Dataset Viewer
Auto-converted to Parquet
image
image
mask
image
fg_id
string
bg_id
string
position
string
scale
float32
label
int32
image_filename
string
mask_filename
string
background
image
foreground
image
category
string
4535
367260
[482, 281, 151, 126]
0.2627
0
4535_367260_482_281_151_126_0.2627_0.jpg
mask_4535_367260_482_281_151_126_0.2627_0.jpg
dog
454397
352248
[213, 375, 22, 69]
0.1389
0
454397_352248_213_375_22_69_0.1389_0.jpg
mask_454397_352248_213_375_22_69_0.1389_0.jpg
person
1638402
137573
[186, 34, 161, 63]
0.2529
0
1638402_137573_186_34_161_63_0.2529_0.jpg
mask_1638402_137573_186_34_161_63_0.2529_0.jpg
cell phone
1106077
126235
[373, 180, 56, 89]
0.2389
0
1106077_126235_373_180_56_89_0.2389_0.jpg
mask_1106077_126235_373_180_56_89_0.2389_0.jpg
mouse
1115517
211850
[122, 348, 235, 50]
0.3675
1
1115517_211850_122_348_235_50_0.3675_1.jpg
mask_1115517_211850_122_348_235_50_0.3675_1.jpg
keyboard
1629077
126235
[219, 259, 166, 95]
0.3326
0
1629077_126235_219_259_166_95_0.3326_0.jpg
mask_1629077_126235_219_259_166_95_0.3326_0.jpg
mouse
1107233
526360
[188, 47, 47, 21]
0.1111
0
1107233_526360_188_47_47_21_0.1111_0.jpg
mask_1107233_526360_188_47_47_21_0.1111_0.jpg
mouse
323730
46650
[386, 164, 36, 71]
0.1497
0
323730_46650_386_164_36_71_0.1497_0.jpg
mask_323730_46650_386_164_36_71_0.1497_0.jpg
cell phone
1072803
202944
[376, 232, 260, 149]
0.4074
1
1072803_202944_376_232_260_149_0.4074_1.jpg
mask_1072803_202944_376_232_260_149_0.4074_1.jpg
pizza
1051226
131725
[147, 106, 198, 202]
0.659
1
1051226_131725_147_106_198_202_0.6590_1.jpg
mask_1051226_131725_147_106_198_202_0.6590_1.jpg
orange
22242
321314
[4, 88, 386, 509]
0.9069
0
22242_321314_4_88_386_509_0.9069_0.jpg
mask_22242_321314_4_88_386_509_0.9069_0.jpg
potted plant
689770
84040
[528, 399, 52, 63]
0.1313
1
689770_84040_528_399_52_63_0.1313_1.jpg
mask_689770_84040_528_399_52_63_0.1313_1.jpg
fork
37980
118379
[206, 217, 94, 71]
0.1494
1
37980_118379_206_217_94_71_0.1494_1.jpg
mask_37980_118379_206_217_94_71_0.1494_1.jpg
bird
312151
421639
[97, 39, 409, 279]
0.6571
1
312151_421639_97_39_409_279_0.6571_1.jpg
mask_312151_421639_97_39_409_279_0.6571_1.jpg
sandwich
161130
433136
[251, 488, 76, 19]
0.1802
0
161130_433136_251_488_76_19_0.1802_0.jpg
mask_161130_433136_251_488_76_19_0.1802_0.jpg
airplane
55163
245746
[147, 59, 59, 51]
0.1251
1
55163_245746_147_59_59_51_0.1251_1.jpg
mask_55163_245746_147_59_59_51_0.1251_1.jpg
horse
323549
464845
[14, 268, 162, 104]
0.2542
0
323549_464845_14_268_162_104_0.2542_0.jpg
mask_323549_464845_14_268_162_104_0.2542_0.jpg
cell phone
148941
60677
[214, 116, 416, 327]
0.6828
1
148941_60677_214_116_416_327_0.6828_1.jpg
mask_148941_60677_214_116_416_327_0.6828_1.jpg
motorcycle
1106885
526360
[225, 71, 142, 60]
0.3326
0
1106885_526360_225_71_142_60_0.3326_0.jpg
mask_1106885_526360_225_71_142_60_0.3326_0.jpg
mouse
1185754
104234
[99, 130, 389, 474]
0.7575
0
1185754_104234_99_130_389_474_0.7575_0.jpg
mask_1185754_104234_99_130_389_474_0.7575_0.jpg
suitcase
1447091
202774
[181, 80, 275, 484]
0.7575
0
1447091_202774_181_80_275_484_0.7575_0.jpg
mask_1447091_202774_181_80_275_484_0.7575_0.jpg
suitcase
1817887
551836
[182, 48, 263, 310]
0.5491
0
1817887_551836_182_48_263_310_0.5491_0.jpg
mask_1817887_551836_182_48_263_310_0.5491_0.jpg
sheep
1548365
210333
[60, 0, 87, 86]
0.2019
0
1548365_210333_60_0_87_86_0.2019_0.jpg
mask_1548365_210333_60_0_87_86_0.2019_0.jpg
apple
685338
342745
[205, 84, 173, 28]
0.4053
0
685338_342745_205_84_173_28_0.4053_0.jpg
mask_685338_342745_205_84_173_28_0.4053_0.jpg
fork
703810
324203
[353, 56, 27, 36]
0.0961
1
703810_324203_353_56_27_36_0.0961_1.jpg
mask_703810_324203_353_56_27_36_0.0961_1.jpg
spoon
1153358
487796
[354, 257, 38, 46]
0.1096
1
1153358_487796_354_257_38_46_0.1096_1.jpg
mask_1153358_487796_354_257_38_46_0.1096_1.jpg
vase
664376
487796
[548, 160, 48, 154]
0.3616
0
664376_487796_548_160_48_154_0.3616_0.jpg
mask_664376_487796_548_160_48_154_0.3616_0.jpg
wine glass
586016
267898
[431, 248, 126, 74]
0.1975
0
586016_267898_431_248_126_74_0.1975_0.jpg
mask_586016_267898_431_248_126_74_0.1975_0.jpg
elephant
1154090
215081
[57, 301, 30, 47]
0.1096
0
1154090_215081_57_301_30_47_0.1096_0.jpg
mask_1154090_215081_57_301_30_47_0.1096_0.jpg
vase
345094
44494
[53, 274, 172, 90]
0.3601
0
345094_44494_53_274_172_90_0.3601_0.jpg
mask_345094_44494_53_274_172_90_0.3601_0.jpg
car
1048275
289333
[195, 149, 386, 304]
0.635
1
1048275_289333_195_149_386_304_0.6350_1.jpg
mask_1048275_289333_195_149_386_304_0.6350_1.jpg
apple
100180
400552
[12, 108, 217, 245]
0.454
0
100180_400552_12_108_217_245_0.4540_0.jpg
mask_100180_400552_12_108_217_245_0.4540_0.jpg
chair
1882760
20702
[13, 193, 362, 371]
0.7559
0
1882760_20702_13_193_362_371_0.7559_0.jpg
mask_1882760_20702_13_193_362_371_0.7559_0.jpg
cup
1076771
44878
[344, 324, 160, 98]
0.2502
1
1076771_44878_344_324_160_98_0.2502_1.jpg
mask_1076771_44878_344_324_160_98_0.2502_1.jpg
pizza
152151
60677
[180, 41, 436, 270]
0.6828
0
152151_60677_180_41_436_270_0.6828_0.jpg
mask_152151_60677_180_41_436_270_0.6828_0.jpg
motorcycle
26888
224134
[321, 278, 44, 85]
0.2002
1
26888_224134_321_278_44_85_0.2002_1.jpg
mask_26888_224134_321_278_44_85_0.2002_1.jpg
potted plant
693700
90662
[56, 232, 206, 101]
0.4293
1
693700_90662_56_232_206_101_0.4293_1.jpg
mask_693700_90662_56_232_206_101_0.4293_1.jpg
knife
664376
168173
[366, 302, 14, 44]
0.1047
1
664376_168173_366_302_14_44_0.1047_1.jpg
mask_664376_168173_366_302_14_44_0.1047_1.jpg
wine glass
674110
547759
[202, 13, 256, 483]
0.7559
0
674110_547759_202_13_256_483_0.7559_0.jpg
mask_674110_547759_202_13_256_483_0.7559_0.jpg
cup
1550096
338988
[481, 91, 122, 193]
0.4552
1
1550096_338988_481_91_122_193_0.4552_1.jpg
mask_1550096_338988_481_91_122_193_0.4552_1.jpg
apple
1105244
82273
[167, 263, 35, 53]
0.1111
0
1105244_82273_167_263_35_53_0.1111_0.jpg
mask_1105244_82273_167_263_35_53_0.1111_0.jpg
mouse
103037
222964
[450, 336, 59, 86]
0.1811
1
103037_222964_450_336_59_86_0.1811_1.jpg
mask_103037_222964_450_336_59_86_0.1811_1.jpg
chair
72410
334542
[127, 122, 220, 277]
0.6495
1
72410_334542_127_122_220_277_0.6495_1.jpg
mask_72410_334542_127_122_220_277_0.6495_1.jpg
cow
1912392
131725
[65, 45, 253, 151]
0.659
1
1912392_131725_65_45_253_151_0.6590_1.jpg
mask_1912392_131725_65_45_253_151_0.6590_1.jpg
orange
694258
84040
[107, 318, 274, 106]
0.4293
1
694258_84040_107_318_274_106_0.4293_1.jpg
mask_694258_84040_107_318_274_106_0.4293_1.jpg
knife
1796446
525021
[433, 54, 194, 119]
0.304
0
1796446_525021_433_54_194_119_0.3040_0.jpg
mask_1796446_525021_433_54_194_119_0.3040_0.jpg
truck
2111340
289333
[208, 65, 215, 218]
0.4552
0
2111340_289333_208_65_215_218_0.4552_0.jpg
mask_2111340_289333_208_65_215_218_0.4552_0.jpg
apple
702979
165684
[429, 223, 40, 182]
0.3807
1
702979_165684_429_223_40_182_0.3807_1.jpg
mask_702979_165684_429_223_40_182_0.3807_1.jpg
spoon
1077959
202944
[177, 89, 293, 338]
0.7049
1
1077959_202944_177_89_293_338_0.7049_1.jpg
mask_1077959_202944_177_89_293_338_0.7049_1.jpg
pizza
1547942
285562
[353, 145, 226, 189]
0.3715
0
1547942_285562_353_145_226_189_0.3715_0.jpg
mask_1547942_285562_353_145_226_189_0.3715_0.jpg
banana
132168
280733
[333, 38, 294, 126]
0.4597
0
132168_280733_333_38_294_126_0.4597_0.jpg
mask_132168_280733_333_38_294_126_0.4597_0.jpg
car
1930884
102278
[515, 189, 119, 138]
0.3236
0
1930884_102278_515_189_119_138_0.3236_0.jpg
mask_1930884_102278_515_189_119_138_0.3236_0.jpg
chair
1074276
205572
[258, 91, 360, 336]
0.7049
1
1074276_205572_258_91_360_336_0.7049_1.jpg
mask_1074276_205572_258_91_360_336_0.7049_1.jpg
pizza
707427
496261
[284, 532, 181, 59]
0.3807
1
707427_496261_284_532_181_59_0.3807_1.jpg
mask_707427_496261_284_532_181_59_0.3807_1.jpg
spoon
73653
334542
[56, 257, 164, 110]
0.2593
0
73653_334542_56_257_164_110_0.2593_0.jpg
mask_73653_334542_56_257_164_110_0.2593_0.jpg
cow
1047625
289333
[116, 265, 291, 174]
0.4552
1
1047625_289333_116_265_291_174_0.4552_1.jpg
mask_1047625_289333_116_265_291_174_0.4552_1.jpg
apple
572461
461657
[119, 48, 140, 168]
0.3505
0
572461_461657_119_48_140_168_0.3505_0.jpg
mask_572461_461657_119_48_140_168_0.3505_0.jpg
bench
49502
103318
[207, 137, 83, 94]
0.1972
0
49502_103318_207_137_83_94_0.1972_0.jpg
mask_49502_103318_207_137_83_94_0.1972_0.jpg
cat
64911
458705
[351, 166, 80, 77]
0.1811
0
64911_458705_351_166_80_77_0.1811_0.jpg
mask_64911_458705_351_166_80_77_0.1811_0.jpg
sheep
577388
260974
[225, 13, 222, 347]
0.7207
1
577388_260974_225_13_222_347_0.7207_1.jpg
mask_577388_260974_225_13_222_347_0.7207_1.jpg
bench
73189
250703
[538, 243, 98, 71]
0.1684
0
73189_250703_538_243_98_71_0.1684_0.jpg
mask_73189_250703_538_243_98_71_0.1684_0.jpg
cow
165972
441292
[73, 28, 238, 99]
0.4965
0
165972_441292_73_28_238_99_0.4965_0.jpg
mask_165972_441292_73_28_238_99_0.4965_0.jpg
bus
578248
199632
[132, 211, 461, 210]
0.7207
0
578248_199632_132_211_461_210_0.7207_0.jpg
mask_578248_199632_132_211_461_210_0.7207_0.jpg
bench
577388
505023
[138, 238, 58, 91]
0.2376
0
577388_505023_138_238_58_91_0.2376_0.jpg
mask_577388_505023_138_238_58_91_0.2376_0.jpg
bench
1105454
396765
[136, 138, 152, 52]
0.2389
0
1105454_396765_136_138_152_52_0.2389_0.jpg
mask_1105454_396765_136_138_152_52_0.2389_0.jpg
mouse
26888
126097
[138, 61, 44, 85]
0.2002
0
26888_126097_138_61_44_85_0.2002_0.jpg
mask_26888_126097_138_61_44_85_0.2002_0.jpg
potted plant
4535
507322
[205, 396, 93, 77]
0.1617
0
4535_507322_205_396_93_77_0.1617_0.jpg
mask_4535_507322_205_396_93_77_0.1617_0.jpg
dog
596564
542173
[321, 75, 56, 65]
0.1367
0
596564_542173_321_75_56_65_0.1367_0.jpg
mask_596564_542173_321_75_56_65_0.1367_0.jpg
giraffe
374861
102278
[75, 322, 49, 54]
0.1275
1
374861_102278_75_322_49_54_0.1275_1.jpg
mask_374861_102278_75_322_49_54_0.1275_1.jpg
chair
705289
324203
[340, 18, 38, 36]
0.0961
0
705289_324203_340_18_38_36_0.0961_0.jpg
mask_705289_324203_340_18_38_36_0.0961_0.jpg
spoon
1106200
267555
[2, 163, 55, 19]
0.1111
0
1106200_267555_2_163_55_19_0.1111_0.jpg
mask_1106200_267555_2_163_55_19_0.1111_0.jpg
mouse
1186516
84046
[118, 220, 120, 73]
0.1877
0
1186516_84046_118_220_120_73_0.1877_0.jpg
mask_1186516_84046_118_220_120_73_0.1877_0.jpg
suitcase
1550334
288836
[446, 38, 136, 141]
0.2958
1
1550334_288836_446_38_136_141_0.2958_1.jpg
mask_1550334_288836_446_38_136_141_0.2958_1.jpg
apple
102346
106878
[215, 50, 83, 136]
0.3236
0
102346_106878_215_50_83_136_0.3236_0.jpg
mask_102346_106878_215_50_83_136_0.3236_0.jpg
chair
103037
69428
[263, 105, 69, 101]
0.2404
0
103037_69428_263_105_69_101_0.2404_0.jpg
mask_103037_69428_263_105_69_101_0.2404_0.jpg
chair
1184469
140180
[517, 47, 120, 72]
0.1877
0
1184469_140180_517_47_120_72_0.1877_0.jpg
mask_1184469_140180_517_47_120_72_0.1877_0.jpg
suitcase
2185622
500699
[51, 120, 402, 245]
0.6288
1
2185622_500699_51_120_402_245_0.6288_1.jpg
mask_2185622_500699_51_120_402_245_0.6288_1.jpg
bowl
571899
26438
[60, 82, 224, 86]
0.3505
0
571899_26438_60_82_224_86_0.3505_0.jpg
mask_571899_26438_60_82_224_86_0.3505_0.jpg
bench
21228
293545
[2, 278, 70, 78]
0.2002
0
21228_293545_2_278_70_78_0.2002_0.jpg
mask_21228_293545_2_278_70_78_0.2002_0.jpg
potted plant
24275
293545
[368, 258, 55, 47]
0.1215
0
24275_293545_368_258_55_47_0.1215_0.jpg
mask_24275_293545_368_258_55_47_0.1215_0.jpg
potted plant
1550544
447378
[351, 219, 246, 218]
0.4552
1
1550544_447378_351_219_246_218_0.4552_1.jpg
mask_1550544_447378_351_219_246_218_0.4552_1.jpg
apple
598826
387056
[166, 1, 146, 226]
0.5313
0
598826_387056_166_1_146_226_0.5313_0.jpg
mask_598826_387056_166_1_146_226_0.5313_0.jpg
giraffe
84475
526732
[137, 60, 469, 276]
0.7332
0
84475_526732_137_60_469_276_0.7332_0.jpg
mask_84475_526732_137_60_469_276_0.7332_0.jpg
bottle
105674
222964
[418, 207, 148, 155]
0.3236
0
105674_222964_418_207_148_155_0.3236_0.jpg
mask_105674_222964_418_207_148_155_0.3236_0.jpg
chair
78245
321692
[197, 166, 190, 167]
0.3809
1
78245_321692_197_166_190_167_0.3809_1.jpg
mask_78245_321692_197_166_190_167_0.3809_1.jpg
cow
600543
577065
[133, 359, 35, 65]
0.1367
0
600543_577065_133_359_35_65_0.1367_0.jpg
mask_600543_577065_133_359_35_65_0.1367_0.jpg
giraffe
685870
84040
[16, 22, 133, 143]
0.2994
1
685870_84040_16_22_133_143_0.2994_1.jpg
mask_685870_84040_16_22_133_143_0.2994_1.jpg
fork
1885764
299563
[541, 90, 60, 54]
0.1141
0
1885764_299563_541_90_60_54_0.1141_0.jpg
mask_1885764_299563_541_90_60_54_0.1141_0.jpg
cup
155732
515315
[75, 33, 326, 291]
0.6828
0
155732_515315_75_33_326_291_0.6828_0.jpg
mask_155732_515315_75_33_326_291_0.6828_0.jpg
motorcycle
1114538
203879
[269, 67, 73, 77]
0.2164
0
1114538_203879_269_67_73_77_0.2164_0.jpg
mask_1114538_203879_269_67_73_77_0.2164_0.jpg
remote
476929
314200
[121, 280, 17, 60]
0.1389
0
476929_314200_121_280_17_60_0.1389_0.jpg
mask_476929_314200_121_280_17_60_0.1389_0.jpg
person
153180
515020
[359, 178, 231, 127]
0.3614
0
153180_515020_359_178_231_127_0.3614_0.jpg
mask_153180_515020_359_178_231_127_0.3614_0.jpg
motorcycle
144034
213039
[384, 212, 206, 172]
0.3601
1
144034_213039_384_212_206_172_0.3601_1.jpg
mask_144034_213039_384_212_206_172_0.3601_1.jpg
car
353745
266114
[492, 8, 84, 31]
0.1322
0
353745_266114_492_8_84_31_0.1322_0.jpg
mask_353745_266114_492_8_84_31_0.1322_0.jpg
car
712782
162760
[239, 333, 109, 73]
0.1715
0
712782_162760_239_333_109_73_0.1715_0.jpg
mask_712782_162760_239_333_109_73_0.1715_0.jpg
bowl
1051628
131725
[216, 191, 36, 35]
0.1148
0
1051628_131725_216_191_36_35_0.1148_0.jpg
mask_1051628_131725_216_191_36_35_0.1148_0.jpg
orange
36694
493022
[422, 102, 104, 106]
0.25
0
36694_493022_422_102_104_106_0.2500_0.jpg
mask_36694_493022_422_102_104_106_0.2500_0.jpg
bird
1955649
126097
[257, 116, 128, 75]
0.2002
0
1955649_126097_257_116_128_75_0.2002_0.jpg
mask_1955649_126097_257_116_128_75_0.2002_0.jpg
potted plant
22242
321314
[84, 124, 248, 328]
0.5845
0
22242_321314_84_124_248_328_0.5845_0.jpg
mask_22242_321314_84_124_248_328_0.5845_0.jpg
potted plant
1077959
202944
[136, 34, 293, 338]
0.7049
1
1077959_202944_136_34_293_338_0.7049_1.jpg
mask_1077959_202944_136_34_293_338_0.7049_1.jpg
pizza
End of preview. Expand in Data Studio

Dataset Card for new_OPA_dataset

Dataset Summary

The Object-Placement-Assessment (OPA) dataset is a synthesized dataset designed for evaluating the rationality of object placement in composite images. It is based on the COCO dataset, featuring foreground objects pasted onto compatible background images with varying sizes and locations. Each composite image is annotated with a binary label (0 or 1) indicating whether the object placement is reasonable, considering factors like location, size, occlusion, semantics, and perspective.

This dataset contains 62,074 training images and 11,396 test images, with no overlap in foregrounds or backgrounds between the splits. It is ideal for tasks such as object placement prediction, image composition, and visual common sense reasoning.

Supported Tasks and Leaderboards

  • Task: Object Placement Assessment
  • Description: Predict whether a composite image’s object placement is rational (label 1) or irrational (label 0) based on visual and semantic cues.
  • Leaderboard: No public leaderboard is currently available.

Languages

  • The dataset includes image data with English metadata (e.g., category names, file names).

Dataset Structure

Data Instances

Each instance represents a composite image with its associated mask and metadata. An example from the train split looks like:

{
    'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480>,
    'mask': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=640x480>,
    'fg_id': '4535',
    'bg_id': '367260',
    'position': '[482, 281, 151, 126]',
    'scale': 0.26269999146461487,
    'label': 0,
    'image_filename': '4535_367260_482_281_151_126_0.2627_0.jpg',
    'mask_filename': 'mask_4535_367260_482_281_151_126_0.2627_0.jpg'
}

Data Fields

  • image: The composite image (JPEG, typically 640x480 pixels).
  • mask: The mask of the foreground object in the composite image (JPEG, same size as the image).
  • fg_id: Identifier for the foreground object (string).
  • bg_id: Identifier for the background image (string).
  • position: Bounding box of the foreground object in the format [x, y, w, h], where x, y is the upper-left corner, and w, h are width and height (string).
  • scale: The maximum ratio of foreground width/height to background width/height (float32).
  • label: Binary label indicating placement rationality (0 for irrational, 1 for rational, int32).
  • image_filename: File name of the composite image (string).
  • mask_filename: File name of the mask image (string).

Data Splits

  • Train: 62,074 images (21,376 positive, 40,698 negative samples).
  • Test: 11,396 images (3,588 positive, 7,808 negative samples).

There is no overlap in foregrounds (2,701 unique in train, 1,436 in test) or backgrounds (1,236 unique in train, 153 in test) between splits.

Dataset Creation

Curation Rationale

The OPA dataset was created to support research in object placement assessment, addressing challenges in image composition by evaluating the plausibility of foreground object placements. It was synthesized from COCO by selecting unoccluded objects, pasting them onto compatible backgrounds, and annotating rationality via human labeling.

Source Data

  • Initial Data Collection: Derived from the COCO dataset, with foreground objects and backgrounds curated for compatibility.
  • Annotation Process: Composite images were generated with random sizes and locations, then labeled by human annotators for rationality.

Annotations

  • Annotation Types: Binary rationality labels (0 or 1), bounding box positions, and scale values.
  • Process: Human annotators assessed each composite image for placement plausibility based on location, size, occlusion, semantics, and perspective.

Considerations for Using the Data

Social Impact of Dataset

This dataset advances research in image composition and visual reasoning, with applications in augmented reality, content creation, and automated design. However, biases in the COCO dataset (e.g., underrepresentation of certain scenes or objects) may carry over.

Discussion of Biases

As a derivative of COCO, the dataset may inherit biases related to object categories, scene diversity, or cultural contexts. Users should evaluate its suitability for specific applications.

Other Known Limitations

  • The dataset focuses on binary rationality labels, which may not capture nuanced placement quality.
  • Negative samples include specific issues (e.g., inappropriate size, occlusion), but the dataset does not categorize these issues explicitly.

Additional Information

Dataset Curators

The OPA dataset was created by Liu Liu, Zhenchen Liu, Bo Zhang, Jiangtong Li, Li Niu, Qingyang Liu, and Liqing Zhang from the Brain Cognition & Machine Intelligence Lab (BCMI).

Licensing Information

The dataset is released for research purposes. As a derivative of COCO, it inherits COCO’s licensing terms (CC BY 4.0). Users should verify compliance with COCO’s license.

Citation Information

If you use this dataset, please cite the original OPA paper:

@article{liu2021OPA,
  title={OPA: Object Placement Assessment Dataset},
  author={Liu, Liu and Liu, Zhenchen and Zhang, Bo and Li, Jiangtong and Niu, Li and Liu, Qingyang and Zhang, Liqing},
  journal={arXiv preprint arXiv:2107.01889},
  year={2021}
}
Downloads last month
158