license: odbl
π Divar Real Estate Ads Dataset
π Overview
The real_estate_ads
dataset contains one million anonymized real estate advertisements collected from the Divar platform, one of the largest classified ads platforms in the Middle East. This comprehensive dataset provides researchers, data scientists, and entrepreneurs with authentic real estate market data to build innovative solutions such as price evaluation models, market analysis tools, and forecasting systems.
π Dataset Details
Property | Value |
---|---|
Size | 1,000,000 rows, approximately 750 MB |
Time Period | Six-month period (2024) |
Source | Anonymized real estate listings from Divar |
Format | Tabular data (CSV/Parquet) with 57 columns |
Languages | Mixed (primarily Persian) |
Domains | Real Estate, Property Market |
π Quick Start
# Load the dataset using the Hugging Face datasets library
from datasets import load_dataset
# Load the full dataset
dataset = load_dataset("divar/real-estate-ads")
# Print the first few examples
print(dataset['train'][:5])
# Get dataset statistics
print(f"Dataset size: {len(dataset['train'])} rows")
print(f"Features: {dataset['train'].features}")
π Schema
The dataset includes comprehensive property information organized in the following categories:
π·οΈ Categorization
cat2_slug
,cat3_slug
: Property categorization slugsproperty_type
: Type of property (apartment, villa, land, etc.)
π Location
city_slug
,neighborhood_slug
: Location identifierslocation_latitude
,location_longitude
: Geographic coordinateslocation_radius
: Location accuracy radius
π Listing Details
created_at_month
: Timestamp of when the ad was createduser_type
: Type of user who posted the listing (individual, agency, etc.)description
,title
: Textual information about the property
π° Financial Information
- Rent-related:
rent_mode
,rent_value
,rent_to_single
,rent_type
- Price-related:
price_mode
,price_value
- Credit-related:
credit_mode
,credit_value
- Transformed values: Various transformed financial metrics for analysis
π’ Property Specifications
land_size
,building_size
: Property dimensions (in square meters)deed_type
,has_business_deed
: Legal property informationfloor
,rooms_count
,total_floors_count
,unit_per_floor
: Building structure detailsconstruction_year
,is_rebuilt
: Age and renovation status
ποΈ Amenities and Features
- Utilities:
has_water
,has_electricity
,has_gas
- Climate control:
has_heating_system
,has_cooling_system
- Facilities:
has_balcony
,has_elevator
,has_warehouse
,has_parking
- Luxury features:
has_pool
,has_jacuzzi
,has_sauna
- Other features:
has_security_guard
,has_barbecue
,building_direction
,floor_material
π¨ Short-term Rental Information
regular_person_capacity
,extra_person_capacity
cost_per_extra_person
- Pricing variations:
rent_price_on_regular_days
,rent_price_on_special_days
,rent_price_at_weekends
π Example Analysis
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Convert to pandas DataFrame for analysis
df = dataset['train'].to_pandas()
# Price distribution by property type
plt.figure(figsize=(12, 6))
sns.boxplot(x='property_type', y='price_value', data=df)
plt.title('Price Distribution by Property Type')
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
# Correlation between building size and price
plt.figure(figsize=(10, 6))
sns.scatterplot(x='building_size', y='price_value', data=df)
plt.title('Correlation between Building Size and Price')
plt.xlabel('Building Size (sq.m)')
plt.ylabel('Price')
plt.tight_layout()
plt.show()
π‘ Use Cases
This dataset is particularly valuable for:
Price Prediction Models: Train algorithms to estimate property values based on features
# Example: Simple price prediction model from sklearn.ensemble import RandomForestRegressor from sklearn.model_selection import train_test_split features = ['building_size', 'rooms_count', 'construction_year', 'has_parking'] X = df[features].fillna(0) y = df['price_value'].fillna(0) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = RandomForestRegressor(n_estimators=100) model.fit(X_train, y_train)
Market Analysis: Understand trends and patterns in the real estate market
Recommendation Systems: Build tools to suggest properties based on user preferences
Natural Language Processing: Analyze property descriptions and titles
Geospatial Analysis: Study location-based pricing and property distribution
π§ Data Processing Information
The data has been:
- Anonymized to protect privacy
- Randomly sampled from the complete Divar platform dataset
- Cleaned with select columns removed to ensure privacy and usability
- Standardized to ensure consistency across entries
π Citation and Usage
When using this dataset in your research or applications, please consider acknowledging the source:
@dataset{divar2025realestate,
author = {Divar Corporation},
title = {Real Estate Ads Dataset from Divar Platform},
year = {2025},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/divar/real-estate-ads}
}
π€ Contributing
We welcome contributions to improve this dataset! If you find issues or have suggestions, please open an issue on the GitHub repository or contact us at [email protected].