datasetId
large_stringlengths
12
97
author
large_stringlengths
5
15
last_modified
unknowndate
2025-04-22 11:26:33
2025-04-22 11:45:54
downloads
int64
0
5.6M
likes
int64
0
43
tags
large listlengths
1
26
task_categories
large listlengths
0
5
createdAt
unknowndate
2022-10-24 15:39:05
2025-04-22 11:44:40
card
large_stringlengths
31
25.8k
kothasuhas/llama-3b-gold_prefix_k10000_iter0
kothasuhas
"2025-04-22T11:31:22Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:31:06Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 11728744 num_examples: 10000 - name: validation num_bytes: 2424848 num_examples: 1000 download_size: 9046400 dataset_size: 14153592 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
MikeGreen2710/first_100k_location
MikeGreen2710
"2025-04-22T11:30:03Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:29:53Z"
--- dataset_info: features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: location dtype: int64 splits: - name: train num_bytes: 129600000 num_examples: 100000 download_size: 18353516 dataset_size: 129600000 configs: - config_name: default data_files: - split: train path: data/train-* ---
anshulsc/MTabVQA-GRPO-Spider
anshulsc
"2025-04-22T11:29:17Z"
0
0
[ "region:us" ]
[]
"2025-04-22T05:27:47Z"
--- dataset_info: features: - name: images sequence: image - name: problem dtype: string - name: answer struct: - name: data sequence: sequence: string splits: - name: train num_bytes: 452817298.535 num_examples: 2395 download_size: 294213967 dataset_size: 452817298.535 configs: - config_name: default data_files: - split: train path: data/train-* ---
Eluza133/A12d12s12
Eluza133
"2025-04-22T11:28:16Z"
3,310
0
[ "license:apache-2.0", "modality:image", "modality:video", "region:us" ]
[]
"2025-02-27T15:03:01Z"
--- license: apache-2.0 ---
davnas/library-occupancy
davnas
"2025-04-22T11:26:37Z"
1,177
0
[ "region:us" ]
[]
"2024-12-10T12:50:21Z"
--- dataset_info: features: - name: CommitTime dtype: timestamp[ns] - name: Time dtype: string - name: Occupancy_main dtype: int64 - name: Occupancy_southEast dtype: int64 - name: Occupancy_north dtype: int64 - name: Occupancy_south dtype: int64 - name: Occupancy_angdomen dtype: int64 - name: Occupancy_newton dtype: int64 - name: Prediction_date dtype: timestamp[ns] splits: - name: train num_bytes: 179945 num_examples: 2465 download_size: 26804 dataset_size: 179945 configs: - config_name: default data_files: - split: train path: data/train-* ---
Pendrokar/TTS_Arena
Pendrokar
"2025-04-22T11:26:33Z"
2,096
4
[ "language:en", "size_categories:1K<n<10K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "arena" ]
[]
"2024-10-11T16:52:25Z"
--- configs: - config_name: summary data_files: - split: rejections path: tts_arena_vote_summary.tsv - split: rejections_3m path: tts_arena_vote_summary_3m.tsv - split: rejections_all path: tts_arena_vote_summary_all.tsv sep: "\t" language: - en tags: - arena pretty_name: TTS Spaces Arena Votes --- [TTS Arena's](https://huggingface.co/spaces/Pendrokar/TTS-Spaces-Arena) DB is _SQLlite_ DB file. The above is just a summary query that should be useful for TTS developers to evaluate faults of their model. ## Why no audio samples? Unsafe. Cannot constantly oversee the output of uncontrolled HuggingFace Spaces. While it could be safeguarded by using an ASR model before uploading, something unwanted may still slip through. ## Useful queries for TTS developers and evaluators ### All votes mentioning specified TTS model: ```sql SELECT spokentext, lang, chosen, rejected, count(spokentext) AS times, MAX(vl.timestamp) AS lastvote FROM "main"."spokentext" INNER JOIN votelog vl ON votelog_id = vl.id WHERE vl.chosen = "Pendrokar/xVASynth-TTS" OR vl.rejected = "Pendrokar/xVASynth-TTS" GROUP BY spokentext, chosen, rejected ORDER BY times DESC, spokentext ASC LIMIT 0, 49999; ``` ### All rejections of specified TTS model against another: ```sql SELECT spokentext, lang, chosen, rejected, count(spokentext) AS times, MAX(vl.timestamp) AS lastvote FROM "main"."spokentext" INNER JOIN votelog vl ON votelog_id = vl.id AND vl.rejected = "Pendrokar/xVASynth-TTS" GROUP BY spokentext, chosen ORDER BY spokentext ASC LIMIT 0, 49999; ``` ### All rejections of a TTS model against another: **The one used in dataset viewer.** Note that the `chosen` column may include models that the `rejected` model beat more times. That is also why `votes` may sometimes be even less than the amount of distinct chosen models. ```sql SELECT st.spokentext, vl.rejected, COUNT(vl.rejected) - COALESCE(chosen_counts.chosen_count, 0) AS votes, (COUNT(DISTINCT vl.chosen) || ' ' || GROUP_CONCAT(DISTINCT ' ' || vl.chosen)) AS chosen, MAX(vl.timestamp) AS lastvote FROM votelog vl JOIN spokentext st ON vl.id = st.votelog_id LEFT JOIN ( SELECT st_inner.spokentext, vl_inner.chosen, COUNT(vl_inner.chosen) AS chosen_count FROM votelog vl_inner JOIN spokentext st_inner ON vl_inner.id = st_inner.votelog_id GROUP BY st_inner.spokentext, vl_inner.chosen ORDER BY chosen_count DESC ) AS chosen_counts ON st.spokentext = chosen_counts.spokentext AND vl.rejected = chosen_counts.chosen GROUP BY st.spokentext, vl.rejected HAVING votes > 0 AND lastvote BETWEEN datetime('now', '-1 month') AND datetime('now', 'localtime') ORDER BY ((votes * COUNT(DISTINCT vl.chosen)) / 2) DESC, COUNT(DISTINCT vl.chosen) DESC, st.spokentext ASC; ``` If you use this data in your publication, please cite us! Copy the BibTeX citation to cite this source: ```bibtext\n @misc{tts-arena, title = {Text to Speech Arena - Pendrokar's HF Spaces Fork}, author = {mrfakename and Srivastav, Vaibhav and Fourrier, Clémentine and Pouget, Lucain and Lacombe, Yoach and main and Gandhi, Sanchit}, year = 2024, publisher = {Hugging Face}, howpublished = "\\url{https://huggingface.co/spaces/TTS-AGI/TTS-Arena}" } ```
nicchio816/x_dataset_111
nicchio816
"2025-04-22T11:45:54Z"
157
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:n<1K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-04-13T16:24:27Z"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** nicchio816/x_dataset_111 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5F1t5ddY4PW34FQBK4iHVi1CbhySSbV5Yr4swpChryepB1pn ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{nicchio8162025datauniversex_dataset_111, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={nicchio816}, year={2025}, url={https://huggingface.co/datasets/nicchio816/x_dataset_111}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 0 - **Date Range:** 2025-04-22T11:45:53Z to 2025-04-22T11:45:53Z - **Last Updated:** 2025-04-22T11:45:53Z ### Data Distribution - Tweets with hashtags: 0.00% - Tweets without hashtags: 100.00% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-04-21T15:28:02Z | 952903 | 952903 | | 2025-04-21T16:34:00Z | 883651 | 1836554 | | 2025-04-21T17:41:26Z | 888964 | 2725518 | | 2025-04-21T18:49:51Z | 901683 | 3627201 | | 2025-04-21T19:59:16Z | 966991 | 4594192 | | 2025-04-21T21:08:03Z | 974205 | 5568397 | | 2025-04-21T22:17:19Z | 975262 | 6543659 | | 2025-04-21T23:25:51Z | 975876 | 7519535 | | 2025-04-22T00:34:32Z | 976149 | 8495684 | | 2025-04-22T01:44:17Z | 977365 | 9473049 | | 2025-04-22T02:41:59Z | 990568 | 10463617 | | 2025-04-22T03:21:59Z | 985716 | 11449333 | | 2025-04-22T04:00:51Z | 982225 | 12431558 | | 2025-04-22T04:39:29Z | 979298 | 13410856 | | 2025-04-22T05:17:59Z | 969267 | 14380123 | | 2025-04-22T05:56:55Z | 967362 | 15347485 | | 2025-04-22T06:35:47Z | 958869 | 16306354 | | 2025-04-22T07:15:02Z | 959513 | 17265867 | | 2025-04-22T07:53:25Z | 968789 | 18234656 | | 2025-04-22T08:31:37Z | 971638 | 19206294 | | 2025-04-22T09:10:11Z | 979484 | 20185778 | | 2025-04-22T09:49:04Z | 981272 | 21167050 | | 2025-04-22T10:28:06Z | 982880 | 22149930 | | 2025-04-22T11:06:38Z | 982778 | 23132708 | | 2025-04-22T11:45:46Z | 981714 | 24114422 | | 2025-04-22T11:45:53Z | 0 | 24114422 |
nicchio816/reddit_dataset_111
nicchio816
"2025-04-22T11:45:53Z"
283
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-04-21T15:20:14Z"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** nicchio816/reddit_dataset_111 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5F1t5ddY4PW34FQBK4iHVi1CbhySSbV5Yr4swpChryepB1pn ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{nicchio8162025datauniversereddit_dataset_111, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={nicchio816}, year={2025}, url={https://huggingface.co/datasets/nicchio816/reddit_dataset_111}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 24114422 - **Date Range:** 2025-03-18T20:00:00Z to 2025-04-21T20:00:00Z - **Last Updated:** 2025-04-22T11:45:50Z ### Data Distribution - Posts: 7.79% - Comments: 92.21% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/AskReddit | 70459 | 0.29% | | 2 | r/politics | 67009 | 0.28% | | 3 | r/wallstreetbets | 60396 | 0.25% | | 4 | r/worldnews | 34129 | 0.14% | | 5 | r/teenagers | 33314 | 0.14% | | 6 | r/europe | 32889 | 0.14% | | 7 | r/canada | 30825 | 0.13% | | 8 | r/gaming | 29651 | 0.12% | | 9 | r/AITAH | 29435 | 0.12% | | 10 | r/pcmasterrace | 29148 | 0.12% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-04-21T15:28:02Z | 952903 | 952903 | | 2025-04-21T16:34:00Z | 883651 | 1836554 | | 2025-04-21T17:41:26Z | 888964 | 2725518 | | 2025-04-21T18:49:51Z | 901683 | 3627201 | | 2025-04-21T19:59:16Z | 966991 | 4594192 | | 2025-04-21T21:08:03Z | 974205 | 5568397 | | 2025-04-21T22:17:19Z | 975262 | 6543659 | | 2025-04-21T23:25:51Z | 975876 | 7519535 | | 2025-04-22T00:34:32Z | 976149 | 8495684 | | 2025-04-22T01:44:17Z | 977365 | 9473049 | | 2025-04-22T02:41:59Z | 990568 | 10463617 | | 2025-04-22T03:21:59Z | 985716 | 11449333 | | 2025-04-22T04:00:51Z | 982225 | 12431558 | | 2025-04-22T04:39:29Z | 979298 | 13410856 | | 2025-04-22T05:17:59Z | 969267 | 14380123 | | 2025-04-22T05:56:55Z | 967362 | 15347485 | | 2025-04-22T06:35:47Z | 958869 | 16306354 | | 2025-04-22T07:15:02Z | 959513 | 17265867 | | 2025-04-22T07:53:25Z | 968789 | 18234656 | | 2025-04-22T08:31:37Z | 971638 | 19206294 | | 2025-04-22T09:10:11Z | 979484 | 20185778 | | 2025-04-22T09:49:04Z | 981272 | 21167050 | | 2025-04-22T10:28:06Z | 982880 | 22149930 | | 2025-04-22T11:06:38Z | 982778 | 23132708 | | 2025-04-22T11:45:46Z | 981714 | 24114422 |
OpenGVLab/InternVL-Data
OpenGVLab
"2025-04-22T11:45:37Z"
119
22
[ "task_categories:image-to-text", "task_categories:question-answering", "language:multilingual", "license:cc-by-4.0", "size_categories:10M<n<100M", "modality:image", "arxiv:2312.14238", "arxiv:2404.16821", "arxiv:2412.05271", "arxiv:2411.10442", "arxiv:2504.10479", "region:us" ]
[ "image-to-text", "question-answering" ]
"2025-04-12T07:26:00Z"
--- language: - multilingual license: cc-by-4.0 task_categories: - image-to-text - question-answering size_categories: - 10M<n<100M --- # InternVL-Data [\[📂 GitHub\]](https://github.com/OpenGVLab/InternVL) [\[📜 InternVL 1.0\]](https://huggingface.co/papers/2312.14238) [\[📜 InternVL 1.5\]](https://huggingface.co/papers/2404.16821) [\[📜 InternVL 2.5\]](https://huggingface.co/papers/2412.05271) [\[📜 InternVL2.5-MPO\]](https://huggingface.co/papers/2411.10442) [\[📜 InternVL3\]](https://huggingface.co/papers/2504.10479) [\[🆕 Blog\]](https://internvl.github.io/blog/) [\[🗨️ Chat Demo\]](https://internvl.opengvlab.com/) [\[🤗 HF Demo\]](https://huggingface.co/spaces/OpenGVLab/InternVL) [\[🚀 Quick Start\]](#quick-start) [\[📖 Documents\]](https://internvl.readthedocs.io/en/latest/) <div align="center"> <img width="500" alt="image" src="https://cdn-uploads.huggingface.co/production/uploads/64006c09330a45b03605bba3/zJsd2hqd3EevgXo6fNgC-.png"> </div> ## Introduction Welcome to the InternVL3 Open Dataset! This dataset is designed to support research and development in the field of multimodal large language models (MLLMs), specifically for tasks involving image, text, and video understanding. The dataset is composed of data collected from various sources, including curated open-source datasets, self-synthesized datasets, and data gathered from the internet. Our first phase plan is to release the SFT data for InternVL2.5 and InternVL3. We will continue uploading the data over the next two to four weeks, starting with the SFT data for InternVL2.5, followed by the SFT data for InternVL3. We kindly ask for your patience as we continue to release the data in the coming weeks. ## Data List ### InternVL2.5-SFT TODO ### InternVL3-SFT TODO ## License This dataset is released under the CC BY 4.0 License. ## Citation If you find this project useful in your research, please consider citing: ```BibTeX @article{zhu2025internvl3, title={InternVL3: Exploring Advanced Training and Test-Time Recipes for Open-Source Multimodal Models}, author={Zhu, Jinguo and Wang, Weiyun and Chen, Zhe and Liu, Zhaoyang and Ye, Shenglong and Gu, Lixin and Duan, Yuchen and Tian, Hao and Su, Weijie and Shao, Jie and others}, journal={arXiv preprint arXiv:2504.10479}, year={2025} } @article{chen2024expanding, title={Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling}, author={Chen, Zhe and Wang, Weiyun and Cao, Yue and Liu, Yangzhou and Gao, Zhangwei and Cui, Erfei and Zhu, Jinguo and Ye, Shenglong and Tian, Hao and Liu, Zhaoyang and others}, journal={arXiv preprint arXiv:2412.05271}, year={2024} } @article{chen2024far, title={How Far Are We to GPT-4V? Closing the Gap to Commercial Multimodal Models with Open-Source Suites}, author={Chen, Zhe and Wang, Weiyun and Tian, Hao and Ye, Shenglong and Gao, Zhangwei and Cui, Erfei and Tong, Wenwen and Hu, Kongzhi and Luo, Jiapeng and Ma, Zheng and others}, journal={arXiv preprint arXiv:2404.16821}, year={2024} } @inproceedings{chen2024internvl, title={Internvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks}, author={Chen, Zhe and Wu, Jiannan and Wang, Wenhai and Su, Weijie and Chen, Guo and Xing, Sen and Zhong, Muyan and Zhang, Qinglong and Zhu, Xizhou and Lu, Lewei and others}, booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition}, pages={24185--24198}, year={2024} } ```
pooja-gani/qasper-sentence-classification
pooja-gani
"2025-04-22T11:45:30Z"
23
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2025-04-21T08:35:32Z"
--- dataset_info: features: - name: question_id dtype: string - name: question dtype: string - name: sentence dtype: string - name: label dtype: int64 - name: input_ids sequence: int32 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 9641942 num_examples: 3733 - name: dev num_bytes: 4899712 num_examples: 1882 download_size: 3083617 dataset_size: 14541654 configs: - config_name: default data_files: - split: train path: data/train-* - split: dev path: data/dev-* ---
yhaha/EmoVoice-DB
yhaha
"2025-04-22T11:45:15Z"
0
0
[ "language:en", "license:mit", "size_categories:10K<n<100K", "arxiv:2504.12867", "region:us", "Emotional_TTS" ]
[]
"2025-04-22T02:17:37Z"
--- license: mit language: - en tags: - Emotional_TTS size_categories: - 10K<n<100K --- # Dataset Card for EmoVoice-DB ## Overview of EmoVoice-DB EmoVoice-DB is an English emotional speech dataset featuring fine-grained emotion labels expressed through natural language descriptions. This dataset contains over 20,000 emotionally expressive speech samples, each annotated with detailed and precise emotional descriptions, totaling approximately 40 hours of audio. EmoVoice-DB is built using synthetic data generated by the powerful GPT-4o(https://platform.openai.com/docs/models/gpt-4o) and GPT-4o-audio(https://platform.openai.com/docs/models/gpt-4o-audio-preview) models. The EmoVoice-DB dataset spans seven core emotion categories— angry, happy, sad, surprised, disgusted, fearful, and neutral—with a balanced distribution of samples across all emotional classes. It features a diverse range of textual content, including novel excerpts, dialogue, and observational phrases. Additionally, the dataset includes speech samples of five distinct speaker timbres, enhancing the diversity of vocal expression. All emotional speech samples are synthesized using the advanced GPT-4o-audio model, ensuring precise emotional control, strong expressiveness, and human-level naturalness. A detailed statistical overview and examples of the dataset are provided in Table below. EmoVoice-DB provides a valuable resource for advancing research in fields such as emotional speech synthesis, speech emotion recognition, and emotion analysis. ## Statistics and Examples of EmoVoice-DB Dataset | Emotion | Count | Duration (h) | Text Example | Emotion Description Example | |------------|-------|--------------|-------------------------------------------------------------------------|---------------------------------------------------------------------| | Angry | 3486 | 5.76 | Wobbly tables ruin everything! | Expressing aggravated displeasure and discontent. | | Happy | 3269 | 6.02 | You did an AMAZING job on the presentation! | Expressing supportive joy and pride in someone's accomplishment. | | Sad | 3174 | 6.94 | Cracked earth stretches for miles, nothing GREEN to soothe the eye. | Conveying a pervasive sense of desolation and despair. | | Surprised | 3072 | 5.67 | The curtain rose without warning, revealing impossible colors and shapes. | Evoking an excited and bewildered wonder in a rising, quickened cadence. | | Fearful | 2961 | 5.52 | Moonlight glinted off the knife, casting shadows that DANCED like ghosts. | Emanating a chilling foreboding, underscored by a quivering voice. | | Disgusted | 2950 | 5.59 | How could anyone EVER think that brown and pink match! | Expressing a moment of incredulous disdain and distaste. | | Neutral | 3188 | 4.95 | Leaves rustled in the evening breeze, swaying gently to unseen rhythms. | Emanating a peaceful, contemplative atmosphere. | | **Sum** | **22100** | **40.45** | | | ## Dataset Split | Split | \#Instances | |---------------|------------------------------| | Train | 63150(21050 speech) | | Validation | 350 | | Test | 700 | ## Dataset Instance ``` { "key": "gpt4o_388_angry_ash", "source_text": "The kettle SCREAMED as it reached boiling point, mirroring my inner tension.", # Text "target_text": "The kettle SCREAMED as it reached boiling point, mirroring my inner tension.", # Text "emotion": "angry", # Coarse emotion category "emotion_text_prompt": "Parallel emotions with rising heat, an audible cry of pent emotion.", # Fine-grained emotion descripion "target_wav": "EmoVoice-DB/angry/gpt4o_388_angry_ash.wav", # Ground truth speech "answer_cosyvoice_speech_token": [626, 3094, 96, 441, 167,...], # 50HZ CosyVoice Semantic Token "neutral_speaker_wav": "EmoVoice-DB/neutral/gpt4o_23948_neutral_ash.wav" # Prompt speech for inference(test.jsonl only) } ``` ## Dataset Creation Step 1: Generating text and emotional descriptions: Pairs of texts and corresponding emotional descriptions are generated using the GPT-4o model. Step 2: Generating emotion speech: Emotional speech samples are generated by prompting GPT-4o-audio model using both text and emotion descriptions constructed earlier. Step 3: Post-processing: Samples with high WER are filtered out. Step 4: Data Augmentation: leverage GPT-4o to rephrase emotional descriptions while maintaining the original meanings. For each data entry, we generate two rephrased versions, resulting in three semantically equivalent but lexically diverse descriptions per emotional speech sample. (For more details, please refer to the paper.) ## Paper and Citation [EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting](https://arxiv.org/abs/2504.12867). ``` @article{yang2025emovoice, title={EmoVoice: LLM-based Emotional Text-To-Speech Model with Freestyle Text Prompting}, author={Yang, Guanrou and Yang, Chen and Chen, Qian and Ma, Ziyang and Chen, Wenxi and Wang, Wen and Wang, Tianrui and Yang, Yifan and Niu, Zhikang and Liu, Wenrui and others}, journal={arXiv preprint arXiv:2504.12867}, year={2025} } ``` <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> ## Contact [email protected]
martinaianaro99/SC_ViLT_L4_F
martinaianaro99
"2025-04-22T11:45:03Z"
7
0
[ "region:us" ]
[]
"2025-04-16T09:05:20Z"
--- dataset_info: features: - name: input_ids sequence: int32 - name: attention_mask sequence: int32 - name: token_type_ids sequence: int32 - name: labels sequence: int32 - name: pixel_values sequence: sequence: sequence: float32 - name: masked_indices sequence: int32 - name: metadata struct: - name: chunk_index dtype: int64 - name: include_only_masked_tokens_images dtype: bool - name: logic_name dtype: string - name: mask_images_equally dtype: bool splits: - name: SC_L4_img_F_chunk0 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk1 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk2 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk3 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk4 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk5 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk6 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk7 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk8 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk9 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk10 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk11 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk12 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk13 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk14 num_bytes: 1810438036 num_examples: 1020 - name: SC_L4_img_F_chunk15 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk16 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk17 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk18 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk19 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk20 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk21 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk22 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk23 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk24 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk25 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk26 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk27 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk28 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk29 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk30 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk31 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk32 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk33 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk34 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk35 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk36 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk37 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk38 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk39 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk40 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk41 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk42 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk43 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk44 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk45 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk46 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk47 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk48 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk49 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk50 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk51 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk52 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk53 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk54 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk55 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk56 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk57 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk58 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk59 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk60 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk61 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk62 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk63 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk64 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk65 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk66 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk67 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk68 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk69 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk70 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk71 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk72 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk73 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk74 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk75 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk76 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk77 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk78 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk79 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk80 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk81 num_bytes: 1805113219 num_examples: 1017 - name: SC_L4_img_F_chunk82 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk83 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk84 num_bytes: 1810438036 num_examples: 1020 - name: SC_L4_img_F_chunk85 num_bytes: 1808663097 num_examples: 1019 - name: SC_L4_img_F_chunk86 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk87 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk88 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk89 num_bytes: 1810438036 num_examples: 1020 - name: SC_L4_img_F_chunk90 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk91 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk92 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk93 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk94 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk95 num_bytes: 1810438036 num_examples: 1020 - name: SC_L4_img_F_chunk96 num_bytes: 1806888158 num_examples: 1018 - name: SC_L4_img_F_chunk97 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk98 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk99 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk100 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk101 num_bytes: 1808663097 num_examples: 1019 - name: SC_L4_img_F_chunk102 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk103 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk104 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk105 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk106 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk107 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk108 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk109 num_bytes: 1810438036 num_examples: 1020 - name: SC_L4_img_F_chunk110 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk111 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk112 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk113 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk114 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk115 num_bytes: 1810438036 num_examples: 1020 - name: SC_L4_img_F_chunk116 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk117 num_bytes: 1808663097 num_examples: 1019 - name: SC_L4_img_F_chunk118 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk119 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk120 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk121 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk122 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk123 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk124 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk125 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk126 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk127 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk128 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk129 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk130 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk131 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk132 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk133 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk134 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk135 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk136 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk137 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk138 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk139 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk140 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk141 num_bytes: 1810438036 num_examples: 1020 - name: SC_L4_img_F_chunk142 num_bytes: 1808663097 num_examples: 1019 - name: SC_L4_img_F_chunk143 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk144 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk145 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk146 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk147 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk148 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk149 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk150 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk151 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk152 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk153 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk154 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk155 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk156 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk157 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk158 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk159 num_bytes: 1817537792 num_examples: 1024 - name: SC_L4_img_F_chunk160 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk161 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk162 num_bytes: 1810438036 num_examples: 1020 - name: SC_L4_img_F_chunk163 num_bytes: 1813987914 num_examples: 1022 - name: SC_L4_img_F_chunk164 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk165 num_bytes: 1815762853 num_examples: 1023 - name: SC_L4_img_F_chunk166 num_bytes: 1808663097 num_examples: 1019 - name: SC_L4_img_F_chunk167 num_bytes: 1812212975 num_examples: 1021 - name: SC_L4_img_F_chunk168 num_bytes: 1808663097 num_examples: 1019 - name: SC_L4_img_F_chunk169 num_bytes: 1813987914 num_examples: 1022 download_size: 6655954535 dataset_size: 308663710559 configs: - config_name: default data_files: - split: SC_L4_img_F_chunk0 path: data/SC_L4_img_F_chunk0-* - split: SC_L4_img_F_chunk1 path: data/SC_L4_img_F_chunk1-* - split: SC_L4_img_F_chunk2 path: data/SC_L4_img_F_chunk2-* - split: SC_L4_img_F_chunk3 path: data/SC_L4_img_F_chunk3-* - split: SC_L4_img_F_chunk4 path: data/SC_L4_img_F_chunk4-* - split: SC_L4_img_F_chunk5 path: data/SC_L4_img_F_chunk5-* - split: SC_L4_img_F_chunk6 path: data/SC_L4_img_F_chunk6-* - split: SC_L4_img_F_chunk7 path: data/SC_L4_img_F_chunk7-* - split: SC_L4_img_F_chunk8 path: data/SC_L4_img_F_chunk8-* - split: SC_L4_img_F_chunk9 path: data/SC_L4_img_F_chunk9-* - split: SC_L4_img_F_chunk10 path: data/SC_L4_img_F_chunk10-* - split: SC_L4_img_F_chunk11 path: data/SC_L4_img_F_chunk11-* - split: SC_L4_img_F_chunk12 path: data/SC_L4_img_F_chunk12-* - split: SC_L4_img_F_chunk13 path: data/SC_L4_img_F_chunk13-* - split: SC_L4_img_F_chunk14 path: data/SC_L4_img_F_chunk14-* - split: SC_L4_img_F_chunk15 path: data/SC_L4_img_F_chunk15-* - split: SC_L4_img_F_chunk16 path: data/SC_L4_img_F_chunk16-* - split: SC_L4_img_F_chunk17 path: data/SC_L4_img_F_chunk17-* - split: SC_L4_img_F_chunk18 path: data/SC_L4_img_F_chunk18-* - split: SC_L4_img_F_chunk19 path: data/SC_L4_img_F_chunk19-* - split: SC_L4_img_F_chunk20 path: data/SC_L4_img_F_chunk20-* - split: SC_L4_img_F_chunk21 path: data/SC_L4_img_F_chunk21-* - split: SC_L4_img_F_chunk22 path: data/SC_L4_img_F_chunk22-* - split: SC_L4_img_F_chunk23 path: data/SC_L4_img_F_chunk23-* - split: SC_L4_img_F_chunk24 path: data/SC_L4_img_F_chunk24-* - split: SC_L4_img_F_chunk25 path: data/SC_L4_img_F_chunk25-* - split: SC_L4_img_F_chunk26 path: data/SC_L4_img_F_chunk26-* - split: SC_L4_img_F_chunk27 path: data/SC_L4_img_F_chunk27-* - split: SC_L4_img_F_chunk28 path: data/SC_L4_img_F_chunk28-* - split: SC_L4_img_F_chunk29 path: data/SC_L4_img_F_chunk29-* - split: SC_L4_img_F_chunk30 path: data/SC_L4_img_F_chunk30-* - split: SC_L4_img_F_chunk31 path: data/SC_L4_img_F_chunk31-* - split: SC_L4_img_F_chunk32 path: data/SC_L4_img_F_chunk32-* - split: SC_L4_img_F_chunk33 path: data/SC_L4_img_F_chunk33-* - split: SC_L4_img_F_chunk34 path: data/SC_L4_img_F_chunk34-* - split: SC_L4_img_F_chunk35 path: data/SC_L4_img_F_chunk35-* - split: SC_L4_img_F_chunk36 path: data/SC_L4_img_F_chunk36-* - split: SC_L4_img_F_chunk37 path: data/SC_L4_img_F_chunk37-* - split: SC_L4_img_F_chunk38 path: data/SC_L4_img_F_chunk38-* - split: SC_L4_img_F_chunk39 path: data/SC_L4_img_F_chunk39-* - split: SC_L4_img_F_chunk40 path: data/SC_L4_img_F_chunk40-* - split: SC_L4_img_F_chunk41 path: data/SC_L4_img_F_chunk41-* - split: SC_L4_img_F_chunk42 path: data/SC_L4_img_F_chunk42-* - split: SC_L4_img_F_chunk43 path: data/SC_L4_img_F_chunk43-* - split: SC_L4_img_F_chunk44 path: data/SC_L4_img_F_chunk44-* - split: SC_L4_img_F_chunk45 path: data/SC_L4_img_F_chunk45-* - split: SC_L4_img_F_chunk46 path: data/SC_L4_img_F_chunk46-* - split: SC_L4_img_F_chunk47 path: data/SC_L4_img_F_chunk47-* - split: SC_L4_img_F_chunk48 path: data/SC_L4_img_F_chunk48-* - split: SC_L4_img_F_chunk49 path: data/SC_L4_img_F_chunk49-* - split: SC_L4_img_F_chunk50 path: data/SC_L4_img_F_chunk50-* - split: SC_L4_img_F_chunk51 path: data/SC_L4_img_F_chunk51-* - split: SC_L4_img_F_chunk52 path: data/SC_L4_img_F_chunk52-* - split: SC_L4_img_F_chunk53 path: data/SC_L4_img_F_chunk53-* - split: SC_L4_img_F_chunk54 path: data/SC_L4_img_F_chunk54-* - split: SC_L4_img_F_chunk55 path: data/SC_L4_img_F_chunk55-* - split: SC_L4_img_F_chunk56 path: data/SC_L4_img_F_chunk56-* - split: SC_L4_img_F_chunk57 path: data/SC_L4_img_F_chunk57-* - split: SC_L4_img_F_chunk58 path: data/SC_L4_img_F_chunk58-* - split: SC_L4_img_F_chunk59 path: data/SC_L4_img_F_chunk59-* - split: SC_L4_img_F_chunk60 path: data/SC_L4_img_F_chunk60-* - split: SC_L4_img_F_chunk61 path: data/SC_L4_img_F_chunk61-* - split: SC_L4_img_F_chunk62 path: data/SC_L4_img_F_chunk62-* - split: SC_L4_img_F_chunk63 path: data/SC_L4_img_F_chunk63-* - split: SC_L4_img_F_chunk64 path: data/SC_L4_img_F_chunk64-* - split: SC_L4_img_F_chunk65 path: data/SC_L4_img_F_chunk65-* - split: SC_L4_img_F_chunk66 path: data/SC_L4_img_F_chunk66-* - split: SC_L4_img_F_chunk67 path: data/SC_L4_img_F_chunk67-* - split: SC_L4_img_F_chunk68 path: data/SC_L4_img_F_chunk68-* - split: SC_L4_img_F_chunk69 path: data/SC_L4_img_F_chunk69-* - split: SC_L4_img_F_chunk70 path: data/SC_L4_img_F_chunk70-* - split: SC_L4_img_F_chunk71 path: data/SC_L4_img_F_chunk71-* - split: SC_L4_img_F_chunk72 path: data/SC_L4_img_F_chunk72-* - split: SC_L4_img_F_chunk73 path: data/SC_L4_img_F_chunk73-* - split: SC_L4_img_F_chunk74 path: data/SC_L4_img_F_chunk74-* - split: SC_L4_img_F_chunk75 path: data/SC_L4_img_F_chunk75-* - split: SC_L4_img_F_chunk76 path: data/SC_L4_img_F_chunk76-* - split: SC_L4_img_F_chunk77 path: data/SC_L4_img_F_chunk77-* - split: SC_L4_img_F_chunk78 path: data/SC_L4_img_F_chunk78-* - split: SC_L4_img_F_chunk79 path: data/SC_L4_img_F_chunk79-* - split: SC_L4_img_F_chunk80 path: data/SC_L4_img_F_chunk80-* - split: SC_L4_img_F_chunk81 path: data/SC_L4_img_F_chunk81-* - split: SC_L4_img_F_chunk82 path: data/SC_L4_img_F_chunk82-* - split: SC_L4_img_F_chunk83 path: data/SC_L4_img_F_chunk83-* - split: SC_L4_img_F_chunk84 path: data/SC_L4_img_F_chunk84-* - split: SC_L4_img_F_chunk85 path: data/SC_L4_img_F_chunk85-* - split: SC_L4_img_F_chunk86 path: data/SC_L4_img_F_chunk86-* - split: SC_L4_img_F_chunk87 path: data/SC_L4_img_F_chunk87-* - split: SC_L4_img_F_chunk88 path: data/SC_L4_img_F_chunk88-* - split: SC_L4_img_F_chunk89 path: data/SC_L4_img_F_chunk89-* - split: SC_L4_img_F_chunk90 path: data/SC_L4_img_F_chunk90-* - split: SC_L4_img_F_chunk91 path: data/SC_L4_img_F_chunk91-* - split: SC_L4_img_F_chunk92 path: data/SC_L4_img_F_chunk92-* - split: SC_L4_img_F_chunk93 path: data/SC_L4_img_F_chunk93-* - split: SC_L4_img_F_chunk94 path: data/SC_L4_img_F_chunk94-* - split: SC_L4_img_F_chunk95 path: data/SC_L4_img_F_chunk95-* - split: SC_L4_img_F_chunk96 path: data/SC_L4_img_F_chunk96-* - split: SC_L4_img_F_chunk97 path: data/SC_L4_img_F_chunk97-* - split: SC_L4_img_F_chunk98 path: data/SC_L4_img_F_chunk98-* - split: SC_L4_img_F_chunk99 path: data/SC_L4_img_F_chunk99-* - split: SC_L4_img_F_chunk100 path: data/SC_L4_img_F_chunk100-* - split: SC_L4_img_F_chunk101 path: data/SC_L4_img_F_chunk101-* - split: SC_L4_img_F_chunk102 path: data/SC_L4_img_F_chunk102-* - split: SC_L4_img_F_chunk103 path: data/SC_L4_img_F_chunk103-* - split: SC_L4_img_F_chunk104 path: data/SC_L4_img_F_chunk104-* - split: SC_L4_img_F_chunk105 path: data/SC_L4_img_F_chunk105-* - split: SC_L4_img_F_chunk106 path: data/SC_L4_img_F_chunk106-* - split: SC_L4_img_F_chunk107 path: data/SC_L4_img_F_chunk107-* - split: SC_L4_img_F_chunk108 path: data/SC_L4_img_F_chunk108-* - split: SC_L4_img_F_chunk109 path: data/SC_L4_img_F_chunk109-* - split: SC_L4_img_F_chunk110 path: data/SC_L4_img_F_chunk110-* - split: SC_L4_img_F_chunk111 path: data/SC_L4_img_F_chunk111-* - split: SC_L4_img_F_chunk112 path: data/SC_L4_img_F_chunk112-* - split: SC_L4_img_F_chunk113 path: data/SC_L4_img_F_chunk113-* - split: SC_L4_img_F_chunk114 path: data/SC_L4_img_F_chunk114-* - split: SC_L4_img_F_chunk115 path: data/SC_L4_img_F_chunk115-* - split: SC_L4_img_F_chunk116 path: data/SC_L4_img_F_chunk116-* - split: SC_L4_img_F_chunk117 path: data/SC_L4_img_F_chunk117-* - split: SC_L4_img_F_chunk118 path: data/SC_L4_img_F_chunk118-* - split: SC_L4_img_F_chunk119 path: data/SC_L4_img_F_chunk119-* - split: SC_L4_img_F_chunk120 path: data/SC_L4_img_F_chunk120-* - split: SC_L4_img_F_chunk121 path: data/SC_L4_img_F_chunk121-* - split: SC_L4_img_F_chunk122 path: data/SC_L4_img_F_chunk122-* - split: SC_L4_img_F_chunk123 path: data/SC_L4_img_F_chunk123-* - split: SC_L4_img_F_chunk124 path: data/SC_L4_img_F_chunk124-* - split: SC_L4_img_F_chunk125 path: data/SC_L4_img_F_chunk125-* - split: SC_L4_img_F_chunk126 path: data/SC_L4_img_F_chunk126-* - split: SC_L4_img_F_chunk127 path: data/SC_L4_img_F_chunk127-* - split: SC_L4_img_F_chunk128 path: data/SC_L4_img_F_chunk128-* - split: SC_L4_img_F_chunk129 path: data/SC_L4_img_F_chunk129-* - split: SC_L4_img_F_chunk130 path: data/SC_L4_img_F_chunk130-* - split: SC_L4_img_F_chunk131 path: data/SC_L4_img_F_chunk131-* - split: SC_L4_img_F_chunk132 path: data/SC_L4_img_F_chunk132-* - split: SC_L4_img_F_chunk133 path: data/SC_L4_img_F_chunk133-* - split: SC_L4_img_F_chunk134 path: data/SC_L4_img_F_chunk134-* - split: SC_L4_img_F_chunk135 path: data/SC_L4_img_F_chunk135-* - split: SC_L4_img_F_chunk136 path: data/SC_L4_img_F_chunk136-* - split: SC_L4_img_F_chunk137 path: data/SC_L4_img_F_chunk137-* - split: SC_L4_img_F_chunk138 path: data/SC_L4_img_F_chunk138-* - split: SC_L4_img_F_chunk139 path: data/SC_L4_img_F_chunk139-* - split: SC_L4_img_F_chunk140 path: data/SC_L4_img_F_chunk140-* - split: SC_L4_img_F_chunk141 path: data/SC_L4_img_F_chunk141-* - split: SC_L4_img_F_chunk142 path: data/SC_L4_img_F_chunk142-* - split: SC_L4_img_F_chunk143 path: data/SC_L4_img_F_chunk143-* - split: SC_L4_img_F_chunk144 path: data/SC_L4_img_F_chunk144-* - split: SC_L4_img_F_chunk145 path: data/SC_L4_img_F_chunk145-* - split: SC_L4_img_F_chunk146 path: data/SC_L4_img_F_chunk146-* - split: SC_L4_img_F_chunk147 path: data/SC_L4_img_F_chunk147-* - split: SC_L4_img_F_chunk148 path: data/SC_L4_img_F_chunk148-* - split: SC_L4_img_F_chunk149 path: data/SC_L4_img_F_chunk149-* - split: SC_L4_img_F_chunk150 path: data/SC_L4_img_F_chunk150-* - split: SC_L4_img_F_chunk151 path: data/SC_L4_img_F_chunk151-* - split: SC_L4_img_F_chunk152 path: data/SC_L4_img_F_chunk152-* - split: SC_L4_img_F_chunk153 path: data/SC_L4_img_F_chunk153-* - split: SC_L4_img_F_chunk154 path: data/SC_L4_img_F_chunk154-* - split: SC_L4_img_F_chunk155 path: data/SC_L4_img_F_chunk155-* - split: SC_L4_img_F_chunk156 path: data/SC_L4_img_F_chunk156-* - split: SC_L4_img_F_chunk157 path: data/SC_L4_img_F_chunk157-* - split: SC_L4_img_F_chunk158 path: data/SC_L4_img_F_chunk158-* - split: SC_L4_img_F_chunk159 path: data/SC_L4_img_F_chunk159-* - split: SC_L4_img_F_chunk160 path: data/SC_L4_img_F_chunk160-* - split: SC_L4_img_F_chunk161 path: data/SC_L4_img_F_chunk161-* - split: SC_L4_img_F_chunk162 path: data/SC_L4_img_F_chunk162-* - split: SC_L4_img_F_chunk163 path: data/SC_L4_img_F_chunk163-* - split: SC_L4_img_F_chunk164 path: data/SC_L4_img_F_chunk164-* - split: SC_L4_img_F_chunk165 path: data/SC_L4_img_F_chunk165-* - split: SC_L4_img_F_chunk166 path: data/SC_L4_img_F_chunk166-* - split: SC_L4_img_F_chunk167 path: data/SC_L4_img_F_chunk167-* - split: SC_L4_img_F_chunk168 path: data/SC_L4_img_F_chunk168-* - split: SC_L4_img_F_chunk169 path: data/SC_L4_img_F_chunk169-* ---
MultiBridge/LnNor_raw
MultiBridge
"2025-04-22T11:44:48Z"
0
0
[ "language:no", "language:en", "language:pl", "license:cc-by-4.0", "region:us" ]
[]
"2025-01-29T19:38:49Z"
--- configs: - config_name: default data_files: - split: train path: data/train-* license: cc-by-4.0 language: - 'no' - en - pl pretty_name: LnNorRaw --- # Dataset Card for the LnNor Corpus <!This dataset card aims to be a base template for new datasets. It has been generated using [this raw template](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/templates/datasetcard_template.md?plain=1).> A multilingual dataset of high-quality speech recordings in Norwegian, English, and Polish, designed for research into cross-linguistic influence, multilingual language acquisition, and applications in NLP and speech processing such as ASR, TTS, and linguistic variability modeling. The dataset includes 2,783 recordings, totaling 101 hours, with a size of 50.1 GB. These recordings capture phonological, syntactic, and semantic variability through structured tasks like reading, picture description, and spontaneous conversation. ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** Magdalena Wrembel, Krzysztof Hwaszcz, Agnieszka Pludra, Anna Skałba, Jarosław Weckwerth, Kamil Malarski, Zuzanna Ewa Cal, Hanna Kędzierska, Tristan Czarnecki-Verner, Anna Balas, Kamil Kaźmierski, Sylwiusz Żychliński, Justyna Gruszecka - **Funded by:** EEA Financial Mechanism and Norwegian Financial Mechanism - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** Norwegian, English, Polish - **License:** Creative Commons Attribution 4.0 ### Dataset Sources <!-- Provide the basic links for the dataset. --> - **Repository:** https://adim.web.amu.edu.pl/en/lnnor-corpus/ - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use - **Multilingual ASR training:** Supports building and evaluating ASR systems for multilingual and code-switching scenarios. - **Linguistic modeling:** Enables research on phonological, syntactic, and semantic variability in multilingual contexts. - **TTS and speech synthesis:** Provides diverse phonetic data for training multilingual text-to-speech models. - **Cross-linguistic NLP research:** Facilitates studies on L3 acquisition and cross-linguistic influence in multilinguals. ### Out-of-Scope Use - **Privacy-violating applications:** The dataset is anonymized and must not be used for speaker identification or biometric analysis tasks. - **Non-supported languages:** The dataset is tailored for Norwegian, English, and Polish only. ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> The recordings are systematically labeled using a structured format: **PROJECT_SPEAKER ID_LANGUAGE STATUS_TASK**. Each component of the label provides specific details: - **PROJECT:** The project under which the data was collected. Possible values: - **A** for ADIM, - **C** for CLIMAD. - **SPEAKER ID:** A unique 8-character identifier assigned to each speaker. - **LANGUAGE STATUS:** The language used in the recording and its status for the speaker; examples: - **L1PL** (Polish as L1), - **L2EN** (English as L2), - **L3NO** (Norwegian as L3). - **TASK:** The type of speech task recorded. Examples include: - **WR** (word reading), - **SR** (sentence reading), - **TR** (text reading "The North Wind and the Sun"), - **PD** (picture description), - **ST** (story telling), - **VT** (video story telling), - **VD** (video description), - **TP/TE** (translation from Polish/English into Norwegian). If a task type was repeated, sequential numbers (e.g., SR1, SR2) are appended to distinguish iterations. ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> The dataset was developed to advance research in multilingualism and third language (L3) acquisition, with a specific focus on Norwegian, English, and Polish. Its primary aim is to enable studies on cross-linguistic influence, phonological, syntactic and semantic variability, and multilingual language processing. It supports the development of technologies such as multilingual ASR, TTS, and NLP systems. ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> The dataset was collected as part of two research projects, CLIMAD (Cross-linguistic Influence in Multilingualism across Domains: Phonology and Syntax) and ADIM (Across-domain Investigations in Multilingualism: Modeling L3 Acquisition in Diverse Settings), which focused on cross-linguistic influence and L3 acquisition in multilingual settings. The dataset comprises recordings from 231 speakers across three languages: Norwegian, English, and Polish. Speakers include L1 Polish learners of Norwegian, L1 English and L1 Norwegian natives, and L2/L3/Ln speakers of English and Norwegian. Speech was elicited using a range of tasks such as word, sentence, and text readings, picture descriptions, video story retelling, and socio-phonetic interviews. Metadata is based on the Language History Questionnaire and includes age, gender, language proficiency, exposure, and other sociolinguistic factors. #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> Data were recorded between 2021 and 2024 using Shure SM-35 unidirectional cardioid microphones and Marantz PMD620 recorders, ensuring minimal noise interference. Recordings were captured at 48 kHz, 16-bit resolution [TO BE CONFIRMED]. Some of the recordings were annotated with orthographic and/or phonetic transcriptions and aligned at a word and phoneme level. Metadata includes speaker characteristics, language status (L1, L2, L3/Ln), task type, and audio details. #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> Source data producers include: - Polish L1 speakers learning Norwegian as L3/Ln in formal and naturalistic contexts, - native speakers of Norwegian and English as control groups, - speakers of English and Norwegian as L2/L3/Ln with diverse L1 backgrounds. ### Annotations <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> The dataset includes the following types of annotations: - Orthographic transcriptions (available for selected recordings) - Phonetic transcriptions (available for selected recordings) - Word-level alignments (available for selected recordings) - Phoneme-level alignments (available for selected recordings) - Speaker metadata (available for all recordings) - speaker ID, age, gender, education, current residence, language proficiency (native and additional languages), language status (L1, L2, L3/Ln) - Audio metadata (available for all recordings) - recording ID, task type (e.g., word reading, sentence reading), sampling rate #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> The annotation process combined both automated and manual methods. It consisted of the following steps: - Orthographic transcriptions: For Polish and English recordings, transcriptions were generated using a STT tool [NAME NEEDS TO BE ADDED] or created manually by linguists with a high level of proficiency in the respective languages. Norwegian transcriptions were entirely human-generated to ensure high accuracy. - Phonetic transcriptions: Phonetic transcriptions were automatically generated using WebMAUS. The output was encoded in SAMPA (Speech Assessment Methods Phonetic Alphabet), ensuring consistency and compatibility with downstream processing. - Alignments: Word- and phoneme-level alignments were created using WebMAUS, which produced TextGrids that aligned the transcriptions with corresponding audio files. - Speaker metadata: The speaker metadata were collected before the recording sessions through the Linguistic History Questionnaire (LHQ) and supplementary forms provided to participants. These forms were designed to capture detailed linguistic and demographic information, ensuring a comprehensive profile of each speaker. - Audio metadata: The audio metadata were automatically captured during the recording process by the equipment used for data collection and embedded into the corresponding audio files. - #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> The annotations were created under the supervision of a team of linguists and language experts from the Faculty of English at Adam Mickiewicz University in Poznań, Wrocław University of Science and Technology, and the University of Szczecin, all of whom were members of the CLIMAD and ADIM projects. The annotators had extensive experience in transcription, phonetic analysis, and linguistic research in Polish, English, and Norwegian. Their role in the annotation process included: - providing expertise in phonetic analysis and transcription techniques, - supervising the use of automated tools such as WebMAUS for phonetic transcriptions and alignments, - generating transcriptions for recordings that featured languages with limited support in STT tools (i.e., Norwegian) or contained challenging audio (overlapping speech or atypical pronunciations that required careful transcription), - validating a subset of annotations to ensure high-quality outputs for critical data points. While the majority of annotations were generated using automated tools, the annotators’ oversight ensured consistency and accuracy across the dataset. #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> [More Information Needed] ## Dataset Card Authors Agnieszka Pludra Izabela Krysińska Piotr Kabaciński ## Dataset Card Contact [email protected] [email protected] [email protected]
giannhskp/medline_ru_en_backtranslation_filtered_60.0_wmt22-cometkiwi-da
giannhskp
"2025-04-22T11:44:46Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:44:40Z"
--- dataset_info: features: - name: ru dtype: string - name: en dtype: string - name: comet_score dtype: float64 splits: - name: train num_bytes: 7508052.681046153 num_examples: 15703 download_size: 4899600 dataset_size: 7508052.681046153 configs: - config_name: default data_files: - split: train path: data/train-* ---
Kyleyee/train_data_HH_sft_CompletionOnly
Kyleyee
"2025-04-22T11:44:43Z"
13
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "trl" ]
[]
"2025-04-22T03:10:25Z"
--- tags: - trl --- # HH-RLHF-Helpful-Base SFT Dataset This dataset duplicates each sample into two, turning `chosen` and `rejected` into separate examples under the `output` column, while renaming `prompt` to `instruction`.
MikeGreen2710/first_100k_agriculture_forestry
MikeGreen2710
"2025-04-22T11:44:30Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:44:26Z"
--- dataset_info: features: - name: input_ids sequence: int32 - name: attention_mask sequence: int8 - name: agriculture_forestry dtype: int64 splits: - name: train num_bytes: 129600000 num_examples: 100000 download_size: 18341525 dataset_size: 129600000 configs: - config_name: default data_files: - split: train path: data/train-* ---
agents-course/certificates
agents-course
"2025-04-22T11:43:52Z"
30,176
43
[ "license:apache-2.0", "modality:image", "region:us" ]
[]
"2025-02-06T08:17:59Z"
--- license: apache-2.0 ---
efwkjn/dataset
efwkjn
"2025-04-22T11:43:26Z"
3,459
0
[ "region:us" ]
[]
"2025-04-12T22:57:56Z"
--- viewer: false --- Processed whisper training data. Final pass datamix
LLM-EDA/qwen_7B_pairs.json
LLM-EDA
"2025-04-22T11:43:26Z"
19
0
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "question-answering" ]
"2025-04-21T12:04:42Z"
--- license: apache-2.0 task_categories: - question-answering language: - en tags: - code size_categories: - 1K<n<10K --- An example preference pairs dataset for DPO. This dataset is prompted on fine-tuned qwen_7B. Check https://github.com/CatIIIIIIII/VeriPrefer for usage.
tomap1410/TrivialIndicator
tomap1410
"2025-04-22T11:43:25Z"
118
0
[ "region:us" ]
[]
"2025-04-21T19:05:14Z"
--- dataset_info: features: - name: task dtype: string - name: goals dtype: int64 - name: description dtype: string - name: complete dtype: string - name: store_place dtype: string - name: email_working dtype: string - name: id dtype: string splits: - name: train num_bytes: 124 num_examples: 1 download_size: 3169 dataset_size: 124 configs: - config_name: default data_files: - split: train path: data/train-* ---
trnguyenai01/TrivialIndicator
trnguyenai01
"2025-04-22T11:43:20Z"
112
0
[ "region:us" ]
[]
"2025-04-21T19:05:10Z"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: string splits: - name: train num_bytes: 17044001 num_examples: 6850 download_size: 6773709 dataset_size: 17044001 configs: - config_name: default data_files: - split: train path: data/train-* ---
TeoGchx/beat_with_latents
TeoGchx
"2025-04-22T11:43:03Z"
69
0
[ "region:us" ]
[]
"2025-04-22T08:14:43Z"
--- dataset_info: features: - name: motion_tokens sequence: sequence: sequence: int64 - name: speech_tokens sequence: sequence: sequence: int64 - name: motion_latents sequence: sequence: sequence: float64 - name: speech_latents sequence: sequence: sequence: float64 - name: beat_motion struct: - name: betas sequence: sequence: float64 - name: expressions sequence: sequence: float64 - name: gender dtype: string - name: mocap_frame_rate dtype: int64 - name: model dtype: string - name: poses sequence: sequence: float64 - name: trans sequence: sequence: float64 splits: - name: val num_bytes: 5548424308 num_examples: 106 - name: train.1 num_bytes: 8123645036 num_examples: 182 - name: train.2 num_bytes: 7693824380 num_examples: 182 - name: train.3 num_bytes: 6905286808 num_examples: 182 - name: train.4 num_bytes: 9567519408 num_examples: 182 - name: train.5 num_bytes: 8748141744 num_examples: 182 download_size: 35606709754 dataset_size: 46586841684 configs: - config_name: default data_files: - split: val path: data/val-* - split: train.1 path: data/train.1-* - split: train.2 path: data/train.2-* - split: train.3 path: data/train.3-* - split: train.4 path: data/train.4-* - split: train.5 path: data/train.5-* ---
LLM-EDA/pyra_medium
LLM-EDA
"2025-04-22T11:42:57Z"
23
0
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "question-answering" ]
"2025-04-21T11:31:11Z"
--- license: apache-2.0 task_categories: - question-answering language: - en tags: - code size_categories: - 1K<n<10K --- Filtered dataset of https://huggingface.co/datasets/LLM-EDA/pyra for RL. Keep only code more than 50 lines. Check https://github.com/CatIIIIIIII/VeriPrefer for usage.
davnas/occupancy_perc
davnas
"2025-04-22T11:42:31Z"
2,714
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2024-12-21T17:11:13Z"
--- dataset_info: features: - name: index dtype: string - name: KTH Library dtype: int64 - name: South-East Gallery dtype: int64 - name: North Gallery dtype: int64 - name: South Gallery dtype: int64 - name: Ångdomen dtype: int64 - name: Newton dtype: int64 splits: - name: train num_bytes: 3910183 num_examples: 55073 download_size: 670449 dataset_size: 3910183 configs: - config_name: default data_files: - split: train path: data/train-* ---
kothasuhas/auto-rm-k10000-lr0.001-epochs1-er1-0
kothasuhas
"2025-04-22T11:42:26Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:42:10Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 34046295 num_examples: 10000 - name: validation num_bytes: 8574979 num_examples: 1000 download_size: 26466555 dataset_size: 42621274 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
LLM-EDA/pyra_tb
LLM-EDA
"2025-04-22T11:42:16Z"
17
0
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:1K<n<10K", "format:json", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "question-answering" ]
"2025-04-21T12:15:41Z"
--- license: apache-2.0 task_categories: - question-answering language: - en tags: - code size_categories: - 1K<n<10K --- This is the corresponding testbench data of pyra_medium (https://huggingface.co/datasets/LLM-EDA/pyra_medium). Check https://github.com/CatIIIIIIII/VeriPrefer for usage.
RyanYr/brm-dapo-qwen2.5math-7B-base-lr5e-7-beta0.01_matheval
RyanYr
"2025-04-22T11:41:48Z"
295
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2025-04-08T15:50:27Z"
--- dataset_info: features: - name: data_source dtype: string - name: problem dtype: string - name: solution dtype: string - name: answer dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: reward_model struct: - name: ground_truth dtype: string - name: style dtype: string - name: responses sequence: string - name: gt_ans dtype: string - name: extracted_solution sequence: string - name: rm_scores sequence: bool - name: avg_accuracy dtype: float64 - name: pass_accuracy dtype: bool - name: cons_accuracy dtype: float64 splits: - name: train num_bytes: 3103830 num_examples: 30 - name: '40' num_bytes: 3769764 num_examples: 30 - name: '2480' num_bytes: 3267455 num_examples: 30 - name: '2440' num_bytes: 3168555 num_examples: 30 - name: '2400' num_bytes: 3161284 num_examples: 30 - name: '2360' num_bytes: 3189203 num_examples: 30 - name: '2320' num_bytes: 3205885 num_examples: 30 - name: '2280' num_bytes: 3257951 num_examples: 30 - name: '2240' num_bytes: 3291126 num_examples: 30 - name: '2200' num_bytes: 3213537 num_examples: 30 - name: '2160' num_bytes: 3109956 num_examples: 30 - name: '2120' num_bytes: 3124236 num_examples: 30 - name: '2080' num_bytes: 3177284 num_examples: 30 - name: '2040' num_bytes: 3278167 num_examples: 30 - name: '2000' num_bytes: 3236770 num_examples: 30 - name: '1960' num_bytes: 3239933 num_examples: 30 - name: '1920' num_bytes: 3290885 num_examples: 30 - name: '1880' num_bytes: 3312243 num_examples: 30 - name: '1840' num_bytes: 3237138 num_examples: 30 - name: '1800' num_bytes: 3173552 num_examples: 30 - name: '1760' num_bytes: 3333255 num_examples: 30 - name: '1720' num_bytes: 3301038 num_examples: 30 - name: '1680' num_bytes: 3236810 num_examples: 30 - name: '1640' num_bytes: 3277238 num_examples: 30 - name: '1620' num_bytes: 3315933 num_examples: 30 - name: '1600' num_bytes: 3339073 num_examples: 30 - name: '1560' num_bytes: 3366952 num_examples: 30 - name: '1520' num_bytes: 3184370 num_examples: 30 - name: '1480' num_bytes: 3307446 num_examples: 30 - name: '1440' num_bytes: 3274455 num_examples: 30 - name: '1400' num_bytes: 3297891 num_examples: 30 - name: '1360' num_bytes: 3268157 num_examples: 30 - name: '1320' num_bytes: 3253084 num_examples: 30 - name: '1280' num_bytes: 3215998 num_examples: 30 - name: '1240' num_bytes: 3337983 num_examples: 30 - name: '1200' num_bytes: 3226344 num_examples: 30 - name: '1160' num_bytes: 3254055 num_examples: 30 - name: '1120' num_bytes: 3366505 num_examples: 30 - name: '1080' num_bytes: 3357140 num_examples: 30 - name: '1040' num_bytes: 3344619 num_examples: 30 - name: '1000' num_bytes: 3251026 num_examples: 30 - name: '960' num_bytes: 3314508 num_examples: 30 - name: '920' num_bytes: 3288608 num_examples: 30 - name: '880' num_bytes: 3350946 num_examples: 30 - name: '840' num_bytes: 3225488 num_examples: 30 - name: '800' num_bytes: 3403626 num_examples: 30 - name: '760' num_bytes: 3435757 num_examples: 30 download_size: 66320030 dataset_size: 153937059 configs: - config_name: default data_files: - split: train path: data/train-* - split: '1680' path: data/1680-* - split: '1640' path: data/1640-* - split: '1620' path: data/1620-* - split: '1600' path: data/1600-* - split: '1560' path: data/1560-* - split: '1520' path: data/1520-* - split: '40' path: data/40-* - split: '1720' path: data/1720-* - split: '1840' path: data/1840-* - split: '1800' path: data/1800-* - split: '1760' path: data/1760-* - split: '1920' path: data/1920-* - split: '1880' path: data/1880-* - split: '1960' path: data/1960-* - split: '2000' path: data/2000-* - split: '2040' path: data/2040-* - split: '2080' path: data/2080-* - split: '2120' path: data/2120-* - split: '2200' path: data/2200-* - split: '2160' path: data/2160-* - split: '2280' path: data/2280-* - split: '2240' path: data/2240-* - split: '2320' path: data/2320-* - split: '2360' path: data/2360-* - split: '2400' path: data/2400-* - split: '2440' path: data/2440-* - split: '2480' path: data/2480-* - split: '1480' path: data/1480-* - split: '1440' path: data/1440-* - split: '1400' path: data/1400-* - split: '1360' path: data/1360-* - split: '1320' path: data/1320-* - split: '1280' path: data/1280-* - split: '1240' path: data/1240-* - split: '1200' path: data/1200-* - split: '1160' path: data/1160-* - split: '1120' path: data/1120-* - split: '1080' path: data/1080-* - split: '1040' path: data/1040-* - split: '1000' path: data/1000-* - split: '960' path: data/960-* - split: '920' path: data/920-* - split: '880' path: data/880-* - split: '840' path: data/840-* - split: '800' path: data/800-* - split: '760' path: data/760-* ---
KakologArchives/KakologArchives
KakologArchives
"2025-04-22T11:41:45Z"
5,599,728
15
[ "task_categories:text-classification", "language:ja", "license:mit", "region:us" ]
[ "text-classification" ]
"2023-05-12T13:31:56Z"
--- pretty_name: ニコニコ実況 過去ログアーカイブ license: mit language: - ja task_categories: - text-classification --- # ニコニコ実況 過去ログアーカイブ ニコニコ実況 過去ログアーカイブは、[ニコニコ実況](https://jk.nicovideo.jp) のサービス開始から現在までのすべての過去ログコメントを収集したデータセットです。 去る2020年12月、ニコニコ実況は [ニコニコ生放送内の一公式チャンネルとしてリニューアル](https://blog.nicovideo.jp/niconews/143148.html) されました。 これに伴い、2009年11月から運用されてきた旧システムは提供終了となり(事実上のサービス終了)、torne や BRAVIA などの家電への対応が軒並み終了する中、当時の生の声が詰まった約11年分の過去ログも同時に失われることとなってしまいました。 そこで 5ch の DTV 板の住民が中心となり、旧ニコニコ実況が終了するまでに11年分の全チャンネルの過去ログをアーカイブする計画が立ち上がりました。紆余曲折あり Nekopanda 氏が約11年分のラジオや BS も含めた全チャンネルの過去ログを完璧に取得してくださったおかげで、11年分の過去ログが電子の海に消えていく事態は回避できました。 しかし、旧 API が廃止されてしまったため過去ログを API 経由で取得することができなくなり、またアーカイブされた過去ログから見たい範囲のログを探す場合も、アーカイブのサイズが合計約 150GB もあることから、とても以前のように手軽に過去ログに触れることはできなくなってしまいました。 一方、ニコニコ生放送内の一公式チャンネルとして移行した新ニコニコ実況では、タイムシフト(旧ニコニコ実況での過去ログに相当)の視聴期限は3週間までとなっているため、その期限を過ぎると過去ログは視聴できなくなってしまいます。 また一般会員は事前にタイムシフト予約をしておく必要があるなど、以前のような利便性は失われています。 私たちは、ニコニコ実況に投稿された日本のテレビ放送についてのコメントは、当時の世相や時代背景を端的に表す、歴史的価値のある資料だと考えています。 このデータセットでは、ニコニコ実況のすべての過去ログを後世に残すべく、Nekopanda 氏が配布されていた旧ニコニコ実況の 2020/12/15 までのすべての過去ログに加え、コミュニティでの実況番組も含めた新ニコニコ実況、さらに 2024/06/10 からは実況用代替コメントサーバーである [NX-Jikkyo](https://nx-jikkyo.tsukumijima.net/) の当日分の過去ログを5分に1回収集し、随時反映しています。 過去ログをかんたんに取得するための [API](https://jikkyo.tsukumijima.net/) もあります。 よろしければそちらもご活用ください。 ## Dataset Structure ### Builder Config | Key | Value Type | Default Value | Description | | --------------- | ---------- | ------------- | ----------- | | channel_id | string | None | 過去ログを取得するニコニコ実況チャンネルの ID (省略時はすべてのチャンネル) | | year | int | None | 取得する過去ログの年 (省略時はすべての年) | | number_of_files | int | None | 取得する過去ログファイルの数 (省略時はすべてのファイル) | ### Data Splits | Split | Approximate Size | Description | | ------- | ---------------- | ----------- | | sample | 1GB | サンプルとして、2022年中に投稿された TOKYO MX (ID: jk9) のすべての過去ログコメントを取得します。1GB ほどあります。 | | all | 190GB | 全チャンネル/全期間のすべての過去ログコメントを取得します。190GB 以上あるため注意してください。 | ### Data Fields | Field | Type | Description | | --------------- | -------- | ----------- | | thread | string | コメントのスレッド ID | | no | int64 | コメント番号 (コメ番) | | vpos | int64 | スレッド ID から起算したコメントの再生位置 (1/100秒) | | date | int64 | コメント投稿時間の UNIX タイムスタンプ | | date_usec | int64 | コメント投稿時間の小数点以下の時間 | | user_id | string | ユーザー ID (コマンドに 184 が指定されている場合は匿名化され、1週間ほどでシャッフルされる) | | mail | string | コメントのコマンド (184, red naka big など、省略されることもある) | | premium | boolean | コメントしたユーザーがプレミアム会員であれば True | | anonymity | boolean | 匿名コメントであれば True | | content | string | コメント本文 (AA など、まれに複数行コメントがあるので注意) | ## Example ```python from datasets import load_dataset dataset = load_dataset('KakologArchives/KakologArchives', 'all', channel_id='jk211', year=2023, number_of_files=10) for data in dataset['train']: print(data) ``` ## Licensing Information [MIT License](https://opensource.org/license/mit/)
LLM-EDA/pyra
LLM-EDA
"2025-04-22T11:41:44Z"
18
0
[ "task_categories:question-answering", "language:en", "license:apache-2.0", "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "question-answering" ]
"2025-04-21T11:23:36Z"
--- license: apache-2.0 task_categories: - question-answering language: - en tags: - code size_categories: - 10K<n<100K --- Filtered dataset sourced from https://huggingface.co/datasets/bnadimi/PyraNet-Verilog for SFT. Keep only high-quality data. Check https://github.com/CatIIIIIIII/VeriPrefer for usage.
gmongaras/CC12M_and_Imagenet21K_Recap_Highqual_512
gmongaras
"2025-04-22T11:41:44Z"
202
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2025-04-21T13:33:57Z"
--- dataset_info: features: - name: image dtype: binary - name: class dtype: string - name: id dtype: string - name: recaption dtype: string - name: recaption_short dtype: string - name: height dtype: int64 - name: width dtype: int64 - name: aspect_ratio dtype: float64 - name: bucket_size dtype: string splits: - name: train num_bytes: 11190480250 num_examples: 42444 download_size: 11179133656 dataset_size: 11190480250 configs: - config_name: default data_files: - split: train path: data/train-* ---
hf-doc-build/doc-build-dev
hf-doc-build
"2025-04-22T11:41:26Z"
124,970
4
[ "license:mit", "region:us", "documentation" ]
[]
"2022-11-08T09:03:37Z"
--- license: mit tags: - documentation pretty_name: HF Documentation (PRs) viewer: false --- This is a dataset which contains the docs from all the PRs that are updating one of the docs from https://huggingface.co/docs. It is automatically updated by this [github action](https://github.com/huggingface/doc-builder/blob/main/.github/workflows/build_pr_documentation.yml) from the [doc-buider](https://github.com/huggingface/doc-builder) repo.
intelsense/openhermes-en2bn-messages-2
intelsense
"2025-04-22T11:40:51Z"
4,152
0
[ "region:us" ]
[]
"2025-04-09T15:15:41Z"
--- dataset_info: features: - name: custom_instruction dtype: 'null' - name: topic dtype: 'null' - name: model_name dtype: 'null' - name: model dtype: 'null' - name: skip_prompt_formatting dtype: bool - name: category dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: weight dtype: 'null' - name: views dtype: 'null' - name: language dtype: 'null' - name: id dtype: string - name: title dtype: 'null' - name: idx dtype: 'null' - name: hash dtype: 'null' - name: avatarUrl dtype: 'null' - name: system_prompt dtype: 'null' - name: source dtype: string - name: system_message dtype: string - name: human_message dtype: string - name: gpt_message dtype: string - name: system_message_bn dtype: string - name: human_message_bn dtype: string - name: gpt_message_bn dtype: string splits: - name: train num_bytes: 824145818 num_examples: 112200 download_size: 296351792 dataset_size: 824145818 configs: - config_name: default data_files: - split: train path: data/train-* ---
tomap1410/RiskIndicator
tomap1410
"2025-04-22T11:40:50Z"
111
0
[ "region:us" ]
[]
"2025-04-21T19:17:00Z"
--- dataset_info: features: - name: task dtype: string - name: goals dtype: int64 - name: description dtype: string - name: complete dtype: string - name: store_place dtype: string - name: email_working dtype: string - name: id dtype: string splits: - name: train num_bytes: 122 num_examples: 1 download_size: 3159 dataset_size: 122 configs: - config_name: default data_files: - split: train path: data/train-* ---
beyzaatay/saglikVeriseti
beyzaatay
"2025-04-22T11:40:45Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:26:30Z"
--- dataset_info: features: - name: input dtype: string - name: response dtype: string - name: instruction dtype: string splits: - name: train num_bytes: 36596114.409395054 num_examples: 59316 - name: test num_bytes: 4066440.590604943 num_examples: 6591 download_size: 24447889 dataset_size: 40662555.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
trnguyenai01/RiskIndicator
trnguyenai01
"2025-04-22T11:40:35Z"
111
0
[ "region:us" ]
[]
"2025-04-21T19:16:55Z"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: string splits: - name: train num_bytes: 18008418 num_examples: 6550 download_size: 7149123 dataset_size: 18008418 configs: - config_name: default data_files: - split: train path: data/train-* ---
opentargets/ot-release-metrics
opentargets
"2025-04-22T11:40:28Z"
248
0
[ "license:apache-2.0", "region:us" ]
[]
"2024-08-15T14:19:23Z"
--- license: apache-2.0 dataset_info: features: - name: value dtype: float64 - name: datasourceId dtype: string - name: variable dtype: string - name: field dtype: string - name: runId dtype: string splits: - name: train num_bytes: 673444 num_examples: 6383 download_size: 37395 dataset_size: 673444 configs: - config_name: default data_files: - split: train path: metrics/train-* --- Repository for the Open Targets Platform release metrics. Each file is indexed by a `runId`. The format of this variable will depend on the type of the run: | Run type | OT_RELEASE format | Example metrics output name | |-------------------|-------------------|-----------------------------| | Pre-ETL | YY.MM_pre | 23.12_pre | | Post-ETL, regular | YY.MM | 23.12_2023-10-31 | | Post-ETL, PPP | partners/YY.MM | 23.12_ppp_2023-11-24 | 👉 We have built a dashboard to explore these metrics and help in the QC of a new Open Targets release: https://open-targets-metrics.streamlit.app/
tlf123/act_test2
tlf123
"2025-04-22T11:40:23Z"
20
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
"2025-04-22T01:05:27Z"
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 1107, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
hf-doc-build/doc-build
hf-doc-build
"2025-04-22T11:39:48Z"
321,207
9
[ "license:mit", "region:us" ]
[]
"2022-10-24T15:39:05Z"
--- license: mit pretty_name: Generated Docs for HF viewer: false --- This repo contains all the docs published on https://huggingface.co/docs. The docs are generated with https://github.com/huggingface/doc-builder. <!-- comment to trigger webhook.= -->
intelsense/dolphin-flan5m-en2bn
intelsense
"2025-04-22T11:39:16Z"
3,014
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2025-04-05T12:07:32Z"
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: instruction_bn dtype: string - name: input_bn dtype: string - name: output_bn dtype: string splits: - name: train num_bytes: 112402002 num_examples: 20880 download_size: 47696338 dataset_size: 112402002 configs: - config_name: default data_files: - split: train path: data/train-* ---
andrewzamai/CNADFTD-ADNI2NIFD-AN-fold-523-subtypes-betweenT-2.25p-1804-NoLR-testset-T3RepXMRI-DNT
andrewzamai
"2025-04-22T11:39:12Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:39:09Z"
--- dataset_info: features: - name: subject dtype: string - name: txt_report dtype: string - name: gold_diagnosis dtype: string splits: - name: test num_bytes: 964942 num_examples: 549 download_size: 155471 dataset_size: 964942 configs: - config_name: default data_files: - split: test path: data/test-* ---
nit1607/tech_full_article_and_summary
nit1607
"2025-04-22T11:38:51Z"
178
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2025-03-25T12:19:50Z"
--- dataset_info: features: - name: id dtype: string - name: title dtype: string - name: question_id dtype: int64 - name: base_question_with_prefix dtype: string - name: base_question dtype: string - name: question dtype: string - name: answer dtype: string - name: SourceSection dtype: string - name: TargetSection dtype: string splits: - name: train num_bytes: 12379287 num_examples: 19021 download_size: 2077278 dataset_size: 12379287 configs: - config_name: default data_files: - split: train path: data/train-* ---
IcarusWizard/AIME-NoB
IcarusWizard
"2025-04-22T11:37:29Z"
51
0
[ "task_categories:reinforcement-learning", "language:en", "license:mit", "arxiv:2404.18896", "region:us" ]
[ "reinforcement-learning" ]
"2025-04-10T14:31:14Z"
--- license: mit task_categories: - reinforcement-learning language: - en --- # Data Card ## Motivation > **For what purpose was the dataset created?** The dataset is created for the experiment section of our paper "Overcoming Knowledge Barriers: Online Imitation Learning from Observation with Pretrained World Models" to pretrained world models and do imitation learning. We release the datasets for the community as a common test bench for similar problems. Code available at https://github.com/IcarusWizard/AIME-NoB. > **Who created the dataset (e.g., which team, research group) and on behalf of which entity (e.g., company, institution, organization)?** The dataset is collected by [Xingyuan Zhang](https://icaruswizard.github.io/) during his Ph.D. at Machine Learning Research Lab at Volkswagen AG. ## Uses > **Has the dataset been used for any tasks already?** Yes, the datasets has been used in our AIME-NoB paper for pretraining world models and imitation learning from observation. > **Is there a repository that links to any or all papers or systems that use the dataset?** No. > **What (other) tasks could the dataset be used for?** The datasets can also be used for offline reinforcement learning. > **Is there anything about the composition of the dataset or the way it was collected and preprocessed/cleaned/labeled that might impact future uses?** No. Everything from the simulator is recorded in the dataset. > **Are there tasks for which the dataset should not be used?** Not at the moment. ## Data description > **What data does each instance consist of? What is the format of it?** Every dataset consists of certain number of trajectories and each trajecory is stored as a separate `.hdf5` file. The `.hdf5` file can be loaded by `h5py.File` which give you a dictionary-like structure with each entry as a `np.ndarray`. The dictionary has both the proprioceptions and the images for each time step. Note: the key `pre_action` means the actions taken by the agent one time step before which leads to the current observation, hence all the `pre_action` in the first time step is 0. > **Are there recommended data splits (e.g., training, development/validation, testing)?** Each dataset is self-contained, we don't have a recommended data splits inside of it. > **Is the dataset self-contained, or does it link to or otherwise rely on external resources (e.g., websites, tweets, other datasets)?** Yes, the datasets are self-contained. > **Is there any example code for loading the dataset?** ```python import os from aime_nob.data import SequenceDataset from aime_nob.utils import DATA_PATH dataset_name = 'walker-plan2explore-buffer' dataset = SequenceDataset(os.path.join(DATA_PATH, dataset_name), horizon=50, overlap=True) ``` ## Data Creation The buffer datasets for DMC are collected by running plan2explore algorithm on each environment with the visual setup for 2000 trajectories and taking the replay buffer. The result dataset has 2005 trajectories in total due to the initial warmup with 5 random trajectories. For example, you can collect the `walker-plan2explore-buffer` dataset by `python train_scripts/train_plan2explore.py env=walker environment_setup=visual`. The MetaWorld expert datasets are collected by the trained policies from [tdmpc2](https://www.tdmpc2.com/models) for 50 trajectories. ## Distribution > **How will the dataset will be distributed (e.g., tarball on website, API, GitHub)?** The datasets will be hosted with [Github Release](https://huggingface.co/datasets/IcarusWizard/AIME-NoB). > **When will the dataset be distributed?** May 2024. > **Will the dataset be distributed under a copyright or other intellectual property (IP) license, and/or under applicable terms of use (ToU)?** CC BY 4.0. > **Have any third parties imposed IP-based or other restrictions on the data associated with the instances?** No. ## Maintenance > **Who will be supporting/hosting/maintaining the dataset?** Xingyuan Zhang will maintain this dataset. You can contact him with [email protected]. > **Will there be an erratum? If yes, how should people get access to that?** There won't. > **Will the dataset be updated (e.g., to correct labeling errors, add new instances, delete instances)?** Not planned, but may act as requested from the community. > **Will older versions of the dataset continue to be supported/hosted/maintained?** Yes. > **If others want to extend/augment/build on/contribute to the dataset, is there a mechanism for them to do so?** The dataset is free to use, people can build their own work on it and release by themselves. ## Additional Information ### Version Version 1.0, the initial release. ### Dataset Curators The dataset is collected by [Xingyuan Zhang](https://icaruswizard.github.io/) during his Ph.D. at Machine Learning Research Lab at Volkswagen AG. ### Licensing Information _© 2024. This work is licensed under a [_CC BY 4.0 license_](https://creativecommons.org/licenses/by/4.0/)_. ### Citation Information If you find the datasets useful, please cite our paper. ```BibTeX @misc{zhang2024overcoming, title={Overcoming Knowledge Barriers: Online Imitation Learning from Observation with Pretrained World Models}, author={Xingyuan Zhang and Philip Becker-Ehmck and Patrick van der Smagt and Maximilian Karl}, year={2024}, eprint={2404.18896}, archivePrefix={arXiv}, primaryClass={cs.LG} } ```
hettc/polkadot-elections
hettc
"2025-04-22T11:37:01Z"
57
0
[ "license:apache-2.0", "region:us" ]
[]
"2025-04-20T10:19:57Z"
--- license: apache-2.0 ---
konwoo/auto-rm-erall-k100000-lr1e-5-epochs1-er1-0
konwoo
"2025-04-22T11:36:42Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:35:57Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 333744350 num_examples: 100000 - name: validation num_bytes: 8574979 num_examples: 1000 download_size: 215651483 dataset_size: 342319329 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
tbetton/yourbench_example
tbetton
"2025-04-22T11:36:03Z"
23
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2025-04-14T09:24:18Z"
--- dataset_info: - config_name: chunked features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string - name: chunks list: - name: chunk_id dtype: string - name: chunk_text dtype: string - name: multihop_chunks list: - name: chunk_ids sequence: string - name: chunks_text sequence: string - name: chunk_info_metrics list: - name: avg_token_length dtype: float64 - name: bigram_diversity dtype: float64 - name: flesch_reading_ease dtype: float64 - name: gunning_fog dtype: float64 - name: perplexity dtype: float64 - name: token_count dtype: float64 - name: unique_token_ratio dtype: float64 - name: chunking_model dtype: string splits: - name: train num_bytes: 1523472 num_examples: 5 download_size: 664856 dataset_size: 1523472 - config_name: ingested features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 splits: - name: train num_bytes: 414378 num_examples: 5 download_size: 222360 dataset_size: 414378 - config_name: lighteval features: - name: question dtype: string - name: ground_truth_answer dtype: string - name: question_category dtype: string - name: kind dtype: string - name: estimated_difficulty dtype: int64 - name: citations sequence: string - name: document_id dtype: string - name: chunk_ids sequence: string - name: question_generating_model dtype: string - name: chunks sequence: string - name: document dtype: string splits: - name: train num_bytes: 1082888 num_examples: 22 download_size: 252805 dataset_size: 1082888 - config_name: multi_hop_questions features: - name: document_id dtype: string - name: source_chunk_ids sequence: string - name: question dtype: string - name: self_answer dtype: string - name: estimated_difficulty dtype: int64 - name: self_assessed_question_type dtype: string - name: generating_model dtype: string - name: thought_process dtype: string - name: citations sequence: string - name: raw_response dtype: string splits: - name: train num_bytes: 37805 num_examples: 8 download_size: 20859 dataset_size: 37805 - config_name: single_shot_questions features: - name: chunk_id dtype: string - name: document_id dtype: string - name: question dtype: string - name: self_answer dtype: string - name: estimated_difficulty dtype: int64 - name: self_assessed_question_type dtype: string - name: generating_model dtype: string - name: thought_process dtype: string - name: raw_response dtype: string - name: citations sequence: string splits: - name: train num_bytes: 76814 num_examples: 14 download_size: 39553 dataset_size: 76814 - config_name: summarized features: - name: document_id dtype: string - name: document_text dtype: string - name: document_filename dtype: string - name: document_metadata struct: - name: file_size dtype: int64 - name: raw_document_summary dtype: string - name: document_summary dtype: string - name: summarization_model dtype: string splits: - name: train num_bytes: 427204 num_examples: 5 download_size: 241001 dataset_size: 427204 configs: - config_name: chunked data_files: - split: train path: chunked/train-* - config_name: ingested data_files: - split: train path: ingested/train-* - config_name: lighteval data_files: - split: train path: lighteval/train-* - config_name: multi_hop_questions data_files: - split: train path: multi_hop_questions/train-* - config_name: single_shot_questions data_files: - split: train path: single_shot_questions/train-* - config_name: summarized data_files: - split: train path: summarized/train-* ---
kothasuhas/auto-rm-k10000-lr0.01-epochs1-er1-0
kothasuhas
"2025-04-22T11:35:40Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:35:36Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 34046295 num_examples: 10000 - name: validation num_bytes: 8574979 num_examples: 1000 download_size: 26471527 dataset_size: 42621274 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
davnas/real-time-library-occupancy
davnas
"2025-04-22T11:35:31Z"
4,140
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2024-12-09T23:45:08Z"
--- dataset_info: features: - name: time dtype: string - name: KTH Library dtype: int64 - name: South-East Gallery dtype: int64 - name: North Gallery dtype: int64 - name: South Gallery dtype: int64 - name: Ångdomen dtype: int64 - name: Newton dtype: int64 splits: - name: train num_bytes: 3932974 num_examples: 55394 download_size: 656772 dataset_size: 3932974 configs: - config_name: default data_files: - split: train path: data/train-* ---
prithivMLmods/IndoorOutdoorNet-20K
prithivMLmods
"2025-04-22T11:35:03Z"
0
0
[ "license:apache-2.0", "region:us" ]
[]
"2025-04-22T04:02:16Z"
--- license: apache-2.0 ---
latentcanon/HistVis
latentcanon
"2025-04-22T11:35:02Z"
421
0
[ "language:en", "license:cc-by-nc-4.0", "size_categories:10K<n<100K", "modality:image", "doi:10.57967/hf/5066", "region:us" ]
[]
"2025-03-31T14:56:06Z"
--- license: cc-by-nc-4.0 language: - en size_categories: - 10K<n<100K --- # 📚 HistVis Dataset **HistVis** is a dataset designed to evaluate how text-to-image models represent cultural and historical variations in human activities. It contains images generated by multiple models across temporal prompts and activity categories. ## 📋 Dataset Structure The main metadata is stored in [`dataset.csv`](./dataset.csv), with one row per image. Below is a description of each column: | Column | Description | |--------|-------------| | `image_path` | **Relative path** to the image file within the repository. These correspond to generations by different models under specific historical prompts. | | `model` | The name of the text-to-image model used to generate the image (e.g., `Flux_Schnell`, `SD_3`, `SD_XL`). | | `historical_period` | The historical era or century the prompt refers to (e.g., `19th_century`, `1920s`). This is the temporal condition imposed in the prompt. | | `universal_human_activity` | The prompt used to describe the universal human activity, such as "a person listening to music" or "a person laughing with a friend". | | `category` | The broader conceptual category of the human activity (e.g., `Health and Well-being`, `Art`, "Music"). This groups related prompts under common cultural dimensions. | ## 🧾 Prompt Format Each image in the dataset was generated using the following prompt template: > **"a [universal_human_activity] in the [historical_period]"** For example: - "a person listening to music in the 1960s" - "a person laughing with a friend in the 19th century" ## 💻 Using the Dataset You can access the HistVis dataset using the Hugging Face Datasets library. Below are examples showing how to load and explore the dataset. ### Basic Usage ```python from datasets import load_dataset import pandas as pd # Load the dataset metadata (CSV only) dataset = load_dataset('csv', data_files='https://huggingface.co/datasets/latentcanon/HistVis/resolve/main/dataset.csv') # Set pandas to display full content without truncation pd.set_option('display.max_colwidth', None) # View the entire dataset print(f"Dataset contains {len(dataset['train'])} entries") # To see all entries df = pd.DataFrame(dataset['train']) print(df) # Or access any specific entry print(f"Entry #42: {dataset['train'][42]}")
thexForce/grounding_ontology
thexForce
"2025-04-22T11:34:46Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:25:11Z"
--- dataset_info: features: - name: ontology_4bad7 dtype: string splits: - name: train num_bytes: 1336 num_examples: 1 download_size: 7055 dataset_size: 1336 configs: - config_name: default data_files: - split: train path: data/train-* ---
konwoo/auto-rm-erall-k200000-lr1e-4-epochs1-er1-0
konwoo
"2025-04-22T11:33:48Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:33:25Z"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 670224855 num_examples: 200000 - name: validation num_bytes: 8574979 num_examples: 1000 download_size: 427472101 dataset_size: 678799834 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
kothasuhas/auto-rm-k2000-lr0.00001-epochs1-er0-0
kothasuhas
"2025-04-22T11:33:28Z"
0
0
[ "region:us" ]
[]
"2025-04-22T11:04:56Z"
--- dataset_info: features: - name: text dtype: string splits: - name: validation num_bytes: 8574979 num_examples: 1000 - name: train num_bytes: 4885952 num_examples: 2000 download_size: 11215059 dataset_size: 13460931 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
intelsense/smol-magpie-ultra-bn
intelsense
"2025-04-22T11:32:48Z"
4,989
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2025-03-23T19:39:55Z"
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: category dtype: string - name: difficulty dtype: string - name: quality dtype: string - name: reward_model_score dtype: float64 - name: conversation_tokens dtype: int64 splits: - name: train num_bytes: 304175886 num_examples: 18230 download_size: 103465962 dataset_size: 304175886 configs: - config_name: default data_files: - split: train path: data/train-* ---
Trelis/touch-rugby-o4-mini-5k_chunks-2_chunks
Trelis
"2025-04-22T11:32:48Z"
16
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
"2025-04-21T11:39:23Z"
--- dataset_info: features: - name: document dtype: string - name: chunk_id dtype: int64 - name: chunk_text dtype: string - name: is_table dtype: bool - name: summary dtype: string - name: question dtype: string - name: answer dtype: string - name: evaluation_criteria dtype: string - name: difficulty dtype: int64 - name: category dtype: string - name: model dtype: string splits: - name: train num_bytes: 210239 num_examples: 29 download_size: 38747 dataset_size: 210239 configs: - config_name: default data_files: - split: train path: data/train-* ---
StormKing99/x_dataset_8191
StormKing99
"2025-04-22T11:32:19Z"
77,413
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-01-26T04:23:40Z"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** StormKing99/x_dataset_8191 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5CDsAAsUBDzucJv3GgPdsi1EDBgqdgpRGsm396nqDd3RVx4u ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{StormKing992025datauniversex_dataset_8191, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={StormKing99}, year={2025}, url={https://huggingface.co/datasets/StormKing99/x_dataset_8191}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 150425608 - **Date Range:** 2025-01-21T00:00:00Z to 2025-02-07T00:00:00Z - **Last Updated:** 2025-02-12T18:47:42Z ### Data Distribution - Tweets with hashtags: 42.10% - Tweets without hashtags: 57.90% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | NULL | 85002227 | 57.31% | | 2 | #riyadh | 1046251 | 0.71% | | 3 | #zelena | 785878 | 0.53% | | 4 | #tiktok | 615020 | 0.41% | | 5 | #bbb25 | 382300 | 0.26% | | 6 | #ad | 358410 | 0.24% | | 7 | #jhope_at_galadespiècesjaunes | 234370 | 0.16% | | 8 | #bbmzansi | 194620 | 0.13% | | 9 | #pr | 189419 | 0.13% | | 10 | #trump | 182679 | 0.12% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-01-26T04:23:37Z | 2098210 | 2098210 | | 2025-01-26T04:24:18Z | 2162522 | 4260732 | | 2025-01-29T17:24:35Z | 30495898 | 34756630 | | 2025-02-02T05:41:30Z | 28962209 | 63718839 | | 2025-02-05T17:59:56Z | 29099416 | 92818255 | | 2025-02-09T06:21:50Z | 29023092 | 121841347 | | 2025-02-12T18:47:42Z | 28584261 | 150425608 |