120",
"2101009734099",
"127215916659540",
"8465583820754907",
"614101808094096744",
"48230098800348987405",
"4077120575169267005268",
"369111206211249734907345",
"35630377583888099367357984",
"3653123185073359871950788963"
] | [
"nonn",
"new"
] | 12 | 0 | 5 | [
"A383313",
"A383314",
"A383315"
] | null | Seiichi Manyama, Apr 23 2025 | 2025-04-23T10:34:33 | oeisdata/seq/A383/A383315.seq | 5c98b61a092dff992120c34e046f4699 |
A383316 | Expansion of e.g.f. exp(x/2) / (1-4*x)^(1/8). | [
"1",
"1",
"3",
"23",
"281",
"4593",
"93643",
"2285959",
"64981809",
"2107824353",
"76819828499",
"3107456481399",
"138145505435977",
"6694550810809297",
"351219409831557339",
"19832058937696108007",
"1199219012904515868257",
"77314609952787255980481",
"5293934640303567123132451"
] | [
"nonn",
"new"
] | 12 | 0 | 5 | [
"A002801",
"A383316",
"A383317"
] | null | Seiichi Manyama, Apr 23 2025 | 2025-04-23T10:29:22 | oeisdata/seq/A383/A383316.seq | 9bf9b796c8f0b57c9221feda83863031 |
A383317 | Expansion of e.g.f. exp(x/2) / (1-6*x)^(1/12). | [
"1",
"1",
"4",
"46",
"838",
"20398",
"619768",
"22564252",
"957247708",
"46363595644",
"2524152072304",
"152582368541224",
"10139721673875976",
"734706716925462184",
"57646381491830349472",
"4869084744694710293392",
"440492624600086270972432",
"42494068518463022190243088",
"4354423933547086885775444032"
] | [
"nonn",
"new"
] | 14 | 0 | 5 | [
"A002801",
"A383316",
"A383317"
] | null | Seiichi Manyama, Apr 23 2025 | 2025-04-23T05:47:27 | oeisdata/seq/A383/A383317.seq | dbc7a5557069a5990d692f672daac70d |
A383318 | Lexicographically earliest sequence of distinct terms such that replacing each term k with prime(k) does not change the succession of digits. | [
"6455",
"3",
"5",
"1",
"12",
"37",
"15",
"7",
"4",
"71",
"77",
"35",
"33",
"8",
"9",
"14",
"91",
"371",
"92",
"34",
"346",
"72",
"53",
"94",
"79",
"13",
"923",
"39",
"359",
"2",
"41",
"49",
"140",
"141",
"721",
"916",
"724",
"17",
"31",
"792",
"27",
"80",
"98",
"11",
"54",
"497",
"159",
"547",
"95",
"912",
"760",
"73",
"10",
"340",
"952",
"131",
"25",
"135",
"47",
"93",
"739",
"43"
] | [
"nonn",
"base",
"new"
] | 9 | 0 | 5 | [
"A067928",
"A302656",
"A383318",
"A383319",
"A383320",
"A383322"
] | null | Dominic McCarty, Apr 23 2025 | 2025-04-23T10:39:28 | oeisdata/seq/A383/A383318.seq | 3057689fed03bc9cd3cb1351b199b9d9 |
A383319 | a(n) = prime(A383318(n)) | [
"64553",
"5",
"11",
"2",
"37",
"157",
"47",
"17",
"7",
"353",
"389",
"149",
"137",
"19",
"23",
"43",
"467",
"2539",
"479",
"139",
"2339",
"359",
"241",
"491",
"401",
"41",
"7219",
"167",
"2417",
"3",
"179",
"227",
"809",
"811",
"5449",
"7159",
"5479",
"59",
"127",
"6073",
"103",
"409",
"521",
"31",
"251",
"3547",
"937",
"3943",
"499",
"7121",
"5791",
"367",
"29"
] | [
"nonn",
"base",
"new"
] | 6 | 0 | 5 | [
"A067928",
"A302656",
"A383318",
"A383319",
"A383320",
"A383322"
] | null | Dominic McCarty, Apr 23 2025 | 2025-04-23T10:39:39 | oeisdata/seq/A383/A383319.seq | c77935d8f2b2c896c9e5b4e585615783 |
A383320 | Lexicographically earliest sequence of distinct terms such that replacing each term k with Fibonacci(k) does not change the succession of digits. | [
"0",
"1",
"5",
"43",
"3",
"4",
"9",
"44",
"37",
"2",
"33",
"470",
"140",
"8",
"7",
"332",
"41",
"57",
"81",
"71",
"35",
"24",
"578",
"74",
"93",
"86",
"58",
"6",
"61",
"14",
"242",
"47",
"46",
"936",
"9310",
"13",
"87",
"148",
"48",
"19",
"30",
"12",
"55",
"77",
"36",
"270",
"246",
"51",
"68",
"97",
"194",
"4350",
"50",
"27",
"72",
"31",
"359",
"90",
"22",
"40",
"278",
"505",
"23"
] | [
"nonn",
"base",
"new"
] | 6 | 0 | 5 | [
"A038546",
"A302656",
"A383318",
"A383320",
"A383321",
"A383322"
] | null | Dominic McCarty, Apr 23 2025 | 2025-04-23T10:40:13 | oeisdata/seq/A383/A383320.seq | 5256f388dd3f1c1a492df10a488add71 |
A383321 | a(n) = Fibonacci(A383320(n)) | [
"0",
"1",
"5",
"433494437",
"2",
"3",
"34",
"701408733",
"24157817",
"1",
"3524578",
"74938658661142424746936931013871484819301255773627024651689719443505027723135990224027850523592585",
"81055900096023504197206408605",
"21",
"13"
] | [
"nonn",
"base",
"new"
] | 7 | 0 | 5 | [
"A038546",
"A302656",
"A383318",
"A383320",
"A383321",
"A383322"
] | null | Dominic McCarty, Apr 23 2025 | 2025-04-23T10:40:26 | oeisdata/seq/A383/A383321.seq | ab54893b808ccbb61810a5fa8e72a4a7 |
A383322 | Lexicographically earliest sequence of distinct terms such that replacing each term k with k! does not change the succession of digits. | [
"1",
"2",
"198",
"15",
"5",
"24",
"3",
"0",
"56",
"4",
"800",
"260",
"18",
"181",
"7",
"120",
"43",
"26",
"25",
"78",
"46",
"6",
"11",
"45",
"67",
"2580",
"8",
"37",
"34",
"49",
"61",
"66",
"465",
"63",
"9",
"28",
"62",
"93",
"960",
"65",
"410",
"626",
"13",
"82",
"98",
"59",
"32",
"659",
"453",
"242",
"255",
"580",
"939",
"42",
"70",
"44",
"932",
"22",
"55",
"38",
"389",
"50"
] | [
"nonn",
"base",
"new"
] | 11 | 0 | 5 | [
"A033147",
"A302656",
"A383318",
"A383320",
"A383322"
] | null | Dominic McCarty, Apr 23 2025 | 2025-04-24T15:14:55 | oeisdata/seq/A383/A383322.seq | f7e3c033239f1e88286c316e30aaf1f6 |
A383329 | Number of multiplications required to compute x^n by Knuth's power tree method. | [
"0",
"1",
"2",
"2",
"3",
"3",
"4",
"3",
"4",
"4",
"5",
"4",
"5",
"5",
"5",
"4",
"5",
"5",
"6",
"5",
"6",
"6",
"6",
"5",
"6",
"6",
"6",
"6",
"7",
"6",
"7",
"5",
"6",
"6",
"7",
"6",
"7",
"7",
"7",
"6",
"7",
"7",
"7",
"7",
"7",
"7",
"8",
"6",
"7",
"7",
"7",
"7",
"8",
"7",
"8",
"7",
"8",
"8",
"8",
"7",
"8",
"8",
"8",
"6",
"7",
"7",
"8",
"7",
"8",
"8",
"9",
"7",
"8",
"8",
"8",
"8",
"9",
"8",
"9",
"7",
"8",
"8",
"8",
"8",
"8",
"8",
"9"
] | [
"nonn",
"new"
] | 8 | 0 | 5 | [
"A003313",
"A113945",
"A114622",
"A114623",
"A115617",
"A122352",
"A383329"
] | null | Pontus von Brömssen, Apr 24 2025 | 2025-04-24T08:53:59 | oeisdata/seq/A383/A383329.seq | 5fea9ed7d5971f2b8d05a655643a65bf |
A383344 | Expansion of e.g.f. exp(-4*x) / (1-x)^4. | [
"1",
"0",
"4",
"8",
"72",
"416",
"3520",
"31104",
"316288",
"3525632",
"43117056",
"572195840",
"8191304704",
"125761056768",
"2060841582592",
"35894401335296",
"662066514984960",
"12890305925218304",
"264155723747688448",
"5682905054074109952",
"128051031032232411136",
"3015653024970577018880"
] | [
"nonn",
"easy",
"new"
] | 10 | 0 | 5 | [
"A000166",
"A087981",
"A088991",
"A137775",
"A381504",
"A383344"
] | null | Seiichi Manyama, Apr 23 2025 | 2025-04-24T09:44:56 | oeisdata/seq/A383/A383344.seq | 7f7ee444f30856c591c38d3f65f5a3bc |
A383346 | Representation of n in rational base 3/2. | [
"0",
"2",
"21",
"210",
"212",
"2101",
"2120",
"2122",
"21011",
"21200",
"21202",
"21221",
"210110",
"210112",
"212001",
"212020",
"212022",
"212211",
"2101100",
"2101102",
"2101121",
"2120010",
"2120012",
"2120201",
"2120220",
"2120222",
"2122111",
"21011000",
"21011002",
"21011021",
"21011210",
"21011212",
"21200101",
"21200120"
] | [
"nonn",
"base",
"new"
] | 16 | 0 | 5 | [
"A024629",
"A383346"
] | null | Michel Marcus, Apr 24 2025 | 2025-04-24T06:48:18 | oeisdata/seq/A383/A383346.seq | e875beec24f98892ce89f6d0248b5f1d |
A383348 | Triangle related to the partitions of n in three colors, read by rows. | [
"9",
"6",
"243",
"1",
"243",
"6561",
"0",
"90",
"8748",
"177147",
"0",
"15",
"4860",
"295245",
"4782969",
"0",
"1",
"1458",
"216513",
"9565938",
"129140163",
"0",
"0",
"252",
"91854",
"8680203",
"301327047",
"3486784401",
"0",
"0",
"24",
"24786",
"4723920",
"325241892",
"9298091736",
"94143178827",
"0",
"0",
"1",
"4374",
"1712421",
"215233605",
"11622614670",
"282429536481",
"2541865828329"
] | [
"nonn",
"tabl",
"new"
] | 5 | 0 | 5 | [
"A013733",
"A383348"
] | null | Michel Marcus, Apr 24 2025 | 2025-04-24T13:21:09 | oeisdata/seq/A383/A383348.seq | 5514aaca44bc52e18fd5fa9cac6b0838 |
A383354 | Squares of plane partition numbers. | [
"1",
"1",
"9",
"36",
"169",
"576",
"2304",
"7396",
"25600",
"79524",
"250000",
"737881",
"2187441",
"6175225",
"17363889",
"47320641",
"127622209",
"336135556",
"876219201",
"2240128900",
"5666777284",
"14112014436",
"34772925625",
"84554753089",
"203576025636",
"484461937089",
"1142215875025",
"2665572144964",
"6166451098756"
] | [
"nonn",
"new"
] | 5 | 0 | 5 | [
"A000219",
"A001255",
"A304990",
"A383354"
] | null | Ilya Gutkovskiy, Apr 24 2025 | 2025-04-24T08:54:09 | oeisdata/seq/A383/A383354.seq | 09b5c2c0433ac6e5e60058f3bdd9ffbc |
A383363 | Composite numbers k all of whose proper divisors have binary weights that are not equal to the binary weight of k. | [
"15",
"25",
"27",
"39",
"51",
"55",
"57",
"63",
"69",
"77",
"81",
"85",
"87",
"91",
"95",
"99",
"111",
"115",
"117",
"119",
"121",
"123",
"125",
"141",
"143",
"145",
"147",
"159",
"169",
"171",
"175",
"177",
"183",
"185",
"187",
"201",
"203",
"205",
"207",
"209",
"213",
"215",
"219",
"221",
"231",
"235",
"237",
"243",
"245",
"247",
"249",
"253",
"255",
"261",
"265",
"275"
] | [
"nonn",
"easy",
"base",
"new"
] | 12 | 0 | 5 | [
"A000120",
"A325571",
"A380844",
"A383363",
"A383364",
"A383365"
] | null | Amiram Eldar, Apr 24 2025 | 2025-04-24T12:30:29 | oeisdata/seq/A383/A383363.seq | 685a7f01f1adb296bcfa4a5d4a91e341 |
A383364 | a(n) is the least number k with exactly n proper divisors, where all of them have binary weights that are different from the binary weight of k. | [
"1",
"3",
"25",
"15",
"81",
"63",
"15625",
"231",
"1225",
"405",
"59049",
"495",
"531441",
"5103",
"2025",
"1485",
"33232930569601",
"2475",
"3814697265625",
"6237",
"18225",
"295245",
"31381059609",
"4095",
"1500625",
"2657205",
"81225",
"25515",
"22876792454961",
"14175",
"931322574615478515625",
"21735",
"31236921",
"301327047"
] | [
"nonn",
"base",
"new"
] | 7 | 0 | 5 | [
"A000120",
"A032741",
"A380844",
"A383363",
"A383364",
"A383365"
] | null | Amiram Eldar, Apr 24 2025 | 2025-04-24T12:32:07 | oeisdata/seq/A383/A383364.seq | ad0ed96d8987856dd354f01a293702fc |
A383365 | Numbers k with a record number of proper divisors, where all of them have binary weights that are different from the binary weight of k. | [
"1",
"3",
"15",
"63",
"231",
"405",
"495",
"1485",
"2475",
"4095",
"14175",
"21735",
"24255",
"31185",
"79695",
"190575",
"218295",
"239085",
"294525",
"904365",
"1276275",
"2789325",
"3586275",
"4937625",
"6912675",
"10072755",
"17342325",
"17972955",
"26801775",
"46621575",
"80405325",
"192567375",
"326351025",
"333107775",
"654729075"
] | [
"nonn",
"base",
"new"
] | 8 | 0 | 5 | [
"A000120",
"A032741",
"A380844",
"A383363",
"A383364",
"A383365"
] | null | Amiram Eldar, Apr 24 2025 | 2025-04-24T12:33:45 | oeisdata/seq/A383/A383365.seq | 9d523f5cf3372079a308b865c168ec0e |
A383366 | Smallest of a sociable triple i < j < k such that j = s(i), k = s(j), and i = s(k), where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k. | [
"4400700",
"12963816",
"29878920",
"38353800",
"44973480",
"51894304",
"52208520",
"67849656",
"73134432",
"81685080",
"100711656",
"103759848",
"105096096",
"113044896",
"113161320",
"114608032",
"128639034",
"135465912",
"135559080",
"136786200",
"139242740",
"148758120",
"156686088",
"159628350",
"171090416"
] | [
"nonn",
"base",
"new"
] | 8 | 0 | 5 | [
"A380845",
"A380846",
"A380849",
"A380850",
"A383366"
] | null | Amiram Eldar, Apr 24 2025 | 2025-04-24T13:20:53 | oeisdata/seq/A383/A383366.seq | 530b2c946036abcd2d5fc6fc6df4c5d5 |
Subsets and Splits
No saved queries yet
Save your SQL queries to embed, download, and access them later. Queries will appear here once saved.