seq_id
stringlengths
7
7
seq_name
stringlengths
4
573
sequence
sequencelengths
1
348
keywords
sequencelengths
1
8
score
int64
1
2.31k
offset_a
int64
0
0
offset_b
int64
5
5
cross_references
sequencelengths
1
128
former_ids
sequencelengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-04-25 01:21:50
filename
stringlengths
29
29
hash
stringlengths
32
32
A383146
Number of medial GL-racks of order n, up to isomorphism.
[ "1", "1", "4", "13", "61", "298", "2087", "16941", "187160" ]
[ "hard", "more", "nonn", "new" ]
4
0
5
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A374939", "A374942", "A374943", "A374944", "A374945", "A374946", "A374947", "A383144", "A383145", "A383146" ]
null
Luc Ta, Apr 17 2025
2025-04-24T16:51:03
oeisdata/seq/A383/A383146.seq
080d15f91f595573cb592c4eebf09e4b
A383147
Sum of odd divisors m of n such that there is a divisor d of n with d < m < 2*d.
[ "0", "0", "0", "0", "0", "3", "0", "0", "0", "0", "0", "3", "0", "0", "5", "0", "0", "12", "0", "5", "0", "0", "0", "3", "0", "0", "0", "7", "0", "23", "0", "0", "0", "0", "7", "12", "0", "0", "0", "5", "0", "31", "0", "0", "29", "0", "0", "3", "0", "0", "0", "0", "0", "39", "0", "7", "0", "0", "0", "23", "0", "0", "9", "0", "0", "47", "0", "0", "0", "7", "0", "12", "0", "0", "30", "0", "11", "42", "0", "5", "0", "0", "0", "31", "0", "0", "0", "11", "0", "77", "13", "0", "0", "0", "0" ]
[ "nonn", "new" ]
14
0
5
[ "A000593", "A237270", "A237271", "A237593", "A239657", "A379379", "A383147" ]
null
Omar E. Pol, Apr 17 2025
2025-04-18T21:16:27
oeisdata/seq/A383/A383147.seq
3eb6ee1228cebdf5135f2fbce0bd3455
A383148
k-facile numbers: Numbers m such that the sum of the divisors of m is equal to 2*m+s where s is a product of distinct divisors of m.
[ "12", "18", "20", "24", "30", "40", "42", "54", "56", "60", "66", "78", "84", "88", "90", "102", "104", "114", "120", "132", "138", "140", "168", "174", "186", "196", "204", "222", "224", "234", "246", "252", "258", "264", "270", "280", "282", "308", "312", "318", "348", "354", "360", "364", "366", "368", "380", "402", "414", "420", "426", "438", "440", "456", "464", "468", "474", "476" ]
[ "nonn", "new" ]
22
0
5
[ "A000203", "A000396", "A005101", "A181595", "A383148" ]
null
Joshua Zelinsky, Apr 17 2025
2025-04-24T18:27:20
oeisdata/seq/A383/A383148.seq
bccfa6402c91903971ea22f2d4eb13bb
A383149
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = (-1)^k * [m^k] (1/2^(m-n)) * Sum_{k=0..m} k^n * (-1)^m * 3^(m-k) * binomial(m,k).
[ "1", "0", "1", "0", "3", "1", "0", "12", "9", "1", "0", "66", "75", "18", "1", "0", "480", "690", "255", "30", "1", "0", "4368", "7290", "3555", "645", "45", "1", "0", "47712", "88536", "52290", "12705", "1365", "63", "1", "0", "608016", "1223628", "831684", "249585", "36120", "2562", "84", "1", "0", "8855040", "19019664", "14405580", "5073012", "915705", "87696", "4410", "108", "1" ]
[ "nonn", "tabl", "new" ]
35
0
5
[ "A000007", "A001787", "A122704", "A123227", "A129062", "A178987", "A209849", "A383140", "A383149", "A383150", "A383151", "A383152", "A383155", "A383163", "A383164" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:44:21
oeisdata/seq/A383/A383149.seq
eff235d093ef437e9cb10448b7a719e5
A383150
a(n) = Sum_{k=0..n} k^3 * (-1)^k * 3^(n-k) * binomial(n,k).
[ "0", "-1", "2", "18", "64", "160", "288", "224", "-1024", "-6912", "-28160", "-95744", "-294912", "-851968", "-2351104", "-6266880", "-16252928", "-41222144", "-102629376", "-251527168", "-608174080", "-1453326336", "-3437232128", "-8055160832", "-18723373056", "-43201331200", "-99019128832", "-225586446336" ]
[ "sign", "easy", "new" ]
13
0
5
[ "A001787", "A178987", "A383150", "A383151", "A383152", "A383155" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:45:24
oeisdata/seq/A383/A383150.seq
7c9c26968814be061ace0c137038934c
A383151
a(n) = Sum_{k=0..n} k^4 * (-1)^k * 3^(n-k) * binomial(n,k).
[ "0", "-1", "10", "36", "40", "-160", "-1152", "-4480", "-13568", "-34560", "-74240", "-123904", "-92160", "425984", "2867200", "11796480", "40763392", "128122880", "378667008", "1070858240", "2928148480", "7795113984", "20300431360", "51900317696", "130610626560", "324219699200", "795206483968", "1929715384320" ]
[ "sign", "easy", "new" ]
18
0
5
[ "A001787", "A178987", "A383150", "A383151", "A383152", "A383155" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-23T16:21:30
oeisdata/seq/A383/A383151.seq
c632c98bfd0182ec23e2989544a42ebe
A383152
a(n) = Sum_{k=0..n} k^5 * (-1)^k * 3^(n-k) * binomial(n,k).
[ "0", "-1", "26", "18", "-272", "-1400", "-4032", "-7168", "-1024", "55296", "294400", "1086976", "3354624", "9132032", "22249472", "47923200", "85983232", "99155968", "-102629376", "-1237712896", "-5688524800", "-20775960576", "-67868033024", "-207022456832", "-602167836672", "-1690304512000", "-4613767954432" ]
[ "sign", "easy", "new" ]
17
0
5
[ "A001787", "A178987", "A383150", "A383151", "A383152", "A383155" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T12:10:07
oeisdata/seq/A383/A383152.seq
1061d6a3a92c047ea09528855c1bf79b
A383153
The number of 2m-by-2n fers-wazir tours, a square array read by antidiagonals.
[ "2", "1", "1", "1", "2", "1", "1", "4", "4", "1", "1", "9", "22", "9", "1", "1", "23", "124", "124", "23", "1", "1", "62", "818", "1620", "818", "62", "1", "1", "170", "6004", "25111", "25111", "6004", "170", "1" ]
[ "nonn", "tabl", "more", "new" ]
21
0
5
[ "A339190", "A383153", "A383154" ]
null
Don Knuth, Apr 18 2025
2025-04-18T13:57:40
oeisdata/seq/A383/A383153.seq
be69e8286e760372db20520b740a2c89
A383154
The number of 2n-by-2n fers-wazir tours.
[ "2", "2", "22", "1620", "882130", "3465050546" ]
[ "nonn", "more", "new" ]
13
0
5
[ "A140519", "A383153", "A383154" ]
null
Don Knuth, Apr 18 2025
2025-04-18T13:57:51
oeisdata/seq/A383/A383154.seq
d5b6fc08e418e963cbd652185c69d2c9
A383155
a(n) = Sum_{k=0..n} k^6 * (-1)^k * 3^(n-k) * binomial(n,k).
[ "0", "-1", "58", "-180", "-1304", "-2920", "1008", "34496", "163840", "525312", "1285120", "2241536", "1124352", "-12113920", "-72052736", "-282378240", "-924581888", "-2699493376", "-7201751040", "-17666670592", "-39507722240", "-77918109696", "-121883328512", "-78622228480", "453588811776", "2904974950400", "11885785120768" ]
[ "sign", "easy", "new" ]
15
0
5
[ "A001787", "A178987", "A383150", "A383151", "A383152", "A383155" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-23T13:24:30
oeisdata/seq/A383/A383155.seq
be46b60b1d637d6eb4d74567473c5ecf
A383156
The sum of the maximum exponents in the prime factorizations of the divisors of n.
[ "0", "1", "1", "3", "1", "3", "1", "6", "3", "3", "1", "7", "1", "3", "3", "10", "1", "7", "1", "7", "3", "3", "1", "13", "3", "3", "6", "7", "1", "7", "1", "15", "3", "3", "3", "13", "1", "3", "3", "13", "1", "7", "1", "7", "7", "3", "1", "21", "3", "7", "3", "7", "1", "13", "3", "13", "3", "3", "1", "15", "1", "3", "7", "21", "3", "7", "1", "7", "3", "7", "1", "22", "1", "3", "7", "7", "3", "7", "1", "21", "10", "3", "1" ]
[ "nonn", "easy", "new" ]
10
0
5
[ "A000005", "A001221", "A001620", "A005117", "A013661", "A033150", "A034444", "A051903", "A073184", "A118914", "A252505", "A306016", "A309307", "A383156", "A383157", "A383158", "A383159" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:39:02
oeisdata/seq/A383/A383156.seq
9f63fb68db5f5346f96b5b85998ba4f9
A383157
a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the divisors of n.
[ "0", "1", "1", "1", "1", "3", "1", "3", "1", "3", "1", "7", "1", "3", "3", "2", "1", "7", "1", "7", "3", "3", "1", "13", "1", "3", "3", "7", "1", "7", "1", "5", "3", "3", "3", "13", "1", "3", "3", "13", "1", "7", "1", "7", "7", "3", "1", "21", "1", "7", "3", "7", "1", "13", "3", "13", "3", "3", "1", "5", "1", "3", "7", "3", "3", "7", "1", "7", "3", "7", "1", "11", "1", "3", "7", "7", "3", "7", "1", "21", "2", "3", "1", "5", "3" ]
[ "nonn", "easy", "frac", "new" ]
10
0
5
[ "A000005", "A001248", "A051903", "A118914", "A308043", "A345231", "A361062", "A383156", "A383157", "A383158" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:39:14
oeisdata/seq/A383/A383157.seq
448f038bf717f5aedd12186906513b37
A383158
a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the divisors of n.
[ "1", "2", "2", "1", "2", "4", "2", "2", "1", "4", "2", "6", "2", "4", "4", "1", "2", "6", "2", "6", "4", "4", "2", "8", "1", "4", "2", "6", "2", "8", "2", "2", "4", "4", "4", "9", "2", "4", "4", "8", "2", "8", "2", "6", "6", "4", "2", "10", "1", "6", "4", "6", "2", "8", "4", "8", "4", "4", "2", "4", "2", "4", "6", "1", "4", "8", "2", "6", "4", "8", "2", "6", "2", "4", "6", "6", "4", "8", "2", "10", "1", "4", "2", "4", "4", "4", "4" ]
[ "nonn", "easy", "frac", "new" ]
7
0
5
[ "A000005", "A051903", "A056798", "A118914", "A383156", "A383157", "A383158" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:39:40
oeisdata/seq/A383/A383158.seq
b785937053b5aad9edf7d7e6a4674b73
A383159
The sum of the maximum exponents in the prime factorizations of the unitary divisors of n.
[ "0", "1", "1", "2", "1", "3", "1", "3", "2", "3", "1", "5", "1", "3", "3", "4", "1", "5", "1", "5", "3", "3", "1", "7", "2", "3", "3", "5", "1", "7", "1", "5", "3", "3", "3", "6", "1", "3", "3", "7", "1", "7", "1", "5", "5", "3", "1", "9", "2", "5", "3", "5", "1", "7", "3", "7", "3", "3", "1", "11", "1", "3", "5", "6", "3", "7", "1", "5", "3", "7", "1", "8", "1", "3", "5", "5", "3", "7", "1", "9", "4", "3", "1", "11", "3", "3", "3" ]
[ "nonn", "easy", "new" ]
11
0
5
[ "A005117", "A032741", "A034444", "A051903", "A056671", "A077610", "A305611", "A325770", "A365498", "A365499", "A383156", "A383159", "A383160", "A383161" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:40:04
oeisdata/seq/A383/A383159.seq
0c9e730c0ed1cce953b4e2e8bb5674b1
A383160
a(n) is the numerator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n.
[ "0", "1", "1", "1", "1", "3", "1", "3", "1", "3", "1", "5", "1", "3", "3", "2", "1", "5", "1", "5", "3", "3", "1", "7", "1", "3", "3", "5", "1", "7", "1", "5", "3", "3", "3", "3", "1", "3", "3", "7", "1", "7", "1", "5", "5", "3", "1", "9", "1", "5", "3", "5", "1", "7", "3", "7", "3", "3", "1", "11", "1", "3", "5", "3", "3", "7", "1", "5", "3", "7", "1", "2", "1", "3", "5", "5", "3", "7", "1", "9", "2", "3", "1", "11", "3", "3", "3" ]
[ "nonn", "easy", "frac", "new" ]
9
0
5
[ "A000961", "A001248", "A005117", "A034444", "A051903", "A077610", "A118914", "A126706", "A296082", "A345288", "A383057", "A383058", "A383157", "A383158", "A383159", "A383160", "A383161" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:40:20
oeisdata/seq/A383/A383160.seq
3d6d9fe55a5a05d4952150a43a74af38
A383161
a(n) is the denominator of the mean of the maximum exponents in the prime factorizations of the unitary divisors of n.
[ "1", "2", "2", "1", "2", "4", "2", "2", "1", "4", "2", "4", "2", "4", "4", "1", "2", "4", "2", "4", "4", "4", "2", "4", "1", "4", "2", "4", "2", "8", "2", "2", "4", "4", "4", "2", "2", "4", "4", "4", "2", "8", "2", "4", "4", "4", "2", "4", "1", "4", "4", "4", "2", "4", "4", "4", "4", "4", "2", "8", "2", "4", "4", "1", "4", "8", "2", "4", "4", "8", "2", "1", "2", "4", "4", "4", "4", "8", "2", "4", "1", "4", "2", "8", "4", "4", "4", "4" ]
[ "nonn", "easy", "frac", "new" ]
8
0
5
[ "A034444", "A051903", "A056798", "A077610", "A118914", "A383158", "A383159", "A383160", "A383161" ]
null
Amiram Eldar, Apr 18 2025
2025-04-20T02:38:27
oeisdata/seq/A383/A383161.seq
bd12334096a94cad98b9143f4bd32410
A383163
Expansion of e.g.f. log(1 - (exp(2*x) - 1)/2)^2 / 2.
[ "0", "0", "1", "9", "75", "690", "7290", "88536", "1223628", "19019664", "328908720", "6268688448", "130615236576", "2954657491968", "72128519473920", "1890266313945600", "52937770062975744", "1577901064699594752", "49877742373556336640", "1666688195869095124992", "58704547943954039672832" ]
[ "nonn", "new" ]
12
0
5
[ "A000254", "A383149", "A383163" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T10:05:53
oeisdata/seq/A383/A383163.seq
c1abf99705a60bb9195b1650938bfded
A383164
Expansion of e.g.f. -log(1 - (exp(2*x) - 1)/2)^3 / 6.
[ "0", "0", "0", "1", "18", "255", "3555", "52290", "831684", "14405580", "271688580", "5562400800", "123123764808", "2933953637472", "74953425290016", "2044855241694720", "59361121229581440", "1827578437315965696", "59494057195888597248", "2042194772007257103360", "73731225467600254686720" ]
[ "nonn", "new" ]
11
0
5
[ "A000399", "A383149", "A383164", "A383166" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T10:10:32
oeisdata/seq/A383/A383164.seq
a73997622f9f2522b788c64e4067a2e1
A383165
Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^2 / 2.
[ "0", "0", "1", "3", "3", "-10", "-30", "112", "588", "-2448", "-18960", "87296", "911328", "-4599296", "-61152000", "335523840", "5464904448", "-32363874304", "-627708979200", "3987441516544", "90133968949248", "-610866587369472", "-15823700431503360", "113884455221854208", "3334995367266582528", "-25385597162671308800" ]
[ "sign", "new" ]
10
0
5
[ "A009392", "A209849", "A383163", "A383165" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:44:46
oeisdata/seq/A383/A383165.seq
f0510b47f341ce8c08a51e577b91b52f
A383166
Expansion of e.g.f. log(1 + (exp(2*x) - 1)/2)^3 / 6.
[ "0", "0", "0", "1", "6", "15", "-15", "-210", "28", "5292", "4140", "-208560", "-369864", "11847264", "33630688", "-917280000", "-3642944640", "92903375616", "479824306944", "-11926470604800", "-76477342307840", "1892813347934208", "14591875555074048", "-363945109924577280", "-3293838565260693504", "83374884181664563200" ]
[ "sign", "new" ]
9
0
5
[ "A209849", "A383164", "A383166" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:44:42
oeisdata/seq/A383/A383166.seq
a9b8ba869c87f46a2c5423a7cfd36bb0
A383170
Expansion of e.g.f. -log(1 + log(1 - 2*x)/2).
[ "0", "1", "3", "16", "122", "1208", "14704", "212336", "3547984", "67337728", "1430990976", "33664165632", "868592478720", "24390846882816", "740570519159808", "24177326011834368", "844599686386919424", "31438092340685144064", "1242230898248798896128", "51933512200489564962816", "2290351520336982559358976" ]
[ "nonn", "new" ]
11
0
5
[ "A003713", "A227917", "A383170", "A383171", "A383172" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T10:16:21
oeisdata/seq/A383/A383170.seq
d1dd1e6d07134eb48f4e70788739a599
A383171
Expansion of e.g.f. log(1 + log(1 - 2*x)/2)^2 / 2.
[ "0", "0", "1", "9", "91", "1090", "15298", "247352", "4537132", "93195696", "2120623984", "52973194560", "1441635171040", "42464913775232", "1346297567292416", "45715740985471744", "1655552663185480448", "63698261991541393408", "2595107348458704209920", "111613055867327344582656" ]
[ "nonn", "new" ]
11
0
5
[ "A341587", "A383163", "A383170", "A383171", "A383172" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T10:22:17
oeisdata/seq/A383/A383171.seq
199666d43613f71ebf585fb16347362a
A383172
Expansion of e.g.f. -log(1 + log(1 - 2*x)/2)^3 / 6.
[ "0", "0", "0", "1", "18", "295", "5115", "96838", "2012724", "45825148", "1137703140", "30643915984", "891001127016", "27835772321344", "930387252759328", "33141746095999552", "1253756533365348992", "50210676392866266880", "2122613151692627299584", "94470824166941637093376" ]
[ "nonn", "new" ]
10
0
5
[ "A341588", "A383164", "A383170", "A383171", "A383172" ]
null
Seiichi Manyama, Apr 18 2025
2025-04-18T08:44:28
oeisdata/seq/A383/A383172.seq
a4177df8c5dd281840e933f98f8be9b0
A383173
Decimal expansion of the area of the biggest little decagon.
[ "7", "4", "9", "1", "3", "7", "3", "4", "5", "8", "7", "7", "8", "3", "0", "2", "7", "0", "6", "2", "2", "7", "1", "9", "8", "2", "7", "8", "8", "2", "7", "0", "1", "4", "5", "1", "9", "4", "9", "1", "5", "2", "5", "8", "0", "8", "1", "5", "0", "2", "5", "4", "5", "7", "7", "2", "1", "0", "5", "5", "3", "8", "2", "3", "2", "4", "2", "9", "2", "7", "8", "5", "6", "1", "1", "1", "9", "0", "0", "7", "7", "5", "1", "9", "8", "6", "0", "3", "7", "2", "5", "7", "6", "8", "5", "8", "6", "8", "5", "8", "7", "7", "2", "7", "5", "6", "7", "7", "8", "9", "3", "0", "8", "6", "7", "7", "6", "2", "3" ]
[ "nonn", "cons", "new" ]
7
0
5
[ "A111969", "A381252", "A383173" ]
null
Eric W. Weisstein, Apr 18 2025
2025-04-20T08:40:11
oeisdata/seq/A383/A383173.seq
3902cceab8050a4105088c7c63dba86f
A383175
Number of compositions of n such that any fixed point k can be k different colors.
[ "1", "1", "2", "5", "10", "22", "48", "101", "213", "450", "945", "1961", "4064", "8385", "17242", "35332", "72141", "146924", "298552", "605377", "1225277", "2475912", "4995754", "10067848", "20267680", "40762951", "81916919", "164504411", "330155437", "662265817", "1327860471", "2661376529", "5332341881", "10680912173" ]
[ "nonn", "easy", "new" ]
13
0
5
[ "A011782", "A088305", "A238349", "A238350", "A238351", "A335713", "A352512", "A383175" ]
null
John Tyler Rascoe, Apr 18 2025
2025-04-21T16:27:11
oeisdata/seq/A383/A383175.seq
8fea309d1fda96b8bd8298beeae4bbde
A383190
a(2n) and a(2n+1) are the square spiral numbers of the position on which the (n+1)th domino is placed, when tiling the plane by placing the dominos always as near as possible to the origin and so that no two dominos share a long side. Inverse permutation of A383191.
[ "0", "1", "3", "4", "5", "6", "7", "22", "2", "11", "8", "9", "10", "27", "14", "13", "18", "17", "15", "16", "19", "20", "21", "44", "23", "46", "12", "29", "24", "25", "33", "34", "39", "40", "45", "76", "28", "53", "32", "31", "38", "37", "26", "51", "35", "36", "41", "42", "43", "74", "47", "78", "52", "85", "60", "59", "68", "67", "61", "62", "69", "70", "75", "114", "77", "116", "30", "55", "48", "49", "54", "87", "58", "57", "66", "65" ]
[ "nonn", "new" ]
20
0
5
[ "A174344", "A316328", "A383190", "A383191" ]
null
M. F. Hasler, Apr 18 2025
2025-04-23T10:35:15
oeisdata/seq/A383/A383190.seq
8c36f39c5cb2e770db3864c19e7348c2
A383191
a(n) is the number on the n-th position on the square spiral on the plane tiled with dominoes always placed nearest to the origin and so that no two dominos share a long side. Inverse permutation of A383190.
[ "0", "1", "8", "2", "3", "4", "5", "6", "10", "11", "12", "9", "26", "15", "14", "18", "19", "17", "16", "20", "21", "22", "7", "24", "28", "29", "42", "13", "36", "27", "66", "39", "38", "30", "31", "44", "45", "41", "40", "32", "33", "46", "47", "48", "23", "34", "25", "50", "68", "69", "76", "43", "52", "37", "70", "67", "108", "73", "72", "55", "54", "58", "59", "80", "81", "75", "74", "57", "56", "60", "61", "84", "85", "86", "49", "62" ]
[ "nonn", "new" ]
13
0
5
[ "A174344", "A316328", "A316667", "A383190", "A383191" ]
null
M. F. Hasler, Apr 18 2025
2025-04-23T10:35:36
oeisdata/seq/A383/A383191.seq
3f9b94064b18d9c2d90800da699e8261
A383196
Expansion of e.g.f. (1/(1 - 3*x)^(1/3) - 1)^3 / 6.
[ "0", "0", "0", "1", "24", "520", "11880", "295960", "8090880", "242280640", "7912262400", "280384720000", "10727852889600", "441104638374400", "19407654326860800", "910140650683264000", "45332366929833984000", "2390437704451084288000", "133060566042200788992000", "7797805996570952986624000" ]
[ "nonn", "new" ]
8
0
5
[ "A001754", "A035119", "A143169", "A371080", "A383196" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:03:38
oeisdata/seq/A383/A383196.seq
5ff144e7eabed98c0b77e4d1037584a1
A383197
Number of positive integers with n digits in which adjacent digits differ by at most 2.
[ "9", "41", "188", "867", "4010", "18574", "86096", "399225", "1851529", "8587802", "39833891", "184770640", "857073208", "3975623218", "18441391129", "85542653145", "396800342804", "1840608838251", "8537899488042", "39604141848678", "183708898915088", "852157340908409", "3952841397780937", "18335763176322738" ]
[ "nonn", "base", "easy", "new" ]
17
0
5
[ "A235163", "A383197", "A383198", "A383199", "A383200", "A383201", "A383202" ]
null
Edwin Hermann, Apr 19 2025
2025-04-23T13:10:04
oeisdata/seq/A383/A383197.seq
db14b75ff51e69749e2a07f8ee8ce42f
A383198
Number of positive integers with n digits in which adjacent digits differ by at most 3.
[ "9", "54", "328", "2000", "12202", "74458", "454366", "2772710", "16920138", "103253214", "630091042", "3845059318", "23464039746", "143186649814", "873780342786", "5332145758694", "32538816680050", "198564450196598", "1211717109125762", "7394366670845606", "45123286657530514", "275359755529253142" ]
[ "nonn", "base", "easy", "new" ]
9
0
5
[ "A235163", "A383197", "A383198", "A383199", "A383200", "A383201", "A383202" ]
null
Edwin Hermann, Apr 19 2025
2025-04-24T17:36:03
oeisdata/seq/A383/A383198.seq
d20750c30b94493db3e9ab707d4eca59
A383199
Number of positive integers with n digits in which adjacent digits differ by at most 4.
[ "9", "65", "475", "3465", "25282", "184463", "1345887", "9819916", "71648478", "522764591", "3814216651", "27829445433", "203050351876", "1481504383412", "10809413614854", "78868091114176", "575440631436879", "4198553757680021", "30633661742154286", "223510591001999469", "1630787227154056312" ]
[ "nonn", "base", "easy", "new" ]
11
0
5
[ "A235163", "A383197", "A383198", "A383199", "A383200", "A383201", "A383202" ]
null
Edwin Hermann, Apr 19 2025
2025-04-24T17:35:49
oeisdata/seq/A383/A383199.seq
0967cae534d0ff7d8a8c230963d0d135
A383203
Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(2*x) - 1)/2.
[ "0", "1", "4", "19", "104", "641", "4380", "32803", "266768", "2337505", "21925236", "218946003", "2316939256", "25878593313", "304020964876", "3745210267939", "48248600421664", "648460085178689", "9072650530778084", "131884007007981075", "1988341404357799048", "31040812899065995073", "501049583881525932028" ]
[ "nonn", "new" ]
9
0
5
[ "A154602", "A383203" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:05:04
oeisdata/seq/A383/A383203.seq
90f43e78acefe02bf7ddbde67f06b357
A383204
Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(2*x) - 1)/2.
[ "0", "0", "1", "9", "70", "550", "4531", "39515", "365324", "3575820", "36971461", "402741581", "4610187154", "55316069874", "694067320311", "9087012399007", "123889735839000", "1755654433460248", "25816120675972105", "393285627390135313", "6198118449550830302", "100916786871955767998", "1695424878199285059003" ]
[ "nonn", "new" ]
7
0
5
[ "A154602", "A383204" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:04:10
oeisdata/seq/A383/A383204.seq
dea61c70da77c30d4f1a5ead912f598c
A383205
Expansion of e.g.f. f(x)^3 * exp(f(x)) / 6, where f(x) = (exp(2*x) - 1)/2.
[ "0", "0", "0", "1", "16", "190", "2080", "22491", "247072", "2792476", "32659840", "396255541", "4991365808", "65268062938", "885442472096", "12451577262671", "181326192307264", "2731564737248696", "42522062246582784", "683301050932028777", "11322975536640636240", "193300021823406703990", "3396381539718451143200" ]
[ "nonn", "new" ]
7
0
5
[ "A154602", "A383205" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:03:29
oeisdata/seq/A383/A383205.seq
b82135b49135a4bf58ab9bb9f2fd670b
A383206
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = Sum_{j=k..n} 2^(n-j) * Stirling2(n,j) * Stirling2(j,k).
[ "1", "0", "1", "0", "3", "1", "0", "11", "9", "1", "0", "49", "71", "18", "1", "0", "257", "575", "245", "30", "1", "0", "1539", "4957", "3120", "625", "45", "1", "0", "10299", "45829", "39697", "11480", "1330", "63", "1", "0", "75905", "454015", "517790", "201677", "33250", "2506", "84", "1", "0", "609441", "4804191", "6999785", "3513762", "770007", "81774", "4326", "108", "1" ]
[ "nonn", "tabl", "new" ]
11
0
5
[ "A000007", "A004211", "A130191", "A380228", "A383206", "A383207", "A383208" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:04:05
oeisdata/seq/A383/A383206.seq
2a5b883974d1e689b6b16d6028a27e64
A383207
Expansion of e.g.f. (exp(f(x)) - 1)^2 / 2, where f(x) = (exp(2*x) - 1)/2.
[ "0", "0", "1", "9", "71", "575", "4957", "45829", "454015", "4804191", "54094749", "645720757", "8142419727", "108110708511", "1506969153757", "21993472779461", "335257957315199", "5325979566073919", "87999598425114045", "1509471498829147637", "26835040585117438415", "493677094649876461759", "9384926300821643459133" ]
[ "nonn", "new" ]
9
0
5
[ "A000558", "A383206", "A383207" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:04:14
oeisdata/seq/A383/A383207.seq
c26309b6d936535663680bb36987d700
A383208
Expansion of e.g.f. (exp(f(x)) - 1)^3 / 6, where f(x) = (exp(2*x) - 1)/2.
[ "0", "0", "0", "1", "18", "245", "3120", "39697", "517790", "6999785", "98520060", "1445923149", "22129416210", "352932509085", "5859167661256", "101122879922313", "1811960841148774", "33662625853200337", "647550189266734452", "12881675626292023173", "264677402162135670554", "5610552395871699336453" ]
[ "nonn", "new" ]
8
0
5
[ "A000559", "A383206", "A383208" ]
null
Seiichi Manyama, Apr 19 2025
2025-04-19T10:04:18
oeisdata/seq/A383/A383208.seq
57b73a4753c5f5f7106df4dcfa7c2254
A383211
Numbers of the form p^e where p is prime and e > 1 is squarefree.
[ "4", "8", "9", "25", "27", "32", "49", "64", "121", "125", "128", "169", "243", "289", "343", "361", "529", "729", "841", "961", "1024", "1331", "1369", "1681", "1849", "2048", "2187", "2197", "2209", "2809", "3125", "3481", "3721", "4489", "4913", "5041", "5329", "6241", "6859", "6889", "7921", "8192", "9409", "10201", "10609", "11449", "11881", "12167" ]
[ "nonn", "new" ]
6
0
5
[ "A053810", "A144338", "A383211", "A383266" ]
null
Peter Luschny, Apr 21 2025
2025-04-22T02:42:59
oeisdata/seq/A383/A383211.seq
477ca3c00b28421373a164a1967b3347
A383212
a(n) = permanent of the n-th principal submatrix of the rectangular array whose odd-numbered rows are (2,1,2,1,2,1,2,1,...) and even-numbered rows are (1,2,1,2,1,2,1,2,...).
[ "1", "2", "5", "24", "132", "1032", "8820", "95616", "1106496", "15327360", "223560000", "3768768000", "66305952000", "1316927808000", "27127003680000", "620221722624000", "14638710417408000", "378633583448064000", "10073602372700160000", "290788929384726528000", "8609476463579013120000", "274361332654900592640000", "8946658680536444313600000" ]
[ "nonn", "new" ]
18
0
5
[ "A204252", "A383212" ]
null
Clark Kimberling, Apr 19 2025
2025-04-24T09:01:55
oeisdata/seq/A383/A383212.seq
ebd385abe2a7cc993a7a119e6b99610c
A383217
Lexicographically earliest strictly increasing sequence such that no term is a substring of the product of all previous terms.
[ "1", "2", "3", "4", "5", "6", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21", "22", "23", "25", "26", "27", "28", "29", "30", "32", "33", "34", "35", "36", "37", "40", "41", "44", "45", "46", "48", "49", "53", "54", "55", "56", "57", "59", "61", "63", "64", "65", "66", "67", "68", "69", "70", "71", "76", "79", "80", "84", "85", "87", "90", "91", "97", "98" ]
[ "nonn", "base", "new" ]
8
0
5
[ "A033180", "A383217", "A383218" ]
null
Dominic McCarty, Apr 19 2025
2025-04-19T18:07:27
oeisdata/seq/A383/A383217.seq
aa2ce0f0772886f96b3d1d59238a3d4c
A383218
The product of the first n terms of A383217.
[ "1", "2", "6", "24", "120", "720", "5760", "51840", "518400", "5702400", "68428800", "889574400", "12454041600", "186810624000", "2988969984000", "50812489728000", "914624815104000", "17377871486976000", "347557429739520000", "7298706024529920000", "160571532539658240000", "3693145248412139520000" ]
[ "nonn", "base", "new" ]
5
0
5
[ "A033180", "A383217", "A383218" ]
null
Dominic McCarty, Apr 19 2025
2025-04-19T18:07:34
oeisdata/seq/A383/A383218.seq
320642fd5e8fa7259d0287ac13f5ae1a
A383221
Coefficient of x^3 in expansion of (x+2) * (x+5) * ... * (x+3*n-1).
[ "0", "0", "0", "1", "26", "595", "14155", "363944", "10206700", "312193524", "10380710220", "373619597736", "14490750497432", "603032132116336", "26818416624389936", "1269883590624201344", "63806666669904903808", "3391580011320726010880", "190174443042558311293440", "11220246602286014617751040" ]
[ "nonn", "new" ]
7
0
5
[ "A225470", "A383221" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:40:40
oeisdata/seq/A383/A383221.seq
c6d3d626ae03bbfdd72830474511690b
A383222
Coefficient of x^4 in expansion of (x+2) * (x+5) * ... * (x+3*n-1).
[ "0", "0", "0", "0", "1", "40", "1275", "39655", "1276009", "43382934", "1570298610", "60630265740", "2495678898636", "109326548645600", "5085420626585936", "250576924194171120", "13046999027750243984", "716156618057417103008", "41347880768363832470304", "2505655766070932929630464" ]
[ "nonn", "new" ]
7
0
5
[ "A225470", "A383222" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:40:36
oeisdata/seq/A383/A383222.seq
e8503b36f1533fe034fb09134f2d5f08
A383227
a(n) is the product of first n even numbers not divisible by 5 (cf. A217562)
[ "1", "2", "8", "48", "384", "4608", "64512", "1032192", "18579456", "408748032", "9809952768", "255058771968", "7141645615104", "228532659683328", "7770110429233152", "279723975452393472", "10629511067190951936", "446439464822019981312", "19643336452168879177728", "903593476799768442175488", "43372486886388885224423424" ]
[ "nonn", "new" ]
8
0
5
[ "A217562", "A356858", "A383227" ]
null
Stefano Spezia, Apr 20 2025
2025-04-21T17:05:33
oeisdata/seq/A383/A383227.seq
563e6cddff133efd665648e566220a0a
A383228
a(n) is the number of cases where both j and k (1 <= j < k <= n), are divisors of Sum_{i=j..k} i^i.
[ "0", "0", "0", "1", "1", "2", "2", "2", "3", "3", "3", "3", "3", "3", "4", "4", "5", "5", "6", "6", "6", "6", "6", "6", "6", "7", "7", "7", "7", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "8", "9", "9", "10", "11", "11", "11", "11", "12", "12", "12", "12", "12", "12", "12", "14", "14", "14", "14", "15", "15", "15", "16", "16", "16", "16", "16", "16", "16", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17", "17" ]
[ "nonn", "new" ]
20
0
5
[ "A000312", "A001923", "A128981", "A383228" ]
null
Jean-Marc Rebert, Apr 20 2025
2025-04-22T07:49:18
oeisdata/seq/A383/A383228.seq
0a3c1fec736f3d8202d0936b265e2776
A383231
Expansion of e.g.f. f(x) * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "7", "83", "1394", "30330", "810756", "25710012", "943434288", "39324264624", "1835297984160", "94813760519136", "5371462318747392", "331125138305434368", "22065681276731119104", "1580617232453691210240", "121117633854691036502016", "9885823380533972300470272", "856279708828545483688808448" ]
[ "nonn", "new" ]
8
0
5
[ "A004041", "A024216", "A024382", "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:57:13
oeisdata/seq/A383/A383231.seq
e89c953c6f09dd06448b4d169186cabc
A383232
Expansion of e.g.f. f(x)^2 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "9", "122", "2242", "52180", "1471692", "48790608", "1859539344", "80109265824", "3849497255520", "204138860091264", "11842095171021696", "745962168915065088", "50708105952635996928", "3699802551156676392960", "288399758863879774476288", "23919432333548949807869952", "2103184085769044913951461376" ]
[ "nonn", "new" ]
8
0
5
[ "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:57:09
oeisdata/seq/A383/A383232.seq
6241beba3ecb939b393ddb7e987560b0
A383233
Expansion of e.g.f. f(x)^3 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "11", "167", "3318", "81930", "2423208", "83582568", "3295488816", "146241365904", "7214605476480", "391735046081664", "23216763331632384", "1491431668108800768", "103230214859003968512", "7659080261784464808960", "606407304545822037952512", "51033731719180664212641792", "4549228202963725560906891264" ]
[ "nonn", "new" ]
13
0
5
[ "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T10:39:38
oeisdata/seq/A383/A383233.seq
467038ecaa06b02f2849739ad5ec11d8
A383234
Expansion of e.g.f. f(x)^4 * log(f(x)), where f(x) = 1/(1 - 5*x)^(1/5).
[ "0", "1", "13", "218", "4646", "121080", "3741144", "133863792", "5447294352", "248518603584", "12566268267840", "697632464382336", "42189230206182528", "2760816706845539328", "194381535085933095936", "14652311175996819978240", "1177370323796943823325184", "100466288729505689717809152" ]
[ "nonn", "new" ]
7
0
5
[ "A383231", "A383232", "A383233", "A383234" ]
null
Seiichi Manyama, Apr 20 2025
2025-04-20T08:40:53
oeisdata/seq/A383/A383234.seq
7107bef1eabbcadc835482d59c33ce22
A383235
Triangle read by rows: T(n,k) = 2*floor(k/2)*T(n-1,k) + T(n-1,k-1), 0 <= k <= n.
[ "1", "0", "1", "0", "0", "1", "0", "0", "2", "1", "0", "0", "4", "4", "1", "0", "0", "8", "12", "8", "1", "0", "0", "16", "32", "44", "12", "1", "0", "0", "32", "80", "208", "92", "18", "1", "0", "0", "64", "192", "912", "576", "200", "24", "1", "0", "0", "128", "448", "3840", "3216", "1776", "344", "32", "1", "0", "0", "256", "1024", "15808", "16704", "13872", "3840", "600", "40", "1" ]
[ "nonn", "tabl", "new" ]
12
0
5
[ "A000079", "A001787", "A007472", "A007590", "A048993", "A100575", "A158681", "A383235" ]
null
Ven Popov, Apr 20 2025.
2025-04-24T13:26:59
oeisdata/seq/A383/A383235.seq
c4f2641c84f06bab672053ffc3a43041
A383236
The least number of applications of Ackermann-Péter functions to reach n, starting from 0.
[ "1", "2", "3", "4", "4", "5", "5", "6", "6", "7", "7", "8", "5", "6", "7", "8", "8", "9", "9", "10", "9", "10", "10", "11", "10", "11", "11", "12", "6", "7", "8", "9", "10", "11", "11", "12", "11", "12", "12", "13", "12", "13", "13", "14", "12", "13", "13", "14", "13", "14", "14", "15", "13", "14", "14", "15", "14", "15", "15", "16", "7", "8", "9", "10" ]
[ "nonn", "look", "new" ]
20
0
5
[ "A143796", "A368423", "A383236" ]
null
Hendrik Ballhausen, Apr 20 2025
2025-04-24T13:34:55
oeisdata/seq/A383/A383236.seq
302999f7dff310f03b7ef61c8005e50a
A383237
Primes p such that x^5+x+1 has no roots modulo p.
[ "2", "29", "41", "47", "71", "131", "179", "197", "233", "239", "257", "269", "311", "353", "443", "461", "491", "509", "587", "647", "653", "683", "761", "857", "863", "887", "929", "947", "1013", "1061", "1223", "1277", "1283", "1289", "1301", "1361", "1373", "1409", "1427", "1439", "1499", "1511", "1559", "1619", "1637", "1733", "1823", "1973", "1979" ]
[ "nonn", "new" ]
11
0
5
[ "A003627", "A383237" ]
null
Jayde S. Massmann, Apr 20 2025
2025-04-24T13:22:49
oeisdata/seq/A383/A383237.seq
cca30d3fde094657d68247a5fd870943
A383255
Number of n X n {0,1,2,3} matrices having no 1's to the right of any 0's and no 3's above any 2's.
[ "1", "4", "194", "107080", "672498596", "48104236145168", "39202958861329453384", "364022757339778569993689888", "38513979937284562006371342202842000", "46429021191757554279412904483559912259714112", "637737721080296383894709847744103523361428384973270816" ]
[ "nonn", "new" ]
13
0
5
[ "A002416", "A006506", "A014235", "A060757", "A181213", "A213977", "A381857", "A383255" ]
null
John Tyler Rascoe, Apr 20 2025
2025-04-23T14:57:45
oeisdata/seq/A383/A383255.seq
3562c878bc234934c9845c610a7097b0
A383256
Number of n X n matrices of nonnegative entries with all columns summing to n and no horizontally adjacent zeros.
[ "1", "1", "7", "343", "125465", "366908001", "8698468668251", "1708834003295306868", "2810884261025802145414705", "39088555382409783097546399456477", "4626844513673581956954679383115038810744", "4688191496359773864437279635019555242588548880831" ]
[ "nonn", "new" ]
10
0
5
[ "A008300", "A120733", "A145839", "A261780", "A382923", "A383256" ]
null
John Tyler Rascoe, Apr 21 2025
2025-04-23T17:02:34
oeisdata/seq/A383/A383256.seq
41ca71d0c44fc52446a4e63aee51386d
A383258
LCM-transform of A064664 (the inverse of the EKG-sequence).
[ "1", "2", "5", "3", "1", "2", "7", "2", "1", "3", "1", "1", "1", "13", "11", "17", "1", "1", "37", "1", "1", "19", "43", "2", "1", "3", "1", "1", "1", "23", "61", "31", "1", "2", "5", "1", "67", "1", "29", "1", "1", "1", "3", "41", "1", "1", "89", "1", "1", "1", "1", "47", "1", "1", "53", "7", "1", "1", "107", "1", "1", "1", "1", "2", "1", "59", "2", "1", "1", "1", "1", "1", "1", "1", "1", "71", "1", "1", "151", "1", "1", "73", "1", "1", "1", "1", "1", "79", "167", "83", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "197" ]
[ "nonn", "new" ]
14
0
5
[ "A064413", "A064664", "A064954", "A265576", "A368900", "A383258" ]
null
Antti Karttunen, Apr 21 2025
2025-04-21T11:15:51
oeisdata/seq/A383/A383258.seq
39d33e0ac6da2b58fcfa0f656e2fea63
A383260
Expansion of e.g.f. f(x) * exp(f(x)), where f(x) = (exp(3*x) - 1)/3.
[ "0", "1", "5", "30", "211", "1691", "15126", "148975", "1599401", "18563832", "231317677", "3076301471", "43448641176", "648950825173", "10212710942609", "168797691270438", "2921824286030527", "52833169082034839", "995732022426733782", "19519908917429511307", "397294691005861642805", "8381466690394292755896" ]
[ "nonn", "new" ]
13
0
5
[ "A024216", "A138378", "A383203", "A383260", "A383261", "A383262" ]
null
Seiichi Manyama, Apr 21 2025
2025-04-21T09:53:11
oeisdata/seq/A383/A383260.seq
70c47c38cb39c1192f988f4c70b770f4
A383261
Expansion of e.g.f. f(x) * exp(2 * f(x)), where f(x) = (exp(3*x) - 1)/3.
[ "0", "1", "7", "57", "527", "5441", "61959", "770281", "10364671", "149854545", "2313932471", "37963374329", "658873048623", "12050610195937", "231496456566631", "4657345160220681", "97873704021590111", "2143496712532350833", "48821033290172899095", "1154261436241093805593", "28279753601438144211343" ]
[ "nonn", "new" ]
9
0
5
[ "A024395", "A383260", "A383261" ]
null
Seiichi Manyama, Apr 21 2025
2025-04-21T09:54:00
oeisdata/seq/A383/A383261.seq
a08f460c8b0fbab071b00a663fa891a3
A383262
Expansion of e.g.f. f(x)^2 * exp(f(x)) / 2, where f(x) = (exp(3*x) - 1)/3.
[ "0", "0", "1", "12", "123", "1270", "13776", "158718", "1944685", "25294338", "348340491", "5064749074", "77528735868", "1246096312188", "20976610875949", "368984700979440", "6767792258171547", "129182459141936566", "2561529454871582772", "52676675861728386114", "1121762199908797394977" ]
[ "nonn", "new" ]
11
0
5
[ "A003128", "A286721", "A383204", "A383262" ]
null
Seiichi Manyama, Apr 21 2025
2025-04-21T09:55:09
oeisdata/seq/A383/A383262.seq
f4d2993b16891d1dae25aaf7d8fb36fb
A383265
a(n) = Sum_{k=0..n} A383266(n, k).
[ "0", "2", "7", "14", "24", "35", "48", "63", "81", "101", "122", "145", "170", "197", "226", "257", "292", "327", "364", "403", "444", "487", "532", "579", "628", "680", "733", "789", "846", "905", "966", "1029", "1095", "1162", "1231", "1302", "1376", "1451", "1528", "1607", "1688", "1771", "1856", "1943", "2032", "2123", "2216", "2311", "2408", "2508", "2609" ]
[ "nonn", "new" ]
5
0
5
[ "A383265", "A383266" ]
null
Peter Luschny, Apr 21 2025
2025-04-21T16:04:25
oeisdata/seq/A383/A383265.seq
0f018042c024fdaf911dffc386b5fb40
A383266
Triangle read by rows: For n, k >= 2 T(n, k) is defined as the exponent of the highest power e of k such that k^e <= n. Otherwise T(n, 0) = n^2 and T(n, 1) = n.
[ "0", "1", "1", "4", "2", "1", "9", "3", "1", "1", "16", "4", "2", "1", "1", "25", "5", "2", "1", "1", "1", "36", "6", "2", "1", "1", "1", "1", "49", "7", "2", "1", "1", "1", "1", "1", "64", "8", "3", "1", "1", "1", "1", "1", "1", "81", "9", "3", "2", "1", "1", "1", "1", "1", "1", "100", "10", "3", "2", "1", "1", "1", "1", "1", "1", "1", "121", "11", "3", "2", "1", "1", "1", "1", "1", "1", "1", "1", "144", "12", "3", "2", "1", "1", "1", "1", "1", "1", "1", "1", "1" ]
[ "nonn", "tabl", "new" ]
7
0
5
[ "A000196", "A383265", "A383266" ]
null
Peter Luschny, Apr 21 2025
2025-04-21T17:08:49
oeisdata/seq/A383/A383266.seq
e6412498774c23d0766334fdb4156935
A383271
Number of primes (excluding n) that may be generated by replacing any binary digit of n with a digit from 0 to 1.
[ "0", "0", "1", "1", "1", "1", "2", "2", "0", "2", "2", "1", "1", "1", "0", "3", "1", "1", "2", "3", "0", "4", "1", "3", "0", "2", "0", "3", "1", "2", "1", "2", "0", "2", "1", "2", "1", "2", "0", "3", "1", "1", "1", "4", "0", "5", "1", "1", "0", "2", "0", "2", "1", "2", "0", "2", "0", "3", "1", "1", "1", "2", "0", "4", "0", "3", "2", "3", "0", "3", "1", "4", "1", "1", "0", "5", "0", "4", "1", "1", "0", "4", "1", "2", "0", "0", "0", "3", "1", "1" ]
[ "nonn", "base", "new" ]
27
0
5
[ "A070939", "A145667", "A209252", "A352942", "A383271" ]
null
Michael S. Branicky, Apr 21 2025
2025-04-23T19:31:05
oeisdata/seq/A383/A383271.seq
90af0b86eb34029de4e2dd474e7d824f
A383272
Positions of records in A383271.
[ "0", "2", "6", "15", "21", "45", "111", "261", "1605", "1995", "4935", "8295", "69825", "268155", "550725", "4574955", "12024855", "39867135", "398467245", "1698754365", "16351800465" ]
[ "nonn", "base", "new" ]
19
0
5
[ "A276694", "A322743", "A383271", "A383272" ]
null
Michael S. Branicky, Apr 21 2025
2025-04-23T02:38:52
oeisdata/seq/A383/A383272.seq
bdbfebccceb4887776cd21e2aa932ca1
A383275
Number of compositions of n such that any part 1 can be k different colors where k is the current record having appeared in the composition.
[ "1", "1", "2", "5", "14", "42", "134", "454", "1634", "6245", "25321", "108779", "494443", "2374288", "12024257", "64100444", "358948674", "2106756217", "12931155910", "82823317389", "552400947902", "3829070637080", "27534807426150", "205066734143893", "1579309451332366", "12559941159979791", "103013928588389695" ]
[ "nonn", "easy", "new" ]
12
0
5
[ "A000108", "A011782", "A088305", "A382312", "A382991", "A383101", "A383175", "A383275" ]
null
John Tyler Rascoe, Apr 21 2025
2025-04-24T09:39:13
oeisdata/seq/A383/A383275.seq
167b6a068c4654dc99287a2d568d2a3e
A383276
Numbers of the form A034444(k) * k.
[ "1", "4", "6", "8", "10", "14", "16", "18", "22", "24", "26", "32", "34", "38", "40", "46", "48", "50", "54", "56", "58", "60", "62", "64", "72", "74", "80", "82", "84", "86", "88", "94", "96", "98", "104", "106", "112", "118", "122", "128", "132", "134", "136", "140", "142", "144", "146", "152", "156", "158", "160", "162", "166", "176", "178", "180", "184", "192", "194", "200" ]
[ "nonn", "easy", "new" ]
8
0
5
[ "A005087", "A007814", "A034444", "A036438", "A100484", "A138929", "A151821", "A298473", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:45:50
oeisdata/seq/A383/A383276.seq
d62615598d7dbab61c8985cc4fbdee01
A383277
The number of divisors d of n for which A034444(d)*d is equal to n.
[ "1", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "0", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0", "1", "0", "1", "0", "0", "0", "0", "0", "1", "0" ]
[ "nonn", "easy", "new" ]
7
0
5
[ "A005087", "A007814", "A034444", "A327166", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:46:10
oeisdata/seq/A383/A383277.seq
b2b1d8c25f9d78827dcc50cfeed78add
A383278
The number of integers k such that A034444(k) * k <= n.
[ "1", "1", "1", "2", "2", "3", "3", "4", "4", "5", "5", "5", "5", "6", "6", "7", "7", "8", "8", "8", "8", "9", "9", "10", "10", "11", "11", "11", "11", "11", "11", "12", "12", "13", "13", "13", "13", "14", "14", "15", "15", "15", "15", "15", "15", "16", "16", "17", "17", "18", "18", "18", "18", "19", "19", "20", "20", "21", "21", "22", "22", "23", "23", "24", "24", "24", "24", "24", "24", "24", "24" ]
[ "nonn", "easy", "new" ]
11
0
5
[ "A034444", "A087197", "A345288", "A356005", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:47:18
oeisdata/seq/A383/A383278.seq
fa7eb3f5290cbd13d780bbae99e9b2dd
A383279
The unique solution to x * A034444(x) = A383276(n).
[ "1", "2", "3", "4", "5", "7", "8", "9", "11", "6", "13", "16", "17", "19", "10", "23", "12", "25", "27", "14", "29", "15", "31", "32", "18", "37", "20", "41", "21", "43", "22", "47", "24", "49", "26", "53", "28", "59", "61", "64", "33", "67", "34", "35", "71", "36", "73", "38", "39", "79", "40", "81", "83", "44", "89", "45", "46", "48", "97", "50", "101", "51", "103", "52", "107", "54", "109" ]
[ "nonn", "easy", "new" ]
10
0
5
[ "A000265", "A005087", "A007814", "A034444", "A383276", "A383277", "A383278", "A383279" ]
null
Amiram Eldar, Apr 21 2025
2025-04-22T02:43:27
oeisdata/seq/A383/A383279.seq
5f1e908aab5e6cf92da2d08906d584e3
A383280
a(n) = (3/2)^n * Sum_{k=0..n} (1/6)^k * (2*k)! * (n-k)! * binomial(n,k)^2.
[ "1", "2", "9", "72", "954", "19980", "624510", "27420120", "1607036760", "120942324720", "11351106055800", "1298791163577600", "177888712528573200", "28728740092874421600", "5401708378739722249200", "1169716267087957140552000", "288993599402729842084464000", "80796133625685147464322528000" ]
[ "nonn", "new" ]
15
0
5
[ "A000681", "A001499", "A383280" ]
null
Seiichi Manyama, Apr 22 2025
2025-04-24T04:22:44
oeisdata/seq/A383/A383280.seq
79ee57fee2b899e39d385d945db6bba6
A383281
a(n) = Sum_{k=0..n} (2*k+1) * (1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2.
[ "1", "2", "11", "120", "2202", "61260", "2407770", "127116360", "8680455000", "744631438320", "78393873940200", "9938444069030400", "1493483322288157200", "262511581007832156000", "53360641241377862792400", "12420661873849173800856000", "3282370875452495120806512000", "977378127650967704776130016000" ]
[ "nonn", "new" ]
16
0
5
[ "A002018", "A383281" ]
null
Seiichi Manyama, Apr 22 2025
2025-04-24T04:34:28
oeisdata/seq/A383/A383281.seq
2fe6871b660170469a02255d806853fd
A383282
a(n) = Sum_{k=0..n} (2*k+1) * (-1/2)^(n+k) * (2*k)! * (n-k)! * binomial(n,k)^2.
[ "1", "1", "5", "51", "906", "24690", "956790", "49993650", "3387124440", "288755250840", "30247310482200", "3818739956308200", "571858101118458000", "100218359688123877200", "20319306632495415745200", "4719164981053010642154000", "1244680987088062472732784000", "369981708267221405777101680000" ]
[ "nonn", "new" ]
13
0
5
[ "A383281", "A383282" ]
null
Seiichi Manyama, Apr 22 2025
2025-04-24T04:37:56
oeisdata/seq/A383/A383282.seq
49323e257bc53f5d253e10a3dc7569f7
A383284
Lexicographically earliest infinite sequence such that a(i) = a(j) => A265576(i) = A265576(j), for all i, j >= 1, where A265576 is the LCM-transform of EKG-sequence.
[ "1", "2", "2", "3", "1", "3", "1", "2", "4", "1", "1", "1", "5", "1", "1", "1", "2", "1", "6", "1", "1", "3", "1", "4", "1", "1", "7", "1", "1", "1", "2", "8", "1", "1", "1", "9", "1", "1", "1", "1", "1", "10", "1", "1", "1", "1", "1", "1", "1", "5", "1", "1", "1", "1", "1", "11", "1", "1", "1", "12", "1", "1", "1", "2", "1", "13", "1", "1", "1", "1", "1", "1", "14", "1", "1", "3", "1", "1", "1", "15", "1", "1", "1", "1", "1", "1", "1", "16", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "17" ]
[ "nonn", "new" ]
12
0
5
[ "A000720", "A064413", "A064423", "A265576", "A383284", "A383285" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T09:09:42
oeisdata/seq/A383/A383284.seq
55d55dea9ff85006f967d55106b58063
A383285
Positions of terms > 1 in A265576, where A265576 is the LCM-transform of EKG-sequence.
[ "2", "3", "4", "6", "8", "9", "13", "17", "19", "22", "24", "27", "31", "32", "36", "42", "50", "56", "60", "64", "66", "73", "76", "80", "88", "99", "106", "112", "114", "122", "124", "127", "133", "137", "150", "159", "166", "171", "181", "188", "196", "202", "206", "215", "232", "235", "240", "252", "258", "263", "278", "286", "290", "296", "304", "313", "319", "327", "335", "343", "359", "362", "370", "376", "380", "400", "419", "429", "437", "443" ]
[ "nonn", "new" ]
10
0
5
[ "A064413", "A064423", "A265576", "A383284", "A383285", "A383295" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T15:26:27
oeisdata/seq/A383/A383285.seq
b3879e39a842ff950c8c898a209a2df4
A383292
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(2*s) + 1/p^(3*s)).
[ "1", "1", "1", "2", "1", "1", "1", "3", "2", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "2", "1", "1", "1", "3", "2", "1", "3", "2", "1", "1", "1", "3", "1", "1", "1", "4", "1", "1", "1", "3", "1", "1", "1", "2", "2", "1", "1", "3", "2", "2", "1", "2", "1", "3", "1", "3", "1", "1", "1", "2", "1", "1", "2", "3", "1", "1", "1", "2", "1", "1", "1", "6", "1", "1", "2", "2", "1", "1", "1", "3", "3", "1", "1", "2", "1", "1", "1", "3", "1", "2", "1", "2", "1", "1", "1", "3", "1", "2", "2", "4" ]
[ "nonn", "mult", "easy", "new" ]
18
0
5
[ "A001694", "A046100", "A073184", "A095691", "A330595", "A365498", "A365552", "A368105", "A380922", "A383292" ]
null
Vaclav Kotesovec, Apr 22 2025
2025-04-22T14:17:11
oeisdata/seq/A383/A383292.seq
c26a2c15ef62306e5801aac6653f3114
A383293
Exponential of Mangoldt function applied to EKG-sequence: a(n) = A014963(A064413(n)).
[ "1", "2", "2", "1", "3", "3", "1", "2", "1", "5", "1", "1", "1", "7", "1", "1", "2", "1", "1", "11", "1", "3", "1", "5", "1", "1", "1", "13", "1", "1", "2", "1", "17", "1", "1", "1", "19", "1", "1", "1", "1", "1", "23", "1", "1", "1", "1", "1", "1", "7", "1", "1", "1", "1", "1", "1", "29", "1", "1", "1", "31", "1", "1", "2", "1", "1", "37", "1", "1", "1", "1", "1", "1", "41", "1", "3", "1", "1", "1", "1", "43", "1", "1", "1", "1", "1", "1", "1", "47", "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "53" ]
[ "nonn", "new" ]
7
0
5
[ "A014963", "A064413", "A265576", "A383293", "A383294" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T13:33:23
oeisdata/seq/A383/A383293.seq
9c6eeb49dc6f74eec39a39244533aa09
A383294
Positions of prime powers (A246655) in EKG-sequence.
[ "2", "3", "5", "6", "8", "10", "14", "17", "20", "22", "24", "28", "31", "33", "37", "43", "50", "57", "61", "64", "67", "74", "76", "81", "89", "100", "107", "112", "115", "122", "124", "128", "134", "138", "151", "160", "167", "171", "182", "189", "197", "203", "207", "216", "232", "236", "240", "253", "259", "264", "279", "287", "290", "297", "305", "314", "319", "328", "336", "344", "359", "363", "371", "377", "381", "401", "420", "430", "438", "444" ]
[ "nonn", "new" ]
8
0
5
[ "A064413", "A064955", "A246655", "A383293", "A383294", "A383295" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T13:33:27
oeisdata/seq/A383/A383294.seq
42f50d90fa3c0d082acb232fd02a7802
A383295
Positions of proper prime powers (A246547) in EKG-sequence.
[ "3", "6", "8", "17", "22", "24", "31", "50", "64", "76", "112", "122", "124", "171", "232", "240", "290", "319", "359", "485", "521", "595", "696", "823", "947", "982", "1279", "1313", "1642", "1810", "1961", "2090", "2096", "2168", "2306", "2736", "3002", "3398", "3638", "3932", "4379", "4733", "4913", "5207", "6072", "6312", "6583", "6710", "7717", "7898", "9165", "9929", "10298", "11144", "11568", "11786", "12430", "14138" ]
[ "nonn", "new" ]
9
0
5
[ "A064413", "A064955", "A246547", "A265576", "A383285", "A383294", "A383295" ]
null
Antti Karttunen, Apr 22 2025
2025-04-22T13:33:18
oeisdata/seq/A383/A383295.seq
4f71d46f385230f869a133f5fefcf4e3
A383313
Expansion of e.g.f. exp(-x/2) / (1-2*x)^(1/4).
[ "1", "0", "1", "4", "27", "232", "2455", "30852", "449113", "7432624", "137829249", "2830911220", "63796168579", "1565078980536", "41521403685463", "1184510408920468", "36158133322895985", "1176012432875399008", "40599110984252798017", "1482736219224857910756", "57115359439245403771051" ]
[ "nonn", "new" ]
12
0
5
[ "A002801", "A383313", "A383314", "A383315" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T05:42:22
oeisdata/seq/A383/A383313.seq
0e02f27c13eee347df56a7bb683a3a58
A383314
Expansion of e.g.f. exp(-x/2) / (1-4*x)^(1/8).
[ "1", "0", "2", "16", "204", "3392", "69880", "1717824", "49077392", "1597961728", "58410015264", "2368359845120", "105492853521088", "5120497605295104", "269008689666893696", "15207860554294309888", "920541893947665404160", "59401332750388003782656", "4070589051420604880962048" ]
[ "nonn", "new" ]
13
0
5
[ "A383313", "A383314", "A383315" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T10:25:47
oeisdata/seq/A383/A383314.seq
e0a759a6c303e0fa600a7c40934ba9f7
A383315
Expansion of e.g.f. exp(-x/2) / (1-6*x)^(1/12).
[ "1", "0", "3", "36", "675", "16632", "509085", "18626436", "793001097", "38511087120", "2101009734099", "127215916659540", "8465583820754907", "614101808094096744", "48230098800348987405", "4077120575169267005268", "369111206211249734907345", "35630377583888099367357984", "3653123185073359871950788963" ]
[ "nonn", "new" ]
12
0
5
[ "A383313", "A383314", "A383315" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T10:34:33
oeisdata/seq/A383/A383315.seq
5c98b61a092dff992120c34e046f4699
A383316
Expansion of e.g.f. exp(x/2) / (1-4*x)^(1/8).
[ "1", "1", "3", "23", "281", "4593", "93643", "2285959", "64981809", "2107824353", "76819828499", "3107456481399", "138145505435977", "6694550810809297", "351219409831557339", "19832058937696108007", "1199219012904515868257", "77314609952787255980481", "5293934640303567123132451" ]
[ "nonn", "new" ]
12
0
5
[ "A002801", "A383316", "A383317" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T10:29:22
oeisdata/seq/A383/A383316.seq
9bf9b796c8f0b57c9221feda83863031
A383317
Expansion of e.g.f. exp(x/2) / (1-6*x)^(1/12).
[ "1", "1", "4", "46", "838", "20398", "619768", "22564252", "957247708", "46363595644", "2524152072304", "152582368541224", "10139721673875976", "734706716925462184", "57646381491830349472", "4869084744694710293392", "440492624600086270972432", "42494068518463022190243088", "4354423933547086885775444032" ]
[ "nonn", "new" ]
14
0
5
[ "A002801", "A383316", "A383317" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-23T05:47:27
oeisdata/seq/A383/A383317.seq
dbc7a5557069a5990d692f672daac70d
A383318
Lexicographically earliest sequence of distinct terms such that replacing each term k with prime(k) does not change the succession of digits.
[ "6455", "3", "5", "1", "12", "37", "15", "7", "4", "71", "77", "35", "33", "8", "9", "14", "91", "371", "92", "34", "346", "72", "53", "94", "79", "13", "923", "39", "359", "2", "41", "49", "140", "141", "721", "916", "724", "17", "31", "792", "27", "80", "98", "11", "54", "497", "159", "547", "95", "912", "760", "73", "10", "340", "952", "131", "25", "135", "47", "93", "739", "43" ]
[ "nonn", "base", "new" ]
9
0
5
[ "A067928", "A302656", "A383318", "A383319", "A383320", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:39:28
oeisdata/seq/A383/A383318.seq
3057689fed03bc9cd3cb1351b199b9d9
A383319
a(n) = prime(A383318(n))
[ "64553", "5", "11", "2", "37", "157", "47", "17", "7", "353", "389", "149", "137", "19", "23", "43", "467", "2539", "479", "139", "2339", "359", "241", "491", "401", "41", "7219", "167", "2417", "3", "179", "227", "809", "811", "5449", "7159", "5479", "59", "127", "6073", "103", "409", "521", "31", "251", "3547", "937", "3943", "499", "7121", "5791", "367", "29" ]
[ "nonn", "base", "new" ]
6
0
5
[ "A067928", "A302656", "A383318", "A383319", "A383320", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:39:39
oeisdata/seq/A383/A383319.seq
c77935d8f2b2c896c9e5b4e585615783
A383320
Lexicographically earliest sequence of distinct terms such that replacing each term k with Fibonacci(k) does not change the succession of digits.
[ "0", "1", "5", "43", "3", "4", "9", "44", "37", "2", "33", "470", "140", "8", "7", "332", "41", "57", "81", "71", "35", "24", "578", "74", "93", "86", "58", "6", "61", "14", "242", "47", "46", "936", "9310", "13", "87", "148", "48", "19", "30", "12", "55", "77", "36", "270", "246", "51", "68", "97", "194", "4350", "50", "27", "72", "31", "359", "90", "22", "40", "278", "505", "23" ]
[ "nonn", "base", "new" ]
6
0
5
[ "A038546", "A302656", "A383318", "A383320", "A383321", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:40:13
oeisdata/seq/A383/A383320.seq
5256f388dd3f1c1a492df10a488add71
A383321
a(n) = Fibonacci(A383320(n))
[ "0", "1", "5", "433494437", "2", "3", "34", "701408733", "24157817", "1", "3524578", "74938658661142424746936931013871484819301255773627024651689719443505027723135990224027850523592585", "81055900096023504197206408605", "21", "13" ]
[ "nonn", "base", "new" ]
7
0
5
[ "A038546", "A302656", "A383318", "A383320", "A383321", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-23T10:40:26
oeisdata/seq/A383/A383321.seq
ab54893b808ccbb61810a5fa8e72a4a7
A383322
Lexicographically earliest sequence of distinct terms such that replacing each term k with k! does not change the succession of digits.
[ "1", "2", "198", "15", "5", "24", "3", "0", "56", "4", "800", "260", "18", "181", "7", "120", "43", "26", "25", "78", "46", "6", "11", "45", "67", "2580", "8", "37", "34", "49", "61", "66", "465", "63", "9", "28", "62", "93", "960", "65", "410", "626", "13", "82", "98", "59", "32", "659", "453", "242", "255", "580", "939", "42", "70", "44", "932", "22", "55", "38", "389", "50" ]
[ "nonn", "base", "new" ]
11
0
5
[ "A033147", "A302656", "A383318", "A383320", "A383322" ]
null
Dominic McCarty, Apr 23 2025
2025-04-24T15:14:55
oeisdata/seq/A383/A383322.seq
f7e3c033239f1e88286c316e30aaf1f6
A383329
Number of multiplications required to compute x^n by Knuth's power tree method.
[ "0", "1", "2", "2", "3", "3", "4", "3", "4", "4", "5", "4", "5", "5", "5", "4", "5", "5", "6", "5", "6", "6", "6", "5", "6", "6", "6", "6", "7", "6", "7", "5", "6", "6", "7", "6", "7", "7", "7", "6", "7", "7", "7", "7", "7", "7", "8", "6", "7", "7", "7", "7", "8", "7", "8", "7", "8", "8", "8", "7", "8", "8", "8", "6", "7", "7", "8", "7", "8", "8", "9", "7", "8", "8", "8", "8", "9", "8", "9", "7", "8", "8", "8", "8", "8", "8", "9" ]
[ "nonn", "new" ]
8
0
5
[ "A003313", "A113945", "A114622", "A114623", "A115617", "A122352", "A383329" ]
null
Pontus von Brömssen, Apr 24 2025
2025-04-24T08:53:59
oeisdata/seq/A383/A383329.seq
5fea9ed7d5971f2b8d05a655643a65bf
A383344
Expansion of e.g.f. exp(-4*x) / (1-x)^4.
[ "1", "0", "4", "8", "72", "416", "3520", "31104", "316288", "3525632", "43117056", "572195840", "8191304704", "125761056768", "2060841582592", "35894401335296", "662066514984960", "12890305925218304", "264155723747688448", "5682905054074109952", "128051031032232411136", "3015653024970577018880" ]
[ "nonn", "easy", "new" ]
10
0
5
[ "A000166", "A087981", "A088991", "A137775", "A381504", "A383344" ]
null
Seiichi Manyama, Apr 23 2025
2025-04-24T09:44:56
oeisdata/seq/A383/A383344.seq
7f7ee444f30856c591c38d3f65f5a3bc
A383346
Representation of n in rational base 3/2.
[ "0", "2", "21", "210", "212", "2101", "2120", "2122", "21011", "21200", "21202", "21221", "210110", "210112", "212001", "212020", "212022", "212211", "2101100", "2101102", "2101121", "2120010", "2120012", "2120201", "2120220", "2120222", "2122111", "21011000", "21011002", "21011021", "21011210", "21011212", "21200101", "21200120" ]
[ "nonn", "base", "new" ]
16
0
5
[ "A024629", "A383346" ]
null
Michel Marcus, Apr 24 2025
2025-04-24T06:48:18
oeisdata/seq/A383/A383346.seq
e875beec24f98892ce89f6d0248b5f1d
A383348
Triangle related to the partitions of n in three colors, read by rows.
[ "9", "6", "243", "1", "243", "6561", "0", "90", "8748", "177147", "0", "15", "4860", "295245", "4782969", "0", "1", "1458", "216513", "9565938", "129140163", "0", "0", "252", "91854", "8680203", "301327047", "3486784401", "0", "0", "24", "24786", "4723920", "325241892", "9298091736", "94143178827", "0", "0", "1", "4374", "1712421", "215233605", "11622614670", "282429536481", "2541865828329" ]
[ "nonn", "tabl", "new" ]
5
0
5
[ "A013733", "A383348" ]
null
Michel Marcus, Apr 24 2025
2025-04-24T13:21:09
oeisdata/seq/A383/A383348.seq
5514aaca44bc52e18fd5fa9cac6b0838
A383354
Squares of plane partition numbers.
[ "1", "1", "9", "36", "169", "576", "2304", "7396", "25600", "79524", "250000", "737881", "2187441", "6175225", "17363889", "47320641", "127622209", "336135556", "876219201", "2240128900", "5666777284", "14112014436", "34772925625", "84554753089", "203576025636", "484461937089", "1142215875025", "2665572144964", "6166451098756" ]
[ "nonn", "new" ]
5
0
5
[ "A000219", "A001255", "A304990", "A383354" ]
null
Ilya Gutkovskiy, Apr 24 2025
2025-04-24T08:54:09
oeisdata/seq/A383/A383354.seq
09b5c2c0433ac6e5e60058f3bdd9ffbc
A383363
Composite numbers k all of whose proper divisors have binary weights that are not equal to the binary weight of k.
[ "15", "25", "27", "39", "51", "55", "57", "63", "69", "77", "81", "85", "87", "91", "95", "99", "111", "115", "117", "119", "121", "123", "125", "141", "143", "145", "147", "159", "169", "171", "175", "177", "183", "185", "187", "201", "203", "205", "207", "209", "213", "215", "219", "221", "231", "235", "237", "243", "245", "247", "249", "253", "255", "261", "265", "275" ]
[ "nonn", "easy", "base", "new" ]
12
0
5
[ "A000120", "A325571", "A380844", "A383363", "A383364", "A383365" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T12:30:29
oeisdata/seq/A383/A383363.seq
685a7f01f1adb296bcfa4a5d4a91e341
A383364
a(n) is the least number k with exactly n proper divisors, where all of them have binary weights that are different from the binary weight of k.
[ "1", "3", "25", "15", "81", "63", "15625", "231", "1225", "405", "59049", "495", "531441", "5103", "2025", "1485", "33232930569601", "2475", "3814697265625", "6237", "18225", "295245", "31381059609", "4095", "1500625", "2657205", "81225", "25515", "22876792454961", "14175", "931322574615478515625", "21735", "31236921", "301327047" ]
[ "nonn", "base", "new" ]
7
0
5
[ "A000120", "A032741", "A380844", "A383363", "A383364", "A383365" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T12:32:07
oeisdata/seq/A383/A383364.seq
ad0ed96d8987856dd354f01a293702fc
A383365
Numbers k with a record number of proper divisors, where all of them have binary weights that are different from the binary weight of k.
[ "1", "3", "15", "63", "231", "405", "495", "1485", "2475", "4095", "14175", "21735", "24255", "31185", "79695", "190575", "218295", "239085", "294525", "904365", "1276275", "2789325", "3586275", "4937625", "6912675", "10072755", "17342325", "17972955", "26801775", "46621575", "80405325", "192567375", "326351025", "333107775", "654729075" ]
[ "nonn", "base", "new" ]
8
0
5
[ "A000120", "A032741", "A380844", "A383363", "A383364", "A383365" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T12:33:45
oeisdata/seq/A383/A383365.seq
9d523f5cf3372079a308b865c168ec0e
A383366
Smallest of a sociable triple i < j < k such that j = s(i), k = s(j), and i = s(k), where s(k) = A380845(k) - k is the sum of aliquot divisors of k that have the same binary weight as k.
[ "4400700", "12963816", "29878920", "38353800", "44973480", "51894304", "52208520", "67849656", "73134432", "81685080", "100711656", "103759848", "105096096", "113044896", "113161320", "114608032", "128639034", "135465912", "135559080", "136786200", "139242740", "148758120", "156686088", "159628350", "171090416" ]
[ "nonn", "base", "new" ]
8
0
5
[ "A380845", "A380846", "A380849", "A380850", "A383366" ]
null
Amiram Eldar, Apr 24 2025
2025-04-24T13:20:53
oeisdata/seq/A383/A383366.seq
530b2c946036abcd2d5fc6fc6df4c5d5