Dataset Viewer
Auto-converted to Parquet
datasetId
large_stringlengths
9
98
author
large_stringlengths
4
19
last_modified
unknowndate
2025-04-17 06:53:24
2025-04-17 10:00:54
downloads
int64
0
5.74M
likes
int64
0
52
tags
large listlengths
1
31
task_categories
large listlengths
1
13
createdAt
unknowndate
2022-10-24 15:39:05
2025-04-17 09:57:53
card
large_stringlengths
31
594k
jigsaw-rl/visualpuzzles
jigsaw-rl
"2025-04-17T07:12:12"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T06:52:55"
--- configs: - config_name: default data_files: - split: test path: test.parquet ---
li0612/my-distiset-e9c973b4
li0612
"2025-04-17T07:09:53"
0
0
[ "task_categories:text-generation", "task_categories:text2text-generation", "task_categories:text-retrieval", "task_categories:question-answering", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "library:distilabel", "region:us", "synthetic", "distilabel", "rlaif", "datacraft" ]
[ "text-generation", "text2text-generation", "text-retrieval", "question-answering" ]
"2025-04-17T07:09:44"
--- size_categories: n<1K task_categories: - text-generation - text2text-generation - text-retrieval - question-answering dataset_info: features: - name: context dtype: 'null' - name: question dtype: string - name: response dtype: 'null' splits: - name: train num_bytes: 272 num_examples: 10 download_size: 1534 dataset_size: 272 configs: - config_name: default data_files: - split: train path: data/train-* tags: - synthetic - distilabel - rlaif - datacraft --- <p align="left"> <a href="https://github.com/argilla-io/distilabel"> <img src="https://raw.githubusercontent.com/argilla-io/distilabel/main/docs/assets/distilabel-badge-light.png" alt="Built with Distilabel" width="200" height="32"/> </a> </p> # Dataset Card for my-distiset-e9c973b4 This dataset has been created with [distilabel](https://distilabel.argilla.io/). ## Dataset Summary This dataset contains a `pipeline.yaml` which can be used to reproduce the pipeline that generated it in distilabel using the `distilabel` CLI: ```console distilabel pipeline run --config "https://huggingface.co/datasets/li0612/my-distiset-e9c973b4/raw/main/pipeline.yaml" ``` or explore the configuration: ```console distilabel pipeline info --config "https://huggingface.co/datasets/li0612/my-distiset-e9c973b4/raw/main/pipeline.yaml" ``` ## Dataset structure The examples have the following structure per configuration: <details><summary> Configuration: default </summary><hr> ```json { "context": null, "question": "What is none?", "response": null } ``` This subset can be loaded as: ```python from datasets import load_dataset ds = load_dataset("li0612/my-distiset-e9c973b4", "default") ``` Or simply as it follows, since there's only one configuration and is named `default`: ```python from datasets import load_dataset ds = load_dataset("li0612/my-distiset-e9c973b4") ``` </details>
dzinampini/potato-leaf-diseases
dzinampini
"2025-04-17T07:09:44"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:09:29"
--- dataset_info: features: - name: image dtype: string - name: label dtype: class_label: names: '0': bacteria '1': early_blight '2': fungi '3': healthy '4': late_blight '5': nematode '6': pest '7': phytopthora '8': virus - name: class_names sequence: string splits: - name: train num_bytes: 1432718 num_examples: 9148 - name: validation num_bytes: 179170 num_examples: 1144 - name: test num_bytes: 179168 num_examples: 1144 download_size: 125540 dataset_size: 1791056 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
Gurwinder/notable-dataset
Gurwinder
"2025-04-17T07:09:37"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:08:57"
--- dataset_info: features: - name: image dtype: image - name: table dtype: string splits: - name: train num_bytes: 232718912.0 num_examples: 2000 - name: val num_bytes: 49165568.0 num_examples: 500 download_size: 278965330 dataset_size: 281884480.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* ---
li0612/my-distiset-96b19d22
li0612
"2025-04-17T07:08:54"
0
0
[ "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:08:38"
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': low-priority-match '1': no-match '2': high-priority-match splits: - name: train num_bytes: 0 num_examples: 0 download_size: 871 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
edaydin0405/bilgiislem
edaydin0405
"2025-04-17T07:08:31"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T06:51:54"
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: response dtype: string splits: - name: train num_bytes: 100528.15789473684 num_examples: 102 - name: test num_bytes: 11826.842105263158 num_examples: 12 download_size: 73812 dataset_size: 112355.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
Amylyx/x_dataset_232
Amylyx
"2025-04-17T07:08:08"
1,673
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-04-03T15:43:56"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 X (Twitter) Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** Amylyx/x_dataset_232 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** lmdcd_dataserver ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed data from X (formerly Twitter). The data is continuously updated by network miners, providing a real-time stream of tweets for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Trend Detection - Content Analysis - User Behavior Modeling ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single tweet with the following fields: ### Data Fields - `text` (string): The main content of the tweet. - `label` (string): Sentiment or topic category of the tweet. - `tweet_hashtags` (list): A list of hashtags used in the tweet. May be empty if no hashtags are present. - `datetime` (string): The date when the tweet was posted. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the tweet. May be empty if no URLs are present. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public tweets on X (Twitter), adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in X (Twitter) data, including demographic and content biases. This dataset reflects the content and opinions expressed on X and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the decentralized nature of collection and preprocessing. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public tweets and does not include private accounts or direct messages. - Not all tweets contain hashtags or URLs. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to X Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{Amylyx2025datauniversex_dataset_232, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={Amylyx}, year={2025}, url={https://huggingface.co/datasets/Amylyx/x_dataset_232}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 1100 - **Date Range:** 2025-03-14T00:00:00Z to 2025-03-28T00:00:00Z - **Last Updated:** 2025-04-17T07:08:06Z ### Data Distribution - Tweets with hashtags: 100.00% - Tweets without hashtags: 0.00% ### Top 10 Hashtags For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | #btc | 2 | 3.92% | | 2 | #ليلة_القدر | 2 | 3.92% | | 3 | #budnolollabr | 2 | 3.92% | | 4 | #ذووووي_احتياجات_ينخاكم_الفزعه | 2 | 3.92% | | 5 | #managingforprofit | 1 | 1.96% | | 6 | #boi | 1 | 1.96% | | 7 | #eliminatoriasendsports | 1 | 1.96% | | 8 | #pr | 1 | 1.96% | | 9 | #ポケモンスリープ | 1 | 1.96% | | 10 | #trabajosinsueldo | 1 | 1.96% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-04-03T16:18:40Z | 50 | 50 | | 2025-04-03T17:44:08Z | 50 | 100 | | 2025-04-03T17:44:59Z | 50 | 150 | | 2025-04-04T10:42:06Z | 50 | 200 | | 2025-04-05T03:40:06Z | 50 | 250 | | 2025-04-05T20:40:06Z | 50 | 300 | | 2025-04-06T13:44:08Z | 50 | 350 | | 2025-04-07T06:42:07Z | 50 | 400 | | 2025-04-07T23:40:06Z | 50 | 450 | | 2025-04-08T16:39:27Z | 50 | 500 | | 2025-04-09T12:24:05Z | 50 | 550 | | 2025-04-10T05:22:05Z | 50 | 600 | | 2025-04-10T22:20:05Z | 50 | 650 | | 2025-04-11T15:18:05Z | 50 | 700 | | 2025-04-12T08:16:05Z | 50 | 750 | | 2025-04-13T01:14:07Z | 50 | 800 | | 2025-04-13T18:12:05Z | 50 | 850 | | 2025-04-14T11:10:07Z | 50 | 900 | | 2025-04-15T04:08:11Z | 50 | 950 | | 2025-04-15T21:06:05Z | 50 | 1000 | | 2025-04-16T14:10:06Z | 50 | 1050 | | 2025-04-17T07:08:06Z | 50 | 1100 |
VincentG1234/EPC-dataset
VincentG1234
"2025-04-17T07:08:08"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:04:05"
--- dataset_info: features: - name: pdf_path dtype: string - name: page dtype: int64 - name: data struct: - name: carbon_emission_rating dtype: string - name: carbon_emission_score dtype: string - name: current_epc_label dtype: string - name: current_epc_score dtype: string - name: potential_carbon_emission_rating dtype: string - name: potential_carbon_emission_score dtype: string - name: potential_epc_label dtype: string - name: potential_epc_score dtype: string - name: image dtype: binary splits: - name: train num_bytes: 13588805 num_examples: 30 download_size: 13502342 dataset_size: 13588805 configs: - config_name: default data_files: - split: train path: data/train-* ---
Amylyx/reddit_dataset_232
Amylyx
"2025-04-17T07:08:03"
826
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-04-03T15:43:55"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** Amylyx/reddit_dataset_232 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** lmdcd_dataserver ### Miner Data Compliance Agreement In uploading this dataset, I am agreeing to the [Macrocosmos Miner Data Compliance Policy](https://github.com/macrocosm-os/data-universe/blob/add-miner-policy/docs/miner_policy.md). ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{Amylyx2025datauniversereddit_dataset_232, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={Amylyx}, year={2025}, url={https://huggingface.co/datasets/Amylyx/reddit_dataset_232}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 1000 - **Date Range:** 2025-03-14T00:00:00Z to 2025-03-28T00:00:00Z - **Last Updated:** 2025-04-17T07:08:02Z ### Data Distribution - Posts: 6.60% - Comments: 93.40% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/AskReddit | 236 | 23.60% | | 2 | r/politics | 40 | 4.00% | | 3 | r/pics | 27 | 2.70% | | 4 | r/AITAH | 24 | 2.40% | | 5 | r/europe | 23 | 2.30% | | 6 | r/nba | 21 | 2.10% | | 7 | r/soccer | 20 | 2.00% | | 8 | r/CollegeBasketball | 19 | 1.90% | | 9 | r/wallstreetbets | 18 | 1.80% | | 10 | r/SluttyConfessionsDesi | 18 | 1.80% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-04-03T17:44:56Z | 50 | 50 | | 2025-04-04T10:42:02Z | 50 | 100 | | 2025-04-05T03:40:02Z | 50 | 150 | | 2025-04-05T20:40:02Z | 50 | 200 | | 2025-04-06T13:44:03Z | 50 | 250 | | 2025-04-07T06:42:03Z | 50 | 300 | | 2025-04-07T23:40:02Z | 50 | 350 | | 2025-04-08T16:39:10Z | 50 | 400 | | 2025-04-09T12:24:02Z | 50 | 450 | | 2025-04-10T05:22:02Z | 50 | 500 | | 2025-04-10T22:20:01Z | 50 | 550 | | 2025-04-11T15:18:02Z | 50 | 600 | | 2025-04-12T08:16:01Z | 50 | 650 | | 2025-04-13T01:14:02Z | 50 | 700 | | 2025-04-13T18:12:02Z | 50 | 750 | | 2025-04-14T11:10:02Z | 50 | 800 | | 2025-04-15T04:08:05Z | 50 | 850 | | 2025-04-15T21:06:01Z | 50 | 900 | | 2025-04-16T14:10:02Z | 50 | 950 | | 2025-04-17T07:08:02Z | 50 | 1000 |
Ratchet315/test_dataset1
Ratchet315
"2025-04-17T07:08:01"
0
0
[ "task_categories:robotics", "region:us", "phosphobot", "so100", "phospho-dk1" ]
[ "robotics" ]
"2025-04-17T07:07:58"
--- tags: - phosphobot - so100 - phospho-dk1 task_categories: - robotics --- # test_dataset1 **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
kothasuhas/tinystories_10k_docs
kothasuhas
"2025-04-17T07:07:44"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:07:36"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 8986259.154496541 num_examples: 10000 - name: validation num_bytes: 449312.95772482705 num_examples: 500 download_size: 4996427 dataset_size: 9435572.112221368 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
kothasuhas/tinystories_640k_docs
kothasuhas
"2025-04-17T07:07:41"
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:07:11"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 575120585.8877786 num_examples: 640000 - name: validation num_bytes: 449312.95772482705 num_examples: 500 download_size: 304322009 dataset_size: 575569898.8455034 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
twei11/node1_round_59
twei11
"2025-04-17T07:07:10"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:07:02"
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 7171451 num_examples: 1800 download_size: 3510116 dataset_size: 7171451 configs: - config_name: default data_files: - split: train path: data/train-* ---
dannnnthemannnn/Multi-choice-Continuous-Test-Remax-14B-v5-generations
dannnnthemannnn
"2025-04-17T07:07:09"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:06:57"
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string - name: question_id dtype: string - name: score dtype: float64 splits: - name: train num_bytes: 7437127 num_examples: 768 download_size: 3736854 dataset_size: 7437127 configs: - config_name: default data_files: - split: train path: data/train-* ---
SayantanJoker/Shrutilipi_Hindi_resampled_44100_chunk_15
SayantanJoker
"2025-04-17T07:05:41"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:01:41"
--- dataset_info: features: - name: audio dtype: audio - name: transcription dtype: string - name: file_name dtype: string splits: - name: train num_bytes: 6037887014.0 num_examples: 10000 download_size: 6019260505 dataset_size: 6037887014.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
chenggong1995/math3to5-100
chenggong1995
"2025-04-17T07:05:41"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:05:22"
--- dataset_info: features: - name: problem dtype: string - name: level dtype: string - name: solution dtype: string - name: type dtype: string - name: solution_hint dtype: string splits: - name: train num_bytes: 151270.79207920792 num_examples: 100 download_size: 90525 dataset_size: 151270.79207920792 configs: - config_name: default data_files: - split: train path: data/train-* ---
NUSTM/ECF
NUSTM
"2025-04-17T07:04:25"
65
2
[ "language:en", "license:gpl-3.0", "modality:text", "region:us", "emotion-cause-analysis" ]
null
"2024-10-12T08:22:03"
--- license: gpl-3.0 language: - en tags: - emotion-cause-analysis --- # Emotion-Cause-in-Friends (ECF) For the task named Multimodal Emotion-Cause Pair Extraction in Conversation, we accordingly construct a multimodal conversational emotion cause dataset ECF, which contains 9,794 multimodal emotion-cause pairs among 13,619 utterances in the *Friends* sitcom. For more details, please refer to our GitHub: - [Multimodal Emotion-Cause Pair Extraction in Conversations](https://github.com/NUSTM/MECPE/tree/main/data) - [SemEval-2024 Task 3](https://github.com/NUSTM/SemEval-2024_ECAC) ## Dataset Statistics | Item | Train | Dev | Test | Total | | ------------------------------- | ----- | ----- | ----- | ------ | | Conversations | 1001 | 112 | 261 | 1,374 | | Utterances | 9,966 | 1,087 | 2,566 | 13,619 | | Emotion (utterances) | 5,577 | 668 | 1,445 | 7,690 | | Emotion-cause (utterance) pairs | 7,055 | 866 | 1,873 | 9,794 | ## About Multimodal Data    ⚠️ Due to potential copyright issues with the TV show "Friends", we do not provide pre-segmented video clips. If you need to utilize multimodal data, you may consider the following options: 1. Use the acoustic and visual features we provide: - [`audio_embedding_6373.npy`](https://drive.google.com/file/d/1EhU2jFSr_Vi67Wdu1ARJozrTJtgiQrQI/view?usp=share_link): the embedding table composed of the 6373-dimensional acoustic features of each utterances extracted with openSMILE - [`video_embedding_4096.npy`](https://drive.google.com/file/d/1NGSsiQYDTqgen_g9qndSuha29JA60x14/view?usp=share_link): the embedding table composed of the 4096-dimensional visual features of each utterances extracted with 3D-CNN - Please note that the above features only include the original ECF (1.0) dataset; the SemEval evaluation data is not included. If needed, you can contact us, and we will do our best to release new features. 2. Since ECF is constructed based on the MELD dataset, you can download the raw video clips from [MELD](https://github.com/declare-lab/MELD). Most utterances in ECF align with MELD. However, **we have made certain modifications to MELD's raw data while constructing ECF, including but not limited to editing utterance text, adjusting timestamps, and adding or removing utterances**. Therefore, some timestamps provided in ECF have been corrected, and there are also new utterances that cannot be found in MELD. Given this, we recommend option (3) if feasible. 3. Download the raw videos of _Friends_ from the website, and use the FFmpeg toolkit to extract audio-visual clips of each utterance based on the timestamps we provide. ## Citation If you find ECF useful for your research, please cite our paper using the following BibTeX entries: ``` @ARTICLE{wang2023multimodal, author={Wang, Fanfan and Ding, Zixiang and Xia, Rui and Li, Zhaoyu and Yu, Jianfei}, journal={IEEE Transactions on Affective Computing}, title={Multimodal Emotion-Cause Pair Extraction in Conversations}, year={2023}, volume={14}, number={3}, pages={1832-1844}, doi = {10.1109/TAFFC.2022.3226559} } @InProceedings{wang2024SemEval, author={Wang, Fanfan and Ma, Heqing and Xia, Rui and Yu, Jianfei and Cambria, Erik}, title={SemEval-2024 Task 3: Multimodal Emotion Cause Analysis in Conversations}, booktitle={Proceedings of the 18th International Workshop on Semantic Evaluation (SemEval-2024)}, month={June}, year={2024}, address={Mexico City, Mexico}, publisher={Association for Computational Linguistics}, pages={2022--2033}, url = {https://aclanthology.org/2024.semeval2024-1.273} } ```
whucedar/amoros_prof_vocab_02
whucedar
"2025-04-17T07:04:22"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T06:54:42"
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: sentence dtype: string splits: - name: train num_bytes: 97702560.0 num_examples: 442 - name: test num_bytes: 48755585.0 num_examples: 218 download_size: 145924995 dataset_size: 146458145.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
yinyue27/RefRef
yinyue27
"2025-04-17T07:03:06"
509
2
[ "task_categories:image-to-3d", "language:en", "license:cc-by-4.0", "size_categories:10K<n<100K", "region:us", "code" ]
[ "image-to-3d" ]
"2024-11-02T14:43:29"
--- license: cc-by-4.0 task_categories: - image-to-3d language: - en tags: - code pretty_name: RefRef size_categories: - 10K<n<100K dataset_info: features: - name: image dtype: image - name: depth dtype: image - name: mask dtype: image - name: transform_matrix sequence: sequence: float64 length: 4 length: 4 - name: rotation dtype: float32 splits: - name: textured_cube_scene num_bytes: 673141617.0 num_examples: 300 download_size: 280778834 dataset_size: 673141617.0 configs: - config_name: default data_files: - split: textured_cube_scene path: data/textured_cube_scene-* --- # RefRef: A Synthetic Dataset and Benchmark for Reconstructing Scenes with Refractive and Reflective Objects (haven't uploaded everything yet) ## Overview **RefRef** is a synthetic dataset and benchmark designed for the task of reconstructing scenes with complex refractive and reflective objects. Our dataset consists of 50 objects categorized based on their geometric and material complexity: single-material convex objects, single-material non-convex objects, and multi-material non-convex objects, where the materials have different colors, opacities, and refractive indices. Each object is placed in two distinct bounded environments and one unbounded environment, resulting in 150 unique scenes with diverse geometries, material properties, and backgrounds. Our dataset provides a controlled setting for evaluating and developing 3D reconstruction and novel view synthesis methods that handle complex optical effects. ## Directory Structure ```plaintext RefRef_Dataset/ ├── README.md ├── dataset_info/ # Metadata and dataset description files │ ├── object_list.txt │ ├── scene_list.txt │ └── IoR_info.json # IoR values mapped to each object ├── image_data/ # Rendered images, depth maps, and masks for each object │ ├── textured_cube_scene/ │ │ └── {single-material_convex, single-material_non-convex, multiple-materials_non-convex}/ │ │ └── {object_name}/ │ │ ├── train/ # Training set │ │ │ ├── r_0.png # RGB image │ │ │ ├── r_0_depth_0000.png # Depth map │ │ │ ├── r_0_mask_0000.png # Mask │ │ │ ├── r_1.png │ │ │ ├── r_1_depth_0000.png │ │ │ ├── r_1_mask_0000.png │ │ │ └── ... │ │ ├── val/ # Validation set │ │ ├── test/ # Testing set │ │ ├── transforms_train.json │ │ ├── transforms_val.json │ │ └── transforms_test.json │ ├── textured_sphere_scene/ │ │ └── ... │ ├── environment_map_scene/ │ └── ... ├── mesh_files/ # 3D mesh files (.ply format) for each object │ └── {single-material_convex, single-material_non-convex, multiple-materials_non-convex}/ │ └── ... ├── blender_files/ # Blender source files for each object, organised by scene │ ├── bgpanels_cube/ # Background panels for cube scene │ ├── bgpanels_sphere/ # Background panels for sphere scene │ └── {textured_cube_scene, textured_sphere_scene}/ │ └── ... └── benchmarks/ # Benchmark results from various methods ├── oracle_method/ ├── Zip-NeRF/ ├── Ray Deformation/ ├── MS-NeRF/ ├── NeUS/ └── ... ``` ## Object and Scenes The dataset includes 50 objects categorised into four groups based on their complexity, material composition, and shape: - `single-convex/`(18 scenes): Objects with convex geometries, each composed of a single refractive material, such as transparent cubes, balls, and pyramids. - `single-non-convex/`(40 scenes): Objects with non-convex geometries, each composed of a single refractive material, such as animal sculptures, glass jars, light bulbs, candle holders, and magnifiers. - `multiple-non-convex/`(42 scenes): Objects with non-convex geometries, each composed of multiple refractive materials or a combination of refractive and opaque materials, such as reed diffusers, a glass of wine, and flasks filled with chemical liquid. Each object is placed in two distinct scenes: - `textured_cube_scene/`: Objects placed within a bounded textured cube environment. - `textured_sphere_scene/`: Objects placed within a bounded textured sphere environment. - `environment_map_scene/`: Objects placed in an unbounded environment map background. ## IoR Information A single JSON file `IoR_info.json` is be provided in the `dataset_info/` directory, which maps each component of each object to its Index of Refraction (IoR) values. Example format for `IoR_info.json`: ```json { "cube": 1.5, "diamond": 2.418, "wine_glass": {"glass": 1.5, "alcohol": 1.36}, "water_pitcher": {"glass": 1.5, "water": 1.333, "ice": 1.309} ... }
qr12138/reddit_dataset_170
qr12138
"2025-04-17T07:03:06"
886
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-03-15T09:24:09"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** qr12138/reddit_dataset_170 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5Dc1nTgKrrJxRfrtRZVwMNTJup7t3ML57upG9nsbpy1PuXDM ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{qr121382025datauniversereddit_dataset_170, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={qr12138}, year={2025}, url={https://huggingface.co/datasets/qr12138/reddit_dataset_170}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 11214024 - **Date Range:** 2021-03-17T00:00:00Z to 2025-04-17T00:00:00Z - **Last Updated:** 2025-04-17T07:03:04Z ### Data Distribution - Posts: 4.10% - Comments: 95.90% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/politics | 576375 | 5.14% | | 2 | r/AskReddit | 467046 | 4.16% | | 3 | r/wallstreetbets | 451827 | 4.03% | | 4 | r/worldnews | 318203 | 2.84% | | 5 | r/AmItheAsshole | 183759 | 1.64% | | 6 | r/gaming | 180148 | 1.61% | | 7 | r/relationship_advice | 175034 | 1.56% | | 8 | r/AITAH | 173749 | 1.55% | | 9 | r/NoStupidQuestions | 167331 | 1.49% | | 10 | r/nfl | 159976 | 1.43% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-03-15T09:24:12Z | 9490 | 9490 | | 2025-03-16T03:27:40Z | 46400 | 55890 | | 2025-03-16T20:44:09Z | 22551 | 78441 | | 2025-03-17T15:11:41Z | 138743 | 217184 | | 2025-03-18T08:28:48Z | 306549 | 523733 | | 2025-03-19T02:33:41Z | 67170 | 590903 | | 2025-03-19T20:48:06Z | 68876 | 659779 | | 2025-03-20T14:48:33Z | 94965 | 754744 | | 2025-03-21T08:49:03Z | 166017 | 920761 | | 2025-03-22T02:52:04Z | 349195 | 1269956 | | 2025-03-22T20:07:40Z | 282604 | 1552560 | | 2025-03-23T14:08:49Z | 296900 | 1849460 | | 2025-03-24T08:09:43Z | 322174 | 2171634 | | 2025-03-25T02:10:44Z | 395826 | 2567460 | | 2025-03-25T20:13:15Z | 356459 | 2923919 | | 2025-03-26T14:18:44Z | 367177 | 3291096 | | 2025-03-27T08:26:50Z | 393641 | 3684737 | | 2025-03-28T02:37:53Z | 393410 | 4078147 | | 2025-03-28T20:54:01Z | 341540 | 4419687 | | 2025-03-29T15:07:33Z | 282226 | 4701913 | | 2025-03-31T02:35:30Z | 401806 | 5103719 | | 2025-03-31T20:36:09Z | 183053 | 5286772 | | 2025-04-01T14:51:45Z | 180812 | 5467584 | | 2025-04-02T08:58:59Z | 220374 | 5687958 | | 2025-04-03T04:12:21Z | 256538 | 5944496 | | 2025-04-03T23:55:23Z | 215115 | 6159611 | | 2025-04-04T18:38:08Z | 178532 | 6338143 | | 2025-04-05T12:33:31Z | 173281 | 6511424 | | 2025-04-06T06:50:59Z | 327093 | 6838517 | | 2025-04-07T01:12:32Z | 112467 | 6950984 | | 2025-04-07T19:40:14Z | 435175 | 7386159 | | 2025-04-08T17:11:24Z | 326486 | 7712645 | | 2025-04-09T16:21:48Z | 516436 | 8229081 | | 2025-04-10T10:22:39Z | 306826 | 8535907 | | 2025-04-11T04:23:45Z | 456582 | 8992489 | | 2025-04-11T22:16:56Z | 225454 | 9217943 | | 2025-04-12T16:30:20Z | 242178 | 9460121 | | 2025-04-13T10:41:18Z | 365485 | 9825606 | | 2025-04-14T04:42:34Z | 424670 | 10250276 | | 2025-04-14T23:04:31Z | 290242 | 10540518 | | 2025-04-15T17:46:39Z | 331422 | 10871940 | | 2025-04-16T12:18:04Z | 310592 | 11182532 | | 2025-04-17T07:03:04Z | 31492 | 11214024 |
RaphaelLiu/PusaV0.5_Training
RaphaelLiu
"2025-04-17T07:03:03"
894
1
[ "license:apache-2.0", "modality:video", "arxiv:2410.03160", "region:us" ]
null
"2025-04-09T07:39:44"
--- license: apache-2.0 --- # PusaV0.5 Training Dataset [Code Repository](https://github.com/Yaofang-Liu/Pusa-VidGen) | [Model Hub](https://huggingface.co/RaphaelLiu/Pusa-V0.5) | [Training Toolkit](https://github.com/Yaofang-Liu/Mochi-Full-Finetuner) | [Dataset](https://huggingface.co/datasets/RaphaelLiu/PusaV0.5_Training) | [Paper](https://arxiv.org/abs/2410.03160) | [Follow on X](https://x.com/stephenajason) | [Xiaohongshu](https://www.xiaohongshu.com/explore/67f898dc000000001c008339?source=webshare&xhsshare=pc_web&xsec_token=ABAhG8mltqyMxL9kI0eRxwj7EwiW7MFYH2oPl4n8ww0OM=&xsec_source=pc_share) ## Dataset Overview This repository contains the pre-encoded training dataset used for fine-tuning the [Pusa-V0.5](https://github.com/Yaofang-Liu/Pusa-VidGen) video generation model. The dataset consists of 52,695 pre-encoded latent samples derived from [VIDGEN-1M](https://huggingface.co/datasets/Fudan-FUXI/VIDGEN-1M), though Pusa-V0.5 was trained using only 16,000 of this dataset. ## Dataset Structure The dataset is organized into two main directories: ``` PusaV0.5_Training/ videos/ xxxx.latent.pt # Pre-encoded video latents xxxx.latent.pt ... captions/ xxxx.embed.pt # Pre-encoded text embeddings xxxx.embed.pt ... ``` - **videos/**: Contains pre-encoded video latents in PyTorch tensor format. Atually, the corresponding videos (`.mp4` files) are also provided in `videos/`, you may check them out for more details. - **captions/**: Contains corresponding text embeddings for each video ## Dataset Details - **Total Samples**: 52,695 video-text embedding pairs - **Source**: Randomly sampled from [VIDGEN-1M](https://huggingface.co/datasets/Fudan-FUXI/VIDGEN-1M) - **Format**: Pre-encoded latents (.pt files) ready for training - **Used in Pusa-V0.5**: 16,000 samples from this dataset were used to train the released Pusa-V0.5 model ## Usage ### Download the Dataset ```bash huggingface-cli download RaphaelLiu/PusaV0.5_Training --repo-type dataset --local-dir <path_to_dataset_directory> ``` ### Using with Mochi-Full-Finetuner This dataset is designed to work seamlessly with the [Mochi-Full-Finetuner](https://github.com/Yaofang-Liu/Mochi-Full-Finetuner) repository for training Pusa or Mochi models: ```bash python -u /path/to/src/genmo/mochi_preview/train_pusa.py \ --world_size=8 \ --model_dir="/path/to/model/directory" \ --data_path="/path/to/PusaV0.5_Training/videos" ``` Note: When specifying `--data_path`, provide only the path to the videos directory. The training script will automatically locate the captions directory by replacing "videos" with "captions" in the base path. ## Creating Your Own Dataset If you wish to create your own dataset in the same format, follow the instructions in the [Mochi LoRA Training repository](https://github.com/genmoai/mochi/tree/main/demos/fine_tuner). Your dataset should match the structure shown above, with corresponding latent and embedding files for each sample. ## Citation If you use this dataset in your research, please cite: ```bibtex @misc{Liu2025pusa, title={Pusa: Thousands Timesteps Video Diffusion Model}, author={Yaofang Liu and Rui Liu}, year={2025}, url={https://github.com/Yaofang-Liu/Pusa-VidGen}, } ``` ```bibtex @article{liu2024redefining, title={Redefining Temporal Modeling in Video Diffusion: The Vectorized Timestep Approach}, author={Liu, Yaofang and Ren, Yumeng and Cun, Xiaodong and Artola, Aitor and Liu, Yang and Zeng, Tieyong and Chan, Raymond H and Morel, Jean-michel}, journal={arXiv preprint arXiv:2410.03160}, year={2024} } ```
macrocosm-os/macrobench-bittensor-01
macrocosm-os
"2025-04-17T07:02:16"
2,094
2
[ "license:mit", "region:us" ]
null
"2025-02-05T11:18:22"
--- configs: - config_name: '20241001' data_files: - path: 20241001/miner_evaluations.parquet split: '20241001' - config_name: '20241002' data_files: - path: 20241002/miner_evaluations.parquet split: '20241002' - config_name: '20241003' data_files: - path: 20241003/miner_evaluations.parquet split: '20241003' - config_name: '20241004' data_files: - path: 20241004/miner_evaluations.parquet split: '20241004' - config_name: '20241005' data_files: - path: 20241005/miner_evaluations.parquet split: '20241005' - config_name: '20241006' data_files: - path: 20241006/miner_evaluations.parquet split: '20241006' - config_name: '20241007' data_files: - path: 20241007/miner_evaluations.parquet split: '20241007' - config_name: '20241008' data_files: - path: 20241008/miner_evaluations.parquet split: '20241008' - config_name: '20241009' data_files: - path: 20241009/miner_evaluations.parquet split: '20241009' - config_name: '20241010' data_files: - path: 20241010/miner_evaluations.parquet split: '20241010' - config_name: '20241011' data_files: - path: 20241011/miner_evaluations.parquet split: '20241011' - config_name: '20241012' data_files: - path: 20241012/miner_evaluations.parquet split: '20241012' - config_name: '20241013' data_files: - path: 20241013/miner_evaluations.parquet split: '20241013' - config_name: '20241014' data_files: - path: 20241014/miner_evaluations.parquet split: '20241014' - config_name: '20241015' data_files: - path: 20241015/miner_evaluations.parquet split: '20241015' - config_name: '20241016' data_files: - path: 20241016/miner_evaluations.parquet split: '20241016' - config_name: '20241017' data_files: - path: 20241017/miner_evaluations.parquet split: '20241017' - config_name: '20241018' data_files: - path: 20241018/miner_evaluations.parquet split: '20241018' - config_name: '20241019' data_files: - path: 20241019/miner_evaluations.parquet split: '20241019' - config_name: '20241020' data_files: - path: 20241020/miner_evaluations.parquet split: '20241020' - config_name: '20241021' data_files: - path: 20241021/miner_evaluations.parquet split: '20241021' - config_name: '20241022' data_files: - path: 20241022/miner_evaluations.parquet split: '20241022' - config_name: '20241023' data_files: - path: 20241023/miner_evaluations.parquet split: '20241023' - config_name: '20241024' data_files: - path: 20241024/miner_evaluations.parquet split: '20241024' - config_name: '20241025' data_files: - path: 20241025/miner_evaluations.parquet split: '20241025' - config_name: '20241026' data_files: - path: 20241026/miner_evaluations.parquet split: '20241026' - config_name: '20241027' data_files: - path: 20241027/miner_evaluations.parquet split: '20241027' - config_name: '20241028' data_files: - path: 20241028/miner_evaluations.parquet split: '20241028' - config_name: '20241029' data_files: - path: 20241029/miner_evaluations.parquet split: '20241029' - config_name: '20241030' data_files: - path: 20241030/miner_evaluations.parquet split: '20241030' - config_name: '20241031' data_files: - path: 20241031/miner_evaluations.parquet split: '20241031' - config_name: '20241101' data_files: - path: 20241101/miner_evaluations.parquet split: '20241101' - config_name: '20241102' data_files: - path: 20241102/miner_evaluations.parquet split: '20241102' - config_name: '20241103' data_files: - path: 20241103/miner_evaluations.parquet split: '20241103' - config_name: '20241104' data_files: - path: 20241104/miner_evaluations.parquet split: '20241104' - config_name: '20241105' data_files: - path: 20241105/miner_evaluations.parquet split: '20241105' - config_name: '20241106' data_files: - path: 20241106/miner_evaluations.parquet split: '20241106' - config_name: '20241107' data_files: - path: 20241107/miner_evaluations.parquet split: '20241107' - config_name: '20241108' data_files: - path: 20241108/miner_evaluations.parquet split: '20241108' - config_name: '20241109' data_files: - path: 20241109/miner_evaluations.parquet split: '20241109' - config_name: '20241110' data_files: - path: 20241110/miner_evaluations.parquet split: '20241110' - config_name: '20241111' data_files: - path: 20241111/miner_evaluations.parquet split: '20241111' - config_name: '20241112' data_files: - path: 20241112/miner_evaluations.parquet split: '20241112' - config_name: '20241113' data_files: - path: 20241113/miner_evaluations.parquet split: '20241113' - config_name: '20241114' data_files: - path: 20241114/miner_evaluations.parquet split: '20241114' - config_name: '20241115' data_files: - path: 20241115/miner_evaluations.parquet split: '20241115' - config_name: '20241116' data_files: - path: 20241116/miner_evaluations.parquet split: '20241116' - config_name: '20241117' data_files: - path: 20241117/miner_evaluations.parquet split: '20241117' - config_name: '20241118' data_files: - path: 20241118/miner_evaluations.parquet split: '20241118' - config_name: '20241119' data_files: - path: 20241119/miner_evaluations.parquet split: '20241119' - config_name: '20241120' data_files: - path: 20241120/miner_evaluations.parquet split: '20241120' - config_name: '20241121' data_files: - path: 20241121/miner_evaluations.parquet split: '20241121' - config_name: '20241122' data_files: - path: 20241122/miner_evaluations.parquet split: '20241122' - config_name: '20241123' data_files: - path: 20241123/miner_evaluations.parquet split: '20241123' - config_name: '20241124' data_files: - path: 20241124/miner_evaluations.parquet split: '20241124' - config_name: '20241125' data_files: - path: 20241125/miner_evaluations.parquet split: '20241125' - config_name: '20241126' data_files: - path: 20241126/miner_evaluations.parquet split: '20241126' - config_name: '20241127' data_files: - path: 20241127/miner_evaluations.parquet split: '20241127' - config_name: '20241128' data_files: - path: 20241128/miner_evaluations.parquet split: '20241128' - config_name: '20241129' data_files: - path: 20241129/miner_evaluations.parquet split: '20241129' - config_name: '20241130' data_files: - path: 20241130/miner_evaluations.parquet split: '20241130' - config_name: '20241201' data_files: - path: 20241201/miner_evaluations.parquet split: '20241201' - config_name: '20241202' data_files: - path: 20241202/miner_evaluations.parquet split: '20241202' - config_name: '20241203' data_files: - path: 20241203/miner_evaluations.parquet split: '20241203' - config_name: '20241204' data_files: - path: 20241204/miner_evaluations.parquet split: '20241204' - config_name: '20241205' data_files: - path: 20241205/miner_evaluations.parquet split: '20241205' - config_name: '20241206' data_files: - path: 20241206/miner_evaluations.parquet split: '20241206' - config_name: '20241207' data_files: - path: 20241207/miner_evaluations.parquet split: '20241207' - config_name: '20241208' data_files: - path: 20241208/miner_evaluations.parquet split: '20241208' - config_name: '20241209' data_files: - path: 20241209/miner_evaluations.parquet split: '20241209' - config_name: '20241210' data_files: - path: 20241210/miner_evaluations.parquet split: '20241210' - config_name: '20241211' data_files: - path: 20241211/miner_evaluations.parquet split: '20241211' - config_name: '20241212' data_files: - path: 20241212/miner_evaluations.parquet split: '20241212' - config_name: '20241213' data_files: - path: 20241213/miner_evaluations.parquet split: '20241213' - config_name: '20241214' data_files: - path: 20241214/miner_evaluations.parquet split: '20241214' - config_name: '20241215' data_files: - path: 20241215/miner_evaluations.parquet split: '20241215' - config_name: '20241216' data_files: - path: 20241216/miner_evaluations.parquet split: '20241216' - config_name: '20241217' data_files: - path: 20241217/miner_evaluations.parquet split: '20241217' - config_name: '20241218' data_files: - path: 20241218/miner_evaluations.parquet split: '20241218' - config_name: '20241219' data_files: - path: 20241219/miner_evaluations.parquet split: '20241219' - config_name: '20241220' data_files: - path: 20241220/miner_evaluations.parquet split: '20241220' - config_name: '20241221' data_files: - path: 20241221/miner_evaluations.parquet split: '20241221' - config_name: '20241222' data_files: - path: 20241222/miner_evaluations.parquet split: '20241222' - config_name: '20241223' data_files: - path: 20241223/miner_evaluations.parquet split: '20241223' - config_name: '20241224' data_files: - path: 20241224/miner_evaluations.parquet split: '20241224' - config_name: '20241225' data_files: - path: 20241225/miner_evaluations.parquet split: '20241225' - config_name: '20241226' data_files: - path: 20241226/miner_evaluations.parquet split: '20241226' - config_name: '20241227' data_files: - path: 20241227/miner_evaluations.parquet split: '20241227' - config_name: '20241228' data_files: - path: 20241228/miner_evaluations.parquet split: '20241228' - config_name: '20241229' data_files: - path: 20241229/miner_evaluations.parquet split: '20241229' - config_name: '20241230' data_files: - path: 20241230/miner_evaluations.parquet split: '20241230' - config_name: '20241231' data_files: - path: 20241231/miner_evaluations.parquet split: '20241231' - config_name: '20250101' data_files: - path: 20250101/miner_evaluations.parquet split: '20250101' - config_name: '20250102' data_files: - path: 20250102/miner_evaluations.parquet split: '20250102' - config_name: '20250103' data_files: - path: 20250103/miner_evaluations.parquet split: '20250103' - config_name: '20250104' data_files: - path: 20250104/miner_evaluations.parquet split: '20250104' - config_name: '20250105' data_files: - path: 20250105/miner_evaluations.parquet split: '20250105' - config_name: '20250106' data_files: - path: 20250106/miner_evaluations.parquet split: '20250106' - config_name: '20250107' data_files: - path: 20250107/miner_evaluations.parquet split: '20250107' - config_name: '20250108' data_files: - path: 20250108/miner_evaluations.parquet split: '20250108' - config_name: '20250109' data_files: - path: 20250109/miner_evaluations.parquet split: '20250109' - config_name: '20250110' data_files: - path: 20250110/miner_evaluations.parquet split: '20250110' - config_name: '20250111' data_files: - path: 20250111/miner_evaluations.parquet split: '20250111' - config_name: '20250112' data_files: - path: 20250112/miner_evaluations.parquet split: '20250112' - config_name: '20250113' data_files: - path: 20250113/miner_evaluations.parquet split: '20250113' - config_name: '20250114' data_files: - path: 20250114/miner_evaluations.parquet split: '20250114' - config_name: '20250115' data_files: - path: 20250115/miner_evaluations.parquet split: '20250115' - config_name: '20250116' data_files: - path: 20250116/miner_evaluations.parquet split: '20250116' - config_name: '20250117' data_files: - path: 20250117/miner_evaluations.parquet split: '20250117' - config_name: '20250118' data_files: - path: 20250118/miner_evaluations.parquet split: '20250118' - config_name: '20250119' data_files: - path: 20250119/miner_evaluations.parquet split: '20250119' - config_name: '20250120' data_files: - path: 20250120/miner_evaluations.parquet split: '20250120' - config_name: '20250121' data_files: - path: 20250121/miner_evaluations.parquet split: '20250121' - config_name: '20250122' data_files: - path: 20250122/miner_evaluations.parquet split: '20250122' - config_name: '20250123' data_files: - path: 20250123/miner_evaluations.parquet split: '20250123' - config_name: '20250124' data_files: - path: 20250124/miner_evaluations.parquet split: '20250124' - config_name: '20250125' data_files: - path: 20250125/miner_evaluations.parquet split: '20250125' - config_name: '20250126' data_files: - path: 20250126/miner_evaluations.parquet split: '20250126' - config_name: '20250127' data_files: - path: 20250127/miner_evaluations.parquet split: '20250127' - config_name: '20250128' data_files: - path: 20250128/miner_evaluations.parquet split: '20250128' - config_name: '20250129' data_files: - path: 20250129/miner_evaluations.parquet split: '20250129' - config_name: '20250130' data_files: - path: 20250130/miner_evaluations.parquet split: '20250130' - config_name: '20250131' data_files: - path: 20250131/miner_evaluations.parquet split: '20250131' - config_name: '20250201' data_files: - path: 20250201/miner_evaluations.parquet split: '20250201' - config_name: '20250202' data_files: - path: 20250202/miner_evaluations.parquet split: '20250202' - config_name: '20250203' data_files: - path: 20250203/miner_evaluations.parquet split: '20250203' - config_name: '20250204' data_files: - path: 20250204/miner_evaluations.parquet split: '20250204' - config_name: '20250205' data_files: - path: 20250205/miner_evaluations.parquet split: '20250205' - config_name: '20250206' data_files: - path: 20250206/miner_evaluations.parquet split: '20250206' - config_name: '20250207' data_files: - path: 20250207/miner_evaluations.parquet split: '20250207' - config_name: '20250208' data_files: - path: 20250208/miner_evaluations.parquet split: '20250208' - config_name: '20250209' data_files: - path: 20250209/miner_evaluations.parquet split: '20250209' - config_name: '20250210' data_files: - path: 20250210/miner_evaluations.parquet split: '20250210' - config_name: '20250211' data_files: - path: 20250211/miner_evaluations.parquet split: '20250211' - config_name: '20250212' data_files: - path: 20250212/miner_evaluations.parquet split: '20250212' - config_name: '20250213' data_files: - path: 20250213/miner_evaluations.parquet split: '20250213' - config_name: '20250214' data_files: - path: 20250214/miner_evaluations.parquet split: '20250214' - config_name: '20250215' data_files: - path: 20250215/miner_evaluations.parquet split: '20250215' - config_name: '20250216' data_files: - path: 20250216/miner_evaluations.parquet split: '20250216' - config_name: '20250217' data_files: - path: 20250217/miner_evaluations.parquet split: '20250217' - config_name: '20250218' data_files: - path: 20250218/miner_evaluations.parquet split: '20250218' - config_name: '20250219' data_files: - path: 20250219/miner_evaluations.parquet split: '20250219' - config_name: '20250220' data_files: - path: 20250220/miner_evaluations.parquet split: '20250220' - config_name: '20250221' data_files: - path: 20250221/miner_evaluations.parquet split: '20250221' - config_name: '20250222' data_files: - path: 20250222/miner_evaluations.parquet split: '20250222' - config_name: '20250223' data_files: - path: 20250223/miner_evaluations.parquet split: '20250223' - config_name: '20250224' data_files: - path: 20250224/miner_evaluations.parquet split: '20250224' - config_name: '20250225' data_files: - path: 20250225/miner_evaluations.parquet split: '20250225' - config_name: '20250226' data_files: - path: 20250226/miner_evaluations.parquet split: '20250226' - config_name: '20250227' data_files: - path: 20250227/miner_evaluations.parquet split: '20250227' - config_name: '20250228' data_files: - path: 20250228/miner_evaluations.parquet split: '20250228' - config_name: '20250301' data_files: - path: 20250301/miner_evaluations.parquet split: '20250301' - config_name: '20250302' data_files: - path: 20250302/miner_evaluations.parquet split: '20250302' - config_name: '20250303' data_files: - path: 20250303/miner_evaluations.parquet split: '20250303' - config_name: '20250304' data_files: - path: 20250304/miner_evaluations.parquet split: '20250304' - config_name: '20250305' data_files: - path: 20250305/miner_evaluations.parquet split: '20250305' - config_name: '20250306' data_files: - path: 20250306/miner_evaluations.parquet split: '20250306' - config_name: '20250307' data_files: - path: 20250307/miner_evaluations.parquet split: '20250307' - config_name: '20250308' data_files: - path: 20250308/miner_evaluations.parquet split: '20250308' - config_name: '20250309' data_files: - path: 20250309/miner_evaluations.parquet split: '20250309' - config_name: '20250310' data_files: - path: 20250310/miner_evaluations.parquet split: '20250310' - config_name: '20250311' data_files: - path: 20250311/miner_evaluations.parquet split: '20250311' - config_name: '20250312' data_files: - path: 20250312/miner_evaluations.parquet split: '20250312' - config_name: '20250313' data_files: - path: 20250313/miner_evaluations.parquet split: '20250313' - config_name: '20250314' data_files: - path: 20250314/miner_evaluations.parquet split: '20250314' - config_name: '20250315' data_files: - path: 20250315/miner_evaluations.parquet split: '20250315' - config_name: '20250316' data_files: - path: 20250316/miner_evaluations.parquet split: '20250316' - config_name: '20250317' data_files: - path: 20250317/miner_evaluations.parquet split: '20250317' - config_name: '20250318' data_files: - path: 20250318/miner_evaluations.parquet split: '20250318' - config_name: '20250319' data_files: - path: 20250319/miner_evaluations.parquet split: '20250319' - config_name: '20250320' data_files: - path: 20250320/miner_evaluations.parquet split: '20250320' - config_name: '20250321' data_files: - path: 20250321/miner_evaluations.parquet split: '20250321' - config_name: '20250322' data_files: - path: 20250322/miner_evaluations.parquet split: '20250322' - config_name: '20250323' data_files: - path: 20250323/miner_evaluations.parquet split: '20250323' - config_name: '20250324' data_files: - path: 20250324/miner_evaluations.parquet split: '20250324' - config_name: '20250325' data_files: - path: 20250325/miner_evaluations.parquet split: '20250325' - config_name: '20250326' data_files: - path: 20250326/miner_evaluations.parquet split: '20250326' - config_name: '20250327' data_files: - path: 20250327/miner_evaluations.parquet split: '20250327' - config_name: '20250328' data_files: - path: 20250328/miner_evaluations.parquet split: '20250328' - config_name: '20250329' data_files: - path: 20250329/miner_evaluations.parquet split: '20250329' - config_name: '20250330' data_files: - path: 20250330/miner_evaluations.parquet split: '20250330' - config_name: '20250331' data_files: - path: 20250331/miner_evaluations.parquet split: '20250331' - config_name: '20250401' data_files: - path: 20250401/miner_evaluations.parquet split: '20250401' - config_name: '20250402' data_files: - path: 20250402/miner_evaluations.parquet split: '20250402' - config_name: '20250403' data_files: - path: 20250403/miner_evaluations.parquet split: '20250403' - config_name: '20250404' data_files: - path: 20250404/miner_evaluations.parquet split: '20250404' - config_name: '20250405' data_files: - path: 20250405/miner_evaluations.parquet split: '20250405' - config_name: '20250406' data_files: - path: 20250406/miner_evaluations.parquet split: '20250406' - config_name: '20250407' data_files: - path: 20250407/miner_evaluations.parquet split: '20250407' - config_name: '20250408' data_files: - path: 20250408/miner_evaluations.parquet split: '20250408' - config_name: '20250409' data_files: - path: 20250409/miner_evaluations.parquet split: '20250409' - config_name: '20250410' data_files: - path: 20250410/miner_evaluations.parquet split: '20250410' - config_name: '20250411' data_files: - path: 20250411/miner_evaluations.parquet split: '20250411' - config_name: '20250412' data_files: - path: 20250412/miner_evaluations.parquet split: '20250412' - config_name: '20250413' data_files: - path: 20250413/miner_evaluations.parquet split: '20250413' - config_name: '20250414' data_files: - path: 20250414/miner_evaluations.parquet split: '20250414' - config_name: '20250415' data_files: - path: 20250415/miner_evaluations.parquet split: '20250415' - config_name: '20250416' data_files: - path: 20250416/miner_evaluations.parquet split: '20250416' - config_name: '20250417' data_files: - path: 20250417/miner_evaluations.parquet split: '20250417' last_updated: '20250417' license: mit ---
hirundo-io/bbq-physical-unbias-multi-choice
hirundo-io
"2025-04-17T07:01:41"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-15T16:31:20"
--- dataset_info: features: - name: question dtype: string - name: correct_answer dtype: string - name: incorrect_answers sequence: string splits: - name: train num_bytes: 349746 num_examples: 788 download_size: 38951 dataset_size: 349746 configs: - config_name: default data_files: - split: train path: data/train-* ---
chenggong1995/NuminaMath-TIR-100
chenggong1995
"2025-04-17T07:01:37"
73
0
[ "region:us" ]
null
"2025-02-28T02:43:17"
--- dataset_info: features: - name: problem dtype: string - name: solution dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 460058 num_examples: 100 - name: test num_bytes: 461331 num_examples: 99 download_size: 432654 dataset_size: 921389 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
WitchesSocialStream/AozoraDivr
WitchesSocialStream
"2025-04-17T07:01:27"
2,524
4
[ "license:cc-by-4.0", "region:us" ]
null
"2024-08-18T10:22:11"
--- license: cc-by-4.0 viewer: false --- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/633e85093a17ab61de8d9073/Kj4renO3qwTYmKanrPb8B.png) ## Data Formats We present data as is with minimum enrichment. - Any cryptographic CIDs are stripped as they do not possess any useful textual data. ### Changelog - 21/11/24: - Fixed Videos being uploaded as `null` - Code is more robust. Should be less prone to dropouts. - Did some code refactoring... - ...and subsequently broke some MiracleSpec messages... - ...But it has been fixed. - 25/11/24: - Fixed: Follow and block actions didn't have `chg` values associated previously, making it hard to determine if the user followed or unfollowed. This has been fixed. - 27/11/24: - Started to ignore certain miracle road spec data. A list is shown below with a reasoning. - We reject external "Link" / Not tied to bluesky data. - 13/12/24: - ~~No changes but just a word of caution: **There might be leaked keys.** I haven't been acting on them based on the basis of "If you post it, you better fix it." policy.~~ - As a countermeasure for future occurances, I've blocked HF Forums's bridgy bot. Future bridgy bots may be blocked as well. - 07/02/25: - New cover image. - Cleaned up front header bits. ### Blocks Ignored `$type` / `Miracle Roads`: - `jp.5leaf.sync.mastodon` (Reason: Sync from mastodon.) Ignored Users: - `did:plc:pgryn3ephfd2xgft23qokfzt` (Reason: Bridgy bot for HF Forums to bluesky. People keep accidentally leaking the HF tokens.) ### Streams The firehose is split into ~~2~~ 3 jsonl file for your usage: - `..._atproto_interactions.jsonl`: Contains interaction events, such as likes, follows, reposts and blocks - `..._atproto_general.jsonl`: Contains posts and replies. Used to contain accounts & identities but they have been moved to `_accounts.jsonl` - `..._atproto_accounts.jsonl`: Accounts & identities. ### Common Fields - `typ`: Represents the data **typ**e. - `usr`: Which **Us**e**r** is it from. Represented in the `Usernames` format below. - `rid`: Record Key. Use this to access data from bsky api. The most basic root construct will typically contain: ```json { "typ": "<Type>", "usr": { "did": "did:plc:ssd5xwqvrdrxyu2br7sfjwzy", }, } ``` Usernames are constructed in the following format: ```json { "did": "did:plc:4hqjfn7m6n5hno3doamuhgef", } ``` `did`: `Decentralized ID`. Consider this as `ID` for most cases and it points to a unique ID. `nms`: **[DEPRECATED!]** `Usernames`. Either can be a string or a list of strings. Do not blindly assume this is going to be only a string! Though generally, it should just be a string. - **`nms`** will not be provided in future firehose archives. Turns out PLC directory didn't like me. For most cases, expect the did to describe a user. ### Blobs Blobs represent media content. Typically you can tell it's a blob if it has a `mime` field and a `cid`. ```json { "mime": "image/jpeg", "size": 891965, "cid": "bafkreifu35fvx45eyldhpoyb3zgtb5dobvjfpw5kkeexwxefrfpzye2pji" } ``` Given the user account is this: ```json { "typ": "account", "usr": { "did": "did:plc:lri5xcv6ogaldxkigm32wa57", "avy": { "mime": "image/jpeg", "size": 226086, "cid": "bafkreif3z2y2rfrfcjt4rwwps4ib7q7qywrdt76bw6dmj5ebqefgllpima" }, "bnr": null, "crt": 1723726663.57, "dsc": "――あなたの日常に、AIの籠った音色を。\n\n▼思い出や日常、希望をお聞かせください。その想いを曲にいたします。\nhttps://forms.gle/rF2iqwXxabfVEifd7", "dsp": "雪白ゆっち feat.AI Creator" } } ``` Construct the avy url like so: Template: `https://bsky.social/xrpc/com.atproto.sync.getBlob?did=<usr.did>&cid=<usr.avy.cid>` A full link looks like this: `https://bsky.social/xrpc/com.atproto.sync.getBlob?did=did:plc:lri5xcv6ogaldxkigm32wa57&cid=bafkreif3z2y2rfrfcjt4rwwps4ib7q7qywrdt76bw6dmj5ebqefgllpima` Yes I did spend a while trying to lookup to see why it is not working. ### Posts (Simple) Posts can get rather complicated. Here's a sample of a simple post. ```json { "typ": "post", "usr": { "did": "did:plc:ssd5xwqvrdrxyu2br7sfjwzy", }, "rid": "3kzyon77od52v", "chg": "create", "tst": 1723987630.494, "pst": { "txt": "✔✔✔On Aug 18, 2024, 11:59 AM(UTC). According to Binance Market Data, Bitcoin has crossed the 60,000 USDT benchmark and is now trading at 60,006.578125 USDT, with a narrowed 1.49% increase in 24 hours.👀👀", "emb": null, "fct": [], "lbl": [], "lng": [], "tgs": [], "rpl": null } } ``` - `tst`: Contains the timestamp in unix float time. - `chg`: Change type. Typically either `create` or `delete` for posts. `change` for allowing Direct Messages. - `rid`: Record Key. Use this to access data from bsky api. - `pst`: Contains the actual posted data. ### Posts (Complex) As for replies and other fields, here's a more complex example. ```json { "typ": "reply", "usr": { "did": "did:plc:4hqjfn7m6n5hno3doamuhgef", "nms": "yui.syui.ai" }, "rid": "3kzyotm2hzq2d", "chg": "create", "tst": 1723987844.937, "pst": { "txt": "https://card.syui.ai/baiser \nbaiser\njoin : baiser.blue [IIT]\nten : 1000\naiten : 21037247\n---\n[1-7]\nten d : shuffle[IIT☑]\nten p : post\n---\n", "emb": null, "fct": [ { "typ": "@", "val": "https://card.syui.ai/baiser", "rng": [ 0, 27 ] } ], "lbl": [], "lng": [], "tgs": [], "rpl": { "typ": "post", "usr": { "did": "did:plc:vok247eewjmbmo3kxaizct2i", "nms": "baiser.blue" }, "rid": "3kzyotbooo22c", "rrt": { "typ": "post", "usr": { "did": "did:plc:vok247eewjmbmo3kxaizct2i", "nms": "baiser.blue" }, "rid": "3kzyosf6atg2v" } } } } ``` - `fct`: Stands for Facets: - `typ`: The facet type. (`tag`,`link`,`mention`) - `val`: The facet value. Note that this can be a `Username` dict when `typ` == `mention` - `rng`: Byte range. AFAIK this is in UTF-16 but I can be wrong. Follow atproto's docs for this. - `lbl`: Labels. A list of strings. Though typically empty list for firehose streams. Labels are sent seperately firehose stream-wise. - `lng`: Languages. Either an list (Can be empty) or a string. - `tgs`: "Additional hashtags, in addition to any included in post text and facets." - `rpl`: The post that the current post is replying to. - *Note:* The reply post is not enriched with the actual post. - `typ`/`usr`/`rid`: [Refer to the simple posts section.](#posts-simple) - `rrt`: Root post. Can be `null` if root post is the same as the `rpl` post `rid`. - `emb`: Any rich embed. - Embed primarily has around 5 types 1. Images - A list of images. - Each image contains: `img` (BlobRef), `alt` (Alt Text), `isz` (Size) 3. Video - A Video - Contains the following fields: `vid`, `alt` (Alt Text), `isz` (Size), `cpt` (Captions, Dictionary with of key for languages and a BlobRef for value) 4. External (Outside bluesky) - Typically webpages and the like 5. w/ Record (A post that has a link to another person) 6. Same as 5 but with Images. - TL;DR: Embeds are complicated. ### Accounts ```json { "typ": "account", "usr": { "did": "did:plc:cj3ngde5wbljf5sh33g7zsdz", "avy": { "mime": "image/jpeg", "size": 79776, "cid": "bafkreiczz2spptgturm43r33impbkcar4tmdmnh34pqkp2tynlztbxmw7a" }, "bnr": { "mime": "image/jpeg", "size": 748930, "cid": "bafkreigb5l3u32quxzhpbca6bnrunfdau3m4bp6fdntmj2lwec3erkssty" }, "crt": null, "dsc": "こっちでは、主に練習中の下手なイラスト・ゲーム関系とかを投稿していきたいな〜\n\n最推しのねくろさんの配信を見るといやされる( ◠‿◠ )", "dsp": "しろっつ🖤🐐👑" } } ``` For Accounts, the `usr` field is more filled. In addition to `did`, there are other fields like: - `avy`/`bnr`: either a `Blob` or null. Refer to [Blobs](#blobs) section above. - `crt`: Account Creation time. Can be null! - `dsc`: Profile Bio / Blurb Section. - `dsp`: Display name. ### Reconstructing to a AtUri For `post` and `reply` types, Take the following values and combine them into the following url: `at://<usr.did>/app.bsky.feed.post/<rid>` Replies are just posts. For `repost` and `like` types, it's similar but a bit different: - Reposts: `at://<usr.did>/app.bsky.feed.repost/<rid>` - likes: `at://<usr.did>/app.bsky.feed.like/<rid>` ### Enrichment of replies ``` curl -L -X GET 'https://public.api.bsky.app/xrpc/app.bsky.feed.getPosts?uris=at://did:plc:4hqjfn7m6n5hno3doamuhgef/app.bsky.feed.post/3kzyotm2hzq2d' \ -H 'Accept: application/json' \ -H 'Authorization: Bearer <TOKEN>' ``` ### "Miracle Spec" Recently, some creative folks have started adding their own data to the atproto stream. Some notable examples I saw are: - `com.whtwnd.blog.entry` (https://whtwnd.com/about) - `space.aoisora.bookmark` (https://bsky.app/profile/mimonelu.net/post/3l4ta2mdqwe2s) As of 01/10/24, I've added support for those.. They are labeled as "MiracleRoad!" for `typ` and only contain the raw record data. ### Illegal Spec Followers In other words, we also capture content that failed to follow specs. Like this: ```json { "typ": "IllegalSpecFollowerAkaFixYourShit", "record": { "text": "任某(男,31歲),被行拘! ", "$type": "app.bsky.feed.post", "embed": { "uri": "https://www.headline01.com/a/Xio3zSUuGvX7J1jCSG_F5g-51479340.html", "$type": "app.bsky.embed.external#main", "external": { "uri": "https://www.headline01.com/a/Xio3zSUuGvX7J1jCSG_F5g-51479340.html", "thumb": { "ref": "bafkreidrfrfluqo26yy4pemkcpgug2p5sea3xrwh3schfnns5owa7gbwvm", "size": 86924, "$type": "blob", "mimeType": "image/jpeg" }, "title": "任某(男,31歲),被行拘!", "description": "" } }, "createdAt": "2024-08-18T14:05:19.645644Z" } } ``` Lines marked as `IllegalSpecFollowerAkaFixYourShit` should be ignored in general though. Content isn't great anyway. ## Changes **[01/09/24]** Removed mentions of `nms`. We stopped resolving DIDs after 01/09/24 as it appears that I'm slamming PLC directory too much lol. Sorry! **[04/09/24]** Fixed video embeds as it started to crash the scraper resuling in some missing stuff. ## Various Notes ### Recommendations For getting a more proper stream of posts, it's recommended to keep a track of users + posts in a index cache. Then again, you can just fetch a list from bsky api directly lol. Do consider reading up on bsky docs and atproto docs. ### Docs Nonsense When the bluesky docs say: "...Implemented by PDS". You should probably use the following base url: `https://bsky.social/xrpc/` ### Deletions UnActions ("unpost","unlike","unrepost") only contains `rid` as the record key. ### License For everyone out there, data is meant to be free unlike some previous license I did. This is free for grabs aka `CC-BY-4.0`. for Big Corps wanting to use it: Sure. As long as you cite this dataset + `CC-BY-4.0` license. Be nice to people who have came before you and did it. ### Citations We would much love academia to cite this dataset. Be nice please `:)` ```tex @misc{bskyaozora, title = {Aozora Diving: diving into the sea of atproto and bluesky network }, author = {KaraKaraWitch}, year = {2024}, howpublished = {\url{https://huggingface.co/datasets/WitchesSocialStream/bluesky-Aozora-Diving}}, } ```
hirundo-io/bbq-gender-unbias-multi-choice
hirundo-io
"2025-04-17T07:01:02"
5
0
[ "region:us" ]
null
"2025-04-15T16:33:19"
--- dataset_info: features: - name: question dtype: string - name: correct_answer dtype: string - name: incorrect_answers sequence: string splits: - name: train num_bytes: 950618 num_examples: 2836 download_size: 101614 dataset_size: 950618 configs: - config_name: default data_files: - split: train path: data/train-* ---
trungnam299/reddit_dataset_246
trungnam299
"2025-04-17T07:00:55"
908
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-03-17T02:01:36"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** trungnam299/reddit_dataset_246 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5Gy7jZ36YgkpmbB9jDza41Uk7VQzsa4JkABC82FZJfmw2HnH ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{trungnam2992025datauniversereddit_dataset_246, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={trungnam299}, year={2025}, url={https://huggingface.co/datasets/trungnam299/reddit_dataset_246}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 25321315 - **Date Range:** 2009-12-10T00:00:00Z to 2025-04-17T00:00:00Z - **Last Updated:** 2025-04-17T07:00:48Z ### Data Distribution - Posts: 23.74% - Comments: 76.26% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/wallstreetbets | 446861 | 1.76% | | 2 | r/politics | 205578 | 0.81% | | 3 | r/worldnews | 129700 | 0.51% | | 4 | r/Bitcoin | 118258 | 0.47% | | 5 | r/CryptoCurrency | 111387 | 0.44% | | 6 | r/canada | 59751 | 0.24% | | 7 | r/nba | 58779 | 0.23% | | 8 | r/nfl | 51694 | 0.20% | | 9 | r/soccer | 45527 | 0.18% | | 10 | r/CryptoMarkets | 45419 | 0.18% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-03-24T08:39:31Z | 19401603 | 19401603 | | 2025-03-25T03:36:40Z | 200415 | 19602018 | | 2025-03-25T22:36:36Z | 210775 | 19812793 | | 2025-03-26T17:47:42Z | 196898 | 20009691 | | 2025-03-27T12:37:28Z | 226566 | 20236257 | | 2025-03-28T07:22:45Z | 213614 | 20449871 | | 2025-03-29T01:48:51Z | 178712 | 20628583 | | 2025-03-29T20:20:04Z | 158499 | 20787082 | | 2025-03-30T15:34:42Z | 205782 | 20992864 | | 2025-03-30T17:18:13Z | 2949 | 20995813 | | 2025-03-31T10:47:11Z | 215551 | 21211364 | | 2025-04-01T05:22:24Z | 173900 | 21385264 | | 2025-04-02T00:01:11Z | 137365 | 21522629 | | 2025-04-02T19:40:38Z | 168851 | 21691480 | | 2025-04-03T14:43:36Z | 212914 | 21904394 | | 2025-04-04T07:52:11Z | 231441 | 22135835 | | 2025-04-05T03:29:16Z | 176492 | 22312327 | | 2025-04-05T22:12:36Z | 155027 | 22467354 | | 2025-04-06T15:22:53Z | 175069 | 22642423 | | 2025-04-07T08:26:16Z | 169236 | 22811659 | | 2025-04-08T02:09:18Z | 165144 | 22976803 | | 2025-04-08T19:56:31Z | 159196 | 23135999 | | 2025-04-09T13:05:47Z | 185870 | 23321869 | | 2025-04-10T08:15:49Z | 187322 | 23509191 | | 2025-04-11T03:30:11Z | 180883 | 23690074 | | 2025-04-11T22:35:46Z | 176001 | 23866075 | | 2025-04-12T17:41:43Z | 204551 | 24070626 | | 2025-04-13T13:05:30Z | 245043 | 24315669 | | 2025-04-14T06:21:19Z | 216455 | 24532124 | | 2025-04-14T23:40:13Z | 153627 | 24685751 | | 2025-04-15T20:16:26Z | 153725 | 24839476 | | 2025-04-16T13:54:32Z | 258882 | 25098358 | | 2025-04-17T07:00:48Z | 222957 | 25321315 |
hirundo-io/bbq-gender-bias-multi-choice
hirundo-io
"2025-04-17T07:00:55"
7
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-15T16:33:06"
--- dataset_info: features: - name: question dtype: string - name: correct_answer dtype: string - name: incorrect_answers sequence: string splits: - name: train num_bytes: 503566 num_examples: 2836 download_size: 56172 dataset_size: 503566 configs: - config_name: default data_files: - split: train path: data/train-* ---
hirundo-io/bbq-physical-bias-multi-choice
hirundo-io
"2025-04-17T07:00:47"
6
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-15T16:32:40"
--- dataset_info: features: - name: question dtype: string - name: correct_answer dtype: string - name: incorrect_answers sequence: string splits: - name: train num_bytes: 199004 num_examples: 788 download_size: 21806 dataset_size: 199004 configs: - config_name: default data_files: - split: train path: data/train-* ---
yobro4619/ChartQA_processed
yobro4619
"2025-04-17T07:00:22"
37
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-15T19:03:57"
--- dataset_info: features: - name: image dtype: image - name: question dtype: string - name: ground_truth sequence: string - name: code_descriptions dtype: string splits: - name: test num_bytes: 61116234.83 num_examples: 1509 download_size: 59783725 dataset_size: 61116234.83 configs: - config_name: default data_files: - split: test path: data/test-* ---
YADHU1234/nllb_4M_mono
YADHU1234
"2025-04-17T06:59:40"
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T06:59:07"
--- dataset_info: features: - name: corrupted dtype: string - name: original dtype: string splits: - name: train num_bytes: 1122911076 num_examples: 3866688 download_size: 517649874 dataset_size: 1122911076 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.4_num-company_2_dataset_1_for_gen_8
HungVu2003
"2025-04-17T06:58:55"
11
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-13T22:15:34"
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 4274743 num_examples: 10000 download_size: 2187628 dataset_size: 4274743 configs: - config_name: default data_files: - split: train path: data/train-* ---
HungVu2003/opt-350m_beta_1.0_alpha_0.4_num-company_2_dataset_0_for_gen_8
HungVu2003
"2025-04-17T06:56:54"
8
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-13T22:12:43"
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2297557 num_examples: 10000 download_size: 1237510 dataset_size: 2297557 configs: - config_name: default data_files: - split: train path: data/train-* ---
kothasuhas/tinystories_20M_tokens
kothasuhas
"2025-04-17T06:56:31"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T06:56:20"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 67765149.85337244 num_examples: 75000 - name: validation num_bytes: 903535.3313782992 num_examples: 1000 download_size: 36343497 dataset_size: 68668685.18475074 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
kothasuhas/tinystories_320M_tokens
kothasuhas
"2025-04-17T06:56:29"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T06:56:07"
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 85384088.81524926 num_examples: 94500 - name: validation num_bytes: 903535.3313782992 num_examples: 1000 download_size: 45678667 dataset_size: 86287624.14662756 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
kadirnar/Emilia-All-Ja-Orpheus
kadirnar
"2025-04-17T06:55:10"
0
0
[ "size_categories:1M<n<10M", "format:parquet", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-16T22:54:23"
--- dataset_info: features: - name: input_ids sequence: int32 - name: labels sequence: int64 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 10942545178 num_examples: 1323823 download_size: 3504047173 dataset_size: 10942545178 configs: - config_name: default data_files: - split: train path: data/train-* ---
YADHU1234/nllb_mono
YADHU1234
"2025-04-17T06:53:24"
0
0
[ "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T06:53:04"
--- dataset_info: features: [] splits: - name: train num_bytes: 0 num_examples: 0 download_size: 324 dataset_size: 0 configs: - config_name: default data_files: - split: train path: data/train-* ---
Hkang/summarize_sft-test_lm-EleutherAI_pythia-1b_seed-42_numex-250_lr3e8_14K-BON_64
Hkang
"2025-04-17T06:53:24"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T06:53:07"
--- dataset_info: features: - name: id dtype: string - name: subreddit dtype: string - name: title dtype: string - name: post dtype: string - name: summary dtype: string - name: query_input_ids sequence: int64 - name: query_attention_mask sequence: int64 - name: query dtype: string - name: reference_response dtype: string - name: reference_response_input_ids sequence: int64 - name: reference_response_attention_mask sequence: int64 - name: reference_response_token_len dtype: int64 - name: query_reference_response dtype: string - name: query_reference_response_input_ids sequence: int64 - name: query_reference_response_attention_mask sequence: int64 - name: query_reference_response_token_response_label sequence: int64 - name: query_reference_response_token_len dtype: int64 - name: model_response dtype: string splits: - name: test num_bytes: 6851755 num_examples: 250 download_size: 1149918 dataset_size: 6851755 configs: - config_name: default data_files: - split: test path: data/test-* ---
omegalabsinc/omega-multimodal
omegalabsinc
"2025-04-17T10:00:54"
193,748
52
[ "task_categories:video-text-to-text", "task_categories:video-classification", "task_categories:image-classification", "task_categories:image-to-text", "task_categories:image-to-video", "task_categories:image-feature-extraction", "task_categories:visual-question-answering", "task_categories:audio-classification", "task_categories:audio-to-audio", "task_categories:text-to-audio", "task_categories:text-to-image", "task_categories:text-to-speech", "task_categories:text-to-video", "license:mit", "modality:video", "region:us", "multimodal", "AGI", "video", "anytoany" ]
[ "video-text-to-text", "video-classification", "image-classification", "image-to-text", "image-to-video", "image-feature-extraction", "visual-question-answering", "audio-classification", "audio-to-audio", "text-to-audio", "text-to-image", "text-to-speech", "text-to-video" ]
"2024-03-07T01:35:38"
--- license: mit task_categories: - video-text-to-text - video-classification - image-classification - image-to-text - image-to-video - image-feature-extraction - visual-question-answering - audio-classification - audio-to-audio - text-to-audio - text-to-image - text-to-speech - text-to-video tags: - multimodal - AGI - video - anytoany --- # OMEGA Labs Bittensor Subnet: Multimodal Dataset for AGI Research [![OMEGA](https://huggingface.co/datasets/omegalabsinc/omega-multimodal/resolve/main/galacticlandscape.png)](https://omegatron.ai) ## Introduction The OMEGA Labs Bittensor Subnet Dataset is a groundbreaking resource for accelerating Artificial General Intelligence (AGI) research and development. This dataset, powered by the Bittensor decentralized network, aims to be the world's largest multimodal dataset, capturing the vast landscape of human knowledge and creation. With over 1 million hours of footage and 30 million+ 2-minute video clips, the OMEGA Labs dataset will offer unparalleled scale and diversity, covering 50+ scenarios and 15,000+ action phrases. By leveraging state-of-the-art models to translate video components into a unified latent space, this dataset enables the development of powerful AGI models and has the potential to transform various industries. ## Key Features - 🌍 **Constant Stream of Fresh Data**: The OMEGA dataset is constantly updated with new entries scraped by miners on Bittensor's decentralized AI network. We estimate that within a few weeks, we can get to 5M+ new videos added daily. - 📈 **Rich Data**: In addition to scale, we are focused on scraping relevant, high quality data. Using [ImageBind](https://imagebind.metademolab.com/demo) embeddings of the submitted videos and corresponding captions, miners are rewarded based on three factors: - **Diversity**: The further away each new datapoint is from existing datapoints (judged by embedding cosine similarity), the higher the reward - **Richness**: The more detailed the caption (judged by cosine similarity between video and submitted caption), the higher the reward - **Relevance**: Miners are asked to scrape data pertaining to handpicked categories, pertinent for building video understanding and training world models. - 🧠 **Latent Representations**: ImageBind embeddings for the video, audio, and caption are pre-computed - 🤖 **Empowering Digital Agents**: Enables the development of intelligent agents that can navigate complex workflows and assist users across platforms. - 📊 **Flexible Metadata**: Filter the dataset to find clips relevant to topics you would like to train on or filter by your desired cosine similarities ## Dataset Structure The OMEGA Labs Bittensor Subnet Dataset consists of the following columns: - `video_id`: Unique identifier for each video clip. - `youtube_id`: The original YouTube video ID. - `description`: Description of the video content. - `views`: Number of views the original YouTube video has received. - `start_time`: Start time of the video clip within the original video. - `end_time`: End time of the video clip within the original video. - `video_embed`: Latent representation of the video content. - `audio_embed`: Latent representation of the audio content. - `description_embed`: Latent representation of the video description. - `description_relevance_score`: Relevance score of the video description to the content. - `query_relevance_score`: Relevance score of the video to the search query. - `query`: The search query used to retrieve the video. - `submitted_at`: Timestamp of when the video was added to the dataset. ## Applications The OMEGA Labs Bittensor Subnet Dataset empowers researchers and developers to push the boundaries of AGI by providing a vast and diverse resource for training and testing multimodal models. Some potential applications include: - **Unified Representation Learning**: Train powerful models that can learn unified representations across modalities. - **Any-to-Any Models**: Develop models capable of translating between different modalities, such as generating videos from text descriptions or vice versa. - **Digital Agents**: Create intelligent agents that can navigate complex workflows and assist users across platforms. - **Immersive Gaming**: Build realistic gaming environments with rich physics and interactions. - **Video Understanding**: Advance the state-of-the-art in video processing tasks such as transcription, motion analysis, object detection, and emotion recognition. ## Say hi! If you're interested in getting in touch, reach out to us on [Twitter](https://twitter.com/omegalabsai)! You can also visit our [Github](https://github.com/omegalabsinc/omegalabs-bittensor-subnet/tree/main) to learn more about how our scraping is done! And if you'd like to learn more about Bittensor, join the [Discord](https://discord.gg/6yZpQ9KV)!
anhhhhhhhhhhhhhh/speech_podcast
anhhhhhhhhhhhhhh
"2025-04-17T10:00:50"
39
0
[ "license:apache-2.0", "region:us" ]
null
"2025-04-11T01:29:04"
--- license: apache-2.0 ---
HungVu2003/opt-350m_beta_1.0_alpha_0.4_num-company_2_dataset_0_for_gen_12
HungVu2003
"2025-04-17T10:00:27"
7
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-14T01:18:10"
--- dataset_info: features: - name: question dtype: string splits: - name: train num_bytes: 2546266 num_examples: 10000 download_size: 1309204 dataset_size: 2546266 configs: - config_name: default data_files: - split: train path: data/train-* ---
BornSaint/orpo-dpo-mix-40k_portuguese
BornSaint
"2025-04-17T10:00:09"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T08:23:48"
--- dataset_info: features: - name: id dtype: int64 - name: source dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 48877 num_examples: 10 download_size: 28525 dataset_size: 48877 configs: - config_name: default data_files: - split: train path: data/train-* ---
davanstrien/dataset_cards_with_metadata
davanstrien
"2025-04-17T09:59:53"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T09:48:47"
--- dataset_info: features: - name: datasetId dtype: large_string - name: author dtype: large_string - name: last_modified dtype: timestamp[us, tz=UTC] - name: downloads dtype: int64 - name: likes dtype: int64 - name: tags large_list: large_string - name: task_categories large_list: large_string - name: createdAt dtype: timestamp[us, tz=UTC] - name: card dtype: large_string splits: - name: train num_bytes: 275573 num_examples: 119 download_size: 90540 dataset_size: 275573 configs: - config_name: default data_files: - split: train path: data/train-* ---
tomap1410/FullyStockManagement
tomap1410
"2025-04-17T09:59:37"
0
0
[ "region:us" ]
null
"2025-04-17T06:44:56"
--- dataset_info: features: - name: task dtype: string - name: goals dtype: int64 - name: description dtype: string - name: complete dtype: string - name: store_place dtype: string - name: email_working dtype: string - name: id dtype: string splits: - name: train num_bytes: 1092 num_examples: 11 download_size: 3268 dataset_size: 1092 configs: - config_name: default data_files: - split: train path: data/train-* ---
gunnybd01/Fully40000_60000
gunnybd01
"2025-04-17T09:59:34"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-16T20:34:47"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 2582496 num_examples: 2150 download_size: 898975 dataset_size: 2582496 configs: - config_name: default data_files: - split: train path: data/train-* ---
tomap1410/VolumeStockManagement
tomap1410
"2025-04-17T09:59:17"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T07:46:08"
--- dataset_info: features: - name: task dtype: string - name: goals dtype: int64 - name: description dtype: string - name: complete dtype: string - name: store_place dtype: string - name: email_working dtype: string - name: id dtype: string splits: - name: train num_bytes: 631 num_examples: 6 download_size: 3266 dataset_size: 631 configs: - config_name: default data_files: - split: train path: data/train-* ---
ngtranAI1/Volume90000_100000
ngtranAI1
"2025-04-17T09:59:13"
0
0
[ "region:us" ]
null
"2025-04-17T04:19:13"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 1154106 num_examples: 1000 download_size: 434407 dataset_size: 1154106 configs: - config_name: default data_files: - split: train path: data/train-* ---
gunnybd01/Fully60000_80000
gunnybd01
"2025-04-17T09:59:00"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-16T20:39:24"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 2478356 num_examples: 2050 download_size: 862940 dataset_size: 2478356 configs: - config_name: default data_files: - split: train path: data/train-* ---
HueyWoo/turtlesim_agent_dataset4
HueyWoo
"2025-04-17T09:58:59"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T09:23:06"
--- dataset_info: features: - name: tools dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: name dtype: string splits: - name: train num_bytes: 8544 num_examples: 10 download_size: 5595 dataset_size: 8544 configs: - config_name: default data_files: - split: train path: data/train-* ---
ngtranAI1/Volume120000_132433
ngtranAI1
"2025-04-17T09:58:55"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T04:20:38"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 1039873 num_examples: 900 download_size: 398426 dataset_size: 1039873 configs: - config_name: default data_files: - split: train path: data/train-* ---
gunnybd01/Fully80000_100000
gunnybd01
"2025-04-17T09:58:30"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T05:53:50"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 866051 num_examples: 1000 download_size: 304170 dataset_size: 866051 configs: - config_name: default data_files: - split: train path: data/train-* ---
tomap1410/TrendStockManagement
tomap1410
"2025-04-17T09:58:28"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T06:40:42"
--- dataset_info: features: - name: task dtype: string - name: goals dtype: int64 - name: description dtype: string - name: complete dtype: string - name: store_place dtype: string - name: email_working dtype: string - name: id dtype: string splits: - name: train num_bytes: 698 num_examples: 7 download_size: 3215 dataset_size: 698 configs: - config_name: default data_files: - split: train path: data/train-* ---
nguyentn1410/Trend110000_120000
nguyentn1410
"2025-04-17T09:58:26"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T05:45:29"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 310050 num_examples: 300 download_size: 116222 dataset_size: 310050 configs: - config_name: default data_files: - split: train path: data/train-* ---
Arururu12/UR5e_Gello_Clean_up_the_cups
Arururu12
"2025-04-17T09:58:17"
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
"2025-04-17T09:57:53"
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "ur5e_gello", "total_episodes": 9, "total_frames": 3653, "total_tasks": 1, "total_videos": 18, "total_chunks": 1, "chunks_size": 1000, "fps": 10, "splits": { "train": "0:9" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_motor_0", "main_motor_1", "main_motor_2", "main_motor_3", "main_motor_4", "main_motor_5", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 7 ], "names": [ "main_motor_0", "main_motor_1", "main_motor_2", "main_motor_3", "main_motor_4", "main_motor_5", "main_gripper" ] }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 10.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.front": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 10.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
huylaughmad/chatbot-data
huylaughmad
"2025-04-17T09:58:04"
196
0
[ "language:vi", "license:cc-by-4.0", "size_categories:n<1K", "region:us", "chatbot", "dental-services", "vietnamese" ]
null
"2025-04-16T01:13:32"
--- license: cc-by-4.0 language: - vi tags: - chatbot - dental-services - vietnamese pretty_name: Chatbot Data size_categories: - n<1K --- Chatbot Data This dataset contains structured information about dental clinic services, designed for use in chatbot applications. It includes details about the clinic, pricing for adult and child services, additional consultation information, service processes, questions for consultation, promotions, and synonyms for services and severity levels. Dataset Overview Source: Dental clinic services data. Language: Vietnamese. Format: CSV. Size: 1 file with 193 rows. Splits train: Contains all data (train.csv). Features category (string): The main category of the service or information (e.g., clinic_info, adult_services, synonyms). subcategory (string): Subcategory of the service (e.g., địa chỉ, trám răng). subcategory_level_2 (string): Further subcategory level (e.g., trám răng (composite)). content (string): Detailed description of the service, pricing, or synonyms (e.g., - **Địa chỉ**: 160-162 Trần Phú, P. Vĩnh Thanh Vân, Tp. Rạch Giá, Kiên Giang). is_synonym (bool): Indicates if the entry is a synonym (True) or not (False). Usage This dataset can be used to power a chatbot for dental clinic services, providing information on pricing, procedures, and synonyms for user queries. To load the dataset using the datasets library: from datasets import load_dataset dataset = load_dataset("huylaughmad/chatbot-data", split="train") print(dataset[0]) Notes The dataset is in Vietnamese, with some special characters (e.g., đ). Ensure proper UTF-8 encoding when processing. The is_synonym column contains boolean values (True/False). Ensure these are correctly parsed as booleans. The dataset is structured hierarchically with categories and subcategories for easy navigation. License This dataset is licensed under CC BY 4.0. It is provided for personal and research use. Please contact the dataset owner for commercial usage permissions.
intelsense/dolphin-flan5m-en2bn
intelsense
"2025-04-17T09:57:49"
1,827
0
[ "size_categories:10K<n<100K", "modality:text", "region:us" ]
null
"2025-04-05T12:07:32"
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: instruction_bn dtype: string - name: input_bn dtype: string - name: output_bn dtype: string splits: - name: train num_bytes: 79116007 num_examples: 14690 download_size: 33532533 dataset_size: 79116007 configs: - config_name: default data_files: - split: train path: data/train-* ---
Heubub/Tunisian-Proverbs-with-Image-Associations-A-Cultural-and-Linguistic-Dataset
Heubub
"2025-04-17T09:57:42"
114
0
[ "task_categories:text2text-generation", "task_categories:translation", "task_categories:text-generation", "language:ar", "language:en", "license:cc-by-4.0", "region:us", "text-image pairs", "proverbs", "culture", "heritage", "generative", "prompt" ]
[ "text2text-generation", "translation", "text-generation" ]
"2025-04-13T17:56:22"
--- license: cc-by-4.0 task_categories: - text2text-generation - translation - text-generation language: - ar - en tags: - text-image pairs - proverbs - culture - heritage - generative - prompt size_categories: - n < 1K dataset_info: features: - name: tunisan_proverb dtype: string - name: proverb_arabic_explaination dtype: string - name: context dtype: string - name: caption dtype: string - name: caption_formal dtype: string - name: dynamic dtype: string - name: prompt dtype: string - name: image_path_1 dtype: image - name: image_path_2 dtype: image - name: image_path_3 dtype: image - name: image_path_4 dtype: image - name: clip_scores dtype: float32 configs: - config_name: default data_files: - dataset.csv description: > This configuration contains Tunisian proverbs with corresponding textual explanations and up to four AI-generated image associations per entry, covering cultural and linguistic insight. citation: | @misc{heubub2025tunisianproverbs, author = {Abderrahim Habiba & Ouamani Fadoua}, title = {Tunisian Proverbs with Image Associations: A Cultural and Linguistic Dataset}, year = {2025}, howpublished = {\url{https://huggingface.co/datasets/Heubub/Tunisian-Proverbs-with-Image-Associations-A-Cultural-and-Linguistic-Dataset}}, note = {CC-BY 4.0 License} } --- <h1>Tunisian Proverbs with Image Associations: A Cultural and Linguistic Dataset </h1> ## Description This dataset explores the rich oral tradition of Tunisian proverbs mapped into text format, pairing each with contextual explanations, English translations both word-to-word and it's equivalent Target Language dynamic, Automated prompt and AI-generated visual interpretations. It bridges linguistic, cultural, and visual modalities making it valuable for tasks in cross-cultural NLP, generative art, and multi-modal learning for low-resourced Language such as the Arabic Tunisian Dialect. ## Some Selections <table> <tr> <td align="center"> <img src="images/text_image_dataset_000/proverb_418_image_1.png" width="250"/><br/> <b>ظل راجل ولا ظل حيط</b><br/> </td> <td align="center"> <img src="images/text_image_dataset_0000000/proverb_1230_image_0.png" width="250"/><br/> <b>الملح و الصحبة</b><br/> </td> <td align="center"> <img src="images/text_image_dataset_00000/proverb_605_image_0.png" width="250"/><br/> <b>كل قرده في عين امه غزال</b><br/> </td> <td align="center"> <img src="images/text_image_dataset_0/proverb_55_image_0.png" width="250"/><br/> <b>قلبه أبيض كالحليب</b><br/> </td> <td align="center"> <img src="images/text_image_dataset_0/proverb_202_image_1.png" width="250"/><br/> <b>اضرب القطوسة تتأدب العروسة</b><br/> </td> <td align="center"> <img src="images/text_image_dataset_0/proverb_209_image_0.png" width="250"/><br/> <b>اللي وجهها يفجعها مال بوها ينفعها</b><br/> </td> </tr> </table> ## Objectives <ul> <li>Preserve and promote intangible cultural heritage from underrepresented languages.</li> <li>Create an open-access, FAIR-compliant resource to support Generative AI, NLP, and multimodal ML in low-resource languages like Tunisian Arabic.</li> <li>Provide a dataset suitable for translation, text and image generation, proverb understanding, visual grounding, and educational tools.</li> </ul> <h2>Dataset Structure</h2> <ul> <li>A <strong>Tunisian proverb</strong> in dialectal Arabic.</li> <li>An <strong>explanation</strong> of its meaning.</li> <li><strong>Contextual tags</strong>.</li> <li><strong>English translations</strong> in different styles: <ul> <li>Informal translation</li> <li>Formal interpretation</li> </ul> </li> <li>A <strong>text-to-image automated prompt</strong> used to generate 4 unique images.</li> <li>Four associated <strong>image paths</strong>.</li> <li>A <strong>CLIP score</strong> indicating relevance of the images to the proverb.</li> </ul> ## Language & Cultural Focus: <ul> <li>Dialect: Tunisian Arabic (Derja or Tounsi)</li> <li>Languag variety: Tunisian Arabic and English</li> </ul> ## How to Use To load the dataset in Google Colab, you can use the datasets library from Hugging Face: ```python from datasets import load_dataset import cv2 from google.colab.patches import cv2_imshow # Load the dataset dataset = load_dataset("Heubub/Tunisian-Proverbs-with-Image-Associations-A-Cultural-and-Linguistic-Dataset") # Get the first sample from the 'train' split sample = dataset["train"][0] # Extract proverb and prompt and images e.g the first image proverb = sample["tunisan_proverb"] prompt = sample["prompt"] image_path_1 = sample["image_path_1"] print(f"Proverb: {proverb}") print(f"Prompt: {prompt}") img_bgr = np.array(image_path_1)[:, :, ::-1] cv2_imshow(img_bgr) ##Citation If you use this dataset, please cite it as follows: @misc {heubub2025tunisianproverbs, author = {Abderrahim Habiba & Ouamani Fadoua}, title = {Tunisian Proverbs with Image Associations: A Cultural and Linguistic Dataset}, year = {2025}, howpublished = {\url{https://huggingface.co/datasets/Heubub/Tunisian-Proverbs-with-Image-Associations-A-Cultural-and-Linguistic-Dataset}}, note = {CC-BY 4.0 License} }
clarkmaio/Ooops_dataset
clarkmaio
"2025-04-17T09:57:36"
3,792
0
[ "license:mit", "region:us" ]
null
"2024-12-30T00:14:36"
--- license: mit --- # Ooops dataset Collection of snapshot obtained from [Finntraffic API](https://www.digitraffic.fi/en/marine-traffic/). You can have access to data using `polars` or `duckdb`. ``` import polars as pl scan = pl.scan_parquet('hf://datasets/clarkmaio/Ooops_dataset/vessels_location/20250101_vessels_location.pq') data = (scan .filter( pl.col('country')=='Russia' ) .select(['mmsi', 'latitude', 'longitude', 'country', 'timestamp_hourly']) .collect()) data.head() ```
Apples96/text8-hackernews-combined
Apples96
"2025-04-17T09:57:04"
0
0
[ "license:apache-2.0", "region:us" ]
null
"2025-04-17T09:57:04"
--- license: apache-2.0 ---
intelsense/openhermes-en2bn-messages-2
intelsense
"2025-04-17T09:56:44"
2,047
0
[ "region:us" ]
null
"2025-04-09T15:15:41"
--- dataset_info: features: - name: custom_instruction dtype: 'null' - name: topic dtype: 'null' - name: model_name dtype: 'null' - name: model dtype: 'null' - name: skip_prompt_formatting dtype: bool - name: category dtype: string - name: conversations list: - name: from dtype: string - name: value dtype: string - name: weight dtype: 'null' - name: views dtype: 'null' - name: language dtype: 'null' - name: id dtype: string - name: title dtype: 'null' - name: idx dtype: 'null' - name: hash dtype: 'null' - name: avatarUrl dtype: 'null' - name: system_prompt dtype: 'null' - name: source dtype: string - name: system_message dtype: string - name: human_message dtype: string - name: gpt_message dtype: string - name: system_message_bn dtype: string - name: human_message_bn dtype: string - name: gpt_message_bn dtype: string splits: - name: train num_bytes: 480736454 num_examples: 68970 download_size: 182685777 dataset_size: 480736454 configs: - config_name: default data_files: - split: train path: data/train-* ---
KakologArchives/KakologArchives
KakologArchives
"2025-04-17T09:56:40"
5,740,354
15
[ "task_categories:text-classification", "language:ja", "license:mit", "region:us" ]
[ "text-classification" ]
"2023-05-12T13:31:56"
--- pretty_name: ニコニコ実況 過去ログアーカイブ license: mit language: - ja task_categories: - text-classification --- # ニコニコ実況 過去ログアーカイブ ニコニコ実況 過去ログアーカイブは、[ニコニコ実況](https://jk.nicovideo.jp) のサービス開始から現在までのすべての過去ログコメントを収集したデータセットです。 去る2020年12月、ニコニコ実況は [ニコニコ生放送内の一公式チャンネルとしてリニューアル](https://blog.nicovideo.jp/niconews/143148.html) されました。 これに伴い、2009年11月から運用されてきた旧システムは提供終了となり(事実上のサービス終了)、torne や BRAVIA などの家電への対応が軒並み終了する中、当時の生の声が詰まった約11年分の過去ログも同時に失われることとなってしまいました。 そこで 5ch の DTV 板の住民が中心となり、旧ニコニコ実況が終了するまでに11年分の全チャンネルの過去ログをアーカイブする計画が立ち上がりました。紆余曲折あり Nekopanda 氏が約11年分のラジオや BS も含めた全チャンネルの過去ログを完璧に取得してくださったおかげで、11年分の過去ログが電子の海に消えていく事態は回避できました。 しかし、旧 API が廃止されてしまったため過去ログを API 経由で取得することができなくなり、またアーカイブされた過去ログから見たい範囲のログを探す場合も、アーカイブのサイズが合計約 150GB もあることから、とても以前のように手軽に過去ログに触れることはできなくなってしまいました。 一方、ニコニコ生放送内の一公式チャンネルとして移行した新ニコニコ実況では、タイムシフト(旧ニコニコ実況での過去ログに相当)の視聴期限は3週間までとなっているため、その期限を過ぎると過去ログは視聴できなくなってしまいます。 また一般会員は事前にタイムシフト予約をしておく必要があるなど、以前のような利便性は失われています。 私たちは、ニコニコ実況に投稿された日本のテレビ放送についてのコメントは、当時の世相や時代背景を端的に表す、歴史的価値のある資料だと考えています。 このデータセットでは、ニコニコ実況のすべての過去ログを後世に残すべく、Nekopanda 氏が配布されていた旧ニコニコ実況の 2020/12/15 までのすべての過去ログに加え、コミュニティでの実況番組も含めた新ニコニコ実況、さらに 2024/06/10 からは実況用代替コメントサーバーである [NX-Jikkyo](https://nx-jikkyo.tsukumijima.net/) の当日分の過去ログを5分に1回収集し、随時反映しています。 過去ログをかんたんに取得するための [API](https://jikkyo.tsukumijima.net/) もあります。 よろしければそちらもご活用ください。 ## Dataset Structure ### Builder Config | Key | Value Type | Default Value | Description | | --------------- | ---------- | ------------- | ----------- | | channel_id | string | None | 過去ログを取得するニコニコ実況チャンネルの ID (省略時はすべてのチャンネル) | | year | int | None | 取得する過去ログの年 (省略時はすべての年) | | number_of_files | int | None | 取得する過去ログファイルの数 (省略時はすべてのファイル) | ### Data Splits | Split | Approximate Size | Description | | ------- | ---------------- | ----------- | | sample | 1GB | サンプルとして、2022年中に投稿された TOKYO MX (ID: jk9) のすべての過去ログコメントを取得します。1GB ほどあります。 | | all | 190GB | 全チャンネル/全期間のすべての過去ログコメントを取得します。190GB 以上あるため注意してください。 | ### Data Fields | Field | Type | Description | | --------------- | -------- | ----------- | | thread | string | コメントのスレッド ID | | no | int64 | コメント番号 (コメ番) | | vpos | int64 | スレッド ID から起算したコメントの再生位置 (1/100秒) | | date | int64 | コメント投稿時間の UNIX タイムスタンプ | | date_usec | int64 | コメント投稿時間の小数点以下の時間 | | user_id | string | ユーザー ID (コマンドに 184 が指定されている場合は匿名化され、1週間ほどでシャッフルされる) | | mail | string | コメントのコマンド (184, red naka big など、省略されることもある) | | premium | boolean | コメントしたユーザーがプレミアム会員であれば True | | anonymity | boolean | 匿名コメントであれば True | | content | string | コメント本文 (AA など、まれに複数行コメントがあるので注意) | ## Example ```python from datasets import load_dataset dataset = load_dataset('KakologArchives/KakologArchives', 'all', channel_id='jk211', year=2023, number_of_files=10) for data in dataset['train']: print(data) ``` ## Licensing Information [MIT License](https://opensource.org/license/mit/)
tomap1410/StockMomentum
tomap1410
"2025-04-17T09:56:18"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T09:04:52"
--- dataset_info: features: - name: task dtype: string - name: goals dtype: int64 - name: description dtype: string - name: complete dtype: string - name: store_place dtype: string - name: email_working dtype: string - name: id dtype: string splits: - name: train num_bytes: 698 num_examples: 6 download_size: 3273 dataset_size: 698 configs: - config_name: default data_files: - split: train path: data/train-* ---
TRANNGUYENAI/StockMomentum70000_90000
TRANNGUYENAI
"2025-04-17T09:56:14"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T09:56:12"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 79029 num_examples: 50 download_size: 33937 dataset_size: 79029 configs: - config_name: default data_files: - split: train path: data/train-* ---
efwkjn/dataset
efwkjn
"2025-04-17T09:56:01"
3,513
0
[ "region:us" ]
null
"2025-04-12T22:57:56"
--- viewer: false --- Processed whisper training data. Final pass datamix
ishani29/mahakumbh-flan-t5
ishani29
"2025-04-17T09:54:55"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T09:54:47"
--- dataset_info: features: - name: Title dtype: string - name: Link dtype: string - name: text dtype: string - name: summary dtype: string splits: - name: train num_bytes: 1976918.862275449 num_examples: 851 - name: test num_bytes: 350781.1377245509 num_examples: 151 download_size: 1087400 dataset_size: 2327700.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
great0001/llama3_0
great0001
"2025-04-17T09:54:49"
1,696
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-01T19:19:42"
--- dataset_info: features: - name: date dtype: string - name: data struct: - name: messages list: - name: content dtype: string - name: role dtype: string - name: system_prompt dtype: string splits: - name: train num_bytes: 66009238 num_examples: 15816 download_size: 27974668 dataset_size: 66009238 configs: - config_name: default data_files: - split: train path: data/train-* ---
ishani29/mahakumbh-news-summarization
ishani29
"2025-04-17T09:54:43"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-16T22:02:00"
--- dataset_info: features: - name: Title dtype: string - name: Link dtype: string - name: text dtype: string - name: summary dtype: string splits: - name: train num_bytes: 1976918.862275449 num_examples: 851 - name: test num_bytes: 350781.1377245509 num_examples: 151 download_size: 1087400 dataset_size: 2327700.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
gunnybd01/Fully100000_120000
gunnybd01
"2025-04-17T09:54:35"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T05:38:59"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 827274 num_examples: 950 download_size: 288414 dataset_size: 827274 configs: - config_name: default data_files: - split: train path: data/train-* ---
TRANNGUYENAI/StockMomentum50000_60000
TRANNGUYENAI
"2025-04-17T09:54:20"
5
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-16T04:34:34"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 4326627 num_examples: 2750 download_size: 1548828 dataset_size: 4326627 configs: - config_name: default data_files: - split: train path: data/train-* ---
abokinala/sputnik_100_28_pick_place_surface
abokinala
"2025-04-17T09:54:20"
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "device.so100", "collection.sputnik_100", "operator.abokinala" ]
[ "robotics" ]
"2025-04-17T09:53:51"
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - device.so100 - collection.sputnik_100 - operator.abokinala configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 20, "total_frames": 5971, "total_tasks": 1, "total_videos": 60, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:20" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 720, 1280, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 720, "video.width": 1280, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.usb_front": { "dtype": "video", "shape": [ 720, 1280, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 720, "video.width": 1280, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.side_view": { "dtype": "video", "shape": [ 720, 1280, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 720, "video.width": 1280, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
hf-doc-build/doc-build-dev
hf-doc-build
"2025-04-17T09:53:39"
122,604
4
[ "license:mit", "region:us", "documentation" ]
null
"2022-11-08T09:03:37"
--- license: mit tags: - documentation pretty_name: HF Documentation (PRs) viewer: false --- This is a dataset which contains the docs from all the PRs that are updating one of the docs from https://huggingface.co/docs. It is automatically updated by this [github action](https://github.com/huggingface/doc-builder/blob/main/.github/workflows/build_pr_documentation.yml) from the [doc-buider](https://github.com/huggingface/doc-builder) repo.
hf-doc-build/doc-build
hf-doc-build
"2025-04-17T09:53:28"
218,723
9
[ "license:mit", "region:us" ]
null
"2022-10-24T15:39:05"
--- license: mit pretty_name: Generated Docs for HF viewer: false --- This repo contains all the docs published on https://huggingface.co/docs. The docs are generated with https://github.com/huggingface/doc-builder. <!-- comment to trigger webhook.= -->
intelsense/healix_360
intelsense
"2025-04-17T09:53:26"
2,283
0
[ "license:mit", "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-03-09T09:38:09"
--- license: mit configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: processed_text dtype: string splits: - name: train num_bytes: 644983655 num_examples: 832000 download_size: 341681739 dataset_size: 644983655 ---
sevenc-nanashi/kiiteitte
sevenc-nanashi
"2025-04-17T09:52:31"
830
0
[ "size_categories:100K<n<1M", "format:json", "modality:image", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "region:us" ]
null
"2025-03-03T09:58:01"
--- configs: - config_name: default data_files: - split: "2023" path: histories/2023/*.jsonl - split: "2024" path: histories/2024/*.jsonl - split: "2025" path: histories/2025/*.jsonl - config_name: all_histories data_files: - split: "all_histories" path: histories/*/*.jsonl size_categories: - 10K<n<100K dataset_info: - config_name: default features: - name: video_id dtype: string - name: title dtype: string - name: author dtype: string - name: thumbnail dtype: string - name: date dtype: timestamp[s] - name: new_faves dtype: int32 - name: spins dtype: int32 - name: pickup_user_url dtype: string - name: pickup_user_name dtype: string - name: pickup_user_icon dtype: string - name: pickup_playlist_url dtype: string - config_name: all_histories features: - name: video_id dtype: string - name: title dtype: string - name: author dtype: string - name: thumbnail dtype: string - name: date dtype: timestamp[s] - name: new_faves dtype: int32 - name: spins dtype: int32 - name: pickup_user_url dtype: string - name: pickup_user_name dtype: string - name: pickup_user_icon dtype: string - name: pickup_playlist_url dtype: string --- # Kiiteitte history [Kiiteitte](https://github.com/sevenc-nanashi/kiiteitte-web) が収集した、今までの選曲履歴。 1時間おきに更新されます。 ## 型 ```jsonc { // 動画ID "video_id": "sm44670499", // タイトル "title": "library->w4nderers / 足立レイ、つくよみちゃん", // 投稿者 "author": "名無し。", // サムネイルのURL "thumbnail": "https://nicovideo.cdn.nimg.jp/thumbnails/44670499/44670499.91820835", // 選曲日時 "date": "2025-02-22 12:51:51", // 新しく増えたお気に入り数。不明の場合は null "new_faves": 5, // 回ったユーザーの数。不明の場合は null "spins": 13, // イチ押しリストのユーザーのURL。イチ押しリスト以外から選曲された場合は null "pickup_user_url": "https://kiite.jp/user/vocahai_3939", // イチ押しリストのユーザーの名前。イチ押しリスト以外から選曲された場合は null "pickup_user_name": "どこかのボカ廃", // イチ押しリストのユーザーのアイコンのURL。イチ押しリスト以外から選曲された場合は null "pickup_user_icon": "https://kiite.jp/img/icon-user.jpg", // イチ押しリストのURL。イチ押しリスト以外から選曲された場合は null "pickup_playlist_url": "https://kiite.jp/playlist/0CbV8bnUxq", } ```
zkpbeats/reddit_ds_100415
zkpbeats
"2025-04-17T09:52:24"
679
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-04-03T12:12:07"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** zkpbeats/reddit_ds_100415 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5H3AggXAqErtsYWdn5A2cnf2MhkVS45HzqyErD3VxoDGWuxC ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{zkpbeats2025datauniversereddit_ds_100415, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={zkpbeats}, year={2025}, url={https://huggingface.co/datasets/zkpbeats/reddit_ds_100415}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 3809257 - **Date Range:** 2025-03-05T00:00:00Z to 2025-04-17T00:00:00Z - **Last Updated:** 2025-04-17T09:52:22Z ### Data Distribution - Posts: 1.69% - Comments: 25.46% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/worldnews | 45869 | 4.44% | | 2 | r/mildlyinteresting | 29148 | 2.82% | | 3 | r/wallstreetbets | 26946 | 2.61% | | 4 | r/Millennials | 18138 | 1.75% | | 5 | r/redscarepod | 11965 | 1.16% | | 6 | r/Gamingcirclejerk | 11426 | 1.10% | | 7 | r/BravoRealHousewives | 10649 | 1.03% | | 8 | r/CrazyFuckingVideos | 10438 | 1.01% | | 9 | r/Grimdank | 9557 | 0.92% | | 10 | r/mexico | 9144 | 0.88% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-04-03T11:50:44Z | 210554 | 210554 | | 2025-04-03T11:52:19Z | 206249 | 416803 | | 2025-04-03T11:53:58Z | 204074 | 620877 | | 2025-04-03T11:55:36Z | 210761 | 831638 | | 2025-04-03T11:57:11Z | 202795 | 1034433 | | 2025-04-03T11:58:47Z | 228184 | 1262617 | | 2025-04-03T12:00:22Z | 210899 | 1473516 | | 2025-04-03T12:01:57Z | 204861 | 1678377 | | 2025-04-03T12:03:35Z | 219572 | 1897949 | | 2025-04-03T12:05:11Z | 216640 | 2114589 | | 2025-04-03T12:06:39Z | 160498 | 2275087 | | 2025-04-03T12:08:09Z | 166653 | 2441740 | | 2025-04-03T12:09:37Z | 167136 | 2608876 | | 2025-04-03T12:11:04Z | 166162 | 2775038 | | 2025-04-03T12:13:03Z | 380438 | 3155476 | | 2025-04-03T14:39:28Z | 6425 | 3161901 | | 2025-04-03T17:01:39Z | 6679 | 3168580 | | 2025-04-03T19:23:53Z | 7357 | 3175937 | | 2025-04-03T21:46:21Z | 7852 | 3183789 | | 2025-04-04T00:08:44Z | 5140 | 3188929 | | 2025-04-04T02:31:20Z | 5171 | 3194100 | | 2025-04-04T04:54:23Z | 5775 | 3199875 | | 2025-04-04T07:16:23Z | 3838 | 3203713 | | 2025-04-04T09:38:21Z | 2899 | 3206612 | | 2025-04-04T12:00:26Z | 3628 | 3210240 | | 2025-04-04T14:23:28Z | 6001 | 3216241 | | 2025-04-04T16:45:46Z | 5832 | 3222073 | | 2025-04-04T19:08:23Z | 6231 | 3228304 | | 2025-04-04T21:30:56Z | 6569 | 3234873 | | 2025-04-04T23:53:58Z | 5373 | 3240246 | | 2025-04-05T02:16:15Z | 4243 | 3244489 | | 2025-04-05T04:38:16Z | 4651 | 3249140 | | 2025-04-05T07:00:19Z | 3495 | 3252635 | | 2025-04-05T09:22:32Z | 3338 | 3255973 | | 2025-04-05T11:45:03Z | 2452 | 3258425 | | 2025-04-05T14:07:17Z | 4328 | 3262753 | | 2025-04-05T16:29:57Z | 3689 | 3266442 | | 2025-04-05T18:52:26Z | 5991 | 3272433 | | 2025-04-05T21:15:03Z | 6854 | 3279287 | | 2025-04-05T23:38:07Z | 6984 | 3286271 | | 2025-04-06T02:00:27Z | 6991 | 3293262 | | 2025-04-06T04:22:39Z | 4799 | 3298061 | | 2025-04-06T06:44:50Z | 2661 | 3300722 | | 2025-04-06T09:07:31Z | 3574 | 3304296 | | 2025-04-06T11:29:54Z | 2172 | 3306468 | | 2025-04-06T13:52:27Z | 4199 | 3310667 | | 2025-04-06T16:14:59Z | 5858 | 3316525 | | 2025-04-06T18:37:35Z | 5348 | 3321873 | | 2025-04-06T21:00:19Z | 4912 | 3326785 | | 2025-04-06T23:22:45Z | 4708 | 3331493 | | 2025-04-07T01:45:19Z | 6301 | 3337794 | | 2025-04-07T04:08:02Z | 5742 | 3343536 | | 2025-04-07T06:30:16Z | 3658 | 3347194 | | 2025-04-07T08:53:18Z | 2885 | 3350079 | | 2025-04-07T11:16:48Z | 3487 | 3353566 | | 2025-04-07T13:47:16Z | 4379 | 3357945 | | 2025-04-07T16:12:00Z | 5713 | 3363658 | | 2025-04-07T18:34:44Z | 8129 | 3371787 | | 2025-04-07T20:57:17Z | 5487 | 3377274 | | 2025-04-07T23:21:52Z | 6493 | 3383767 | | 2025-04-08T01:50:29Z | 5170 | 3388937 | | 2025-04-08T04:13:51Z | 8351 | 3397288 | | 2025-04-08T06:36:57Z | 6843 | 3404131 | | 2025-04-08T08:41:00Z | 2766 | 3406897 | | 2025-04-08T09:50:27Z | 768 | 3407665 | | 2025-04-08T12:13:12Z | 4904 | 3412569 | | 2025-04-08T14:35:34Z | 4912 | 3417481 | | 2025-04-08T16:58:23Z | 6852 | 3424333 | | 2025-04-08T19:22:08Z | 9543 | 3433876 | | 2025-04-08T21:45:20Z | 8265 | 3442141 | | 2025-04-09T00:07:59Z | 6245 | 3448386 | | 2025-04-09T02:31:24Z | 6627 | 3455013 | | 2025-04-09T04:53:56Z | 4828 | 3459841 | | 2025-04-09T07:16:33Z | 3892 | 3463733 | | 2025-04-09T09:38:54Z | 4915 | 3468648 | | 2025-04-09T12:02:24Z | 5319 | 3473967 | | 2025-04-09T14:25:07Z | 4554 | 3478521 | | 2025-04-09T16:48:02Z | 7621 | 3486142 | | 2025-04-09T19:11:33Z | 7758 | 3493900 | | 2025-04-09T21:34:00Z | 7341 | 3501241 | | 2025-04-09T23:56:44Z | 6971 | 3508212 | | 2025-04-10T02:19:25Z | 4208 | 3512420 | | 2025-04-10T04:41:32Z | 5183 | 3517603 | | 2025-04-10T07:03:53Z | 3823 | 3521426 | | 2025-04-10T09:26:10Z | 4381 | 3525807 | | 2025-04-10T11:48:29Z | 2557 | 3528364 | | 2025-04-10T14:11:02Z | 5006 | 3533370 | | 2025-04-10T16:33:29Z | 5322 | 3538692 | | 2025-04-10T18:56:09Z | 8797 | 3547489 | | 2025-04-10T21:18:32Z | 7802 | 3555291 | | 2025-04-10T23:40:49Z | 6387 | 3561678 | | 2025-04-11T02:03:18Z | 6742 | 3568420 | | 2025-04-11T04:25:48Z | 5316 | 3573736 | | 2025-04-11T06:48:21Z | 3208 | 3576944 | | 2025-04-11T09:10:58Z | 3525 | 3580469 | | 2025-04-11T11:33:09Z | 2446 | 3582915 | | 2025-04-11T13:55:16Z | 5780 | 3588695 | | 2025-04-11T16:18:19Z | 4603 | 3593298 | | 2025-04-11T18:40:49Z | 6254 | 3599552 | | 2025-04-11T21:04:04Z | 7102 | 3606654 | | 2025-04-11T23:26:31Z | 6921 | 3613575 | | 2025-04-12T01:48:50Z | 6846 | 3620421 | | 2025-04-12T04:11:13Z | 5135 | 3625556 | | 2025-04-12T06:33:18Z | 3085 | 3628641 | | 2025-04-12T08:55:40Z | 3350 | 3631991 | | 2025-04-12T11:17:56Z | 3300 | 3635291 | | 2025-04-12T13:40:01Z | 4321 | 3639612 | | 2025-04-12T16:02:33Z | 7240 | 3646852 | | 2025-04-12T18:25:06Z | 5949 | 3652801 | | 2025-04-12T20:47:44Z | 6256 | 3659057 | | 2025-04-12T23:10:37Z | 5369 | 3664426 | | 2025-04-13T01:33:00Z | 6485 | 3670911 | | 2025-04-13T03:55:52Z | 5391 | 3676302 | | 2025-04-13T06:18:04Z | 3830 | 3680132 | | 2025-04-13T08:40:14Z | 3512 | 3683644 | | 2025-04-13T11:02:59Z | 3418 | 3687062 | | 2025-04-13T13:26:11Z | 5500 | 3692562 | | 2025-04-13T15:48:49Z | 5493 | 3698055 | | 2025-04-13T18:11:50Z | 7394 | 3705449 | | 2025-04-13T20:37:01Z | 6159 | 3711608 | | 2025-04-13T22:59:54Z | 5187 | 3716795 | | 2025-04-14T01:22:35Z | 5111 | 3721906 | | 2025-04-14T03:44:47Z | 5143 | 3727049 | | 2025-04-14T06:08:05Z | 3821 | 3730870 | | 2025-04-14T08:36:02Z | 3212 | 3734082 | | 2025-04-14T11:04:28Z | 4720 | 3738802 | | 2025-04-14T13:26:57Z | 5039 | 3743841 | | 2025-04-14T15:50:38Z | 6988 | 3750829 | | 2025-04-14T18:13:36Z | 8539 | 3759368 | | 2025-04-14T20:36:13Z | 7420 | 3766788 | | 2025-04-14T22:58:44Z | 6463 | 3773251 | | 2025-04-15T01:21:10Z | 3726 | 3776977 | | 2025-04-15T03:43:52Z | 5115 | 3782092 | | 2025-04-15T06:43:06Z | 5232 | 3787324 | | 2025-04-15T09:04:46Z | 459 | 3787783 | | 2025-04-15T11:08:07Z | 354 | 3788137 | | 2025-04-15T13:38:11Z | 740 | 3788877 | | 2025-04-15T16:02:08Z | 880 | 3789757 | | 2025-04-15T18:26:29Z | 888 | 3790645 | | 2025-04-15T20:52:51Z | 847 | 3791492 | | 2025-04-15T23:16:39Z | 877 | 3792369 | | 2025-04-16T01:42:04Z | 713 | 3793082 | | 2025-04-16T04:04:31Z | 795 | 3793877 | | 2025-04-16T06:26:24Z | 461 | 3794338 | | 2025-04-16T08:52:25Z | 436 | 3794774 | | 2025-04-16T10:03:14Z | 175 | 3794949 | | 2025-04-16T12:26:51Z | 521 | 3795470 | | 2025-04-16T14:49:10Z | 819 | 3796289 | | 2025-04-16T17:13:40Z | 932 | 3797221 | | 2025-04-16T19:36:27Z | 901 | 3798122 | | 2025-04-16T21:59:22Z | 789 | 3798911 | | 2025-04-17T00:21:24Z | 689 | 3799600 | | 2025-04-17T02:44:40Z | 694 | 3800294 | | 2025-04-17T05:07:20Z | 586 | 3800880 | | 2025-04-17T07:30:12Z | 4648 | 3805528 | | 2025-04-17T09:52:22Z | 3729 | 3809257 |
MilyaShams/multi_nli-ru_10k
MilyaShams
"2025-04-17T09:51:56"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T09:51:50"
--- dataset_info: features: - name: premise dtype: string - name: hypothesis dtype: string - name: label dtype: class_label: names: '0': entailment '1': neutral '2': contradiction splits: - name: train num_bytes: 2847083.1812222223 num_examples: 7999 - name: validation num_bytes: 356285.8187777778 num_examples: 1001 - name: test num_bytes: 350769 num_examples: 1000 download_size: 1939594 dataset_size: 3554138.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
davnas/library-occupancy
davnas
"2025-04-17T09:51:39"
1,746
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2024-12-10T12:50:21"
--- dataset_info: features: - name: CommitTime dtype: timestamp[ns] - name: Time dtype: string - name: Occupancy_main dtype: int64 - name: Occupancy_southEast dtype: int64 - name: Occupancy_north dtype: int64 - name: Occupancy_south dtype: int64 - name: Occupancy_angdomen dtype: int64 - name: Occupancy_newton dtype: int64 - name: Prediction_date dtype: timestamp[ns] splits: - name: train num_bytes: 179945 num_examples: 2465 download_size: 26804 dataset_size: 179945 configs: - config_name: default data_files: - split: train path: data/train-* ---
zkpbeats/reddit_ds_684447
zkpbeats
"2025-04-17T09:51:18"
755
0
[ "task_categories:text-classification", "task_categories:token-classification", "task_categories:question-answering", "task_categories:summarization", "task_categories:text-generation", "task_ids:sentiment-analysis", "task_ids:topic-classification", "task_ids:named-entity-recognition", "task_ids:language-modeling", "task_ids:text-scoring", "task_ids:multi-class-classification", "task_ids:multi-label-classification", "task_ids:extractive-qa", "task_ids:news-articles-summarization", "multilinguality:multilingual", "source_datasets:original", "license:mit", "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[ "text-classification", "token-classification", "question-answering", "summarization", "text-generation" ]
"2025-04-03T12:09:12"
--- license: mit multilinguality: - multilingual source_datasets: - original task_categories: - text-classification - token-classification - question-answering - summarization - text-generation task_ids: - sentiment-analysis - topic-classification - named-entity-recognition - language-modeling - text-scoring - multi-class-classification - multi-label-classification - extractive-qa - news-articles-summarization --- # Bittensor Subnet 13 Reddit Dataset <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/bittensor.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> <center> <img src="https://huggingface.co/datasets/macrocosm-os/images/resolve/main/macrocosmos-black.png" alt="Data-universe: The finest collection of social media data the web has to offer"> </center> ## Dataset Description - **Repository:** zkpbeats/reddit_ds_684447 - **Subnet:** Bittensor Subnet 13 - **Miner Hotkey:** 5E7EpVEXpKBhiJsatUbQwhkQRzLSB2j8GgwwbWoLnYpJmpQn ### Dataset Summary This dataset is part of the Bittensor Subnet 13 decentralized network, containing preprocessed Reddit data. The data is continuously updated by network miners, providing a real-time stream of Reddit content for various analytical and machine learning tasks. For more information about the dataset, please visit the [official repository](https://github.com/macrocosm-os/data-universe). ### Supported Tasks The versatility of this dataset allows researchers and data scientists to explore various aspects of social media dynamics and develop innovative applications. Users are encouraged to leverage this data creatively for their specific research or business needs. For example: - Sentiment Analysis - Topic Modeling - Community Analysis - Content Categorization ### Languages Primary language: Datasets are mostly English, but can be multilingual due to decentralized ways of creation. ## Dataset Structure ### Data Instances Each instance represents a single Reddit post or comment with the following fields: ### Data Fields - `text` (string): The main content of the Reddit post or comment. - `label` (string): Sentiment or topic category of the content. - `dataType` (string): Indicates whether the entry is a post or a comment. - `communityName` (string): The name of the subreddit where the content was posted. - `datetime` (string): The date when the content was posted or commented. - `username_encoded` (string): An encoded version of the username to maintain user privacy. - `url_encoded` (string): An encoded version of any URLs included in the content. ### Data Splits This dataset is continuously updated and does not have fixed splits. Users should create their own splits based on their requirements and the data's timestamp. ## Dataset Creation ### Source Data Data is collected from public posts and comments on Reddit, adhering to the platform's terms of service and API usage guidelines. ### Personal and Sensitive Information All usernames and URLs are encoded to protect user privacy. The dataset does not intentionally include personal or sensitive information. ## Considerations for Using the Data ### Social Impact and Biases Users should be aware of potential biases inherent in Reddit data, including demographic and content biases. This dataset reflects the content and opinions expressed on Reddit and should not be considered a representative sample of the general population. ### Limitations - Data quality may vary due to the nature of media sources. - The dataset may contain noise, spam, or irrelevant content typical of social media platforms. - Temporal biases may exist due to real-time collection methods. - The dataset is limited to public subreddits and does not include private or restricted communities. ## Additional Information ### Licensing Information The dataset is released under the MIT license. The use of this dataset is also subject to Reddit Terms of Use. ### Citation Information If you use this dataset in your research, please cite it as follows: ``` @misc{zkpbeats2025datauniversereddit_ds_684447, title={The Data Universe Datasets: The finest collection of social media data the web has to offer}, author={zkpbeats}, year={2025}, url={https://huggingface.co/datasets/zkpbeats/reddit_ds_684447}, } ``` ### Contributions To report issues or contribute to the dataset, please contact the miner or use the Bittensor Subnet 13 governance mechanisms. ## Dataset Statistics [This section is automatically updated] - **Total Instances:** 4018209 - **Date Range:** 2025-03-05T00:00:00Z to 2025-04-17T00:00:00Z - **Last Updated:** 2025-04-17T09:51:17Z ### Data Distribution - Posts: 2.34% - Comments: 36.89% ### Top 10 Subreddits For full statistics, please refer to the `stats.json` file in the repository. | Rank | Topic | Total Count | Percentage | |------|-------|-------------|-------------| | 1 | r/teenagers | 70144 | 4.45% | | 2 | r/Helldivers | 67909 | 4.31% | | 3 | r/formula1 | 49319 | 3.13% | | 4 | r/technology | 48438 | 3.07% | | 5 | r/SipsTea | 39755 | 2.52% | | 6 | r/wallstreetbets | 36881 | 2.34% | | 7 | r/Superstonk | 32231 | 2.04% | | 8 | r/boxoffice | 23146 | 1.47% | | 9 | r/CasualUK | 22661 | 1.44% | | 10 | r/ClashOfClans | 22355 | 1.42% | ## Update History | Date | New Instances | Total Instances | |------|---------------|-----------------| | 2025-04-03T11:50:44Z | 210554 | 210554 | | 2025-04-03T11:52:19Z | 206249 | 416803 | | 2025-04-03T11:53:58Z | 204074 | 620877 | | 2025-04-03T11:55:36Z | 210761 | 831638 | | 2025-04-03T11:57:11Z | 202795 | 1034433 | | 2025-04-03T11:58:47Z | 228184 | 1262617 | | 2025-04-03T12:00:22Z | 210899 | 1473516 | | 2025-04-03T12:01:57Z | 204861 | 1678377 | | 2025-04-03T12:03:35Z | 219572 | 1897949 | | 2025-04-03T12:05:11Z | 216640 | 2114589 | | 2025-04-03T12:06:39Z | 160498 | 2275087 | | 2025-04-03T12:08:09Z | 166653 | 2441740 | | 2025-04-03T12:09:37Z | 167136 | 2608876 | | 2025-04-03T14:37:16Z | 6012 | 2614888 | | 2025-04-03T16:59:27Z | 8021 | 2622909 | | 2025-04-03T19:21:39Z | 5134 | 2628043 | | 2025-04-03T21:44:03Z | 8218 | 2636261 | | 2025-04-04T00:06:31Z | 4549 | 2640810 | | 2025-04-04T02:29:04Z | 3893 | 2644703 | | 2025-04-04T04:52:12Z | 3339 | 2648042 | | 2025-04-04T07:14:12Z | 3585 | 2651627 | | 2025-04-04T09:36:09Z | 2926 | 2654553 | | 2025-04-04T11:58:15Z | 2273 | 2656826 | | 2025-04-04T14:21:16Z | 4070 | 2660896 | | 2025-04-04T16:43:31Z | 7070 | 2667966 | | 2025-04-04T19:06:00Z | 5014 | 2672980 | | 2025-04-04T21:28:34Z | 5496 | 2678476 | | 2025-04-04T23:51:43Z | 6492 | 2684968 | | 2025-04-05T02:14:05Z | 4765 | 2689733 | | 2025-04-05T04:36:05Z | 3603 | 2693336 | | 2025-04-05T06:58:08Z | 3641 | 2696977 | | 2025-04-05T09:20:21Z | 3285 | 2700262 | | 2025-04-05T11:42:50Z | 3567 | 2703829 | | 2025-04-05T14:05:04Z | 4652 | 2708481 | | 2025-04-05T16:27:43Z | 6703 | 2715184 | | 2025-04-05T18:50:12Z | 4309 | 2719493 | | 2025-04-05T21:12:49Z | 4931 | 2724424 | | 2025-04-05T23:35:48Z | 6682 | 2731106 | | 2025-04-06T01:58:15Z | 5677 | 2736783 | | 2025-04-06T04:20:25Z | 4914 | 2741697 | | 2025-04-06T06:42:38Z | 4107 | 2745804 | | 2025-04-06T09:05:17Z | 2916 | 2748720 | | 2025-04-06T11:27:41Z | 3423 | 2752143 | | 2025-04-06T13:50:12Z | 4382 | 2756525 | | 2025-04-06T16:12:46Z | 7841 | 2764366 | | 2025-04-06T18:35:22Z | 6755 | 2771121 | | 2025-04-06T20:58:06Z | 7553 | 2778674 | | 2025-04-06T23:20:29Z | 4694 | 2783368 | | 2025-04-07T01:42:58Z | 4013 | 2787381 | | 2025-04-07T04:05:48Z | 4205 | 2791586 | | 2025-04-07T06:28:00Z | 4865 | 2796451 | | 2025-04-07T08:51:04Z | 4575 | 2801026 | | 2025-04-07T11:14:33Z | 2976 | 2804002 | | 2025-04-07T13:43:59Z | 6746 | 2810748 | | 2025-04-07T16:09:27Z | 7351 | 2818099 | | 2025-04-07T18:32:30Z | 7438 | 2825537 | | 2025-04-07T20:55:03Z | 5858 | 2831395 | | 2025-04-07T23:19:23Z | 5595 | 2836990 | | 2025-04-08T01:47:28Z | 4501 | 2841491 | | 2025-04-08T04:11:35Z | 5201 | 2846692 | | 2025-04-08T06:34:42Z | 4027 | 2850719 | | 2025-04-08T07:25:07Z | 819500 | 3670219 | | 2025-04-08T09:49:20Z | 3467 | 3673686 | | 2025-04-08T12:12:06Z | 2923 | 3676609 | | 2025-04-08T14:34:28Z | 3340 | 3679949 | | 2025-04-08T16:57:15Z | 7115 | 3687064 | | 2025-04-08T19:20:48Z | 6129 | 3693193 | | 2025-04-08T21:44:13Z | 5425 | 3698618 | | 2025-04-09T00:06:51Z | 4591 | 3703209 | | 2025-04-09T02:30:18Z | 5063 | 3708272 | | 2025-04-09T04:52:49Z | 4510 | 3712782 | | 2025-04-09T07:15:25Z | 2576 | 3715358 | | 2025-04-09T09:37:46Z | 3146 | 3718504 | | 2025-04-09T12:01:12Z | 2624 | 3721128 | | 2025-04-09T14:24:00Z | 5747 | 3726875 | | 2025-04-09T16:46:55Z | 5781 | 3732656 | | 2025-04-09T19:10:05Z | 6126 | 3738782 | | 2025-04-09T21:32:52Z | 5814 | 3744596 | | 2025-04-09T23:55:35Z | 5109 | 3749705 | | 2025-04-10T02:18:17Z | 4401 | 3754106 | | 2025-04-10T04:40:25Z | 3962 | 3758068 | | 2025-04-10T07:02:46Z | 3661 | 3761729 | | 2025-04-10T09:25:04Z | 2521 | 3764250 | | 2025-04-10T11:47:21Z | 3076 | 3767326 | | 2025-04-10T14:09:56Z | 5727 | 3773053 | | 2025-04-10T16:32:17Z | 6677 | 3779730 | | 2025-04-10T18:55:00Z | 7279 | 3787009 | | 2025-04-10T21:17:25Z | 5033 | 3792042 | | 2025-04-10T23:39:42Z | 6182 | 3798224 | | 2025-04-11T02:02:12Z | 5227 | 3803451 | | 2025-04-11T04:24:43Z | 3812 | 3807263 | | 2025-04-11T06:47:16Z | 3407 | 3810670 | | 2025-04-11T09:09:52Z | 3223 | 3813893 | | 2025-04-11T11:32:04Z | 2816 | 3816709 | | 2025-04-11T13:54:09Z | 3479 | 3820188 | | 2025-04-11T16:17:11Z | 7176 | 3827364 | | 2025-04-11T18:39:42Z | 7644 | 3835008 | | 2025-04-11T21:02:54Z | 5167 | 3840175 | | 2025-04-11T23:25:23Z | 4410 | 3844585 | | 2025-04-12T01:47:44Z | 5528 | 3850113 | | 2025-04-12T04:09:52Z | 5178 | 3855291 | | 2025-04-12T06:32:12Z | 4863 | 3860154 | | 2025-04-12T08:54:33Z | 2591 | 3862745 | | 2025-04-12T11:16:50Z | 3386 | 3866131 | | 2025-04-12T13:38:55Z | 3952 | 3870083 | | 2025-04-12T16:01:27Z | 6808 | 3876891 | | 2025-04-12T18:24:00Z | 7035 | 3883926 | | 2025-04-12T20:46:38Z | 6413 | 3890339 | | 2025-04-12T23:09:25Z | 7285 | 3897624 | | 2025-04-13T01:31:53Z | 5743 | 3903367 | | 2025-04-13T03:54:44Z | 3964 | 3907331 | | 2025-04-13T06:16:57Z | 3439 | 3910770 | | 2025-04-13T08:39:04Z | 3634 | 3914404 | | 2025-04-13T11:01:52Z | 3084 | 3917488 | | 2025-04-13T13:25:02Z | 3285 | 3920773 | | 2025-04-13T15:47:42Z | 6797 | 3927570 | | 2025-04-13T18:10:43Z | 8090 | 3935660 | | 2025-04-13T20:35:52Z | 4613 | 3940273 | | 2025-04-13T22:58:44Z | 4753 | 3945026 | | 2025-04-14T01:21:29Z | 4582 | 3949608 | | 2025-04-14T03:43:38Z | 4468 | 3954076 | | 2025-04-14T06:06:53Z | 3461 | 3957537 | | 2025-04-14T08:34:34Z | 3781 | 3961318 | | 2025-04-14T11:03:16Z | 2441 | 3963759 | | 2025-04-14T13:25:50Z | 3427 | 3967186 | | 2025-04-14T15:49:29Z | 5023 | 3972209 | | 2025-04-14T18:12:27Z | 6004 | 3978213 | | 2025-04-14T20:35:03Z | 6375 | 3984588 | | 2025-04-14T22:57:38Z | 4204 | 3988792 | | 2025-04-15T01:19:58Z | 6034 | 3994826 | | 2025-04-15T03:42:43Z | 3592 | 3998418 | | 2025-04-15T06:40:46Z | 269 | 3998687 | | 2025-04-15T09:03:42Z | 555 | 3999242 | | 2025-04-15T11:05:57Z | 333 | 3999575 | | 2025-04-15T13:35:26Z | 744 | 4000319 | | 2025-04-15T15:59:57Z | 917 | 4001236 | | 2025-04-15T18:24:19Z | 884 | 4002120 | | 2025-04-15T20:50:33Z | 802 | 4002922 | | 2025-04-15T23:14:28Z | 882 | 4003804 | | 2025-04-16T01:38:45Z | 705 | 4004509 | | 2025-04-16T02:48:42Z | 221 | 4004730 | | 2025-04-16T05:11:06Z | 577 | 4005307 | | 2025-04-16T07:32:59Z | 457 | 4005764 | | 2025-04-16T10:02:08Z | 495 | 4006259 | | 2025-04-16T12:25:44Z | 568 | 4006827 | | 2025-04-16T14:48:04Z | 817 | 4007644 | | 2025-04-16T17:12:34Z | 926 | 4008570 | | 2025-04-16T19:35:22Z | 904 | 4009474 | | 2025-04-16T21:58:12Z | 872 | 4010346 | | 2025-04-17T00:20:19Z | 757 | 4011103 | | 2025-04-17T02:43:34Z | 668 | 4011771 | | 2025-04-17T05:06:13Z | 620 | 4012391 | | 2025-04-17T07:29:08Z | 3007 | 4015398 | | 2025-04-17T09:51:17Z | 2811 | 4018209 |
amyf/hacker_news_score
amyf
"2025-04-17T09:50:51"
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T09:50:38"
--- dataset_info: features: - name: title dtype: string - name: score dtype: int64 - name: time dtype: timestamp[ns] - name: url dtype: string splits: - name: train num_bytes: 211111120 num_examples: 1500000 download_size: 144585746 dataset_size: 211111120 configs: - config_name: default data_files: - split: train path: data/train-* ---
nguyentn1410/Trend70000_90000
nguyentn1410
"2025-04-17T09:50:32"
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T04:05:45"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 1115782 num_examples: 800 download_size: 409079 dataset_size: 1115782 configs: - config_name: default data_files: - split: train path: data/train-* ---
macwiatrak/bacbench-strain-clustering-dna
macwiatrak
"2025-04-17T09:50:32"
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-17T09:01:06"
--- dataset_info: features: - name: genome_name dtype: string - name: contig_name sequence: string - name: dna_sequence dtype: string - name: start sequence: sequence: string - name: end sequence: sequence: string - name: locus_tag sequence: sequence: string - name: strand sequence: sequence: string - name: genome_completeness dtype: string - name: genome_lineage dtype: string - name: genome_sample_accession dtype: string - name: genome_study_accession dtype: string - name: country dtype: string - name: family dtype: string - name: genus dtype: string - name: species dtype: string splits: - name: test num_bytes: 169603550566 num_examples: 60710 download_size: 78407309865 dataset_size: 169603550566 configs: - config_name: default data_files: - split: test path: data/test-* ---
TRANNGUYENAI/StockMomentum60000_70000
TRANNGUYENAI
"2025-04-17T09:49:44"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-16T15:37:09"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 5981571 num_examples: 3750 download_size: 2145093 dataset_size: 5981571 configs: - config_name: default data_files: - split: train path: data/train-* ---
gunnybd01/Fully20000_40000
gunnybd01
"2025-04-17T09:49:41"
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
null
"2025-04-16T20:21:02"
--- dataset_info: features: - name: reports dtype: string - name: labels dtype: float64 splits: - name: train num_bytes: 4481477 num_examples: 3150 download_size: 1590906 dataset_size: 4481477 configs: - config_name: default data_files: - split: train path: data/train-* ---
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
28