Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
corpus-oct-2024 / README.md
nthakur's picture
added citation
069f66d verified
metadata
license: cc-by-sa-4.0
size_categories:
  - 10K<n<100K
task_categories:
  - question-answering
dataset_info:
  - config_name: angular
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
      - name: metadata
        struct:
          - name: end_byte
            dtype: int64
          - name: start_byte
            dtype: int64
          - name: url
            dtype: string
    splits:
      - name: train
        num_bytes: 361016560
        num_examples: 117288
    download_size: 71892184
    dataset_size: 361016560
  - config_name: godot
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
      - name: metadata
        struct:
          - name: end_byte
            dtype: int64
          - name: start_byte
            dtype: int64
          - name: url
            dtype: string
    splits:
      - name: train
        num_bytes: 103982046
        num_examples: 25482
    download_size: 33422376
    dataset_size: 103982046
  - config_name: langchain
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
      - name: metadata
        struct:
          - name: end_byte
            dtype: int64
          - name: start_byte
            dtype: int64
          - name: url
            dtype: string
    splits:
      - name: train
        num_bytes: 215838691
        num_examples: 49514
    download_size: 70930374
    dataset_size: 215838691
  - config_name: laravel
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
      - name: metadata
        struct:
          - name: end_byte
            dtype: int64
          - name: start_byte
            dtype: int64
          - name: url
            dtype: string
    splits:
      - name: train
        num_bytes: 141634148
        num_examples: 52351
    download_size: 39525810
    dataset_size: 141634148
  - config_name: yolo
    features:
      - name: _id
        dtype: string
      - name: text
        dtype: string
      - name: metadata
        struct:
          - name: end_byte
            dtype: int64
          - name: start_byte
            dtype: int64
          - name: url
            dtype: string
    splits:
      - name: train
        num_bytes: 134629730
        num_examples: 27207
    download_size: 42140310
    dataset_size: 134629730
configs:
  - config_name: angular
    data_files:
      - split: train
        path: angular/train-*
  - config_name: godot
    data_files:
      - split: train
        path: godot/train-*
  - config_name: langchain
    data_files:
      - split: train
        path: langchain/train-*
  - config_name: laravel
    data_files:
      - split: train
        path: laravel/train-*
  - config_name: yolo
    data_files:
      - split: train
        path: yolo/train-*

Dataset Card for FreshStack (Corpus)

Homepage | Repository | Paper

FreshStack is a holistic framework to construct challenging IR/RAG evaluation datasets that focuses on search across niche and recent topics.

This dataset (October 2024) contains the query, nuggets, answers and nugget-level relevance judgments of 5 niche topics focused on software engineering and machine learning.

The queries and answers (accepted) are taken from Stack Overflow, GPT-4o generates the nuggets and labels the relevance between each nugget and a given document list.

This repository contains the corpus of GitHub chunked documents of five niche topics in freshstack. The queries, answers and nuggets can be found here.

Dataset Structure

To access the data using HuggingFace datasets:

topic='langchain'  # or any of the 5 topics
freshstack = datasets.load_dataset('freshstack/corpus-oct-2024', topic)

# train set
for data in freshstack['train']:
  doc_id = data['_id']
  doc_text = data['text'] 

Dataset Statistics

The following table contains the number of documents (#D) and the number of GitHub repositories used (#G) in the FreshStack collection.

Topic Versions Domain Train
#D #G
langchain - Machine Learning 49,514 10
yolo v7 & v8 Computer Vision 27,207 5
laravel 10 & 11 Back-end Development 52,351 9
angular 16, 17 & 18 Front-end Development 117,288 4
godot 4 Game Development 25,482 6

The following table contains the list of original GitHub repositories used to construct the following corpus for each topic.

License

The FreshStack datasets are provided under the CC-BY-SA 4.0 license.

The original GitHub repositories used for constructing the corpus may contain non-permissive licenses; we advise the reader to check the licenses for each repository carefully.

Citation

@misc{thakur2025freshstack,
      title={FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents}, 
      author={Nandan Thakur and Jimmy Lin and Sam Havens and Michael Carbin and Omar Khattab and Andrew Drozdov},
      year={2025},
      eprint={2504.13128},
      archivePrefix={arXiv},
      primaryClass={cs.IR},
      url={https://arxiv.org/abs/2504.13128}, 
}