Dataset Viewer
Auto-converted to Parquet
Search is not available for this dataset
image
imagewidth (px)
82
304
label
class label
13 classes
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
5train_20_20
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
6train_20_20_R
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
7train_40_20
End of preview. Expand in Data Studio

๐Ÿš€๐Ÿ”ฌ Innodisk PCB Image Dataset

The Innodisk PCB Image Dataset is a collaboration between Innodisk Corporation and Tamkang University.
Designed for research on printedโ€‘circuitโ€‘board (PCB) defect inspection and smallโ€‘sample learning. ๐Ÿง‘โ€๐Ÿ”ง๐Ÿ’ก

๐Ÿ“‚ Split ๐Ÿ–ผ๏ธ Images ๐Ÿ“ Source directories
๐Ÿ‹๏ธโ€โ™‚๏ธ Train 500 7 train_* dirs
๐Ÿงช Test 240 4 test* dirs
๐Ÿ“ Val 30 2 val* dirs

๐ŸŽฏ Resolutions vary; the modal size is 188โ€ฏร—โ€ฏ128โ€ฏpx.

๐Ÿ”– Filenames embed pseudoโ€‘labels: pass (=acceptable) or ng (=defective).


๐Ÿ—‚๏ธ Folder layout

Innodisk_PCB_datasets/
โ”œโ”€โ”€ train_20_20/      # ๐Ÿ‹๏ธโ€โ™‚๏ธ
โ”œโ”€โ”€ train_20_20_R/
โ”œโ”€โ”€ train_40_20/
โ”œโ”€โ”€ train_40_20_R/
โ”œโ”€โ”€ train_60_20/
โ”œโ”€โ”€ train_80_20/
โ”œโ”€โ”€ train_100_20/
โ”œโ”€โ”€ test/             # ๐Ÿงช
โ”œโ”€โ”€ test_R/
โ”œโ”€โ”€ test_canny/
โ”œโ”€โ”€ test_R_canny/
โ”œโ”€โ”€ val/              # ๐Ÿ“
โ””โ”€โ”€ val_R/

โšก Quick start

from datasets import load_dataset

# ๐Ÿ”„ Load images
ds_train = load_dataset("evan6007/Innodisk_PCB_datasets", split="train")

# ๐Ÿท๏ธ  Derive labels from filenames
def add_label(example):
    fname = example["image"].filename.lower()
    example["label"] = 0 if "ng" in fname else 1  # 0 = defective, 1 = acceptable
    return example

ds_train = ds_train.map(add_label)

๐Ÿญ Image sources & preprocessing

  1. ๐Ÿ“ท AOI line cameras โ€“ raw production images (train_*, test*, val*).
  2. โœ‚๏ธ ROI versions (*_R) โ€“ cropped component regions to reduce background noise.
  3. ๐Ÿ–Š๏ธ Canny edge maps (*_canny) โ€“ generated with cv2.Canny(img, 50, 150).

๐Ÿ“œ License

Released under Creative Commons Attributionโ€‘NonCommercial 4.0 (CC BYโ€‘NCโ€‘4.0).
Commercial applications require prior approval from Innodisk Corporation.


๐Ÿ“š Citation

@dataset{innodisk_pcb_2025,
  author = {{Innodisk Corporation} and {Su, Huan-Che} and {Hsiao, Chao-Hsiang}},
  title  = {Innodisk PCB Image Dataset},
  year   = {2025},
  url    = {https://huggingface.co/datasets/evan6007/Innodisk_PCB_datasets},
  note   = {CC BY-NC 4.0}
}
Downloads last month
58