Datasets:
license: cc-by-sa-4.0
size_categories:
- 10K<n<100K
task_categories:
- question-answering
dataset_info:
- config_name: angular
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: metadata
struct:
- name: end_byte
dtype: int64
- name: start_byte
dtype: int64
- name: url
dtype: string
splits:
- name: train
num_bytes: 361016560
num_examples: 117288
download_size: 71892184
dataset_size: 361016560
- config_name: godot
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: metadata
struct:
- name: end_byte
dtype: int64
- name: start_byte
dtype: int64
- name: url
dtype: string
splits:
- name: train
num_bytes: 103982046
num_examples: 25482
download_size: 33422376
dataset_size: 103982046
- config_name: langchain
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: metadata
struct:
- name: end_byte
dtype: int64
- name: start_byte
dtype: int64
- name: url
dtype: string
splits:
- name: train
num_bytes: 215838691
num_examples: 49514
download_size: 70930374
dataset_size: 215838691
- config_name: laravel
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: metadata
struct:
- name: end_byte
dtype: int64
- name: start_byte
dtype: int64
- name: url
dtype: string
splits:
- name: train
num_bytes: 141634148
num_examples: 52351
download_size: 39525810
dataset_size: 141634148
- config_name: yolo
features:
- name: _id
dtype: string
- name: text
dtype: string
- name: metadata
struct:
- name: end_byte
dtype: int64
- name: start_byte
dtype: int64
- name: url
dtype: string
splits:
- name: train
num_bytes: 134629730
num_examples: 27207
download_size: 42140310
dataset_size: 134629730
configs:
- config_name: angular
data_files:
- split: train
path: angular/train-*
- config_name: godot
data_files:
- split: train
path: godot/train-*
- config_name: langchain
data_files:
- split: train
path: langchain/train-*
- config_name: laravel
data_files:
- split: train
path: laravel/train-*
- config_name: yolo
data_files:
- split: train
path: yolo/train-*
Dataset Card for FreshStack (Corpus)
Homepage | Repository | Paper
FreshStack is a holistic framework to construct challenging IR/RAG evaluation datasets that focuses on search across niche and recent topics.
This dataset (October 2024) contains the query, nuggets, answers and nugget-level relevance judgments of 5 niche topics focused on software engineering and machine learning.
The queries and answers (accepted) are taken from Stack Overflow, GPT-4o generates the nuggets and labels the relevance between each nugget and a given document list.
This repository contains the corpus of GitHub chunked documents of five niche topics in freshstack. The queries, answers and nuggets can be found here.
Dataset Structure
To access the data using HuggingFace datasets
:
topic='langchain' # or any of the 5 topics
freshstack = datasets.load_dataset('freshstack/corpus-oct-2024', topic)
# train set
for data in freshstack['train']:
doc_id = data['_id']
doc_text = data['text']
Dataset Statistics
The following table contains the number of documents (#D
) and the number of GitHub repositories used (#G
) in the FreshStack collection.
Topic | Versions | Domain | Train | |
---|---|---|---|---|
#D | #G | |||
langchain | - | Machine Learning | 49,514 | 10 |
yolo | v7 & v8 | Computer Vision | 27,207 | 5 |
laravel | 10 & 11 | Back-end Development | 52,351 | 9 |
angular | 16, 17 & 18 | Front-end Development | 117,288 | 4 |
godot | 4 | Game Development | 25,482 | 6 |
The following table contains the list of original GitHub repositories used to construct the following corpus for each topic.
License
The FreshStack datasets are provided under the CC-BY-SA 4.0 license.
The original GitHub repositories used for constructing the corpus may contain non-permissive licenses; we advise the reader to check the licenses for each repository carefully.
Citation
@misc{thakur2025freshstack,
title={FreshStack: Building Realistic Benchmarks for Evaluating Retrieval on Technical Documents},
author={Nandan Thakur and Jimmy Lin and Sam Havens and Michael Carbin and Omar Khattab and Andrew Drozdov},
year={2025},
eprint={2504.13128},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2504.13128},
}