text
stringlengths
213
7.14k
idx
int64
16
12.5k
--- initial +++ final @@ -1,24 +1,24 @@ static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode) { struct ubifs_pnode *p; if (!test_bit(COW_CNODE, &pnode->flags)) { /* pnode is not being committed */ if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { c->dirty_pn_cnt += 1; add_pnode_dirt(c, pnode); } return pnode; } /* pnode is being committed, so copy it */ p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS); if (unlikely(!p)) return ERR_PTR(-ENOMEM); p->cnext = NULL; __set_bit(DIRTY_CNODE, &p->flags); __clear_bit(COW_CNODE, &p->flags); replace_cats(c, pnode, p); - ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags)); + ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &pnode->flags)); __set_bit(OBSOLETE_CNODE, &pnode->flags); c->dirty_pn_cnt += 1; add_pnode_dirt(c, pnode); pnode->parent->nbranch[p->iip].pnode = p; return p; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,805
--- initial +++ final @@ -1,13 +1,13 @@ static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len) { int pos = 0; uint8_t *addr = buf; uint16_t crc, calc_crc; - crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS); + crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS); calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, len - UBIFS_LPT_CRC_BYTES); if (crc != calc_crc) { ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx", crc, calc_crc); dump_stack(); return -EINVAL; } return 0; }<sep>@@ identifier f,c; expression e1,e2,e3; @@ f(...,struct ubifs_info *c,...) { <... ubifs_unpack_bits( + c, e1,e2,e3) ...> } <|end_of_text|>
11,791
--- initial +++ final @@ -1,17 +1,17 @@ static const struct ubifs_lprops *scan_for_leb_for_idx(struct ubifs_info *c) { const struct ubifs_lprops *lprops; struct scan_data data; int err; data.lnum = -1; err = ubifs_lpt_scan_nolock(c, -1, c->lscan_lnum, (ubifs_lpt_scan_callback)scan_for_idx_cb, &data); if (err) return ERR_PTR(err); - ubifs_assert(data.lnum >= c->main_first && data.lnum < c->leb_cnt); + ubifs_assert(c, data.lnum >= c->main_first && data.lnum < c->leb_cnt); c->lscan_lnum = data.lnum; lprops = ubifs_lpt_lookup_dirty(c, data.lnum); if (IS_ERR(lprops)) return lprops; - ubifs_assert(lprops->lnum == data.lnum); - ubifs_assert(lprops->free + lprops->dirty == c->leb_size); - ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); - ubifs_assert(!(lprops->flags & LPROPS_INDEX)); + ubifs_assert(c, lprops->lnum == data.lnum); + ubifs_assert(c, lprops->free + lprops->dirty == c->leb_size); + ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); + ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); return lprops; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,743
--- initial +++ final @@ -1,72 +1,72 @@ static int populate_page(struct ubifs_info *c, struct page *page, struct bu_info *bu, int *n) { int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; struct inode *inode = page->mapping->host; loff_t i_size = i_size_read(inode); unsigned int page_block; void *addr, *zaddr; pgoff_t end_index; dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", inode->i_ino, page->index, i_size, page->flags); addr = zaddr = kmap(page); end_index = (i_size - 1) >> PAGE_SHIFT; if (!i_size || page->index > end_index) { hole = 1; memset(addr, 0, PAGE_SIZE); goto out_hole; } page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; while (1) { int err, len, out_len, dlen; if (nn >= bu->cnt) { hole = 1; memset(addr, 0, UBIFS_BLOCK_SIZE); } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { struct ubifs_data_node *dn; dn = bu->buf + (bu->zbranch[nn].offs - offs); - ubifs_assert(le64_to_cpu(dn->ch.sqnum) > ubifs_inode(inode)->creat_sqnum); + ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > ubifs_inode(inode)->creat_sqnum); len = le32_to_cpu(dn->size); if (len <= 0 || len > UBIFS_BLOCK_SIZE) goto out_err; dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; out_len = UBIFS_BLOCK_SIZE; if (ubifs_crypt_is_encrypted(inode)) { err = ubifs_decrypt(inode, dn, &dlen, page_block); if (err) goto out_err; } err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, le16_to_cpu(dn->compr_type)); if (err || len != out_len) goto out_err; if (len < UBIFS_BLOCK_SIZE) memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); nn += 1; read = (i << UBIFS_BLOCK_SHIFT) + len; } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { nn += 1; continue; } else { hole = 1; memset(addr, 0, UBIFS_BLOCK_SIZE); } if (++i >= UBIFS_BLOCKS_PER_PAGE) break; addr += UBIFS_BLOCK_SIZE; page_block += 1; } if (end_index == page->index) { int len = i_size & (PAGE_SIZE - 1); if (len && len < read) memset(zaddr + len, 0, read - len); } out_hole: if (hole) { SetPageChecked(page); dbg_gen("hole"); } SetPageUptodate(page); ClearPageError(page); flush_dcache_page(page); kunmap(page); *n = nn; return 0; out_err: ClearPageUptodate(page); SetPageError(page); flush_dcache_page(page); kunmap(page); ubifs_err(c, "bad data node (block %u, inode %lu)", page_block, inode->i_ino); return -EINVAL; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,737
--- initial +++ final @@ -1,126 +1,126 @@ static int ubifs_remount_rw(struct ubifs_info *c) { int err, lnum; if (c->rw_incompat) { ubifs_err(c, "the file-system is not R/W-compatible"); ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", c->fmt_version, c->ro_compat_version, UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); return -EROFS; } mutex_lock(&c->umount_mutex); dbg_save_space_info(c); c->remounting_rw = 1; c->ro_mount = 0; if (c->space_fixup) { err = ubifs_fixup_free_space(c); if (err) goto out; } err = check_free_space(c); if (err) goto out; if (c->old_leb_cnt != c->leb_cnt) { struct ubifs_sb_node *sup; sup = ubifs_read_sb_node(c); if (IS_ERR(sup)) { err = PTR_ERR(sup); goto out; } sup->leb_cnt = cpu_to_le32(c->leb_cnt); err = ubifs_write_sb_node(c, sup); kfree(sup); if (err) goto out; } if (c->need_recovery) { ubifs_msg(c, "completing deferred recovery"); err = ubifs_write_rcvrd_mst_node(c); if (err) goto out; err = ubifs_recover_size(c); if (err) goto out; err = ubifs_clean_lebs(c, c->sbuf); if (err) goto out; err = ubifs_recover_inl_heads(c, c->sbuf); if (err) goto out; } else { /* A readonly mount is not allowed to have orphans */ - ubifs_assert(c->tot_orphans == 0); + ubifs_assert(c, c->tot_orphans == 0); err = ubifs_clear_orphans(c); if (err) goto out; } if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); err = ubifs_write_master(c); if (err) goto out; } c->ileb_buf = vmalloc(c->leb_size); if (!c->ileb_buf) { err = -ENOMEM; goto out; } c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); if (!c->write_reserve_buf) { err = -ENOMEM; goto out; } err = ubifs_lpt_init(c, 0, 1); if (err) goto out; /* Create background thread */ c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); if (IS_ERR(c->bgt)) { err = PTR_ERR(c->bgt); c->bgt = NULL; ubifs_err(c, "cannot spawn \"%s\", error %d", c->bgt_name, err); goto out; } wake_up_process(c->bgt); c->orph_buf = vmalloc(c->leb_size); if (!c->orph_buf) { err = -ENOMEM; goto out; } /* Check for enough log space */ lnum = c->lhead_lnum + 1; if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) lnum = UBIFS_LOG_LNUM; if (lnum == c->ltail_lnum) { err = ubifs_consolidate_log(c); if (err) goto out; } if (c->need_recovery) err = ubifs_rcvry_gc_commit(c); else err = ubifs_leb_unmap(c, c->gc_lnum); if (err) goto out; dbg_gen("re-mounted read-write"); c->remounting_rw = 0; if (c->need_recovery) { c->need_recovery = 0; ubifs_msg(c, "deferred recovery completed"); } else { /* * Do not run the debugging space check if the were doing * recovery, because when we saved the information we had the * file-system in a state where the TNC and lprops has been * modified in memory, but all the I/O operations (including a * commit) were deferred. So the file-system was in * "non-committed" state. Now the file-system is in committed * state, and of course the amount of free space will change * because, for example, the old index size was imprecise. */ err = dbg_check_space_info(c); } mutex_unlock(&c->umount_mutex); return err; out: c->ro_mount = 1; vfree(c->orph_buf); c->orph_buf = NULL; if (c->bgt) { kthread_stop(c->bgt); c->bgt = NULL; } free_wbufs(c); kfree(c->write_reserve_buf); c->write_reserve_buf = NULL; vfree(c->ileb_buf); c->ileb_buf = NULL; ubifs_lpt_free(c, 1); c->remounting_rw = 0; mutex_unlock(&c->umount_mutex); return err; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,840
--- initial +++ final @@ -1,91 +1,91 @@ int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key, struct ubifs_znode **zn, int *n) { int err, exact; struct ubifs_znode *znode; time64_t time = ktime_get_seconds(); dbg_tnck(key, "search key "); - ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY); + ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY); znode = c->zroot.znode; if (unlikely(!znode)) { znode = ubifs_load_znode(c, &c->zroot, NULL, 0); if (IS_ERR(znode)) return PTR_ERR(znode); } znode->time = time; while (1) { struct ubifs_zbranch *zbr; exact = ubifs_search_zbranch(c, znode, key, n); if (znode->level == 0) break; if (*n < 0) *n = 0; zbr = &znode->zbranch[*n]; if (zbr->znode) { znode->time = time; znode = zbr->znode; continue; } /* znode is not in TNC cache, load it from the media */ znode = ubifs_load_znode(c, zbr, znode, *n); if (IS_ERR(znode)) return PTR_ERR(znode); } *zn = znode; if (exact || !is_hash_key(c, key) || *n != -1) { dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n); return exact; } /* * Here is a tricky place. We have not found the key and this is a * "hashed" key, which may collide. The rest of the code deals with * situations like this: * * | 3 | 5 | * / \ * | 3 | 5 | | 6 | 7 | (x) * * Or more a complex example: * * | 1 | 5 | * / \ * | 1 | 3 | | 5 | 8 | * \ / * | 5 | 5 | | 6 | 7 | (x) * * In the examples, if we are looking for key "5", we may reach nodes * marked with "(x)". In this case what we have do is to look at the * left and see if there is "5" key there. If there is, we have to * return it. * * Note, this whole situation is possible because we allow to have * elements which are equivalent to the next key in the parent in the * children of current znode. For example, this happens if we split a * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something * like this: * | 3 | 5 | * / \ * | 3 | 5 | | 5 | 6 | 7 | * ^ * And this becomes what is at the first "picture" after key "5" marked * with "^" is removed. What could be done is we could prohibit * splitting in the middle of the colliding sequence. Also, when * removing the leftmost key, we would have to correct the key of the * parent node, which would introduce additional complications. Namely, * if we changed the leftmost key of the parent znode, the garbage * collector would be unable to find it (GC is doing this when GC'ing * indexing LEBs). Although we already have an additional RB-tree where * we save such changed znodes (see 'ins_clr_old_idx_znode()') until * after the commit. But anyway, this does not look easy to implement * so we did not try this. */ err = tnc_prev(c, &znode, n); if (err == -ENOENT) { dbg_tnc("found 0, lvl %d, n -1", znode->level); *n = -1; return 0; } if (unlikely(err < 0)) return err; if (keys_cmp(c, key, &znode->zbranch[*n].key)) { dbg_tnc("found 0, lvl %d, n -1", znode->level); *n = -1; return 0; } dbg_tnc("found 1, lvl %d, n %d", znode->level, *n); *zn = znode; return 1; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,866
--- initial +++ final @@ -1,46 +1,46 @@ int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode, int row, int col) { struct ubifs_nnode *nnode, *nn; struct ubifs_cnode *cn; int num, iip = 0, err; if (!dbg_is_chk_lprops(c)) return 0; while (cnode) { - ubifs_assert(row >= 0); + ubifs_assert(c, row >= 0); nnode = cnode->parent; if (cnode->level) { /* cnode is a nnode */ num = calc_nnode_num(row, col); if (cnode->num != num) { ubifs_err(c, "nnode num %d expected %d parent num %d iip %d", cnode->num, num, (nnode ? nnode->num : 0), cnode->iip); return -EINVAL; } nn = (struct ubifs_nnode *)cnode; while (iip < UBIFS_LPT_FANOUT) { cn = nn->nbranch[iip].cnode; if (cn) { /* Go down */ row += 1; col <<= UBIFS_LPT_FANOUT_SHIFT; col += iip; iip = 0; cnode = cn; break; } /* Go right */ iip += 1; } if (iip < UBIFS_LPT_FANOUT) continue; } else { struct ubifs_pnode *pnode; /* cnode is a pnode */ pnode = (struct ubifs_pnode *)cnode; err = dbg_chk_pnode(c, pnode, col); if (err) return err; } /* Go up and to the right */ row -= 1; col >>= UBIFS_LPT_FANOUT_SHIFT; iip = cnode->iip + 1; cnode = (struct ubifs_cnode *)nnode; } return 0; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,803
--- initial +++ final @@ -1,82 +1,82 @@ static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n) { struct ubifs_zbranch *zbr; struct ubifs_znode *zp; int i, err; /* Delete without merge for now */ - ubifs_assert(znode->level == 0); - ubifs_assert(n >= 0 && n < c->fanout); + ubifs_assert(c, znode->level == 0); + ubifs_assert(c, n >= 0 && n < c->fanout); dbg_tnck(&znode->zbranch[n].key, "deleting key "); zbr = &znode->zbranch[n]; lnc_free(zbr); err = ubifs_add_dirt(c, zbr->lnum, zbr->len); if (err) { ubifs_dump_znode(c, znode); return err; } /* We do not "gap" zbranch slots */ for (i = n; i < znode->child_cnt - 1; i++) znode->zbranch[i] = znode->zbranch[i + 1]; znode->child_cnt -= 1; if (znode->child_cnt > 0) return 0; /* * This was the last zbranch, we have to delete this znode from the * parent. */ do { - ubifs_assert(!ubifs_zn_obsolete(znode)); - ubifs_assert(ubifs_zn_dirty(znode)); + ubifs_assert(c, !ubifs_zn_obsolete(znode)); + ubifs_assert(c, ubifs_zn_dirty(znode)); zp = znode->parent; n = znode->iip; atomic_long_dec(&c->dirty_zn_cnt); err = insert_old_idx_znode(c, znode); if (err) return err; if (znode->cnext) { __set_bit(OBSOLETE_ZNODE, &znode->flags); atomic_long_inc(&c->clean_zn_cnt); atomic_long_inc(&ubifs_clean_zn_cnt); } else kfree(znode); znode = zp; } while (znode->child_cnt == 1); /* while removing last child */ /* Remove from znode, entry n - 1 */ znode->child_cnt -= 1; - ubifs_assert(znode->level != 0); + ubifs_assert(c, znode->level != 0); for (i = n; i < znode->child_cnt; i++) { znode->zbranch[i] = znode->zbranch[i + 1]; if (znode->zbranch[i].znode) znode->zbranch[i].znode->iip = i; } /* * If this is the root and it has only 1 child then * collapse the tree. */ if (!znode->parent) { while (znode->child_cnt == 1 && znode->level != 0) { zp = znode; zbr = &znode->zbranch[0]; znode = get_znode(c, znode, 0); if (IS_ERR(znode)) return PTR_ERR(znode); znode = dirty_cow_znode(c, zbr); if (IS_ERR(znode)) return PTR_ERR(znode); znode->parent = NULL; znode->iip = 0; if (c->zroot.len) { err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs); if (err) return err; } c->zroot.lnum = zbr->lnum; c->zroot.offs = zbr->offs; c->zroot.len = zbr->len; c->zroot.znode = znode; - ubifs_assert(!ubifs_zn_obsolete(zp)); - ubifs_assert(ubifs_zn_dirty(zp)); + ubifs_assert(c, !ubifs_zn_obsolete(zp)); + ubifs_assert(c, ubifs_zn_dirty(zp)); atomic_long_dec(&c->dirty_zn_cnt); if (zp->cnext) { __set_bit(OBSOLETE_ZNODE, &zp->flags); atomic_long_inc(&c->clean_zn_cnt); atomic_long_inc(&ubifs_clean_zn_cnt); } else kfree(zp); } } return 0; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,862
--- initial +++ final @@ -1,33 +1,33 @@ int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, int lnum, int offs) { int err, l; struct ubifs_ch *ch = buf; dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); - ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); - ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); - ubifs_assert(!(offs & 7) && offs < c->leb_size); - ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); + ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); + ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size); + ubifs_assert(c, !(offs & 7) && offs < c->leb_size); + ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); err = ubifs_leb_read(c, lnum, buf, offs, len, 0); if (err && err != -EBADMSG) return err; if (type != ch->node_type) { ubifs_errc(c, "bad node type (%d but expected %d)", ch->node_type, type); goto out; } err = ubifs_check_node(c, buf, lnum, offs, 0, 0); if (err) { ubifs_errc(c, "expected node type %d", type); return err; } l = le32_to_cpu(ch->len); if (l != len) { ubifs_errc(c, "bad node length %d, expected %d", l, len); goto out; } return 0; out: ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, offs, ubi_is_mapped(c->ubi, lnum)); if (!c->probing) { ubifs_dump_node(c, buf); dump_stack(); } return -EINVAL; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,761
--- initial +++ final @@ -1,10 +1,10 @@ const struct ubifs_lprops *ubifs_fast_find_empty(struct ubifs_info *c) { struct ubifs_lprops *lprops; - ubifs_assert(mutex_is_locked(&c->lp_mutex)); + ubifs_assert(c, mutex_is_locked(&c->lp_mutex)); if (list_empty(&c->empty_list)) return NULL; lprops = list_entry(c->empty_list.next, struct ubifs_lprops, list); - ubifs_assert(!(lprops->flags & LPROPS_TAKEN)); - ubifs_assert(!(lprops->flags & LPROPS_INDEX)); - ubifs_assert(lprops->free == c->leb_size); + ubifs_assert(c, !(lprops->flags & LPROPS_TAKEN)); + ubifs_assert(c, !(lprops->flags & LPROPS_INDEX)); + ubifs_assert(c, lprops->free == c->leb_size); return lprops; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,785
--- initial +++ final @@ -1,137 +1,137 @@ static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode, struct ubifs_zbranch *zbr, int n) { struct ubifs_znode *zn, *zi, *zp; int i, keep, move, appending = 0; union ubifs_key *key = &zbr->key, *key1; - ubifs_assert(n >= 0 && n <= c->fanout); + ubifs_assert(c, n >= 0 && n <= c->fanout); /* Implement naive insert for now */ again: zp = znode->parent; if (znode->child_cnt < c->fanout) { - ubifs_assert(n != c->fanout); + ubifs_assert(c, n != c->fanout); dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level); insert_zbranch(znode, zbr, n); /* Ensure parent's key is correct */ if (n == 0 && zp && znode->iip == 0) correct_parent_keys(c, znode); return 0; } /* * Unfortunately, @znode does not have more empty slots and we have to * split it. */ dbg_tnck(key, "splitting level %d, key ", znode->level); if (znode->alt) /* * We can no longer be sure of finding this znode by key, so we * record it in the old_idx tree. */ ins_clr_old_idx_znode(c, znode); zn = kzalloc(c->max_znode_sz, GFP_NOFS); if (!zn) return -ENOMEM; zn->parent = zp; zn->level = znode->level; /* Decide where to split */ if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) { /* Try not to split consecutive data keys */ if (n == c->fanout) { key1 = &znode->zbranch[n - 1].key; if (key_inum(c, key1) == key_inum(c, key) && key_type(c, key1) == UBIFS_DATA_KEY) appending = 1; } else goto check_split; } else if (appending && n != c->fanout) { /* Try not to split consecutive data keys */ appending = 0; check_split: if (n >= (c->fanout + 1) / 2) { key1 = &znode->zbranch[0].key; if (key_inum(c, key1) == key_inum(c, key) && key_type(c, key1) == UBIFS_DATA_KEY) { key1 = &znode->zbranch[n].key; if (key_inum(c, key1) != key_inum(c, key) || key_type(c, key1) != UBIFS_DATA_KEY) { keep = n; move = c->fanout - keep; zi = znode; goto do_split; } } } } if (appending) { keep = c->fanout; move = 0; } else { keep = (c->fanout + 1) / 2; move = c->fanout - keep; } /* * Although we don't at present, we could look at the neighbors and see * if we can move some zbranches there. */ if (n < keep) { /* Insert into existing znode */ zi = znode; move += 1; keep -= 1; } else { /* Insert into new znode */ zi = zn; n -= keep; /* Re-parent */ if (zn->level != 0) zbr->znode->parent = zn; } do_split: __set_bit(DIRTY_ZNODE, &zn->flags); atomic_long_inc(&c->dirty_zn_cnt); zn->child_cnt = move; znode->child_cnt = keep; dbg_tnc("moving %d, keeping %d", move, keep); /* Move zbranch */ for (i = 0; i < move; i++) { zn->zbranch[i] = znode->zbranch[keep + i]; /* Re-parent */ if (zn->level != 0) if (zn->zbranch[i].znode) { zn->zbranch[i].znode->parent = zn; zn->zbranch[i].znode->iip = i; } } /* Insert new key and branch */ dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level); insert_zbranch(zi, zbr, n); /* Insert new znode (produced by spitting) into the parent */ if (zp) { if (n == 0 && zi == znode && znode->iip == 0) correct_parent_keys(c, znode); /* Locate insertion point */ n = znode->iip + 1; /* Tail recursion */ zbr->key = zn->zbranch[0].key; zbr->znode = zn; zbr->lnum = 0; zbr->offs = 0; zbr->len = 0; znode = zp; goto again; } /* We have to split root znode */ dbg_tnc("creating new zroot at level %d", znode->level + 1); zi = kzalloc(c->max_znode_sz, GFP_NOFS); if (!zi) return -ENOMEM; zi->child_cnt = 2; zi->level = znode->level + 1; __set_bit(DIRTY_ZNODE, &zi->flags); atomic_long_inc(&c->dirty_zn_cnt); zi->zbranch[0].key = znode->zbranch[0].key; zi->zbranch[0].znode = znode; zi->zbranch[0].lnum = c->zroot.lnum; zi->zbranch[0].offs = c->zroot.offs; zi->zbranch[0].len = c->zroot.len; zi->zbranch[1].key = zn->zbranch[0].key; zi->zbranch[1].znode = zn; c->zroot.lnum = 0; c->zroot.offs = 0; c->zroot.len = 0; c->zroot.znode = zi; zn->parent = zi; zn->iip = 1; znode->parent = zi; znode->iip = 0; return 0; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,864
--- initial +++ final @@ -1,15 +1,15 @@ int ubifs_leb_map(struct ubifs_info *c, int lnum) { int err; - ubifs_assert(!c->ro_media && !c->ro_mount); + ubifs_assert(c, !c->ro_media && !c->ro_mount); if (c->ro_error) return -EROFS; if (!dbg_is_tst_rcvry(c)) err = ubi_leb_map(c->ubi, lnum); else err = dbg_leb_map(c, lnum); if (err) { ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); ubifs_ro_mode(c, err); dump_stack(); } return err; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,755
--- initial +++ final @@ -1,14 +1,14 @@ static void remove_from_lpt_heap(struct ubifs_info *c, struct ubifs_lprops *lprops, int cat) { struct ubifs_lpt_heap *heap; int hpos = lprops->hpos; heap = &c->lpt_heap[cat - 1]; - ubifs_assert(hpos >= 0 && hpos < heap->cnt); - ubifs_assert(heap->arr[hpos] == lprops); + ubifs_assert(c, hpos >= 0 && hpos < heap->cnt); + ubifs_assert(c, heap->arr[hpos] == lprops); heap->cnt -= 1; if (hpos < heap->cnt) { heap->arr[hpos] = heap->arr[heap->cnt]; heap->arr[hpos]->hpos = hpos; adjust_lpt_heap(c, heap, heap->arr[hpos], hpos, cat); } dbg_check_heap(c, heap, cat, -1); }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,780
--- initial +++ final @@ -1,24 +1,24 @@ int ubifs_orphan_start_commit(struct ubifs_info *c) { struct ubifs_orphan *orphan, **last; spin_lock(&c->orphan_lock); last = &c->orph_cnext; list_for_each_entry(orphan, &c->orph_new, new_list) { - ubifs_assert(orphan->new); - ubifs_assert(!orphan->cmt); + ubifs_assert(c, orphan->new); + ubifs_assert(c, !orphan->cmt); orphan->new = 0; orphan->cmt = 1; *last = orphan; last = &orphan->cnext; } *last = NULL; c->cmt_orphans = c->new_orphans; c->new_orphans = 0; dbg_cmt("%d orphans to commit", c->cmt_orphans); INIT_LIST_HEAD(&c->orph_new); if (c->tot_orphans == 0) c->no_orphs = 1; else c->no_orphs = 0; spin_unlock(&c->orphan_lock); return 0; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,821
--- initial +++ final @@ -1,147 +1,147 @@ static int write_index(struct ubifs_info *c) { struct ubifs_idx_node *idx; struct ubifs_znode *znode, *cnext; int i, lnum, offs, len, next_len, buf_len, buf_offs, used; int avail, wlen, err, lnum_pos = 0, blen, nxt_offs; cnext = c->enext; if (!cnext) return 0; /* * Always write index nodes to the index head so that index nodes and * other types of nodes are never mixed in the same erase block. */ lnum = c->ihead_lnum; buf_offs = c->ihead_offs; /* Allocate commit buffer */ buf_len = ALIGN(c->max_idx_node_sz, c->min_io_size); used = 0; avail = buf_len; /* Ensure there is enough room for first write */ next_len = ubifs_idx_node_sz(c, cnext->child_cnt); if (buf_offs + next_len > c->leb_size) { err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, LPROPS_TAKEN); if (err) return err; lnum = -1; } while (1) { cond_resched(); znode = cnext; idx = c->cbuf + used; /* Make index node */ idx->ch.node_type = UBIFS_IDX_NODE; idx->child_cnt = cpu_to_le16(znode->child_cnt); idx->level = cpu_to_le16(znode->level); for (i = 0; i < znode->child_cnt; i++) { struct ubifs_branch *br = ubifs_idx_branch(c, idx, i); struct ubifs_zbranch *zbr = &znode->zbranch[i]; key_write_idx(c, &zbr->key, &br->key); br->lnum = cpu_to_le32(zbr->lnum); br->offs = cpu_to_le32(zbr->offs); br->len = cpu_to_le32(zbr->len); if (!zbr->lnum || !zbr->len) { ubifs_err(c, "bad ref in znode"); ubifs_dump_znode(c, znode); if (zbr->znode) ubifs_dump_znode(c, zbr->znode); return -EINVAL; } } len = ubifs_idx_node_sz(c, znode->child_cnt); ubifs_prepare_node(c, idx, len, 0); /* Determine the index node position */ if (lnum == -1) { lnum = c->ilebs[lnum_pos++]; buf_offs = 0; used = 0; avail = buf_len; } offs = buf_offs + used; if (lnum != znode->lnum || offs != znode->offs || len != znode->len) { ubifs_err(c, "inconsistent znode posn"); return -EINVAL; } /* Grab some stuff from znode while we still can */ cnext = znode->cnext; - ubifs_assert(ubifs_zn_dirty(znode)); - ubifs_assert(ubifs_zn_cow(znode)); + ubifs_assert(c, ubifs_zn_dirty(znode)); + ubifs_assert(c, ubifs_zn_cow(znode)); /* * It is important that other threads should see %DIRTY_ZNODE * flag cleared before %COW_ZNODE. Specifically, it matters in * the 'dirty_cow_znode()' function. This is the reason for the * first barrier. Also, we want the bit changes to be seen to * other threads ASAP, to avoid unnecesarry copying, which is * the reason for the second barrier. */ clear_bit(DIRTY_ZNODE, &znode->flags); smp_mb__before_atomic(); clear_bit(COW_ZNODE, &znode->flags); smp_mb__after_atomic(); /* * We have marked the znode as clean but have not updated the * @c->clean_zn_cnt counter. If this znode becomes dirty again * before 'free_obsolete_znodes()' is called, then * @c->clean_zn_cnt will be decremented before it gets * incremented (resulting in 2 decrements for the same znode). * This means that @c->clean_zn_cnt may become negative for a * while. * * Q: why we cannot increment @c->clean_zn_cnt? * A: because we do not have the @c->tnc_mutex locked, and the * following code would be racy and buggy: * * if (!ubifs_zn_obsolete(znode)) { * atomic_long_inc(&c->clean_zn_cnt); * atomic_long_inc(&ubifs_clean_zn_cnt); * } * * Thus, we just delay the @c->clean_zn_cnt update until we * have the mutex locked. */ /* Do not access znode from this point on */ /* Update buffer positions */ wlen = used + len; used += ALIGN(len, 8); avail -= ALIGN(len, 8); /* * Calculate the next index node length to see if there is * enough room for it */ if (cnext == c->cnext) next_len = 0; else next_len = ubifs_idx_node_sz(c, cnext->child_cnt); nxt_offs = buf_offs + used + next_len; if (next_len && nxt_offs <= c->leb_size) { if (avail > 0) continue; else blen = buf_len; } else { wlen = ALIGN(wlen, 8); blen = ALIGN(wlen, c->min_io_size); ubifs_pad(c, c->cbuf + wlen, blen - wlen); } /* The buffer is full or there are no more znodes to do */ err = ubifs_leb_write(c, lnum, c->cbuf, buf_offs, blen); if (err) return err; buf_offs += blen; if (next_len) { if (nxt_offs > c->leb_size) { err = ubifs_update_one_lp(c, lnum, LPROPS_NC, 0, 0, LPROPS_TAKEN); if (err) return err; lnum = -1; } used -= blen; if (used < 0) used = 0; avail = buf_len - used; memmove(c->cbuf, c->cbuf + blen, used); continue; } break; } if (lnum != c->dbg->new_ihead_lnum || buf_offs != c->dbg->new_ihead_offs) { ubifs_err(c, "inconsistent ihead"); return -EINVAL; } c->ihead_lnum = lnum; c->ihead_offs = buf_offs; return 0; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,847
--- initial +++ final @@ -1,79 +1,79 @@ static int do_truncation(struct ubifs_info *c, struct inode *inode, const struct iattr *attr) { int err; struct ubifs_budget_req req; loff_t old_size = inode->i_size, new_size = attr->ia_size; int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; struct ubifs_inode *ui = ubifs_inode(inode); dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); memset(&req, 0, sizeof(struct ubifs_budget_req)); /* * If this is truncation to a smaller size, and we do not truncate on a * block boundary, budget for changing one data block, because the last * block will be re-written. */ if (new_size & (UBIFS_BLOCK_SIZE - 1)) req.dirtied_page = 1; req.dirtied_ino = 1; /* A funny way to budget for truncation node */ req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; err = ubifs_budget_space(c, &req); if (err) { /* * Treat truncations to zero as deletion and always allow them, * just like we do for '->unlink()'. */ if (new_size || err != -ENOSPC) return err; budgeted = 0; } truncate_setsize(inode, new_size); if (offset) { pgoff_t index = new_size >> PAGE_SHIFT; struct page *page; page = find_lock_page(inode->i_mapping, index); if (page) { if (PageDirty(page)) { /* * 'ubifs_jnl_truncate()' will try to truncate * the last data node, but it contains * out-of-date data because the page is dirty. * Write the page now, so that * 'ubifs_jnl_truncate()' will see an already * truncated (and up to date) data node. */ - ubifs_assert(PagePrivate(page)); + ubifs_assert(c, PagePrivate(page)); clear_page_dirty_for_io(page); if (UBIFS_BLOCKS_PER_PAGE_SHIFT) offset = new_size & (PAGE_SIZE - 1); err = do_writepage(page, offset); put_page(page); if (err) goto out_budg; /* * We could now tell 'ubifs_jnl_truncate()' not * to read the last block. */ } else { /* * We could 'kmap()' the page and pass the data * to 'ubifs_jnl_truncate()' to save it from * having to read it. */ unlock_page(page); put_page(page); } } } mutex_lock(&ui->ui_mutex); ui->ui_size = inode->i_size; /* Truncation changes inode [mc]time */ inode->i_mtime = inode->i_ctime = current_time(inode); /* Other attributes may be changed at the same time as well */ do_attr_changes(inode, attr); err = ubifs_jnl_truncate(c, inode, old_size, new_size); mutex_unlock(&ui->ui_mutex); out_budg: if (budgeted) ubifs_release_budget(c, &req); else { c->bi.nospace = c->bi.nospace_rp = 0; smp_wmb(); } return err; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,736
--- initial +++ final @@ -1,10 +1,10 @@ static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr, int *pos, int type) { int node_type; - node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS); + node_type = ubifs_unpack_bits(c, addr, pos, UBIFS_LPT_TYPE_BITS); if (node_type != type) { ubifs_err(c, "invalid type (%d) in LPT node type %d", node_type, type); dump_stack(); return -EINVAL; } return 0; }<sep>@@ identifier f,c; expression e1,e2,e3; @@ f(...,struct ubifs_info *c,...) { <... ubifs_unpack_bits( + c, e1,e2,e3) ...> } <|end_of_text|>
11,792
--- initial +++ final @@ -1,15 +1,15 @@ int ubifs_leb_unmap(struct ubifs_info *c, int lnum) { int err; - ubifs_assert(!c->ro_media && !c->ro_mount); + ubifs_assert(c, !c->ro_media && !c->ro_mount); if (c->ro_error) return -EROFS; if (!dbg_is_tst_rcvry(c)) err = ubi_leb_unmap(c->ubi, lnum); else err = dbg_leb_unmap(c, lnum); if (err) { ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); ubifs_ro_mode(c, err); dump_stack(); } return err; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,756
--- initial +++ final @@ -1,32 +1,32 @@ static int consolidate(struct ubifs_info *c) { int tot_avail = tot_avail_orphs(c), err = 0; spin_lock(&c->orphan_lock); dbg_cmt("there is space for %d orphans and there are %d", tot_avail, c->tot_orphans); if (c->tot_orphans - c->new_orphans <= tot_avail) { struct ubifs_orphan *orphan, **last; int cnt = 0; /* Change the cnext list to include all non-new orphans */ last = &c->orph_cnext; list_for_each_entry(orphan, &c->orph_list, list) { if (orphan->new) continue; orphan->cmt = 1; *last = orphan; last = &orphan->cnext; cnt += 1; } *last = NULL; - ubifs_assert(cnt == c->tot_orphans - c->new_orphans); + ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans); c->cmt_orphans = cnt; c->ohead_lnum = c->orph_first; c->ohead_offs = 0; } else { /* * We limit the number of orphans so that this should * never happen. */ ubifs_err(c, "out of space in orphan area"); err = -EINVAL; } spin_unlock(&c->orphan_lock); return err; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,818
--- initial +++ final @@ -1,20 +1,20 @@ static void ubifs_remove_from_cat(struct ubifs_info *c, struct ubifs_lprops *lprops, int cat) { switch (cat) { case LPROPS_DIRTY: case LPROPS_DIRTY_IDX: case LPROPS_FREE: remove_from_lpt_heap(c, lprops, cat); break; case LPROPS_FREEABLE: c->freeable_cnt -= 1; - ubifs_assert(c->freeable_cnt >= 0); + ubifs_assert(c, c->freeable_cnt >= 0); /* Fall through */ case LPROPS_UNCAT: case LPROPS_EMPTY: case LPROPS_FRDI_IDX: - ubifs_assert(!list_empty(&lprops->list)); + ubifs_assert(c, !list_empty(&lprops->list)); list_del(&lprops->list); break; - default: ubifs_assert(0); + default: ubifs_assert(c, 0); } c->in_a_category_cnt -= 1; - ubifs_assert(c->in_a_category_cnt >= 0); + ubifs_assert(c, c->in_a_category_cnt >= 0); }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,789
--- initial +++ final @@ -1,139 +1,139 @@ struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf, int jhead) { int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; struct ubifs_scan_leb *sleb; void *buf = sbuf + offs; dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); sleb = ubifs_start_scan(c, lnum, offs, sbuf); if (IS_ERR(sleb)) return sleb; - ubifs_assert(len >= 8); + ubifs_assert(c, len >= 8); while (len >= 8) { dbg_scan("look at LEB %d:%d (%d bytes left)", lnum, offs, len); cond_resched(); /* * Scan quietly until there is an error from which we cannot * recover */ ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); if (ret == SCANNED_A_NODE) { /* A valid node, and not a padding node */ struct ubifs_ch *ch = buf; int node_len; err = ubifs_add_snod(c, sleb, buf, offs); if (err) goto error; node_len = ALIGN(le32_to_cpu(ch->len), 8); offs += node_len; buf += node_len; len -= node_len; } else if (ret > 0) { /* Padding bytes or a valid padding node */ offs += ret; buf += ret; len -= ret; } else if (ret == SCANNED_EMPTY_SPACE || ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE || ret == SCANNED_A_CORRUPT_NODE) { dbg_rcvry("found corruption (%d) at %d:%d", ret, lnum, offs); break; } else { ubifs_err(c, "unexpected return value %d", ret); err = -EINVAL; goto error; } } if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { if (!is_last_write(c, buf, offs)) goto corrupted_rescan; } else if (ret == SCANNED_A_CORRUPT_NODE) { if (!no_more_nodes(c, buf, len, lnum, offs)) goto corrupted_rescan; } else if (!is_empty(buf, len)) { if (!is_last_write(c, buf, offs)) { int corruption = first_non_ff(buf, len); /* * See header comment for this file for more * explanations about the reasons we have this check. */ ubifs_err(c, "corrupt empty space LEB %d:%d, corruption starts at %d", lnum, offs, corruption); /* Make sure we dump interesting non-0xFF data */ offs += corruption; buf += corruption; goto corrupted; } } min_io_unit = round_down(offs, c->min_io_size); if (grouped) /* * If nodes are grouped, always drop the incomplete group at * the end. */ drop_last_group(sleb, &offs); if (jhead == GCHD) { /* * If this LEB belongs to the GC head then while we are in the * middle of the same min. I/O unit keep dropping nodes. So * basically, what we want is to make sure that the last min. * I/O unit where we saw the corruption is dropped completely * with all the uncorrupted nodes which may possibly sit there. * * In other words, let's name the min. I/O unit where the * corruption starts B, and the previous min. I/O unit A. The * below code tries to deal with a situation when half of B * contains valid nodes or the end of a valid node, and the * second half of B contains corrupted data or garbage. This * means that UBIFS had been writing to B just before the power * cut happened. I do not know how realistic is this scenario * that half of the min. I/O unit had been written successfully * and the other half not, but this is possible in our 'failure * mode emulation' infrastructure at least. * * So what is the problem, why we need to drop those nodes? Why * can't we just clean-up the second half of B by putting a * padding node there? We can, and this works fine with one * exception which was reproduced with power cut emulation * testing and happens extremely rarely. * * Imagine the file-system is full, we run GC which starts * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is * the current GC head LEB). The @c->gc_lnum is -1, which means * that GC will retain LEB X and will try to continue. Imagine * that LEB X is currently the dirtiest LEB, and the amount of * used space in LEB Y is exactly the same as amount of free * space in LEB X. * * And a power cut happens when nodes are moved from LEB X to * LEB Y. We are here trying to recover LEB Y which is the GC * head LEB. We find the min. I/O unit B as described above. * Then we clean-up LEB Y by padding min. I/O unit. And later * 'ubifs_rcvry_gc_commit()' function fails, because it cannot * find a dirty LEB which could be GC'd into LEB Y! Even LEB X * does not match because the amount of valid nodes there does * not fit the free space in LEB Y any more! And this is * because of the padding node which we added to LEB Y. The * user-visible effect of this which I once observed and * analysed is that we cannot mount the file-system with * -ENOSPC error. * * So obviously, to make sure that situation does not happen we * should free min. I/O unit B in LEB Y completely and the last * used min. I/O unit in LEB Y should be A. This is basically * what the below code tries to do. */ while (offs > min_io_unit) drop_last_node(sleb, &offs); } buf = sbuf + offs; len = c->leb_size - offs; clean_buf(c, &buf, lnum, &offs, &len); ubifs_end_scan(c, sleb, lnum, offs); err = fix_unclean_leb(c, sleb, start); if (err) goto error; return sleb; corrupted_rescan: /* Re-scan the corrupted data with verbose messages */ ubifs_err(c, "corruption %d", ret); ubifs_scan_a_node(c, buf, len, lnum, offs, 0); corrupted: ubifs_scanned_corruption(c, lnum, offs, buf); err = -EUCLEAN; error: ubifs_err(c, "LEB %d scanning failed", lnum); ubifs_scan_destroy(sleb); return ERR_PTR(err); }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,826
--- initial +++ final @@ -1,31 +1,31 @@ static void ubifs_remount_ro(struct ubifs_info *c) { int i, err; - ubifs_assert(!c->need_recovery); - ubifs_assert(!c->ro_mount); + ubifs_assert(c, !c->need_recovery); + ubifs_assert(c, !c->ro_mount); mutex_lock(&c->umount_mutex); if (c->bgt) { kthread_stop(c->bgt); c->bgt = NULL; } dbg_save_space_info(c); for (i = 0; i < c->jhead_cnt; i++) { err = ubifs_wbuf_sync(&c->jheads[i].wbuf); if (err) ubifs_ro_mode(c, err); } c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); err = ubifs_write_master(c); if (err) ubifs_ro_mode(c, err); vfree(c->orph_buf); c->orph_buf = NULL; kfree(c->write_reserve_buf); c->write_reserve_buf = NULL; vfree(c->ileb_buf); c->ileb_buf = NULL; ubifs_lpt_free(c, 1); c->ro_mount = 1; err = dbg_check_space_info(c); if (err) ubifs_ro_mode(c, err); mutex_unlock(&c->umount_mutex); }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,839
--- initial +++ final @@ -1,67 +1,67 @@ static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) { struct ubifs_debug_info *d = c->dbg; - ubifs_assert(dbg_is_tst_rcvry(c)); + ubifs_assert(c, dbg_is_tst_rcvry(c)); if (!d->pc_cnt) { /* First call - decide delay to the power cut */ if (chance(1, 2)) { unsigned long delay; if (chance(1, 2)) { d->pc_delay = 1; /* Fail within 1 minute */ delay = prandom_u32() % 60000; d->pc_timeout = jiffies; d->pc_timeout += msecs_to_jiffies(delay); ubifs_warn(c, "failing after %lums", delay); } else { d->pc_delay = 2; delay = prandom_u32() % 10000; /* Fail within 10000 operations */ d->pc_cnt_max = delay; ubifs_warn(c, "failing after %lu calls", delay); } } d->pc_cnt += 1; } /* Determine if failure delay has expired */ if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) return 0; if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) return 0; if (lnum == UBIFS_SB_LNUM) { if (write && chance(1, 2)) return 0; if (chance(19, 20)) return 0; ubifs_warn(c, "failing in super block LEB %d", lnum); } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { if (chance(19, 20)) return 0; ubifs_warn(c, "failing in master LEB %d", lnum); } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { if (write && chance(99, 100)) return 0; if (chance(399, 400)) return 0; ubifs_warn(c, "failing in log LEB %d", lnum); } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { if (write && chance(7, 8)) return 0; if (chance(19, 20)) return 0; ubifs_warn(c, "failing in LPT LEB %d", lnum); } else if (lnum >= c->orph_first && lnum <= c->orph_last) { if (write && chance(1, 2)) return 0; if (chance(9, 10)) return 0; ubifs_warn(c, "failing in orphan LEB %d", lnum); } else if (lnum == c->ihead_lnum) { if (chance(99, 100)) return 0; ubifs_warn(c, "failing in index head LEB %d", lnum); } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { if (chance(9, 10)) return 0; ubifs_warn(c, "failing in GC head LEB %d", lnum); } else if (write && !RB_EMPTY_ROOT(&c->buds) && !ubifs_search_bud(c, lnum)) { if (chance(19, 20)) return 0; ubifs_warn(c, "failing in non-bud LEB %d", lnum); } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || c->cmt_state == COMMIT_RUNNING_REQUIRED) { if (chance(999, 1000)) return 0; ubifs_warn(c, "failing in bud LEB %d commit running", lnum); } else { if (chance(9999, 10000)) return 0; ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); } d->pc_happened = 1; ubifs_warn(c, "========== Power cut emulated =========="); dump_stack(); return 1; }<sep>@@ identifier f,c; expression e; @@ f(...,struct ubifs_info *c,...) { <... ubifs_assert( + c, e) ...> } <|end_of_text|>
11,734
--- initial +++ final @@ -1,14 +1,13 @@ static void prism2sta_inf_hostscanresults(wlandevice_t *wlandev, hfa384x_InfFrame_t *inf) { hfa384x_t *hw = (hfa384x_t *)wlandev->priv; int nbss; nbss = (inf->framelen - 3) / 32; pr_debug("Received %d hostscan results\n", nbss); if (nbss > 32) nbss = 32; kfree(hw->scanresults); - hw->scanresults = kmalloc(sizeof(hfa384x_InfFrame_t), GFP_ATOMIC); - memcpy(hw->scanresults, inf, sizeof(hfa384x_InfFrame_t)); + hw->scanresults = kmemdup(inf, sizeof(hfa384x_InfFrame_t), GFP_ATOMIC); if (nbss == 0) nbss = -1; /* Notify/wake the sleeping caller. */ hw->scanflag = nbss; wake_up_interruptible(&hw->cmdq); }<sep>@@ expression from,to,size,flag; statement S; @@ - to = \(kmalloc\|kzalloc\)(size,flag); - memcpy(to, from, size); + to = kmemdup(from,size,flag); <|end_of_text|>
445
--- initial +++ final @@ -1,18 +1,18 @@ static int vbox_connector_init(struct drm_device *dev, struct vbox_crtc *vbox_crtc, struct drm_encoder *encoder) { struct vbox_connector *vbox_connector; struct drm_connector *connector; vbox_connector = kzalloc(sizeof(*vbox_connector), GFP_KERNEL); if (!vbox_connector) return -ENOMEM; connector = &vbox_connector->base; vbox_connector->vbox_crtc = vbox_crtc; drm_connector_init(dev, connector, &vbox_connector_funcs, DRM_MODE_CONNECTOR_VGA); drm_connector_helper_add(connector, &vbox_connector_helper_funcs); connector->interlace_allowed = 0; connector->doublescan_allowed = 0; drm_mode_create_suggested_offset_properties(dev); drm_object_attach_property(&connector->base, dev->mode_config.suggested_x_property, 0); drm_object_attach_property(&connector->base, dev->mode_config.suggested_y_property, 0); drm_connector_register(connector); - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,340
--- initial +++ final @@ -1,22 +1,22 @@ static int adv7511_bridge_attach(struct drm_bridge *bridge) { struct adv7511 *adv = bridge_to_adv7511(bridge); int ret; if (!bridge->encoder) { DRM_ERROR("Parent encoder object not found"); return -ENODEV; } if (adv->i2c_main->irq) adv->connector.polled = DRM_CONNECTOR_POLL_HPD; else adv->connector.polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; ret = drm_connector_init(bridge->dev, &adv->connector, &adv7511_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); if (ret) { DRM_ERROR("Failed to initialize connector with drm\n"); return ret; } drm_connector_helper_add(&adv->connector, &adv7511_connector_helper_funcs); - drm_mode_connector_attach_encoder(&adv->connector, bridge->encoder); + drm_connector_attach_encoder(&adv->connector, bridge->encoder); if (adv->type == ADV7533) ret = adv7533_attach_dsi(adv); if (adv->i2c_main->irq) regmap_write(adv->regmap, ADV7511_REG_INT_ENABLE(0), ADV7511_INT0_HPD); return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,265
--- initial +++ final @@ -1,20 +1,20 @@ static struct drm_connector *panel_connector_create(struct drm_device *dev, struct panel_module *mod, struct drm_encoder *encoder) { struct panel_connector *panel_connector; struct drm_connector *connector; int ret; panel_connector = devm_kzalloc(dev->dev, sizeof(*panel_connector), GFP_KERNEL); if (!panel_connector) return NULL; panel_connector->encoder = encoder; panel_connector->mod = mod; connector = &panel_connector->base; drm_connector_init(dev, connector, &panel_connector_funcs, DRM_MODE_CONNECTOR_LVDS); drm_connector_helper_add(connector, &panel_connector_helper_funcs); connector->interlace_allowed = 0; connector->doublescan_allowed = 0; - ret = drm_mode_connector_attach_encoder(connector, encoder); + ret = drm_connector_attach_encoder(connector, encoder); if (ret) goto fail; return connector; fail: panel_connector_destroy(connector); return NULL; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,335
--- initial +++ final @@ -1,11 +1,11 @@ static int dw_hdmi_bridge_attach(struct drm_bridge *bridge) { struct dw_hdmi *hdmi = bridge->driver_private; struct drm_encoder *encoder = bridge->encoder; struct drm_connector *connector = &hdmi->connector; connector->interlace_allowed = 1; connector->polled = DRM_CONNECTOR_POLL_HPD; drm_connector_helper_add(connector, &dw_hdmi_connector_helper_funcs); drm_connector_init(bridge->dev, connector, &dw_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,287
--- initial +++ final @@ -1,31 +1,31 @@ int nv04_dfp_create(struct drm_connector *connector, struct dcb_output *entry) { const struct drm_encoder_helper_funcs *helper; struct nouveau_encoder *nv_encoder = NULL; struct drm_encoder *encoder; int type; switch (entry->type) { case DCB_OUTPUT_TMDS: type = DRM_MODE_ENCODER_TMDS; helper = &nv04_tmds_helper_funcs; break; case DCB_OUTPUT_LVDS: type = DRM_MODE_ENCODER_LVDS; helper = &nv04_lvds_helper_funcs; break; default: return -EINVAL; } nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->enc_save = nv04_dfp_save; nv_encoder->enc_restore = nv04_dfp_restore; encoder = to_drm_encoder(nv_encoder); nv_encoder->dcb = entry; nv_encoder->or = ffs(entry->or) - 1; drm_encoder_init(connector->dev, encoder, &nv04_dfp_funcs, type, NULL); drm_encoder_helper_add(encoder, helper); encoder->possible_crtcs = entry->heads; encoder->possible_clones = 0; if (entry->type == DCB_OUTPUT_TMDS && entry->location != DCB_LOC_ON_CHIP) nv04_tmds_slave_init(encoder); - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,277
--- initial +++ final @@ -1,22 +1,22 @@ int shmob_drm_connector_create(struct shmob_drm_device *sdev, struct drm_encoder *encoder) { struct drm_connector *connector = &sdev->connector.connector; int ret; sdev->connector.encoder = encoder; connector->display_info.width_mm = sdev->pdata->panel.width_mm; connector->display_info.height_mm = sdev->pdata->panel.height_mm; ret = drm_connector_init(sdev->ddev, connector, &connector_funcs, DRM_MODE_CONNECTOR_LVDS); if (ret < 0) return ret; drm_connector_helper_add(connector, &connector_helper_funcs); ret = shmob_drm_backlight_init(&sdev->connector); if (ret < 0) goto err_cleanup; - ret = drm_mode_connector_attach_encoder(connector, encoder); + ret = drm_connector_attach_encoder(connector, encoder); if (ret < 0) goto err_backlight; drm_helper_connector_dpms(connector, DRM_MODE_DPMS_OFF); drm_object_property_set_value(&connector->base, sdev->ddev->mode_config.dpms_property, DRM_MODE_DPMS_OFF); return 0; err_backlight: shmob_drm_backlight_exit(&sdev->connector); err_cleanup: drm_connector_cleanup(connector); return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,321
--- initial +++ final @@ -1,23 +1,23 @@ int nv04_dac_create(struct drm_connector *connector, struct dcb_output *entry) { const struct drm_encoder_helper_funcs *helper; struct nouveau_encoder *nv_encoder = NULL; struct drm_device *dev = connector->dev; struct drm_encoder *encoder; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; encoder = to_drm_encoder(nv_encoder); nv_encoder->dcb = entry; nv_encoder->or = ffs(entry->or) - 1; nv_encoder->enc_save = nv04_dac_save; nv_encoder->enc_restore = nv04_dac_restore; if (nv_gf4_disp_arch(dev)) helper = &nv17_dac_helper_funcs; else helper = &nv04_dac_helper_funcs; drm_encoder_init(dev, encoder, &nv04_dac_funcs, DRM_MODE_ENCODER_DAC, NULL); drm_encoder_helper_add(encoder, helper); encoder->possible_crtcs = entry->heads; encoder->possible_clones = 0; - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,275
--- initial +++ final @@ -1,34 +1,34 @@ int drm_writeback_connector_init(struct drm_device *dev, struct drm_writeback_connector *wb_connector, const struct drm_connector_funcs *con_funcs, const struct drm_encoder_helper_funcs *enc_helper_funcs, const u32 *formats, int n_formats) { struct drm_property_blob *blob; struct drm_connector *connector = &wb_connector->base; struct drm_mode_config *config = &dev->mode_config; int ret = create_writeback_properties(dev); if (ret != 0) return ret; blob = drm_property_create_blob(dev, n_formats * sizeof(*formats), formats); if (IS_ERR(blob)) return PTR_ERR(blob); drm_encoder_helper_add(&wb_connector->encoder, enc_helper_funcs); ret = drm_encoder_init(dev, &wb_connector->encoder, &drm_writeback_encoder_funcs, DRM_MODE_ENCODER_VIRTUAL, NULL); if (ret) goto fail; connector->interlace_allowed = 0; ret = drm_connector_init(dev, connector, con_funcs, DRM_MODE_CONNECTOR_WRITEBACK); if (ret) goto connector_fail; - ret = drm_mode_connector_attach_encoder(connector, &wb_connector->encoder); + ret = drm_connector_attach_encoder(connector, &wb_connector->encoder); if (ret) goto attach_fail; INIT_LIST_HEAD(&wb_connector->job_queue); spin_lock_init(&wb_connector->job_lock); wb_connector->fence_context = dma_fence_context_alloc(1); spin_lock_init(&wb_connector->fence_lock); snprintf(wb_connector->timeline_name, sizeof(wb_connector->timeline_name), "CONNECTOR:%d-%s", connector->base.id, connector->name); drm_object_attach_property(&connector->base, config->writeback_out_fence_ptr_property, 0); drm_object_attach_property(&connector->base, config->writeback_fb_id_property, 0); drm_object_attach_property(&connector->base, config->writeback_pixel_formats_property, blob->base.id); wb_connector->pixel_formats_blob_ptr = blob; return 0; attach_fail: drm_connector_cleanup(connector); connector_fail: drm_encoder_cleanup(&wb_connector->encoder); fail: drm_property_blob_put(blob); return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,283
--- initial +++ final @@ -1,42 +1,42 @@ static int analogix_dp_bridge_attach(struct drm_bridge *bridge) { struct analogix_dp_device *dp = bridge->driver_private; struct drm_encoder *encoder = dp->encoder; struct drm_connector *connector = NULL; int ret = 0; if (!bridge->encoder) { DRM_ERROR("Parent encoder object not found"); return -ENODEV; } if (!dp->plat_data->skip_connector) { connector = &dp->connector; connector->polled = DRM_CONNECTOR_POLL_HPD; ret = drm_connector_init(dp->drm_dev, connector, &analogix_dp_connector_funcs, DRM_MODE_CONNECTOR_eDP); if (ret) { DRM_ERROR("Failed to initialize connector with drm\n"); return ret; } drm_connector_helper_add(connector, &analogix_dp_connector_helper_funcs); - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); } /* * NOTE: the connector registration is implemented in analogix * platform driver, that to say connector would be exist after * plat_data->attch return, that's why we record the connector * point after plat attached. */ if (dp->plat_data->attach) { ret = dp->plat_data->attach(dp->plat_data, bridge, connector); if (ret) { DRM_ERROR("Failed at platform attch func\n"); return ret; } } if (dp->plat_data->panel) { ret = drm_panel_attach(dp->plat_data->panel, &dp->connector); if (ret) { DRM_ERROR("Failed to attach panel\n"); return ret; } } return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,269
--- initial +++ final @@ -1,14 +1,14 @@ static int tc_bridge_attach(struct drm_bridge *bridge) { u32 bus_format = MEDIA_BUS_FMT_RGB888_1X24; struct tc_data *tc = bridge_to_tc(bridge); struct drm_device *drm = bridge->dev; int ret; /* Create eDP connector */ drm_connector_helper_add(&tc->connector, &tc_connector_helper_funcs); ret = drm_connector_init(drm, &tc->connector, &tc_connector_funcs, DRM_MODE_CONNECTOR_eDP); if (ret) return ret; if (tc->panel) drm_panel_attach(tc->panel, &tc->connector); drm_display_info_set_bus_formats(&tc->connector.display_info, &bus_format, 1); - drm_mode_connector_attach_encoder(&tc->connector, tc->bridge.encoder); + drm_connector_attach_encoder(&tc->connector, tc->bridge.encoder); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,332
--- initial +++ final @@ -1,52 +1,52 @@ static int sti_hdmi_bind(struct device *dev, struct device *master, void *data) { struct sti_hdmi *hdmi = dev_get_drvdata(dev); struct drm_device *drm_dev = data; struct drm_encoder *encoder; struct sti_hdmi_connector *connector; struct drm_connector *drm_connector; struct drm_bridge *bridge; int err; /* Set the drm device handle */ hdmi->drm_dev = drm_dev; encoder = sti_hdmi_find_encoder(drm_dev); if (!encoder) return -EINVAL; connector = devm_kzalloc(dev, sizeof(*connector), GFP_KERNEL); if (!connector) return -EINVAL; connector->hdmi = hdmi; bridge = devm_kzalloc(dev, sizeof(*bridge), GFP_KERNEL); if (!bridge) return -EINVAL; bridge->driver_private = hdmi; bridge->funcs = &sti_hdmi_bridge_funcs; drm_bridge_attach(encoder, bridge, NULL); connector->encoder = encoder; drm_connector = (struct drm_connector *)connector; drm_connector->polled = DRM_CONNECTOR_POLL_HPD; drm_connector_init(drm_dev, drm_connector, &sti_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); drm_connector_helper_add(drm_connector, &sti_hdmi_connector_helper_funcs); /* initialise property */ sti_hdmi_connector_init_property(drm_dev, drm_connector); hdmi->drm_connector = drm_connector; - err = drm_mode_connector_attach_encoder(drm_connector, encoder); + err = drm_connector_attach_encoder(drm_connector, encoder); if (err) { DRM_ERROR("Failed to attach a connector to a encoder\n"); goto err_sysfs; } err = sti_hdmi_register_audio_driver(dev, hdmi); if (err) { DRM_ERROR("Failed to attach an audio codec\n"); goto err_sysfs; } /* Initialize audio infoframe */ err = hdmi_audio_infoframe_init(&hdmi->audio.cea); if (err) { DRM_ERROR("Failed to init audio infoframe\n"); goto err_sysfs; } /* Enable default interrupts */ hdmi_write(hdmi, HDMI_DEFAULT_INT, HDMI_INT_EN); return 0; err_sysfs: drm_bridge_remove(bridge); hdmi->drm_connector = NULL; return -EINVAL; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,326
--- initial +++ final @@ -1,49 +1,49 @@ int sun4i_rgb_init(struct drm_device *drm, struct sun4i_tcon *tcon) { struct drm_encoder *encoder; struct drm_bridge *bridge; struct sun4i_rgb *rgb; int ret; rgb = devm_kzalloc(drm->dev, sizeof(*rgb), GFP_KERNEL); if (!rgb) return -ENOMEM; rgb->tcon = tcon; encoder = &rgb->encoder; ret = drm_of_find_panel_or_bridge(tcon->dev->of_node, 1, 0, &tcon->panel, &bridge); if (ret) { dev_info(drm->dev, "No panel or bridge found... RGB output disabled\n"); return 0; } drm_encoder_helper_add(&rgb->encoder, &sun4i_rgb_enc_helper_funcs); ret = drm_encoder_init(drm, &rgb->encoder, &sun4i_rgb_enc_funcs, DRM_MODE_ENCODER_NONE, NULL); if (ret) { dev_err(drm->dev, "Couldn't initialise the rgb encoder\n"); goto err_out; } /* The RGB encoder can only work with the TCON channel 0 */ rgb->encoder.possible_crtcs = drm_crtc_mask(&tcon->crtc->crtc); if (tcon->panel) { drm_connector_helper_add(&rgb->connector, &sun4i_rgb_con_helper_funcs); ret = drm_connector_init(drm, &rgb->connector, &sun4i_rgb_con_funcs, DRM_MODE_CONNECTOR_Unknown); if (ret) { dev_err(drm->dev, "Couldn't initialise the rgb connector\n"); goto err_cleanup_connector; } - drm_mode_connector_attach_encoder(&rgb->connector, &rgb->encoder); + drm_connector_attach_encoder(&rgb->connector, &rgb->encoder); ret = drm_panel_attach(tcon->panel, &rgb->connector); if (ret) { dev_err(drm->dev, "Couldn't attach our panel\n"); goto err_cleanup_connector; } } if (bridge) { ret = drm_bridge_attach(encoder, bridge, NULL); if (ret) { dev_err(drm->dev, "Couldn't attach our bridge\n"); goto err_cleanup_connector; } } return 0; err_cleanup_connector: drm_encoder_cleanup(&rgb->encoder); err_out: return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,329
--- initial +++ final @@ -1,15 +1,15 @@ static int rcar_lvds_attach(struct drm_bridge *bridge) { struct rcar_lvds *lvds = bridge_to_rcar_lvds(bridge); struct drm_connector *connector = &lvds->connector; struct drm_encoder *encoder = bridge->encoder; int ret; /* If we have a next bridge just attach it. */ if (lvds->next_bridge) return drm_bridge_attach(bridge->encoder, lvds->next_bridge, bridge); /* Otherwise we have a panel, create a connector. */ ret = drm_connector_init(bridge->dev, connector, &rcar_lvds_conn_funcs, DRM_MODE_CONNECTOR_LVDS); if (ret < 0) return ret; drm_connector_helper_add(connector, &rcar_lvds_conn_helper_funcs); - ret = drm_mode_connector_attach_encoder(connector, encoder); + ret = drm_connector_attach_encoder(connector, encoder); if (ret < 0) return ret; return drm_panel_attach(lvds->panel, connector); }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,318
--- initial +++ final @@ -1,28 +1,28 @@ int nv17_tv_create(struct drm_connector *connector, struct dcb_output *entry) { struct drm_device *dev = connector->dev; struct drm_encoder *encoder; struct nv17_tv_encoder *tv_enc = NULL; tv_enc = kzalloc(sizeof(*tv_enc), GFP_KERNEL); if (!tv_enc) return -ENOMEM; tv_enc->overscan = 50; tv_enc->flicker = 50; tv_enc->saturation = 50; tv_enc->hue = 0; tv_enc->tv_norm = TV_NORM_PAL; tv_enc->subconnector = DRM_MODE_SUBCONNECTOR_Unknown; tv_enc->select_subconnector = DRM_MODE_SUBCONNECTOR_Automatic; tv_enc->pin_mask = 0; encoder = to_drm_encoder(&tv_enc->base); tv_enc->base.dcb = entry; tv_enc->base.or = ffs(entry->or) - 1; drm_encoder_init(dev, encoder, &nv17_tv_funcs, DRM_MODE_ENCODER_TVDAC, NULL); drm_encoder_helper_add(encoder, &nv17_tv_helper_funcs); to_encoder_slave(encoder)->slave_funcs = &nv17_tv_slave_funcs; tv_enc->base.enc_save = nv17_tv_save; tv_enc->base.enc_restore = nv17_tv_restore; encoder->possible_crtcs = entry->heads; encoder->possible_clones = 0; nv17_tv_create_resources(encoder, connector); - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,338
--- initial +++ final @@ -1,133 +1,133 @@ static int sun4i_hdmi_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = data; struct sun4i_drv *drv = drm->dev_private; struct sun4i_hdmi *hdmi; struct resource *res; u32 reg; int ret; hdmi = devm_kzalloc(dev, sizeof(*hdmi), GFP_KERNEL); if (!hdmi) return -ENOMEM; dev_set_drvdata(dev, hdmi); hdmi->dev = dev; hdmi->drv = drv; hdmi->variant = of_device_get_match_data(dev); if (!hdmi->variant) return -EINVAL; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); hdmi->base = devm_ioremap_resource(dev, res); if (IS_ERR(hdmi->base)) { dev_err(dev, "Couldn't map the HDMI encoder registers\n"); return PTR_ERR(hdmi->base); } if (hdmi->variant->has_reset_control) { hdmi->reset = devm_reset_control_get(dev, NULL); if (IS_ERR(hdmi->reset)) { dev_err(dev, "Couldn't get the HDMI reset control\n"); return PTR_ERR(hdmi->reset); } ret = reset_control_deassert(hdmi->reset); if (ret) { dev_err(dev, "Couldn't deassert HDMI reset\n"); return ret; } } hdmi->bus_clk = devm_clk_get(dev, "ahb"); if (IS_ERR(hdmi->bus_clk)) { dev_err(dev, "Couldn't get the HDMI bus clock\n"); ret = PTR_ERR(hdmi->bus_clk); goto err_assert_reset; } clk_prepare_enable(hdmi->bus_clk); hdmi->mod_clk = devm_clk_get(dev, "mod"); if (IS_ERR(hdmi->mod_clk)) { dev_err(dev, "Couldn't get the HDMI mod clock\n"); ret = PTR_ERR(hdmi->mod_clk); goto err_disable_bus_clk; } clk_prepare_enable(hdmi->mod_clk); hdmi->pll0_clk = devm_clk_get(dev, "pll-0"); if (IS_ERR(hdmi->pll0_clk)) { dev_err(dev, "Couldn't get the HDMI PLL 0 clock\n"); ret = PTR_ERR(hdmi->pll0_clk); goto err_disable_mod_clk; } hdmi->pll1_clk = devm_clk_get(dev, "pll-1"); if (IS_ERR(hdmi->pll1_clk)) { dev_err(dev, "Couldn't get the HDMI PLL 1 clock\n"); ret = PTR_ERR(hdmi->pll1_clk); goto err_disable_mod_clk; } hdmi->regmap = devm_regmap_init_mmio(dev, hdmi->base, &sun4i_hdmi_regmap_config); if (IS_ERR(hdmi->regmap)) { dev_err(dev, "Couldn't create HDMI encoder regmap\n"); ret = PTR_ERR(hdmi->regmap); goto err_disable_mod_clk; } ret = sun4i_tmds_create(hdmi); if (ret) { dev_err(dev, "Couldn't create the TMDS clock\n"); goto err_disable_mod_clk; } if (hdmi->variant->has_ddc_parent_clk) { hdmi->ddc_parent_clk = devm_clk_get(dev, "ddc"); if (IS_ERR(hdmi->ddc_parent_clk)) { dev_err(dev, "Couldn't get the HDMI DDC clock\n"); ret = PTR_ERR(hdmi->ddc_parent_clk); goto err_disable_mod_clk; } } else { hdmi->ddc_parent_clk = hdmi->tmds_clk; } writel(SUN4I_HDMI_CTRL_ENABLE, hdmi->base + SUN4I_HDMI_CTRL_REG); writel(hdmi->variant->pad_ctrl0_init_val, hdmi->base + SUN4I_HDMI_PAD_CTRL0_REG); reg = readl(hdmi->base + SUN4I_HDMI_PLL_CTRL_REG); reg &= SUN4I_HDMI_PLL_CTRL_DIV_MASK; reg |= hdmi->variant->pll_ctrl_init_val; writel(reg, hdmi->base + SUN4I_HDMI_PLL_CTRL_REG); ret = sun4i_hdmi_i2c_create(dev, hdmi); if (ret) { dev_err(dev, "Couldn't create the HDMI I2C adapter\n"); goto err_disable_mod_clk; } drm_encoder_helper_add(&hdmi->encoder, &sun4i_hdmi_helper_funcs); ret = drm_encoder_init(drm, &hdmi->encoder, &sun4i_hdmi_funcs, DRM_MODE_ENCODER_TMDS, NULL); if (ret) { dev_err(dev, "Couldn't initialise the HDMI encoder\n"); goto err_del_i2c_adapter; } hdmi->encoder.possible_crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); if (!hdmi->encoder.possible_crtcs) { ret = -EPROBE_DEFER; goto err_del_i2c_adapter; } #ifdef CONFIG_DRM_SUN4I_HDMI_CEC hdmi->cec_adap = cec_pin_allocate_adapter(&sun4i_hdmi_cec_pin_ops, hdmi, "sun4i", CEC_CAP_TRANSMIT | CEC_CAP_LOG_ADDRS | CEC_CAP_PASSTHROUGH | CEC_CAP_RC); ret = PTR_ERR_OR_ZERO(hdmi->cec_adap); if (ret < 0) goto err_cleanup_connector; writel(readl(hdmi->base + SUN4I_HDMI_CEC) & ~SUN4I_HDMI_CEC_TX, hdmi->base + SUN4I_HDMI_CEC); #endif drm_connector_helper_add(&hdmi->connector, &sun4i_hdmi_connector_helper_funcs); ret = drm_connector_init(drm, &hdmi->connector, &sun4i_hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); if (ret) { dev_err(dev, "Couldn't initialise the HDMI connector\n"); goto err_cleanup_connector; } /* There is no HPD interrupt, so we need to poll the controller */ hdmi->connector.polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; ret = cec_register_adapter(hdmi->cec_adap, dev); if (ret < 0) goto err_cleanup_connector; - drm_mode_connector_attach_encoder(&hdmi->connector, &hdmi->encoder); + drm_connector_attach_encoder(&hdmi->connector, &hdmi->encoder); return 0; err_cleanup_connector: cec_delete_adapter(hdmi->cec_adap); drm_encoder_cleanup(&hdmi->encoder); err_del_i2c_adapter: i2c_del_adapter(hdmi->i2c); err_disable_mod_clk: clk_disable_unprepare(hdmi->mod_clk); err_disable_bus_clk: clk_disable_unprepare(hdmi->bus_clk); err_assert_reset: reset_control_assert(hdmi->reset); return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,327
--- initial +++ final @@ -1,27 +1,27 @@ static int sun6i_dsi_bind(struct device *dev, struct device *master, void *data) { struct drm_device *drm = data; struct sun4i_drv *drv = drm->dev_private; struct sun6i_dsi *dsi = dev_get_drvdata(dev); int ret; if (!dsi->panel) return -EPROBE_DEFER; dsi->drv = drv; drm_encoder_helper_add(&dsi->encoder, &sun6i_dsi_enc_helper_funcs); ret = drm_encoder_init(drm, &dsi->encoder, &sun6i_dsi_enc_funcs, DRM_MODE_ENCODER_DSI, NULL); if (ret) { dev_err(dsi->dev, "Couldn't initialise the DSI encoder\n"); return ret; } dsi->encoder.possible_crtcs = BIT(0); drm_connector_helper_add(&dsi->connector, &sun6i_dsi_connector_helper_funcs); ret = drm_connector_init(drm, &dsi->connector, &sun6i_dsi_connector_funcs, DRM_MODE_CONNECTOR_DSI); if (ret) { dev_err(dsi->dev, "Couldn't initialise the DSI connector\n"); goto err_cleanup_connector; } - drm_mode_connector_attach_encoder(&dsi->connector, &dsi->encoder); + drm_connector_attach_encoder(&dsi->connector, &dsi->encoder); drm_panel_attach(dsi->panel, &dsi->connector); return 0; err_cleanup_connector: drm_encoder_cleanup(&dsi->encoder); return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,331
--- initial +++ final @@ -1,25 +1,25 @@ int hibmc_vdac_init(struct hibmc_drm_private *priv) { struct drm_device *dev = priv->dev; struct drm_encoder *encoder; struct drm_connector *connector; int ret; connector = hibmc_connector_init(priv); if (IS_ERR(connector)) { DRM_ERROR("failed to create connector: %ld\n", PTR_ERR(connector)); return PTR_ERR(connector); } encoder = devm_kzalloc(dev->dev, sizeof(*encoder), GFP_KERNEL); if (!encoder) { DRM_ERROR("failed to alloc memory when init encoder\n"); return -ENOMEM; } encoder->possible_crtcs = 0x1; ret = drm_encoder_init(dev, encoder, &hibmc_encoder_funcs, DRM_MODE_ENCODER_DAC, NULL); if (ret) { DRM_ERROR("failed to init encoder: %d\n", ret); return ret; } drm_encoder_helper_add(encoder, &hibmc_encoder_helper_funcs); - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,298
--- initial +++ final @@ -1,28 +1,28 @@ static int vgdev_output_init(struct virtio_gpu_device *vgdev, int index) { struct drm_device *dev = vgdev->ddev; struct virtio_gpu_output *output = vgdev->outputs + index; struct drm_connector *connector = &output->conn; struct drm_encoder *encoder = &output->enc; struct drm_crtc *crtc = &output->crtc; struct drm_plane *primary, *cursor; output->index = index; if (index == 0) { output->info.enabled = cpu_to_le32(true); output->info.r.width = cpu_to_le32(XRES_DEF); output->info.r.height = cpu_to_le32(YRES_DEF); } primary = virtio_gpu_plane_init(vgdev, DRM_PLANE_TYPE_PRIMARY, index); if (IS_ERR(primary)) return PTR_ERR(primary); cursor = virtio_gpu_plane_init(vgdev, DRM_PLANE_TYPE_CURSOR, index); if (IS_ERR(cursor)) return PTR_ERR(cursor); drm_crtc_init_with_planes(dev, crtc, primary, cursor, &virtio_gpu_crtc_funcs, NULL); drm_crtc_helper_add(crtc, &virtio_gpu_crtc_helper_funcs); drm_connector_init(dev, connector, &virtio_gpu_connector_funcs, DRM_MODE_CONNECTOR_VIRTUAL); drm_connector_helper_add(connector, &virtio_gpu_conn_helper_funcs); drm_encoder_init(dev, encoder, &virtio_gpu_enc_funcs, DRM_MODE_ENCODER_VIRTUAL, NULL); drm_encoder_helper_add(encoder, &virtio_gpu_enc_helper_funcs); encoder->possible_crtcs = 1 << index; - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); drm_connector_register(connector); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,343
--- initial +++ final @@ -1,24 +1,24 @@ int tegra_dc_rgb_init(struct drm_device *drm, struct tegra_dc *dc) { struct tegra_output *output = dc->rgb; int err; if (!dc->rgb) return -ENODEV; drm_connector_init(drm, &output->connector, &tegra_rgb_connector_funcs, DRM_MODE_CONNECTOR_LVDS); drm_connector_helper_add(&output->connector, &tegra_rgb_connector_helper_funcs); output->connector.dpms = DRM_MODE_DPMS_OFF; drm_encoder_init(drm, &output->encoder, &tegra_rgb_encoder_funcs, DRM_MODE_ENCODER_LVDS, NULL); drm_encoder_helper_add(&output->encoder, &tegra_rgb_encoder_helper_funcs); - drm_mode_connector_attach_encoder(&output->connector, &output->encoder); + drm_connector_attach_encoder(&output->connector, &output->encoder); drm_connector_register(&output->connector); err = tegra_output_init(drm, output); if (err < 0) { dev_err(output->dev, "failed to initialize output: %d\n", err); return err; } /* * Other outputs can be attached to either display controller. The RGB * outputs are an exception and work only with their parent display * controller. */ output->encoder.possible_crtcs = drm_crtc_mask(&dc->base); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,319
--- initial +++ final @@ -1,36 +1,36 @@ int nv04_tv_create(struct drm_connector *connector, struct dcb_output *entry) { struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; struct drm_device *dev = connector->dev; struct nouveau_drm *drm = nouveau_drm(dev); struct nvkm_i2c *i2c = nvxx_i2c(&drm->client.device); struct nvkm_i2c_bus *bus = nvkm_i2c_bus_find(i2c, entry->i2c_index); int type, ret; /* Ensure that we can talk to this encoder */ type = nv04_tv_identify(dev, entry->i2c_index); if (type < 0) return type; /* Allocate the necessary memory */ nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; /* Initialize the common members */ encoder = to_drm_encoder(nv_encoder); drm_encoder_init(dev, encoder, &nv04_tv_funcs, DRM_MODE_ENCODER_TVDAC, NULL); drm_encoder_helper_add(encoder, &nv04_tv_helper_funcs); nv_encoder->enc_save = drm_i2c_encoder_save; nv_encoder->enc_restore = drm_i2c_encoder_restore; encoder->possible_crtcs = entry->heads; encoder->possible_clones = 0; nv_encoder->dcb = entry; nv_encoder->or = ffs(entry->or) - 1; /* Run the slave-specific initialization */ ret = drm_i2c_encoder_init(dev, to_encoder_slave(encoder), &bus->i2c, &nv04_tv_encoder_info[type].dev); if (ret < 0) goto fail_cleanup; /* Attach it to the specified connector. */ get_slave_funcs(encoder)->create_resources(encoder, connector); - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); return 0; fail_cleanup: drm_encoder_cleanup(encoder); kfree(nv_encoder); return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,337
--- initial +++ final @@ -1,25 +1,25 @@ static int dce_virtual_connector_encoder_init(struct amdgpu_device *adev, int index) { struct drm_encoder *encoder; struct drm_connector *connector; /* add a new encoder */ encoder = kzalloc(sizeof(struct drm_encoder), GFP_KERNEL); if (!encoder) return -ENOMEM; encoder->possible_crtcs = 1 << index; drm_encoder_init(adev->ddev, encoder, &dce_virtual_encoder_funcs, DRM_MODE_ENCODER_VIRTUAL, NULL); drm_encoder_helper_add(encoder, &dce_virtual_encoder_helper_funcs); connector = kzalloc(sizeof(struct drm_connector), GFP_KERNEL); if (!connector) { kfree(encoder); return -ENOMEM; } /* add a new connector */ drm_connector_init(adev->ddev, connector, &dce_virtual_connector_funcs, DRM_MODE_CONNECTOR_VIRTUAL); drm_connector_helper_add(connector, &dce_virtual_connector_helper_funcs); connector->display_info.subpixel_order = SubPixelHorizontalRGB; connector->interlace_allowed = false; connector->doublescan_allowed = false; drm_connector_register(connector); /* link them */ - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,276
--- initial +++ final @@ -1,4 +1,4 @@ void gma_connector_attach_encoder(struct gma_connector *connector, struct gma_encoder *encoder) { connector->encoder = encoder; - drm_mode_connector_attach_encoder(&connector->base, &encoder->base); + drm_connector_attach_encoder(&connector->base, &encoder->base); }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,295
--- initial +++ final @@ -1,16 +1,16 @@ struct drm_connector *mdp4_lvds_connector_init(struct drm_device *dev, struct device_node *panel_node, struct drm_encoder *encoder) { struct drm_connector *connector = NULL; struct mdp4_lvds_connector *mdp4_lvds_connector; mdp4_lvds_connector = kzalloc(sizeof(*mdp4_lvds_connector), GFP_KERNEL); if (!mdp4_lvds_connector) return ERR_PTR(-ENOMEM); mdp4_lvds_connector->encoder = encoder; mdp4_lvds_connector->panel_node = panel_node; connector = &mdp4_lvds_connector->base; drm_connector_init(dev, connector, &mdp4_lvds_connector_funcs, DRM_MODE_CONNECTOR_LVDS); drm_connector_helper_add(connector, &mdp4_lvds_connector_helper_funcs); connector->polled = 0; connector->interlace_allowed = 0; connector->doublescan_allowed = 0; - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); return connector; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,305
--- initial +++ final @@ -1,19 +1,19 @@ static int hdmi_create_connector(struct drm_encoder *encoder) { struct hdmi_context *hdata = encoder_to_hdmi(encoder); struct drm_connector *connector = &hdata->connector; int ret; connector->interlace_allowed = true; connector->polled = DRM_CONNECTOR_POLL_HPD; ret = drm_connector_init(hdata->drm_dev, connector, &hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); if (ret) { DRM_ERROR("Failed to initialize connector with drm\n"); return ret; } drm_connector_helper_add(connector, &hdmi_connector_helper_funcs); - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); if (hdata->bridge) { ret = drm_bridge_attach(encoder, hdata->bridge, NULL); if (ret) DRM_ERROR("Failed to attach bridge\n"); } return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,293
--- initial +++ final @@ -1,31 +1,31 @@ int cirrus_modeset_init(struct cirrus_device *cdev) { struct drm_encoder *encoder; struct drm_connector *connector; int ret; drm_mode_config_init(cdev->dev); cdev->mode_info.mode_config_initialized = true; cdev->dev->mode_config.max_width = CIRRUS_MAX_FB_WIDTH; cdev->dev->mode_config.max_height = CIRRUS_MAX_FB_HEIGHT; cdev->dev->mode_config.fb_base = cdev->mc.vram_base; cdev->dev->mode_config.preferred_depth = 24; /* don't prefer a shadow on virt GPU */ cdev->dev->mode_config.prefer_shadow = 0; cirrus_crtc_init(cdev->dev); encoder = cirrus_encoder_init(cdev->dev); if (!encoder) { DRM_ERROR("cirrus_encoder_init failed\n"); return -1; } connector = cirrus_vga_init(cdev->dev); if (!connector) { DRM_ERROR("cirrus_vga_init failed\n"); return -1; } - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); ret = cirrus_fbdev_init(cdev); if (ret) { DRM_ERROR("cirrus_fbdev_init failed\n"); return ret; } return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,274
--- initial +++ final @@ -1,68 +1,68 @@ static int sun4i_tv_bind(struct device *dev, struct device *master, void *data) { struct platform_device *pdev = to_platform_device(dev); struct drm_device *drm = data; struct sun4i_drv *drv = drm->dev_private; struct sun4i_tv *tv; struct resource *res; void __iomem *regs; int ret; tv = devm_kzalloc(dev, sizeof(*tv), GFP_KERNEL); if (!tv) return -ENOMEM; tv->drv = drv; dev_set_drvdata(dev, tv); res = platform_get_resource(pdev, IORESOURCE_MEM, 0); regs = devm_ioremap_resource(dev, res); if (IS_ERR(regs)) { dev_err(dev, "Couldn't map the TV encoder registers\n"); return PTR_ERR(regs); } tv->regs = devm_regmap_init_mmio(dev, regs, &sun4i_tv_regmap_config); if (IS_ERR(tv->regs)) { dev_err(dev, "Couldn't create the TV encoder regmap\n"); return PTR_ERR(tv->regs); } tv->reset = devm_reset_control_get(dev, NULL); if (IS_ERR(tv->reset)) { dev_err(dev, "Couldn't get our reset line\n"); return PTR_ERR(tv->reset); } ret = reset_control_deassert(tv->reset); if (ret) { dev_err(dev, "Couldn't deassert our reset line\n"); return ret; } tv->clk = devm_clk_get(dev, NULL); if (IS_ERR(tv->clk)) { dev_err(dev, "Couldn't get the TV encoder clock\n"); ret = PTR_ERR(tv->clk); goto err_assert_reset; } clk_prepare_enable(tv->clk); drm_encoder_helper_add(&tv->encoder, &sun4i_tv_helper_funcs); ret = drm_encoder_init(drm, &tv->encoder, &sun4i_tv_funcs, DRM_MODE_ENCODER_TVDAC, NULL); if (ret) { dev_err(dev, "Couldn't initialise the TV encoder\n"); goto err_disable_clk; } tv->encoder.possible_crtcs = drm_of_find_possible_crtcs(drm, dev->of_node); if (!tv->encoder.possible_crtcs) { ret = -EPROBE_DEFER; goto err_disable_clk; } drm_connector_helper_add(&tv->connector, &sun4i_tv_comp_connector_helper_funcs); ret = drm_connector_init(drm, &tv->connector, &sun4i_tv_comp_connector_funcs, DRM_MODE_CONNECTOR_Composite); if (ret) { dev_err(dev, "Couldn't initialise the Composite connector\n"); goto err_cleanup_connector; } tv->connector.interlace_allowed = true; - drm_mode_connector_attach_encoder(&tv->connector, &tv->encoder); + drm_connector_attach_encoder(&tv->connector, &tv->encoder); return 0; err_cleanup_connector: drm_encoder_cleanup(&tv->encoder); err_disable_clk: clk_disable_unprepare(tv->clk); err_assert_reset: reset_control_assert(tv->reset); return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,330
--- initial +++ final @@ -1,36 +1,36 @@ int arcpgu_drm_sim_init(struct drm_device *drm, struct device_node *np) { struct arcpgu_drm_connector *arcpgu_connector; struct drm_encoder *encoder; struct drm_connector *connector; int ret; encoder = devm_kzalloc(drm->dev, sizeof(*encoder), GFP_KERNEL); if (encoder == NULL) return -ENOMEM; encoder->possible_crtcs = 1; encoder->possible_clones = 0; ret = drm_encoder_init(drm, encoder, &arcpgu_drm_encoder_funcs, DRM_MODE_ENCODER_VIRTUAL, NULL); if (ret) return ret; arcpgu_connector = devm_kzalloc(drm->dev, sizeof(*arcpgu_connector), GFP_KERNEL); if (!arcpgu_connector) { ret = -ENOMEM; goto error_encoder_cleanup; } connector = &arcpgu_connector->connector; drm_connector_helper_add(connector, &arcpgu_drm_connector_helper_funcs); ret = drm_connector_init(drm, connector, &arcpgu_drm_connector_funcs, DRM_MODE_CONNECTOR_VIRTUAL); if (ret < 0) { dev_err(drm->dev, "failed to initialize drm connector\n"); goto error_encoder_cleanup; } - ret = drm_mode_connector_attach_encoder(connector, encoder); + ret = drm_connector_attach_encoder(connector, encoder); if (ret < 0) { dev_err(drm->dev, "could not attach connector to encoder\n"); drm_connector_unregister(connector); goto error_connector_cleanup; } return 0; error_connector_cleanup: drm_connector_cleanup(connector); error_encoder_cleanup: drm_encoder_cleanup(encoder); return ret; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,270
--- initial +++ final @@ -1,60 +1,60 @@ struct mdfld_dsi_encoder *mdfld_dsi_dpi_init(struct drm_device *dev, struct mdfld_dsi_connector *dsi_connector, const struct panel_funcs *p_funcs) { struct mdfld_dsi_dpi_output *dpi_output = NULL; struct mdfld_dsi_config *dsi_config; struct drm_connector *connector = NULL; struct drm_encoder *encoder = NULL; int pipe; u32 data; int ret; pipe = dsi_connector->pipe; if (mdfld_get_panel_type(dev, pipe) != TC35876X) { dsi_config = mdfld_dsi_get_config(dsi_connector); /* panel hard-reset */ if (p_funcs->reset) { ret = p_funcs->reset(pipe); if (ret) { DRM_ERROR("Panel %d hard-reset failed\n", pipe); return NULL; } } /* panel drvIC init */ if (p_funcs->drv_ic_init) p_funcs->drv_ic_init(dsi_config, pipe); /* panel power mode detect */ ret = mdfld_dsi_get_power_mode(dsi_config, &data, false); if (ret) { DRM_ERROR("Panel %d get power mode failed\n", pipe); dsi_connector->status = connector_status_disconnected; } else { DRM_INFO("pipe %d power mode 0x%x\n", pipe, data); dsi_connector->status = connector_status_connected; } } dpi_output = kzalloc(sizeof(struct mdfld_dsi_dpi_output), GFP_KERNEL); if (!dpi_output) { DRM_ERROR("No memory\n"); return NULL; } dpi_output->panel_on = 0; dpi_output->dev = dev; if (mdfld_get_panel_type(dev, pipe) != TC35876X) dpi_output->p_funcs = p_funcs; dpi_output->first_boot = 1; /*get fixed mode*/ dsi_config = mdfld_dsi_get_config(dsi_connector); /*create drm encoder object*/ connector = &dsi_connector->base.base; encoder = &dpi_output->base.base.base; drm_encoder_init(dev, encoder, p_funcs->encoder_funcs, DRM_MODE_ENCODER_LVDS, NULL); drm_encoder_helper_add(encoder, p_funcs->encoder_helper_funcs); /*attach to given connector*/ - drm_mode_connector_attach_encoder(connector, encoder); + drm_connector_attach_encoder(connector, encoder); /*set possible crtcs and clones*/ if (dsi_connector->pipe) { encoder->possible_crtcs = (1 << 2); encoder->possible_clones = (1 << 1); } else { encoder->possible_crtcs = (1 << 0); encoder->possible_clones = (1 << 0); } dsi_connector->base.encoder = &dpi_output->base.base; return &dpi_output->base; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,304
--- initial +++ final @@ -1,22 +1,22 @@ struct drm_connector *msm_hdmi_connector_init(struct hdmi *hdmi) { struct drm_connector *connector = NULL; struct hdmi_connector *hdmi_connector; int ret; hdmi_connector = kzalloc(sizeof(*hdmi_connector), GFP_KERNEL); if (!hdmi_connector) return ERR_PTR(-ENOMEM); hdmi_connector->hdmi = hdmi; INIT_WORK(&hdmi_connector->hpd_work, msm_hdmi_hotplug_work); connector = &hdmi_connector->base; drm_connector_init(hdmi->dev, connector, &hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA); drm_connector_helper_add(connector, &msm_hdmi_connector_helper_funcs); connector->polled = DRM_CONNECTOR_POLL_CONNECT | DRM_CONNECTOR_POLL_DISCONNECT; connector->interlace_allowed = 0; connector->doublescan_allowed = 0; ret = hpd_enable(hdmi_connector); if (ret) { dev_err(&hdmi->pdev->dev, "failed to enable HPD: %d\n", ret); return ERR_PTR(ret); } - drm_mode_connector_attach_encoder(connector, hdmi->encoder); + drm_connector_attach_encoder(connector, hdmi->encoder); return connector; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,296
--- initial +++ final @@ -1,13 +1,13 @@ static int imx_tve_register(struct drm_device *drm, struct imx_tve *tve) { int encoder_type; int ret; encoder_type = tve->mode == TVE_MODE_VGA ? DRM_MODE_ENCODER_DAC : DRM_MODE_ENCODER_TVDAC; ret = imx_drm_encoder_parse_of(drm, &tve->encoder, tve->dev->of_node); if (ret) return ret; drm_encoder_helper_add(&tve->encoder, &imx_tve_encoder_helper_funcs); drm_encoder_init(drm, &tve->encoder, &imx_tve_encoder_funcs, encoder_type, NULL); drm_connector_helper_add(&tve->connector, &imx_tve_connector_helper_funcs); drm_connector_init(drm, &tve->connector, &imx_tve_connector_funcs, DRM_MODE_CONNECTOR_VGA); - drm_mode_connector_attach_encoder(&tve->connector, &tve->encoder); + drm_connector_attach_encoder(&tve->connector, &tve->encoder); return 0; }<sep>@@ expression e1,e2; @@ - drm_mode_connector_attach_encoder + drm_connector_attach_encoder (e1,e2) <|end_of_text|>
11,300
--- initial +++ final @@ -1,6 +1,6 @@ static void dcn10_disable_plane(struct dc *dc, struct pipe_ctx *pipe_ctx) { if (!pipe_ctx->plane_res.hubp || pipe_ctx->plane_res.hubp->power_gated) return; plane_atomic_disable(dc, pipe_ctx); apply_DEGVIDCN10_253_wa(dc); - dm_logger_write(dc->ctx->logger, LOG_DC, "Power down front end %d\n", pipe_ctx->pipe_idx); + DC_LOG_DC(dc->ctx->logger, "Power down front end %d\n", pipe_ctx->pipe_idx); }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_DC, + DC_LOG_DC(e1, ...)<|end_of_text|>
10,802
--- initial +++ final @@ -1,39 +1,39 @@ static bool read_command(struct aux_engine *engine, struct i2caux_transaction_request *request, bool middle_of_transaction) { struct read_command_context ctx; ctx.buffer = request->payload.data; ctx.current_read_length = request->payload.length; ctx.offset = 0; ctx.timed_out_retry_aux = 0; ctx.invalid_reply_retry_aux = 0; ctx.defer_retry_aux = 0; ctx.defer_retry_i2c = 0; ctx.invalid_reply_retry_aux_on_ack = 0; ctx.transaction_complete = false; ctx.operation_succeeded = true; if (request->payload.address_space == I2CAUX_TRANSACTION_ADDRESS_SPACE_DPCD) { ctx.request.type = AUX_TRANSACTION_TYPE_DP; ctx.request.action = I2CAUX_TRANSACTION_ACTION_DP_READ; ctx.request.address = request->payload.address; } else if (request->payload.address_space == I2CAUX_TRANSACTION_ADDRESS_SPACE_I2C) { ctx.request.type = AUX_TRANSACTION_TYPE_I2C; ctx.request.action = middle_of_transaction ? I2CAUX_TRANSACTION_ACTION_I2C_READ_MOT : I2CAUX_TRANSACTION_ACTION_I2C_READ; ctx.request.address = request->payload.address >> 1; } else { /* in DAL2, there was no return in such case */ BREAK_TO_DEBUGGER(); return false; } ctx.request.delay = 0; do { memset(ctx.buffer + ctx.offset, 0, ctx.current_read_length); ctx.request.data = ctx.buffer + ctx.offset; ctx.request.length = ctx.current_read_length; process_read_request(engine, &ctx); request->status = ctx.status; if (ctx.operation_succeeded && !ctx.transaction_complete) if (ctx.request.type == AUX_TRANSACTION_TYPE_I2C) msleep(engine->delay); } while (ctx.operation_succeeded && !ctx.transaction_complete); - if (request->payload.address_space == I2CAUX_TRANSACTION_ADDRESS_SPACE_DPCD) { dm_logger_write(engine->base.ctx->logger, LOG_I2C_AUX, "READ: addr:0x%x value:0x%x Result:%d", request->payload.address, request->payload.data[0], ctx.operation_succeeded); } + if (request->payload.address_space == I2CAUX_TRANSACTION_ADDRESS_SPACE_DPCD) { DC_LOG_I2C_AUX(engine->base.ctx->logger, "READ: addr:0x%x value:0x%x Result:%d", request->payload.address, request->payload.data[0], ctx.operation_succeeded); } request->payload.length = ctx.reply.length; return ctx.operation_succeeded; }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_I2C_AUX, + DC_LOG_I2C_AUX(e1, ...) <|end_of_text|>
10,729
--- initial +++ final @@ -1,43 +1,43 @@ static bool hpd_rx_irq_check_link_loss_status(struct dc_link *link, union hpd_irq_data *hpd_irq_dpcd_data) { uint8_t irq_reg_rx_power_state = 0; enum dc_status dpcd_result = DC_ERROR_UNEXPECTED; union lane_status lane_status; uint32_t lane; bool sink_status_changed; bool return_code; sink_status_changed = false; return_code = false; if (link->cur_link_settings.lane_count == 0) return return_code; /*1. Check that Link Status changed, before re-training.*/ /*parse lane status*/ for (lane = 0; lane < link->cur_link_settings.lane_count; lane++) { /* check status of lanes 0,1 * changed DpcdAddress_Lane01Status (0x202) */ lane_status.raw = get_nibble_at_index(&hpd_irq_dpcd_data->bytes.lane01_status.raw, lane); if (!lane_status.bits.CHANNEL_EQ_DONE_0 || !lane_status.bits.CR_DONE_0 || !lane_status.bits.SYMBOL_LOCKED_0) { /* if one of the channel equalization, clock * recovery or symbol lock is dropped * consider it as (link has been * dropped) dp sink status has changed */ sink_status_changed = true; break; } } /* Check interlane align.*/ if (sink_status_changed || !hpd_irq_dpcd_data->bytes.lane_status_updated.bits.INTERLANE_ALIGN_DONE) { - dm_logger_write(link->ctx->logger, LOG_HW_HPD_IRQ, "%s: Link Status changed.\n", __func__); + DC_LOG_HW_HPD_IRQ(link->ctx->logger, "%s: Link Status changed.\n", __func__); return_code = true; /*2. Check that we can handle interrupt: Not in FS DOS, * Not in "Display Timeout" state, Link is trained. */ dpcd_result = core_link_read_dpcd(link, DP_SET_POWER, &irq_reg_rx_power_state, sizeof(irq_reg_rx_power_state)); if (dpcd_result != DC_OK) { - dm_logger_write(link->ctx->logger, LOG_HW_HPD_IRQ, "%s: DPCD read failed to obtain power state.\n", __func__); + DC_LOG_HW_HPD_IRQ(link->ctx->logger, "%s: DPCD read failed to obtain power state.\n", __func__); } else { if (irq_reg_rx_power_state != DP_SET_POWER_D0) return_code = false; } } return return_code; }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_HW_HPD_IRQ, + DC_LOG_HW_HPD_IRQ(e1, ...) <|end_of_text|>
10,751
--- initial +++ final @@ -1,47 +1,47 @@ static enum dc_status allocate_mst_payload(struct pipe_ctx *pipe_ctx) { struct dc_stream_state *stream = pipe_ctx->stream; struct dc_link *link = stream->sink->link; struct link_encoder *link_encoder = link->link_enc; struct stream_encoder *stream_encoder = pipe_ctx->stream_res.stream_enc; struct dp_mst_stream_allocation_table proposed_table = {0}; struct fixed31_32 avg_time_slots_per_mtp; struct fixed31_32 pbn; struct fixed31_32 pbn_per_slot; uint8_t i; /* enable_link_dp_mst already check link->enabled_stream_count * and stream is in link->stream[]. This is called during set mode, * stream_enc is available. */ /* get calculate VC payload for stream: stream_alloc */ if (dm_helpers_dp_mst_write_payload_allocation_table(stream->ctx, stream, &proposed_table, true)) { update_mst_stream_alloc_table(link, pipe_ctx->stream_res.stream_enc, &proposed_table); } else - dm_logger_write(link->ctx->logger, LOG_WARNING, - "Failed to update" - "MST allocation table for" - "pipe idx:%d\n", - pipe_ctx->pipe_idx); - dm_logger_write(link->ctx->logger, LOG_MST, - "%s " - "stream_count: %d: \n ", - __func__, link->mst_stream_alloc_table.stream_count); + DC_LOG_WARNING(link->ctx->logger, + "Failed to update" + "MST allocation table for" + "pipe idx:%d\n", + pipe_ctx->pipe_idx); + DC_LOG_MST(link->ctx->logger, + "%s " + "stream_count: %d: \n ", + __func__, link->mst_stream_alloc_table.stream_count); for (i = 0; i < MAX_CONTROLLER_NUM; i++) { - dm_logger_write(link->ctx->logger, LOG_MST, - "stream_enc[%d]: 0x%x " - "stream[%d].vcp_id: %d " - "stream[%d].slot_count: %d\n", - i, link->mst_stream_alloc_table.stream_allocations[i].stream_enc, i, link->mst_stream_alloc_table.stream_allocations[i].vcp_id, i, link->mst_stream_alloc_table.stream_allocations[i].slot_count); + DC_LOG_MST(link->ctx->logger, + "stream_enc[%d]: 0x%x " + "stream[%d].vcp_id: %d " + "stream[%d].slot_count: %d\n", + i, link->mst_stream_alloc_table.stream_allocations[i].stream_enc, i, link->mst_stream_alloc_table.stream_allocations[i].vcp_id, i, link->mst_stream_alloc_table.stream_allocations[i].slot_count); } ASSERT(proposed_table.stream_count > 0); /* program DP source TX for payload */ link_encoder->funcs->update_mst_stream_allocation_table(link_encoder, &link->mst_stream_alloc_table); /* send down message */ dm_helpers_dp_mst_poll_for_allocation_change_trigger(stream->ctx, stream); dm_helpers_dp_mst_send_payload_allocation(stream->ctx, stream, true); /* slot X.Y for only current stream */ pbn_per_slot = get_pbn_per_slot(stream); pbn = get_pbn_from_timing(pipe_ctx); avg_time_slots_per_mtp = dal_fixed31_32_div(pbn, pbn_per_slot); stream_encoder->funcs->set_mst_bandwidth(stream_encoder, avg_time_slots_per_mtp); return DC_OK; }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_MST, + DC_LOG_MST(e1, ...) @@ expression e1; @@ - dm_logger_write(e1,LOG_WARNING, + DC_LOG_WARNING(e1, ...) <|end_of_text|>
10,739
--- initial +++ final @@ -1,15 +1,15 @@ static void dpcd_set_link_settings(struct dc_link *link, const struct link_training_settings *lt_settings) { uint8_t rate = (uint8_t)(lt_settings->link_settings.link_rate); union down_spread_ctrl downspread = {{0}}; union lane_count_set lane_count_set = {{0}}; uint8_t link_set_buffer[2]; downspread.raw = (uint8_t)(lt_settings->link_settings.link_spread); lane_count_set.bits.LANE_COUNT_SET = lt_settings->link_settings.lane_count; lane_count_set.bits.ENHANCED_FRAMING = 1; lane_count_set.bits.POST_LT_ADJ_REQ_GRANTED = link->dpcd_caps.max_ln_count.bits.POST_LT_ADJ_REQ_SUPPORTED; link_set_buffer[0] = rate; link_set_buffer[1] = lane_count_set.raw; core_link_write_dpcd(link, DP_LINK_BW_SET, link_set_buffer, 2); core_link_write_dpcd(link, DP_DOWNSPREAD_CTRL, &downspread.raw, sizeof(downspread)); - dm_logger_write(link->ctx->logger, LOG_HW_LINK_TRAINING, "%s\n %x rate = %x\n %x lane = %x\n %x spread = %x\n", __func__, DP_LINK_BW_SET, lt_settings->link_settings.link_rate, DP_LANE_COUNT_SET, lt_settings->link_settings.lane_count, DP_DOWNSPREAD_CTRL, lt_settings->link_settings.link_spread); + DC_LOG_HW_LINK_TRAINING(link->ctx->logger, "%s\n %x rate = %x\n %x lane = %x\n %x spread = %x\n", __func__, DP_LINK_BW_SET, lt_settings->link_settings.link_rate, DP_LANE_COUNT_SET, lt_settings->link_settings.lane_count, DP_DOWNSPREAD_CTRL, lt_settings->link_settings.link_spread); }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_HW_LINK_TRAINING, + DC_LOG_HW_LINK_TRAINING(e1, ...) <|end_of_text|>
10,747
--- initial +++ final @@ -1,47 +1,47 @@ static enum bp_result set_pixel_clock_v7(struct bios_parser *bp, struct bp_pixel_clock_parameters *bp_params) { enum bp_result result = BP_RESULT_FAILURE; struct set_pixel_clock_parameter_v1_7 clk; uint8_t controller_id; uint32_t pll_id; memset(&clk, 0, sizeof(clk)); if (bp->cmd_helper->clock_source_id_to_atom(bp_params->pll_id, &pll_id) && bp->cmd_helper->controller_id_to_atom(bp_params->controller_id, &controller_id)) { /* Note: VBIOS still wants to use ucCRTC name which is now * 1 byte in ULONG *typedef struct _CRTC_PIXEL_CLOCK_FREQ *{ * target the pixel clock to drive the CRTC timing. * ULONG ulPixelClock:24; * 0 means disable PPLL/DCPLL. Expanded to 24 bits comparing to * previous version. * ATOM_CRTC1~6, indicate the CRTC controller to * ULONG ucCRTC:8; * drive the pixel clock. not used for DCPLL case. *}CRTC_PIXEL_CLOCK_FREQ; *union *{ * pixel clock and CRTC id frequency * CRTC_PIXEL_CLOCK_FREQ ulCrtcPclkFreq; * ULONG ulDispEngClkFreq; dispclk frequency *}; */ clk.crtc_id = controller_id; clk.pll_id = (uint8_t)pll_id; clk.encoderobjid = bp->cmd_helper->encoder_id_to_atom(dal_graphics_object_id_get_encoder_id(bp_params->encoder_object_id)); clk.encoder_mode = (uint8_t)bp->cmd_helper->encoder_mode_bp_to_atom(bp_params->signal_type, false); /* We need to convert from KHz units into 10KHz units */ clk.pixclk_100hz = cpu_to_le32(bp_params->target_pixel_clock * 10); clk.deep_color_ratio = (uint8_t)bp->cmd_helper->transmitter_color_depth_to_atom(bp_params->color_depth); - dm_logger_write(bp->base.ctx->logger, LOG_BIOS, - "%s:program display clock = %d" - "colorDepth = %d\n", - __func__, bp_params->target_pixel_clock, bp_params->color_depth); + DC_LOG_BIOS(bp->base.ctx->logger, + "%s:program display clock = %d" + "colorDepth = %d\n", + __func__, bp_params->target_pixel_clock, bp_params->color_depth); if (bp_params->flags.FORCE_PROGRAMMING_OF_PLL) clk.miscinfo |= PIXEL_CLOCK_V7_MISC_FORCE_PROG_PPLL; if (bp_params->flags.PROGRAM_PHY_PLL_ONLY) clk.miscinfo |= PIXEL_CLOCK_V7_MISC_PROG_PHYPLL; if (bp_params->flags.SUPPORT_YUV_420) clk.miscinfo |= PIXEL_CLOCK_V7_MISC_YUV420_MODE; if (bp_params->flags.SET_XTALIN_REF_SRC) clk.miscinfo |= PIXEL_CLOCK_V7_MISC_REF_DIV_SRC_XTALIN; if (bp_params->flags.SET_GENLOCK_REF_DIV_SRC) clk.miscinfo |= PIXEL_CLOCK_V7_MISC_REF_DIV_SRC_GENLK; if (bp_params->signal_type == SIGNAL_TYPE_DVI_DUAL_LINK) clk.miscinfo |= PIXEL_CLOCK_V7_MISC_DVI_DUALLINK_EN; if (EXEC_BIOS_CMD_TABLE(setpixelclock, clk)) result = BP_RESULT_OK; } return result; }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_BIOS, + DC_LOG_BIOS(e1, ...) <|end_of_text|>
10,733
--- initial +++ final @@ -1,46 +1,46 @@ static void dce110_se_setup_hdmi_audio(struct stream_encoder *enc, const struct audio_crtc_info *crtc_info) { struct dce110_stream_encoder *enc110 = DCE110STRENC_FROM_STRENC(enc); struct audio_clock_info audio_clock_info = {0}; uint32_t max_packets_per_line; /* For now still do calculation, although this field is ignored when above HDMI_PACKET_GEN_VERSION set to 1 */ max_packets_per_line = calc_max_audio_packets_per_line(crtc_info); /* HDMI_AUDIO_PACKET_CONTROL */ REG_UPDATE_2(HDMI_AUDIO_PACKET_CONTROL, HDMI_AUDIO_PACKETS_PER_LINE, max_packets_per_line, HDMI_AUDIO_DELAY_EN, 1); /* AFMT_AUDIO_PACKET_CONTROL */ REG_UPDATE(AFMT_AUDIO_PACKET_CONTROL, AFMT_60958_CS_UPDATE, 1); /* AFMT_AUDIO_PACKET_CONTROL2 */ REG_UPDATE_2(AFMT_AUDIO_PACKET_CONTROL2, AFMT_AUDIO_LAYOUT_OVRD, 0, AFMT_60958_OSF_OVRD, 0); /* HDMI_ACR_PACKET_CONTROL */ REG_UPDATE_3(HDMI_ACR_PACKET_CONTROL, HDMI_ACR_AUTO_SEND, 1, HDMI_ACR_SOURCE, 0, HDMI_ACR_AUDIO_PRIORITY, 0); /* Program audio clock sample/regeneration parameters */ get_audio_clock_info(crtc_info->color_depth, crtc_info->requested_pixel_clock, crtc_info->calculated_pixel_clock, &audio_clock_info); - dm_logger_write(enc->ctx->logger, LOG_HW_AUDIO, + DC_LOG_HW_AUDIO(enc->ctx->logger, "\n%s:Input::requested_pixel_clock = %d" "calculated_pixel_clock = %d \n", __func__, crtc_info->requested_pixel_clock, crtc_info->calculated_pixel_clock); /* HDMI_ACR_32_0__HDMI_ACR_CTS_32_MASK */ REG_UPDATE(HDMI_ACR_32_0, HDMI_ACR_CTS_32, audio_clock_info.cts_32khz); /* HDMI_ACR_32_1__HDMI_ACR_N_32_MASK */ REG_UPDATE(HDMI_ACR_32_1, HDMI_ACR_N_32, audio_clock_info.n_32khz); /* HDMI_ACR_44_0__HDMI_ACR_CTS_44_MASK */ REG_UPDATE(HDMI_ACR_44_0, HDMI_ACR_CTS_44, audio_clock_info.cts_44khz); /* HDMI_ACR_44_1__HDMI_ACR_N_44_MASK */ REG_UPDATE(HDMI_ACR_44_1, HDMI_ACR_N_44, audio_clock_info.n_44khz); /* HDMI_ACR_48_0__HDMI_ACR_CTS_48_MASK */ REG_UPDATE(HDMI_ACR_48_0, HDMI_ACR_CTS_48, audio_clock_info.cts_48khz); /* HDMI_ACR_48_1__HDMI_ACR_N_48_MASK */ REG_UPDATE(HDMI_ACR_48_1, HDMI_ACR_N_48, audio_clock_info.n_48khz); /* Video driver cannot know in advance which sample rate will be used by HD Audio driver HDMI_ACR_PACKET_CONTROL__HDMI_ACR_N_MULTIPLE field is programmed below in interruppt callback */ /* AFMT_60958_0__AFMT_60958_CS_CHANNEL_NUMBER_L_MASK & AFMT_60958_0__AFMT_60958_CS_CLOCK_ACCURACY_MASK */ REG_UPDATE_2(AFMT_60958_0, AFMT_60958_CS_CHANNEL_NUMBER_L, 1, AFMT_60958_CS_CLOCK_ACCURACY, 0); /* AFMT_60958_1 AFMT_60958_CS_CHALNNEL_NUMBER_R */ REG_UPDATE(AFMT_60958_1, AFMT_60958_CS_CHANNEL_NUMBER_R, 2); /*AFMT_60958_2 now keep this settings until * Programming guide comes out*/ REG_UPDATE_6(AFMT_60958_2, AFMT_60958_CS_CHANNEL_NUMBER_2, 3, AFMT_60958_CS_CHANNEL_NUMBER_3, 4, AFMT_60958_CS_CHANNEL_NUMBER_4, 5, AFMT_60958_CS_CHANNEL_NUMBER_5, 6, AFMT_60958_CS_CHANNEL_NUMBER_6, 7, AFMT_60958_CS_CHANNEL_NUMBER_7, 8); }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_HW_AUDIO, + DC_LOG_HW_AUDIO(e1, ...) <|end_of_text|>
10,794
--- initial +++ final @@ -1,10 +1,10 @@ static bool dce_abm_set_backlight_level(struct abm *abm, unsigned int backlight_level, unsigned int frame_ramp, unsigned int controller_id, bool use_smooth_brightness) { struct dce_abm *abm_dce = TO_DCE_ABM(abm); - dm_logger_write(abm->ctx->logger, LOG_BACKLIGHT, "New Backlight level: %d (0x%X)\n", backlight_level, backlight_level); + DC_LOG_BACKLIGHT(abm->ctx->logger, "New Backlight level: %d (0x%X)\n", backlight_level, backlight_level); /* If DMCU is in reset state, DMCU is uninitialized */ if (use_smooth_brightness) dmcu_set_backlight_level(abm_dce, backlight_level, frame_ramp, controller_id); else driver_set_backlight_level(abm_dce, backlight_level); return true; }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_BACKLIGHT, + DC_LOG_BACKLIGHT(e1, ...) <|end_of_text|>
10,776
--- initial +++ final @@ -1,29 +1,29 @@ static bool dce110_validate_bandwidth(struct dc *dc, struct dc_state *context) { bool result = false; - dm_logger_write(dc->ctx->logger, LOG_BANDWIDTH_CALCS, "%s: start", __func__); + DC_LOG_BANDWIDTH_CALCS(dc->ctx->logger, "%s: start", __func__); if (bw_calcs(dc->ctx, dc->bw_dceip, dc->bw_vbios, context->res_ctx.pipe_ctx, dc->res_pool->pipe_count, &context->bw.dce)) result = true; - if (!result) dm_logger_write(dc->ctx->logger, LOG_BANDWIDTH_VALIDATION, "%s: %dx%d@%d Bandwidth validation failed!\n", __func__, context->streams[0]->timing.h_addressable, context->streams[0]->timing.v_addressable, context->streams[0]->timing.pix_clk_khz); + if (!result) DC_LOG_BANDWIDTH_VALIDATION(dc->ctx->logger, "%s: %dx%d@%d Bandwidth validation failed!\n", __func__, context->streams[0]->timing.h_addressable, context->streams[0]->timing.v_addressable, context->streams[0]->timing.pix_clk_khz); if (memcmp(&dc->current_state->bw.dce, &context->bw.dce, sizeof(context->bw.dce))) { struct log_entry log_entry; dm_logger_open(dc->ctx->logger, &log_entry, LOG_BANDWIDTH_CALCS); dm_logger_append(&log_entry, "%s: finish,\n" "nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n" "stutMark_b: %d stutMark_a: %d\n", __func__, context->bw.dce.nbp_state_change_wm_ns[0].b_mark, context->bw.dce.nbp_state_change_wm_ns[0].a_mark, context->bw.dce.urgent_wm_ns[0].b_mark, context->bw.dce.urgent_wm_ns[0].a_mark, context->bw.dce.stutter_exit_wm_ns[0].b_mark, context->bw.dce.stutter_exit_wm_ns[0].a_mark); dm_logger_append(&log_entry, "nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n" "stutMark_b: %d stutMark_a: %d\n", context->bw.dce.nbp_state_change_wm_ns[1].b_mark, context->bw.dce.nbp_state_change_wm_ns[1].a_mark, context->bw.dce.urgent_wm_ns[1].b_mark, context->bw.dce.urgent_wm_ns[1].a_mark, context->bw.dce.stutter_exit_wm_ns[1].b_mark, context->bw.dce.stutter_exit_wm_ns[1].a_mark); dm_logger_append(&log_entry, "nbpMark_b: %d nbpMark_a: %d urgentMark_b: %d urgentMark_a: %d\n" "stutMark_b: %d stutMark_a: %d stutter_mode_enable: %d\n", context->bw.dce.nbp_state_change_wm_ns[2].b_mark, context->bw.dce.nbp_state_change_wm_ns[2].a_mark, context->bw.dce.urgent_wm_ns[2].b_mark, context->bw.dce.urgent_wm_ns[2].a_mark, context->bw.dce.stutter_exit_wm_ns[2].b_mark, context->bw.dce.stutter_exit_wm_ns[2].a_mark, context->bw.dce.stutter_mode_enable); dm_logger_append(&log_entry, "cstate: %d pstate: %d nbpstate: %d sync: %d dispclk: %d\n" "sclk: %d sclk_sleep: %d yclk: %d blackout_recovery_time_us: %d\n", context->bw.dce.cpuc_state_change_enable, context->bw.dce.cpup_state_change_enable, context->bw.dce.nbp_state_change_enable, context->bw.dce.all_displays_in_sync, context->bw.dce.dispclk_khz, context->bw.dce.sclk_khz, context->bw.dce.sclk_deep_sleep_khz, context->bw.dce.yclk_khz, context->bw.dce.blackout_recovery_time_us); dm_logger_close(&log_entry); } return result; }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_BANDWIDTH_VALIDATION, + DC_LOG_BANDWIDTH_VALIDATION(e1, ...) @@ expression e1; @@ - dm_logger_write(e1,LOG_BANDWIDTH_CALCS, + DC_LOG_BANDWIDTH_CALCS(e1, ...) <|end_of_text|>
10,764
--- initial +++ final @@ -1,24 +1,24 @@ void hwss_edp_power_control(struct dc_link *link, bool power_up) { struct dc_context *ctx = link->ctx; struct dce_hwseq *hwseq = ctx->dc->hwseq; struct bp_transmitter_control cntl = {0}; enum bp_result bp_result; if (dal_graphics_object_id_get_connector_id(link->link_enc->connector) != CONNECTOR_ID_EDP) { BREAK_TO_DEBUGGER(); return; } if (power_up != is_panel_powered_on(hwseq)) { /* Send VBIOS command to prompt eDP panel power */ - dm_logger_write(ctx->logger, LOG_HW_RESUME_S3, "%s: Panel Power action: %s\n", __func__, (power_up ? "On" : "Off")); + DC_LOG_HW_RESUME_S3(ctx->logger, "%s: Panel Power action: %s\n", __func__, (power_up ? "On" : "Off")); cntl.action = power_up ? TRANSMITTER_CONTROL_POWER_ON : TRANSMITTER_CONTROL_POWER_OFF; cntl.transmitter = link->link_enc->transmitter; cntl.connector_obj_id = link->link_enc->connector; cntl.coherent = false; cntl.lanes_number = LANE_COUNT_FOUR; cntl.hpd_sel = link->link_enc->hpd_source; bp_result = link_transmitter_control(ctx->dc_bios, &cntl); - if (bp_result != BP_RESULT_OK) dm_logger_write(ctx->logger, LOG_ERROR, "%s: Panel Power bp_result: %d\n", __func__, bp_result); + if (bp_result != BP_RESULT_OK) DC_LOG_ERROR(ctx->logger, "%s: Panel Power bp_result: %d\n", __func__, bp_result); } else { - dm_logger_write(ctx->logger, LOG_HW_RESUME_S3, "%s: Skipping Panel Power action: %s\n", __func__, (power_up ? "On" : "Off")); + DC_LOG_HW_RESUME_S3(ctx->logger, "%s: Skipping Panel Power action: %s\n", __func__, (power_up ? "On" : "Off")); } }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_HW_RESUME_S3, + DC_LOG_HW_RESUME_S3(e1, ...) @@ expression e1; @@ - dm_logger_write(e1,LOG_ERROR, + DC_LOG_ERROR(e1, ...) <|end_of_text|>
10,762
--- initial +++ final @@ -1,38 +1,38 @@ static void reset_back_end_for_pipe(struct dc *dc, struct pipe_ctx *pipe_ctx, struct dc_state *context) { int i; if (pipe_ctx->stream_res.stream_enc == NULL) { pipe_ctx->stream = NULL; return; } if (!IS_FPGA_MAXIMUS_DC(dc->ctx->dce_environment)) { /* DPMS may already disable */ if (!pipe_ctx->stream->dpms_off) core_link_disable_stream(pipe_ctx, FREE_ACQUIRED_RESOURCE); else if (pipe_ctx->stream_res.audio) { /* * if stream is already disabled outside of commit streams path, * audio disable was skipped. Need to do it here */ pipe_ctx->stream_res.audio->funcs->az_disable(pipe_ctx->stream_res.audio); if (dc->caps.dynamic_audio == true) { /*we have to dynamic arbitrate the audio endpoints*/ pipe_ctx->stream_res.audio = NULL; /*we free the resource, need reset is_audio_acquired*/ update_audio_usage(&dc->current_state->res_ctx, dc->res_pool, pipe_ctx->stream_res.audio, false); } } } /* by upper caller loop, parent pipe: pipe0, will be reset last. * back end share by all pipes and will be disable only when disable * parent pipe. */ if (pipe_ctx->top_pipe == NULL) { pipe_ctx->stream_res.tg->funcs->disable_crtc(pipe_ctx->stream_res.tg); pipe_ctx->stream_res.tg->funcs->enable_optc_clock(pipe_ctx->stream_res.tg, false); } for (i = 0; i < dc->res_pool->pipe_count; i++) if (&dc->current_state->res_ctx.pipe_ctx[i] == pipe_ctx) break; if (i == dc->res_pool->pipe_count) return; pipe_ctx->stream = NULL; - dm_logger_write(dc->ctx->logger, LOG_DEBUG, "Reset back end for pipe %d, tg:%d\n", pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst); + DC_LOG_DEBUG(dc->ctx->logger, "Reset back end for pipe %d, tg:%d\n", pipe_ctx->pipe_idx, pipe_ctx->stream_res.tg->inst); }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_DEBUG, + DC_LOG_DEBUG(e1, ...) <|end_of_text|>
10,805
--- initial +++ final @@ -1,10 +1,10 @@ void dce_aud_az_enable(struct audio *audio) { struct dce_audio *aud = DCE_AUD(audio); uint32_t value = AZ_REG_READ(AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL); set_reg_field_value(value, 1, AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, CLOCK_GATING_DISABLE); set_reg_field_value(value, 1, AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, AUDIO_ENABLED); AZ_REG_WRITE(AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, value); set_reg_field_value(value, 0, AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, CLOCK_GATING_DISABLE); AZ_REG_WRITE(AZALIA_F0_CODEC_PIN_CONTROL_HOT_PLUG_CONTROL, value); - dm_logger_write(CTX->logger, LOG_HW_AUDIO, "\n\t========= AUDIO:dce_aud_az_enable: index: %u data: 0x%x\n", audio->inst, value); + DC_LOG_HW_AUDIO(CTX->logger, "\n\t========= AUDIO:dce_aud_az_enable: index: %u data: 0x%x\n", audio->inst, value); }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_HW_AUDIO, + DC_LOG_HW_AUDIO(e1, ...) <|end_of_text|>
10,778
--- initial +++ final @@ -1,16 +1,16 @@ static void wait_for_fbc_state_changed(struct dce110_compressor *cp110, bool enabled) { uint8_t counter = 0; uint32_t addr = mmFBC_STATUS; uint32_t value; while (counter < 10) { value = dm_read_reg(cp110->base.ctx, addr); if (get_reg_field_value(value, FBC_STATUS, FBC_ENABLE_STATUS) == enabled) break; msleep(10); counter++; } if (counter == 10) { - dm_logger_write(cp110->base.ctx->logger, LOG_WARNING, "%s: wait counter exceeded, changes to HW not applied", __func__); + DC_LOG_WARNING(cp110->base.ctx->logger, "%s: wait counter exceeded, changes to HW not applied", __func__); } else { - dm_logger_write(cp110->base.ctx->logger, LOG_SYNC, "FBC status changed to %d", enabled); + DC_LOG_SYNC(cp110->base.ctx->logger, "FBC status changed to %d", enabled); } }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_SYNC, + DC_LOG_SYNC(e1, ...) @@ expression e1; @@ - dm_logger_write(e1,LOG_WARNING, + DC_LOG_WARNING(e1, ...) <|end_of_text|>
10,759
--- initial +++ final @@ -1,41 +1,41 @@ bool resource_build_scaling_params(struct pipe_ctx *pipe_ctx) { const struct dc_plane_state *plane_state = pipe_ctx->plane_state; struct dc_crtc_timing *timing = &pipe_ctx->stream->timing; struct view recout_skip = {0}; bool res = false; /* Important: scaling ratio calculation requires pixel format, * lb depth calculation requires recout and taps require scaling ratios. * Inits require viewport, taps, ratios and recout of split pipe */ pipe_ctx->plane_res.scl_data.format = convert_pixel_format_to_dalsurface(pipe_ctx->plane_state->format); calculate_scaling_ratios(pipe_ctx); calculate_viewport(pipe_ctx); if (pipe_ctx->plane_res.scl_data.viewport.height < 16 || pipe_ctx->plane_res.scl_data.viewport.width < 16) return false; calculate_recout(pipe_ctx, &recout_skip); /** * Setting line buffer pixel depth to 24bpp yields banding * on certain displays, such as the Sharp 4k */ pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_30BPP; pipe_ctx->plane_res.scl_data.recout.x += timing->h_border_left; pipe_ctx->plane_res.scl_data.recout.y += timing->v_border_top; pipe_ctx->plane_res.scl_data.h_active = timing->h_addressable + timing->h_border_left + timing->h_border_right; pipe_ctx->plane_res.scl_data.v_active = timing->v_addressable + timing->v_border_top + timing->v_border_bottom; /* Taps calculations */ if (pipe_ctx->plane_res.xfm != NULL) res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality); if (pipe_ctx->plane_res.dpp != NULL) res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality); if (!res) { /* Try 24 bpp linebuffer */ pipe_ctx->plane_res.scl_data.lb_params.depth = LB_PIXEL_DEPTH_24BPP; if (pipe_ctx->plane_res.xfm != NULL) res = pipe_ctx->plane_res.xfm->funcs->transform_get_optimal_number_of_taps(pipe_ctx->plane_res.xfm, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality); if (pipe_ctx->plane_res.dpp != NULL) res = pipe_ctx->plane_res.dpp->funcs->dpp_get_optimal_number_of_taps(pipe_ctx->plane_res.dpp, &pipe_ctx->plane_res.scl_data, &plane_state->scaling_quality); } if (res) /* May need to re-check lb size after this in some obscure scenario */ calculate_inits_and_adj_vp(pipe_ctx, &recout_skip); - dm_logger_write(pipe_ctx->stream->ctx->logger, LOG_SCALER, - "%s: Viewport:\nheight:%d width:%d x:%d " - "y:%d\n dst_rect:\nheight:%d width:%d x:%d " - "y:%d\n", - __func__, pipe_ctx->plane_res.scl_data.viewport.height, pipe_ctx->plane_res.scl_data.viewport.width, pipe_ctx->plane_res.scl_data.viewport.x, pipe_ctx->plane_res.scl_data.viewport.y, plane_state->dst_rect.height, plane_state->dst_rect.width, plane_state->dst_rect.x, plane_state->dst_rect.y); + DC_LOG_SCALER(pipe_ctx->stream->ctx->logger, + "%s: Viewport:\nheight:%d width:%d x:%d " + "y:%d\n dst_rect:\nheight:%d width:%d x:%d " + "y:%d\n", + __func__, pipe_ctx->plane_res.scl_data.viewport.height, pipe_ctx->plane_res.scl_data.viewport.width, pipe_ctx->plane_res.scl_data.viewport.x, pipe_ctx->plane_res.scl_data.viewport.y, plane_state->dst_rect.height, plane_state->dst_rect.width, plane_state->dst_rect.x, plane_state->dst_rect.y); return res; }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_SCALER, + DC_LOG_SCALER(e1, ...) <|end_of_text|>
10,757
--- initial +++ final @@ -1,20 +1,20 @@ static enum bp_result transmitter_control_v1_6(struct bios_parser *bp, struct bp_transmitter_control *cntl) { enum bp_result result = BP_RESULT_FAILURE; const struct command_table_helper *cmd = bp->cmd_helper; struct dig_transmitter_control_ps_allocation_v1_6 ps = {{0}}; ps.param.phyid = cmd->phy_id_to_atom(cntl->transmitter); ps.param.action = (uint8_t)cntl->action; if (cntl->action == TRANSMITTER_CONTROL_SET_VOLTAGE_AND_PREEMPASIS) ps.param.mode_laneset.dplaneset = (uint8_t)cntl->lane_settings; else ps.param.mode_laneset.digmode = cmd->signal_type_to_atom_dig_mode(cntl->signal); ps.param.lanenum = (uint8_t)cntl->lanes_number; ps.param.hpdsel = cmd->hpd_sel_to_atom(cntl->hpd_sel); ps.param.digfe_sel = cmd->dig_encoder_sel_to_atom(cntl->engine_id); ps.param.connobj_id = (uint8_t)cntl->connector_obj_id.id; ps.param.symclk_10khz = cntl->pixel_clock / 10; - if (cntl->action == TRANSMITTER_CONTROL_ENABLE || cntl->action == TRANSMITTER_CONTROL_ACTIAVATE || cntl->action == TRANSMITTER_CONTROL_DEACTIVATE) { dm_logger_write(bp->base.ctx->logger, LOG_BIOS, "%s:ps.param.symclk_10khz = %d\n", __func__, ps.param.symclk_10khz); } + if (cntl->action == TRANSMITTER_CONTROL_ENABLE || cntl->action == TRANSMITTER_CONTROL_ACTIAVATE || cntl->action == TRANSMITTER_CONTROL_DEACTIVATE) { DC_LOG_BIOS(bp->base.ctx->logger, "%s:ps.param.symclk_10khz = %d\n", __func__, ps.param.symclk_10khz); } /*color_depth not used any more, driver has deep color factor in the Phyclk*/ if (EXEC_BIOS_CMD_TABLE(dig1transmittercontrol, ps)) result = BP_RESULT_OK; return result; }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_BIOS, + DC_LOG_BIOS(e1, ...) <|end_of_text|>
10,734
--- initial +++ final @@ -1,54 +1,54 @@ static void dce110_program_front_end_for_pipe(struct dc *dc, struct pipe_ctx *pipe_ctx) { struct mem_input *mi = pipe_ctx->plane_res.mi; struct pipe_ctx *old_pipe = NULL; struct dc_plane_state *plane_state = pipe_ctx->plane_state; struct xfm_grph_csc_adjustment adjust; struct out_csc_color_matrix tbl_entry; unsigned int i; memset(&tbl_entry, 0, sizeof(tbl_entry)); if (dc->current_state) old_pipe = &dc->current_state->res_ctx.pipe_ctx[pipe_ctx->pipe_idx]; memset(&adjust, 0, sizeof(adjust)); adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_BYPASS; dce_enable_fe_clock(dc->hwseq, mi->inst, true); set_default_colors(pipe_ctx); if (pipe_ctx->stream->csc_color_matrix.enable_adjustment == true) { tbl_entry.color_space = pipe_ctx->stream->output_color_space; for (i = 0; i < 12; i++) tbl_entry.regval[i] = pipe_ctx->stream->csc_color_matrix.matrix[i]; pipe_ctx->plane_res.xfm->funcs->opp_set_csc_adjustment(pipe_ctx->plane_res.xfm, &tbl_entry); } if (pipe_ctx->stream->gamut_remap_matrix.enable_remap == true) { adjust.gamut_adjust_type = GRAPHICS_GAMUT_ADJUST_TYPE_SW; for (i = 0; i < CSC_TEMPERATURE_MATRIX_SIZE; i++) adjust.temperature_matrix[i] = pipe_ctx->stream->gamut_remap_matrix.matrix[i]; } pipe_ctx->plane_res.xfm->funcs->transform_set_gamut_remap(pipe_ctx->plane_res.xfm, &adjust); pipe_ctx->plane_res.scl_data.lb_params.alpha_en = pipe_ctx->bottom_pipe != 0; program_scaler(dc, pipe_ctx); #if defined(CONFIG_DRM_AMD_DC_FBC) if (dc->fbc_compressor && old_pipe->stream) { if (plane_state->tiling_info.gfx8.array_mode == DC_ARRAY_LINEAR_GENERAL) dc->fbc_compressor->funcs->disable_fbc(dc->fbc_compressor); else enable_fbc(dc, dc->current_state); } #endif mi->funcs->mem_input_program_surface_config(mi, plane_state->format, &plane_state->tiling_info, &plane_state->plane_size, plane_state->rotation, NULL, false); if (mi->funcs->set_blank) mi->funcs->set_blank(mi, pipe_ctx->plane_state->visible); if (dc->config.gpu_vm_support) mi->funcs->mem_input_program_pte_vm(pipe_ctx->plane_res.mi, plane_state->format, &plane_state->tiling_info, plane_state->rotation); /* Moved programming gamma from dc to hwss */ if (pipe_ctx->plane_state->update_flags.bits.full_update || pipe_ctx->plane_state->update_flags.bits.in_transfer_func_change || pipe_ctx->plane_state->update_flags.bits.gamma_change) dc->hwss.set_input_transfer_func(pipe_ctx, pipe_ctx->plane_state); if (pipe_ctx->plane_state->update_flags.bits.full_update) dc->hwss.set_output_transfer_func(pipe_ctx, pipe_ctx->stream); - dm_logger_write(dc->ctx->logger, LOG_SURFACE, - "Pipe:%d 0x%x: addr hi:0x%x, " - "addr low:0x%x, " - "src: %d, %d, %d," - " %d; dst: %d, %d, %d, %d;" - "clip: %d, %d, %d, %d\n", - pipe_ctx->pipe_idx, pipe_ctx->plane_state, pipe_ctx->plane_state->address.grph.addr.high_part, pipe_ctx->plane_state->address.grph.addr.low_part, pipe_ctx->plane_state->src_rect.x, pipe_ctx->plane_state->src_rect.y, pipe_ctx->plane_state->src_rect.width, pipe_ctx->plane_state->src_rect.height, pipe_ctx->plane_state->dst_rect.x, pipe_ctx->plane_state->dst_rect.y, pipe_ctx->plane_state->dst_rect.width, pipe_ctx->plane_state->dst_rect.height, pipe_ctx->plane_state->clip_rect.x, pipe_ctx->plane_state->clip_rect.y, pipe_ctx->plane_state->clip_rect.width, pipe_ctx->plane_state->clip_rect.height); - dm_logger_write(dc->ctx->logger, LOG_SURFACE, - "Pipe %d: width, height, x, y\n" - "viewport:%d, %d, %d, %d\n" - "recout: %d, %d, %d, %d\n", - pipe_ctx->pipe_idx, pipe_ctx->plane_res.scl_data.viewport.width, pipe_ctx->plane_res.scl_data.viewport.height, pipe_ctx->plane_res.scl_data.viewport.x, pipe_ctx->plane_res.scl_data.viewport.y, pipe_ctx->plane_res.scl_data.recout.width, pipe_ctx->plane_res.scl_data.recout.height, pipe_ctx->plane_res.scl_data.recout.x, pipe_ctx->plane_res.scl_data.recout.y); + DC_LOG_SURFACE(dc->ctx->logger, + "Pipe:%d 0x%x: addr hi:0x%x, " + "addr low:0x%x, " + "src: %d, %d, %d," + " %d; dst: %d, %d, %d, %d;" + "clip: %d, %d, %d, %d\n", + pipe_ctx->pipe_idx, pipe_ctx->plane_state, pipe_ctx->plane_state->address.grph.addr.high_part, pipe_ctx->plane_state->address.grph.addr.low_part, pipe_ctx->plane_state->src_rect.x, pipe_ctx->plane_state->src_rect.y, pipe_ctx->plane_state->src_rect.width, pipe_ctx->plane_state->src_rect.height, pipe_ctx->plane_state->dst_rect.x, pipe_ctx->plane_state->dst_rect.y, pipe_ctx->plane_state->dst_rect.width, pipe_ctx->plane_state->dst_rect.height, pipe_ctx->plane_state->clip_rect.x, pipe_ctx->plane_state->clip_rect.y, pipe_ctx->plane_state->clip_rect.width, pipe_ctx->plane_state->clip_rect.height); + DC_LOG_SURFACE(dc->ctx->logger, + "Pipe %d: width, height, x, y\n" + "viewport:%d, %d, %d, %d\n" + "recout: %d, %d, %d, %d\n", + pipe_ctx->pipe_idx, pipe_ctx->plane_res.scl_data.viewport.width, pipe_ctx->plane_res.scl_data.viewport.height, pipe_ctx->plane_res.scl_data.viewport.x, pipe_ctx->plane_res.scl_data.viewport.y, pipe_ctx->plane_res.scl_data.recout.width, pipe_ctx->plane_res.scl_data.recout.height, pipe_ctx->plane_res.scl_data.recout.x, pipe_ctx->plane_res.scl_data.recout.y); }<sep>@@ expression e1; @@ - dm_logger_write(e1,LOG_SURFACE, + DC_LOG_SURFACE(e1, ...) <|end_of_text|>
10,760
--- initial +++ final @@ -1,9 +1,9 @@ static int core_scsi3_lunacl_depend_item(struct se_dev_entry *se_deve) { struct se_lun_acl *lun_acl; /* * For nacl->dynamic_node_acl=1 */ - lun_acl = rcu_dereference_check(se_deve->se_lun_acl, atomic_read(&se_deve->pr_kref.refcount) != 0); + lun_acl = rcu_dereference_check(se_deve->se_lun_acl, kref_read(&se_deve->pr_kref) != 0); if (!lun_acl) return 0; return target_depend_item(&lun_acl->se_lun_group.cg_item); }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,947
--- initial +++ final @@ -1,40 +1,40 @@ static void chan_close_cb(struct l2cap_chan *chan) { struct lowpan_btle_dev *entry; struct lowpan_btle_dev *dev = NULL; struct lowpan_peer *peer; int err = -ENOENT; bool last = false, remove = true; BT_DBG("chan %p conn %p", chan, chan->conn); if (chan->conn && chan->conn->hcon) { if (!is_bt_6lowpan(chan->conn->hcon)) return; /* If conn is set, then the netdev is also there and we should * not remove it. */ remove = false; } spin_lock(&devices_lock); list_for_each_entry_rcu(entry, &bt_6lowpan_devices, list) { dev = lowpan_btle_dev(entry->netdev); peer = __peer_lookup_chan(dev, chan); if (peer) { last = peer_del(dev, peer); err = 0; BT_DBG("dev %p removing %speer %p", dev, last ? "last " : "1 ", peer); - BT_DBG("chan %p orig refcnt %d", chan, atomic_read(&chan->kref.refcount)); + BT_DBG("chan %p orig refcnt %d", chan, kref_read(&chan->kref)); l2cap_chan_put(chan); break; } } if (!err && last && dev && !atomic_read(&dev->peer_count)) { spin_unlock(&devices_lock); cancel_delayed_work_sync(&dev->notify_peers); ifdown(dev->netdev); if (remove) { INIT_WORK(&entry->delete_netdev, delete_netdev); schedule_work(&entry->delete_netdev); } } else { spin_unlock(&devices_lock); } return; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,874
--- initial +++ final @@ -1,11 +1,11 @@ static void pnv_php_detach_device_nodes(struct device_node *parent) { struct device_node *dn; int refcount; for_each_child_of_node(parent, dn) { pnv_php_detach_device_nodes(dn); of_node_put(dn); - refcount = atomic_read(&dn->kobj.kref.refcount); + refcount = kref_read(&dn->kobj.kref); if (refcount != 1) pr_warn("Invalid refcount %d on <%s>\n", refcount, of_node_full_name(dn)); of_detach_node(dn); } }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,932
--- initial +++ final @@ -1,124 +1,124 @@ static enum dlm_status dlmunlock_common(struct dlm_ctxt *dlm, struct dlm_lock_resource *res, struct dlm_lock *lock, struct dlm_lockstatus *lksb, int flags, int *call_ast, int master_node) { enum dlm_status status; int actions = 0; int in_use; u8 owner; mlog(0, "master_node = %d, valblk = %d\n", master_node, flags & LKM_VALBLK); if (master_node) BUG_ON(res->owner != dlm->node_num); else BUG_ON(res->owner == dlm->node_num); spin_lock(&dlm->ast_lock); /* We want to be sure that we're not freeing a lock * that still has AST's pending... */ in_use = !list_empty(&lock->ast_list); spin_unlock(&dlm->ast_lock); if (in_use && !(flags & LKM_CANCEL)) { mlog(ML_ERROR, "lockres %.*s: Someone is calling dlmunlock " "while waiting for an ast!", res->lockname.len, res->lockname.name); return DLM_BADPARAM; } spin_lock(&res->spinlock); if (res->state & DLM_LOCK_RES_IN_PROGRESS) { if (master_node && !(flags & LKM_CANCEL)) { mlog(ML_ERROR, "lockres in progress!\n"); spin_unlock(&res->spinlock); return DLM_FORWARD; } /* ok for this to sleep if not in a network handler */ __dlm_wait_on_lockres(res); res->state |= DLM_LOCK_RES_IN_PROGRESS; } spin_lock(&lock->spinlock); if (res->state & DLM_LOCK_RES_RECOVERING) { status = DLM_RECOVERING; goto leave; } if (res->state & DLM_LOCK_RES_MIGRATING) { status = DLM_MIGRATING; goto leave; } /* see above for what the spec says about * LKM_CANCEL and the lock queue state */ if (flags & LKM_CANCEL) status = dlm_get_cancel_actions(dlm, res, lock, lksb, &actions); else status = dlm_get_unlock_actions(dlm, res, lock, lksb, &actions); if (status != DLM_NORMAL && (status != DLM_CANCELGRANT || !master_node)) goto leave; /* By now this has been masked out of cancel requests. */ if (flags & LKM_VALBLK) { /* make the final update to the lvb */ if (master_node) memcpy(res->lvb, lksb->lvb, DLM_LVB_LEN); else flags |= LKM_PUT_LVB; /* let the send function * handle it. */ } if (!master_node) { owner = res->owner; /* drop locks and send message */ if (flags & LKM_CANCEL) lock->cancel_pending = 1; else lock->unlock_pending = 1; spin_unlock(&lock->spinlock); spin_unlock(&res->spinlock); status = dlm_send_remote_unlock_request(dlm, res, lock, lksb, flags, owner); spin_lock(&res->spinlock); spin_lock(&lock->spinlock); /* if the master told us the lock was already granted, * let the ast handle all of these actions */ if (status == DLM_CANCELGRANT) { actions &= ~(DLM_UNLOCK_REMOVE_LOCK | DLM_UNLOCK_REGRANT_LOCK | DLM_UNLOCK_CLEAR_CONVERT_TYPE); } else if (status == DLM_RECOVERING || status == DLM_MIGRATING || status == DLM_FORWARD || status == DLM_NOLOCKMGR) { /* must clear the actions because this unlock * is about to be retried. cannot free or do * any list manipulation. */ mlog(0, "%s:%.*s: clearing actions, %s\n", dlm->name, res->lockname.len, res->lockname.name, status == DLM_RECOVERING ? "recovering" : (status == DLM_MIGRATING ? "migrating" : (status == DLM_FORWARD ? "forward" : "nolockmanager"))); actions = 0; } if (flags & LKM_CANCEL) lock->cancel_pending = 0; else lock->unlock_pending = 0; } /* get an extra ref on lock. if we are just switching * lists here, we dont want the lock to go away. */ dlm_lock_get(lock); if (actions & DLM_UNLOCK_REMOVE_LOCK) { list_del_init(&lock->list); dlm_lock_put(lock); } if (actions & DLM_UNLOCK_REGRANT_LOCK) { dlm_lock_get(lock); list_add_tail(&lock->list, &res->granted); } if (actions & DLM_UNLOCK_CLEAR_CONVERT_TYPE) { mlog(0, "clearing convert_type at %smaster node\n", master_node ? "" : "non-"); lock->ml.convert_type = LKM_IVMODE; } /* remove the extra ref on lock */ dlm_lock_put(lock); leave: res->state &= ~DLM_LOCK_RES_IN_PROGRESS; if (!dlm_lock_on_list(&res->converting, lock)) BUG_ON(lock->ml.convert_type != LKM_IVMODE); else BUG_ON(lock->ml.convert_type == LKM_IVMODE); spin_unlock(&lock->spinlock); spin_unlock(&res->spinlock); wake_up(&res->wq); /* let the caller's final dlm_lock_put handle the actual kfree */ if (actions & DLM_UNLOCK_FREE_LOCK) { /* this should always be coupled with list removal */ BUG_ON(!(actions & DLM_UNLOCK_REMOVE_LOCK)); - mlog(0, "lock %u:%llu should be gone now! refs=%d\n", dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), atomic_read(&lock->lock_refs.refcount) - 1); + mlog(0, "lock %u:%llu should be gone now! refs=%d\n", dlm_get_lock_cookie_node(be64_to_cpu(lock->ml.cookie)), dlm_get_lock_cookie_seq(be64_to_cpu(lock->ml.cookie)), kref_read(&lock->lock_refs) - 1); dlm_lock_put(lock); } if (actions & DLM_UNLOCK_CALL_AST) *call_ast = 1; /* if cancel or unlock succeeded, lvb work is done */ if (status == DLM_NORMAL) lksb->flags &= ~(DLM_LKSB_PUT_LVB | DLM_LKSB_GET_LVB); return status; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,896
--- initial +++ final @@ -1,33 +1,33 @@ static ssize_t mei_dbgfs_read_meclients(struct file *fp, char __user *ubuf, size_t cnt, loff_t *ppos) { struct mei_device *dev = fp->private_data; struct mei_me_client *me_cl; size_t bufsz = 1; char *buf; int i = 0; int pos = 0; int ret; #define HDR " |id|fix| UUID |con|msg len|sb|refc|\n" down_read(&dev->me_clients_rwsem); list_for_each_entry(me_cl, &dev->me_clients, list) bufsz++; bufsz *= sizeof(HDR) + 1; buf = kzalloc(bufsz, GFP_KERNEL); if (!buf) { up_read(&dev->me_clients_rwsem); return -ENOMEM; } pos += scnprintf(buf + pos, bufsz - pos, HDR); #undef HDR /* if the driver is not enabled the list won't be consistent */ if (dev->dev_state != MEI_DEV_ENABLED) goto out; list_for_each_entry(me_cl, &dev->me_clients, list) { if (mei_me_cl_get(me_cl)) { - pos += scnprintf(buf + pos, bufsz - pos, "%2d|%2d|%3d|%pUl|%3d|%7d|%2d|%4d|\n", i++, me_cl->client_id, me_cl->props.fixed_address, &me_cl->props.protocol_name, me_cl->props.max_number_of_connections, me_cl->props.max_msg_length, me_cl->props.single_recv_buf, atomic_read(&me_cl->refcnt.refcount)); + pos += scnprintf(buf + pos, bufsz - pos, "%2d|%2d|%3d|%pUl|%3d|%7d|%2d|%4d|\n", i++, me_cl->client_id, me_cl->props.fixed_address, &me_cl->props.protocol_name, me_cl->props.max_number_of_connections, me_cl->props.max_msg_length, me_cl->props.single_recv_buf, kref_read(&me_cl->refcnt)); mei_me_cl_put(me_cl); } } out: up_read(&dev->me_clients_rwsem); ret = simple_read_from_buffer(ubuf, cnt, ppos, buf, pos); kfree(buf); return ret; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,886
--- initial +++ final @@ -1,99 +1,99 @@ static struct t10_pr_registration *__core_scsi3_alloc_registration(struct se_device *dev, struct se_node_acl *nacl, struct se_lun *lun, struct se_dev_entry *deve, u64 mapped_lun, unsigned char *isid, u64 sa_res_key, int all_tg_pt, int aptpl) { struct se_dev_entry *deve_tmp; struct se_node_acl *nacl_tmp; struct se_lun_acl *lacl_tmp; struct se_lun *lun_tmp, *next, *dest_lun; const struct target_core_fabric_ops *tfo = nacl->se_tpg->se_tpg_tfo; struct t10_pr_registration *pr_reg, *pr_reg_atp, *pr_reg_tmp, *pr_reg_tmp_safe; int ret; /* * Create a registration for the I_T Nexus upon which the * PROUT REGISTER was received. */ pr_reg = __core_scsi3_do_alloc_registration(dev, nacl, lun, deve, mapped_lun, isid, sa_res_key, all_tg_pt, aptpl); if (!pr_reg) return NULL; /* * Return pointer to pr_reg for ALL_TG_PT=0 */ if (!all_tg_pt) return pr_reg; /* * Create list of matching SCSI Initiator Port registrations * for ALL_TG_PT=1 */ spin_lock(&dev->se_port_lock); list_for_each_entry_safe(lun_tmp, next, &dev->dev_sep_list, lun_dev_link) { if (!percpu_ref_tryget_live(&lun_tmp->lun_ref)) continue; spin_unlock(&dev->se_port_lock); spin_lock(&lun_tmp->lun_deve_lock); list_for_each_entry(deve_tmp, &lun_tmp->lun_deve_list, lun_link) { /* * This pointer will be NULL for demo mode MappedLUNs * that have not been make explicit via a ConfigFS * MappedLUN group for the SCSI Initiator Node ACL. */ if (!deve_tmp->se_lun_acl) continue; lacl_tmp = rcu_dereference_check(deve_tmp->se_lun_acl, lockdep_is_held(&lun_tmp->lun_deve_lock)); nacl_tmp = lacl_tmp->se_lun_nacl; /* * Skip the matching struct se_node_acl that is allocated * above.. */ if (nacl == nacl_tmp) continue; /* * Only perform PR registrations for target ports on * the same fabric module as the REGISTER w/ ALL_TG_PT=1 * arrived. */ if (tfo != nacl_tmp->se_tpg->se_tpg_tfo) continue; /* * Look for a matching Initiator Node ACL in ASCII format */ if (strcmp(nacl->initiatorname, nacl_tmp->initiatorname)) continue; kref_get(&deve_tmp->pr_kref); spin_unlock(&lun_tmp->lun_deve_lock); /* * Grab a configfs group dependency that is released * for the exception path at label out: below, or upon * completion of adding ALL_TG_PT=1 registrations in * __core_scsi3_add_registration() */ ret = core_scsi3_lunacl_depend_item(deve_tmp); if (ret < 0) { pr_err("core_scsi3_lunacl_depend" "_item() failed\n"); percpu_ref_put(&lun_tmp->lun_ref); kref_put(&deve_tmp->pr_kref, target_pr_kref_release); goto out; } /* * Located a matching SCSI Initiator Port on a different * port, allocate the pr_reg_atp and attach it to the * pr_reg->pr_reg_atp_list that will be processed once * the original *pr_reg is processed in * __core_scsi3_add_registration() */ - dest_lun = rcu_dereference_check(deve_tmp->se_lun, atomic_read(&deve_tmp->pr_kref.refcount) != 0); + dest_lun = rcu_dereference_check(deve_tmp->se_lun, kref_read(&deve_tmp->pr_kref) != 0); pr_reg_atp = __core_scsi3_do_alloc_registration(dev, nacl_tmp, dest_lun, deve_tmp, deve_tmp->mapped_lun, NULL, sa_res_key, all_tg_pt, aptpl); if (!pr_reg_atp) { percpu_ref_put(&lun_tmp->lun_ref); core_scsi3_lunacl_undepend_item(deve_tmp); goto out; } list_add_tail(&pr_reg_atp->pr_reg_atp_mem_list, &pr_reg->pr_reg_atp_list); spin_lock(&lun_tmp->lun_deve_lock); } spin_unlock(&lun_tmp->lun_deve_lock); spin_lock(&dev->se_port_lock); percpu_ref_put(&lun_tmp->lun_ref); } spin_unlock(&dev->se_port_lock); return pr_reg; out: list_for_each_entry_safe(pr_reg_tmp, pr_reg_tmp_safe, &pr_reg->pr_reg_atp_list, pr_reg_atp_mem_list) { list_del(&pr_reg_tmp->pr_reg_atp_mem_list); core_scsi3_lunacl_undepend_item(pr_reg_tmp->pr_reg_deve); kmem_cache_free(t10_pr_reg_cache, pr_reg_tmp); } kmem_cache_free(t10_pr_reg_cache, pr_reg); return NULL; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,944
--- initial +++ final @@ -1,23 +1,23 @@ int genwqe_device_remove(struct genwqe_dev *cd) { int rc; struct pci_dev *pci_dev = cd->pci_dev; if (!genwqe_device_initialized(cd)) return 1; genwqe_inform_and_stop_processes(cd); /* * We currently do wait until all filedescriptors are * closed. This leads to a problem when we abort the * application which will decrease this reference from * 1/unused to 0/illegal and not from 2/used 1/empty. */ - rc = atomic_read(&cd->cdev_genwqe.kobj.kref.refcount); + rc = kref_read(&cd->cdev_genwqe.kobj.kref); if (rc != 1) { dev_err(&pci_dev->dev, "[%s] err: cdev_genwqe...refcount=%d\n", __func__, rc); panic("Fatal err: cannot free resources with pending references!"); } genqwe_exit_debugfs(cd); device_destroy(cd->class_genwqe, cd->devnum_genwqe); cdev_del(&cd->cdev_genwqe); unregister_chrdev_region(cd->devnum_genwqe, GENWQE_MAX_MINOR); cd->dev = NULL; return 0; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,884
--- initial +++ final @@ -1,26 +1,26 @@ static int dump_mle(struct dlm_master_list_entry *mle, char *buf, int len) { int out = 0; char *mle_type; if (mle->type == DLM_MLE_BLOCK) mle_type = "BLK"; else if (mle->type == DLM_MLE_MASTER) mle_type = "MAS"; else mle_type = "MIG"; out += stringify_lockname(mle->mname, mle->mnamelen, buf + out, len - out); - out += snprintf(buf + out, len - out, "\t%3s\tmas=%3u\tnew=%3u\tevt=%1d\tuse=%1d\tref=%3d\n", mle_type, mle->master, mle->new_master, !list_empty(&mle->hb_events), !!mle->inuse, atomic_read(&mle->mle_refs.refcount)); + out += snprintf(buf + out, len - out, "\t%3s\tmas=%3u\tnew=%3u\tevt=%1d\tuse=%1d\tref=%3d\n", mle_type, mle->master, mle->new_master, !list_empty(&mle->hb_events), !!mle->inuse, kref_read(&mle->mle_refs)); out += snprintf(buf + out, len - out, "Maybe="); out += stringify_nodemap(mle->maybe_map, O2NM_MAX_NODES, buf + out, len - out); out += snprintf(buf + out, len - out, "\n"); out += snprintf(buf + out, len - out, "Vote="); out += stringify_nodemap(mle->vote_map, O2NM_MAX_NODES, buf + out, len - out); out += snprintf(buf + out, len - out, "\n"); out += snprintf(buf + out, len - out, "Response="); out += stringify_nodemap(mle->response_map, O2NM_MAX_NODES, buf + out, len - out); out += snprintf(buf + out, len - out, "\n"); out += snprintf(buf + out, len - out, "Node="); out += stringify_nodemap(mle->node_map, O2NM_MAX_NODES, buf + out, len - out); out += snprintf(buf + out, len - out, "\n"); out += snprintf(buf + out, len - out, "\n"); return out; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,892
--- initial +++ final @@ -1,4 +1,4 @@ int amp_ctrl_put(struct amp_ctrl *ctrl) { - BT_DBG("ctrl %p orig refcnt %d", ctrl, atomic_read(&ctrl->kref.refcount)); + BT_DBG("ctrl %p orig refcnt %d", ctrl, kref_read(&ctrl->kref)); return kref_put(&ctrl->kref, &amp_ctrl_destroy); }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,878
--- initial +++ final @@ -1,45 +1,45 @@ static void __svc_rdma_free(struct work_struct *work) { struct svcxprt_rdma *rdma = container_of(work, struct svcxprt_rdma, sc_work); struct svc_xprt *xprt = &rdma->sc_xprt; dprintk("svcrdma: %s(%p)\n", __func__, rdma); if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) ib_drain_qp(rdma->sc_qp); /* We should only be called from kref_put */ - if (atomic_read(&xprt->xpt_ref.refcount) != 0) pr_err("svcrdma: sc_xprt still in use? (%d)\n", atomic_read(&xprt->xpt_ref.refcount)); + if (kref_read(&xprt->xpt_ref) != 0) pr_err("svcrdma: sc_xprt still in use? (%d)\n", kref_read(&xprt->xpt_ref)); /* * Destroy queued, but not processed read completions. Note * that this cleanup has to be done before destroying the * cm_id because the device ptr is needed to unmap the dma in * svc_rdma_put_context. */ while (!list_empty(&rdma->sc_read_complete_q)) { struct svc_rdma_op_ctxt *ctxt; ctxt = list_entry(rdma->sc_read_complete_q.next, struct svc_rdma_op_ctxt, dto_q); list_del_init(&ctxt->dto_q); svc_rdma_put_context(ctxt, 1); } /* Destroy queued, but not processed recv completions */ while (!list_empty(&rdma->sc_rq_dto_q)) { struct svc_rdma_op_ctxt *ctxt; ctxt = list_entry(rdma->sc_rq_dto_q.next, struct svc_rdma_op_ctxt, dto_q); list_del_init(&ctxt->dto_q); svc_rdma_put_context(ctxt, 1); } /* Warn if we leaked a resource or under-referenced */ if (rdma->sc_ctxt_used != 0) pr_err("svcrdma: ctxt still in use? (%d)\n", rdma->sc_ctxt_used); /* Final put of backchannel client transport */ if (xprt->xpt_bc_xprt) { xprt_put(xprt->xpt_bc_xprt); xprt->xpt_bc_xprt = NULL; } rdma_dealloc_frmr_q(rdma); svc_rdma_destroy_ctxts(rdma); svc_rdma_destroy_maps(rdma); /* Destroy the QP if present (not a listener) */ if (rdma->sc_qp && !IS_ERR(rdma->sc_qp)) ib_destroy_qp(rdma->sc_qp); if (rdma->sc_sq_cq && !IS_ERR(rdma->sc_sq_cq)) ib_free_cq(rdma->sc_sq_cq); if (rdma->sc_rq_cq && !IS_ERR(rdma->sc_rq_cq)) ib_free_cq(rdma->sc_rq_cq); if (rdma->sc_pd && !IS_ERR(rdma->sc_pd)) ib_dealloc_pd(rdma->sc_pd); /* Destroy the CM ID */ rdma_destroy_id(rdma->sc_cm_id); kfree(rdma); }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,939
--- initial +++ final @@ -1,33 +1,33 @@ void lpfc_mbx_cmpl_reg_login(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_vport *vport = pmb->vport; struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)(pmb->context1); struct lpfc_nodelist *ndlp = (struct lpfc_nodelist *)pmb->context2; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); pmb->context1 = NULL; pmb->context2 = NULL; - lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, "0002 rpi:%x DID:%x flg:%x %d map:%x %p\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, atomic_read(&ndlp->kref.refcount), ndlp->nlp_usg_map, ndlp); + lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, "0002 rpi:%x DID:%x flg:%x %d map:%x %p\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref), ndlp->nlp_usg_map, ndlp); if (ndlp->nlp_flag & NLP_REG_LOGIN_SEND) ndlp->nlp_flag &= ~NLP_REG_LOGIN_SEND; if (ndlp->nlp_flag & NLP_IGNR_REG_CMPL || ndlp->nlp_state != NLP_STE_REG_LOGIN_ISSUE) { /* We rcvd a rscn after issuing this * mbox reg login, we may have cycled * back through the state and be * back at reg login state so this * mbox needs to be ignored becase * there is another reg login in * process. */ spin_lock_irq(shost->host_lock); ndlp->nlp_flag &= ~NLP_IGNR_REG_CMPL; spin_unlock_irq(shost->host_lock); } /* Call state machine */ lpfc_disc_state_machine(vport, ndlp, pmb, NLP_EVT_CMPL_REG_LOGIN); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); /* decrement the node reference count held for this callback * function. */ lpfc_nlp_put(ndlp); return; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,914
--- initial +++ final @@ -1,49 +1,49 @@ int lpfc_unreg_rpi(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp) { struct lpfc_hba *phba = vport->phba; LPFC_MBOXQ_t *mbox; int rc, acc_plogi = 1; uint16_t rpi; if (ndlp->nlp_flag & NLP_RPI_REGISTERED || ndlp->nlp_flag & NLP_REG_LOGIN_SEND) { if (ndlp->nlp_flag & NLP_REG_LOGIN_SEND) lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, "3366 RPI x%x needs to be " "unregistered nlp_flag x%x " "did x%x\n", ndlp->nlp_rpi, ndlp->nlp_flag, ndlp->nlp_DID); mbox = mempool_alloc(phba->mbox_mem_pool, GFP_KERNEL); if (mbox) { /* SLI4 ports require the physical rpi value. */ rpi = ndlp->nlp_rpi; if (phba->sli_rev == LPFC_SLI_REV4) rpi = phba->sli4_hba.rpi_ids[ndlp->nlp_rpi]; lpfc_unreg_login(phba, vport->vpi, rpi, mbox); mbox->vport = vport; if (ndlp->nlp_flag & NLP_ISSUE_LOGO) { mbox->context1 = ndlp; mbox->mbox_cmpl = lpfc_nlp_logo_unreg; } else { - if (phba->sli_rev == LPFC_SLI_REV4 && (!(vport->load_flag & FC_UNLOADING)) && (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_IF_TYPE_2) && (atomic_read(&ndlp->kref.refcount) > 0)) { + if (phba->sli_rev == LPFC_SLI_REV4 && (!(vport->load_flag & FC_UNLOADING)) && (bf_get(lpfc_sli_intf_if_type, &phba->sli4_hba.sli_intf) == LPFC_SLI_INTF_IF_TYPE_2) && (kref_read(&ndlp->kref) > 0)) { mbox->context1 = lpfc_nlp_get(ndlp); mbox->mbox_cmpl = lpfc_sli4_unreg_rpi_cmpl_clr; /* * accept PLOGIs after unreg_rpi_cmpl */ acc_plogi = 0; } else mbox->mbox_cmpl = lpfc_sli_def_mbox_cmpl; } rc = lpfc_sli_issue_mbox(phba, mbox, MBX_NOWAIT); if (rc == MBX_NOT_FINISHED) { mempool_free(mbox, phba->mbox_mem_pool); acc_plogi = 1; } } lpfc_no_rpi(phba, ndlp); if (phba->sli_rev != LPFC_SLI_REV4) ndlp->nlp_rpi = 0; ndlp->nlp_flag &= ~NLP_RPI_REGISTERED; ndlp->nlp_flag &= ~NLP_NPR_ADISC; if (acc_plogi) ndlp->nlp_flag &= ~NLP_LOGO_ACC; return 1; } ndlp->nlp_flag &= ~NLP_LOGO_ACC; return 0; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,921
--- initial +++ final @@ -1,23 +1,23 @@ void lpfc_mbx_cmpl_dflt_rpi(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)(pmb->context1); struct lpfc_nodelist *ndlp = (struct lpfc_nodelist *)pmb->context2; pmb->context1 = NULL; pmb->context2 = NULL; lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); if (ndlp) { - lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NODE, "0006 rpi%x DID:%x flg:%x %d map:%x %p\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, atomic_read(&ndlp->kref.refcount), ndlp->nlp_usg_map, ndlp); + lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NODE, "0006 rpi%x DID:%x flg:%x %d map:%x %p\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref), ndlp->nlp_usg_map, ndlp); if (NLP_CHK_NODE_ACT(ndlp)) { lpfc_nlp_put(ndlp); /* This is the end of the default RPI cleanup logic for * this ndlp. If no other discovery threads are using * this ndlp, free all resources associated with it. */ lpfc_nlp_not_used(ndlp); } else { lpfc_drop_node(ndlp->vport, ndlp); } } return; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,909
--- initial +++ final @@ -1,5 +1,5 @@ static ssize_t usnic_ib_show_max_vf(struct device *device, struct device_attribute *attr, char *buf) { struct usnic_ib_dev *us_ibdev; us_ibdev = container_of(device, struct usnic_ib_dev, ib_dev.dev); - return scnprintf(buf, PAGE_SIZE, "%u\n", atomic_read(&us_ibdev->vf_cnt.refcount)); + return scnprintf(buf, PAGE_SIZE, "%u\n", kref_read(&us_ibdev->vf_cnt)); }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,955
--- initial +++ final @@ -1,4 +1,4 @@ void ceph_osdc_get_request(struct ceph_osd_request *req) { - dout("%s %p (was %d)\n", __func__, req, atomic_read(&req->r_kref.refcount)); + dout("%s %p (was %d)\n", __func__, req, kref_read(&req->r_kref)); kref_get(&req->r_kref); }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,929
--- initial +++ final @@ -1,16 +1,16 @@ void omap_gem_describe(struct drm_gem_object *obj, struct seq_file *m) { struct omap_gem_object *omap_obj = to_omap_bo(obj); uint64_t off; off = drm_vma_node_start(&obj->vma_node); - seq_printf(m, "%08x: %2d (%2d) %08llx %pad (%2d) %p %4d", omap_obj->flags, obj->name, obj->refcount.refcount.counter, off, &omap_obj->paddr, omap_obj->paddr_cnt, omap_obj->vaddr, omap_obj->roll); + seq_printf(m, "%08x: %2d (%2d) %08llx %pad (%2d) %p %4d", omap_obj->flags, obj->name, kref_read(&obj->refcount), off, &omap_obj->paddr, omap_obj->paddr_cnt, omap_obj->vaddr, omap_obj->roll); if (omap_obj->flags & OMAP_BO_TILED) { seq_printf(m, " %dx%d", omap_obj->width, omap_obj->height); if (omap_obj->block) { struct tcm_area *area = &omap_obj->block->area; seq_printf(m, " (%dx%d, %dx%d)", area->p0.x, area->p0.y, area->p1.x, area->p1.y); } } else { seq_printf(m, " %d", obj->size); } seq_printf(m, "\n"); }<sep>@@ expression e; @@ - e.refcount.counter + kref_read(&e) <|end_of_text|>
8,928
--- initial +++ final @@ -1,4 +1,4 @@ void l2cap_chan_put(struct l2cap_chan *c) { - BT_DBG("chan %p orig refcnt %d", c, atomic_read(&c->kref.refcount)); + BT_DBG("chan %p orig refcnt %d", c, kref_read(&c->kref)); kref_put(&c->kref, l2cap_chan_destroy); }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,907
--- initial +++ final @@ -1,27 +1,27 @@ static int tcm_qla2xxx_write_pending(struct se_cmd *se_cmd) { struct qla_tgt_cmd *cmd = container_of(se_cmd, struct qla_tgt_cmd, se_cmd); if (cmd->aborted) { /* Cmd can loop during Q-full. tcm_qla2xxx_aborted_task * can get ahead of this cmd. tcm_qla2xxx_aborted_task * already kick start the free. */ pr_debug("write_pending aborted cmd[%p] refcount %d " "transport_state %x, t_state %x, se_cmd_flags %x\n", - cmd, cmd->se_cmd.cmd_kref.refcount.counter, cmd->se_cmd.transport_state, cmd->se_cmd.t_state, cmd->se_cmd.se_cmd_flags); + cmd, kref_read(&cmd->se_cmd.cmd_kref), cmd->se_cmd.transport_state, cmd->se_cmd.t_state, cmd->se_cmd.se_cmd_flags); return 0; } cmd->cmd_flags |= BIT_3; cmd->bufflen = se_cmd->data_length; cmd->dma_data_direction = target_reverse_dma_direction(se_cmd); cmd->sg_cnt = se_cmd->t_data_nents; cmd->sg = se_cmd->t_data_sg; cmd->prot_sg_cnt = se_cmd->t_prot_nents; cmd->prot_sg = se_cmd->t_prot_sg; cmd->blk_sz = se_cmd->se_dev->dev_attrib.block_size; se_cmd->pi_err = 0; /* * qla_target.c:qlt_rdy_to_xfer() will call pci_map_sg() to setup * the SGL mappings into PCIe memory for incoming FCP WRITE data. */ return qlt_rdy_to_xfer(cmd); }<sep>@@ expression e; @@ - e.refcount.counter + kref_read(&e) <|end_of_text|>
8,950
--- initial +++ final @@ -1,16 +1,16 @@ void lpfc_nlp_init(struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, uint32_t did) { memset(ndlp, 0, sizeof(struct lpfc_nodelist)); lpfc_initialize_node(vport, ndlp, did); INIT_LIST_HEAD(&ndlp->nlp_listp); if (vport->phba->sli_rev == LPFC_SLI_REV4) { ndlp->nlp_rpi = lpfc_sli4_alloc_rpi(vport->phba); lpfc_printf_vlog(vport, KERN_INFO, LOG_NODE, "0007 rpi:%x DID:%x flg:%x refcnt:%d " "map:%x %p\n", - ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, atomic_read(&ndlp->kref.refcount), ndlp->nlp_usg_map, ndlp); + ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref), ndlp->nlp_usg_map, ndlp); ndlp->active_rrqs_xri_bitmap = mempool_alloc(vport->phba->active_rrq_pool, GFP_KERNEL); if (ndlp->active_rrqs_xri_bitmap) memset(ndlp->active_rrqs_xri_bitmap, 0, ndlp->phba->cfg_rrq_xri_bitmap_sz); } lpfc_debugfs_disc_trc(vport, LPFC_DISC_TRC_NODE, "node init: did:x%x", ndlp->nlp_DID, 0, 0); return; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,916
--- initial +++ final @@ -1,5 +1,5 @@ struct ceph_msg *ceph_msg_get(struct ceph_msg *msg) { - dout("%s %p (was %d)\n", __func__, msg, atomic_read(&msg->kref.refcount)); + dout("%s %p (was %d)\n", __func__, msg, kref_read(&msg->kref)); kref_get(&msg->kref); return msg; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,923
--- initial +++ final @@ -1,4 +1,4 @@ bool comedi_buf_is_mmapped(struct comedi_subdevice *s) { struct comedi_buf_map *bm = s->async->buf_map; - return bm && (atomic_read(&bm->refcount.refcount) > 1); + return bm && (kref_read(&bm->refcount) > 1); }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,885
--- initial +++ final @@ -1,43 +1,43 @@ static int ion_debug_heap_show(struct seq_file *s, void *unused) { struct ion_heap *heap = s->private; struct ion_device *dev = heap->dev; struct rb_node *n; size_t total_size = 0; size_t total_orphaned_size = 0; seq_printf(s, "%16s %16s %16s\n", "client", "pid", "size"); seq_puts(s, "----------------------------------------------------\n"); mutex_lock(&debugfs_mutex); for (n = rb_first(&dev->clients); n; n = rb_next(n)) { struct ion_client *client = rb_entry(n, struct ion_client, node); size_t size = ion_debug_heap_total(client, heap->id); if (!size) continue; if (client->task) { char task_comm[TASK_COMM_LEN]; get_task_comm(task_comm, client->task); seq_printf(s, "%16s %16u %16zu\n", task_comm, client->pid, size); } else { seq_printf(s, "%16s %16u %16zu\n", client->name, client->pid, size); } } mutex_unlock(&debugfs_mutex); seq_puts(s, "----------------------------------------------------\n"); seq_puts(s, "orphaned allocations (info is from last known client):\n"); mutex_lock(&dev->buffer_lock); for (n = rb_first(&dev->buffers); n; n = rb_next(n)) { struct ion_buffer *buffer = rb_entry(n, struct ion_buffer, node); if (buffer->heap->id != heap->id) continue; total_size += buffer->size; if (!buffer->handle_count) { - seq_printf(s, "%16s %16u %16zu %d %d\n", buffer->task_comm, buffer->pid, buffer->size, buffer->kmap_cnt, atomic_read(&buffer->ref.refcount)); + seq_printf(s, "%16s %16u %16zu %d %d\n", buffer->task_comm, buffer->pid, buffer->size, buffer->kmap_cnt, kref_read(&buffer->ref)); total_orphaned_size += buffer->size; } } mutex_unlock(&dev->buffer_lock); seq_puts(s, "----------------------------------------------------\n"); seq_printf(s, "%16s %16zu\n", "total orphaned", total_orphaned_size); seq_printf(s, "%16s %16zu\n", "total ", total_size); if (heap->flags & ION_HEAP_FLAG_DEFER_FREE) seq_printf(s, "%16s %16zu\n", "deferred free", heap->free_list_size); seq_puts(s, "----------------------------------------------------\n"); if (heap->debug_show) heap->debug_show(heap, s, unused); return 0; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,904
--- initial +++ final @@ -1,62 +1,62 @@ void lpfc_mbx_cmpl_ns_reg_login(struct lpfc_hba *phba, LPFC_MBOXQ_t *pmb) { MAILBOX_t *mb = &pmb->u.mb; struct lpfc_dmabuf *mp = (struct lpfc_dmabuf *)(pmb->context1); struct lpfc_nodelist *ndlp = (struct lpfc_nodelist *)pmb->context2; struct lpfc_vport *vport = pmb->vport; pmb->context1 = NULL; pmb->context2 = NULL; if (mb->mbxStatus) { out: lpfc_printf_vlog(vport, KERN_ERR, LOG_ELS, "0260 Register NameServer error: 0x%x\n", mb->mbxStatus); /* decrement the node reference count held for this * callback function. */ lpfc_nlp_put(ndlp); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); /* If no other thread is using the ndlp, free it */ lpfc_nlp_not_used(ndlp); if (phba->fc_topology == LPFC_TOPOLOGY_LOOP) { /* * RegLogin failed, use loop map to make discovery * list */ lpfc_disc_list_loopmap(vport); /* Start discovery */ lpfc_disc_start(vport); return; } lpfc_vport_set_state(vport, FC_VPORT_FAILED); return; } if (phba->sli_rev < LPFC_SLI_REV4) ndlp->nlp_rpi = mb->un.varWords[0]; ndlp->nlp_flag |= NLP_RPI_REGISTERED; ndlp->nlp_type |= NLP_FABRIC; lpfc_nlp_set_state(vport, ndlp, NLP_STE_UNMAPPED_NODE); - lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, "0003 rpi:%x DID:%x flg:%x %d map%x %p\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, atomic_read(&ndlp->kref.refcount), ndlp->nlp_usg_map, ndlp); + lpfc_printf_vlog(vport, KERN_INFO, LOG_SLI, "0003 rpi:%x DID:%x flg:%x %d map%x %p\n", ndlp->nlp_rpi, ndlp->nlp_DID, ndlp->nlp_flag, kref_read(&ndlp->kref), ndlp->nlp_usg_map, ndlp); if (vport->port_state < LPFC_VPORT_READY) { /* Link up discovery requires Fabric registration. */ lpfc_ns_cmd(vport, SLI_CTNS_RNN_ID, 0, 0); lpfc_ns_cmd(vport, SLI_CTNS_RSNN_NN, 0, 0); lpfc_ns_cmd(vport, SLI_CTNS_RSPN_ID, 0, 0); lpfc_ns_cmd(vport, SLI_CTNS_RFT_ID, 0, 0); lpfc_ns_cmd(vport, SLI_CTNS_RFF_ID, 0, 0); /* Issue SCR just before NameServer GID_FT Query */ lpfc_issue_els_scr(vport, SCR_DID, 0); } vport->fc_ns_retry = 0; /* Good status, issue CT Request to NameServer */ if (lpfc_ns_cmd(vport, SLI_CTNS_GID_FT, 0, 0)) { /* Cannot issue NameServer Query, so finish up discovery */ goto out; } /* decrement the node reference count held for this * callback function. */ lpfc_nlp_put(ndlp); lpfc_mbuf_free(phba, mp->virt, mp->phys); kfree(mp); mempool_free(pmb, phba->mbox_mem_pool); return; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,913
--- initial +++ final @@ -1,20 +1,20 @@ static void etnaviv_gem_describe(struct drm_gem_object *obj, struct seq_file *m) { struct etnaviv_gem_object *etnaviv_obj = to_etnaviv_bo(obj); struct reservation_object *robj = etnaviv_obj->resv; struct reservation_object_list *fobj; struct dma_fence *fence; unsigned long off = drm_vma_node_start(&obj->vma_node); - seq_printf(m, "%08x: %c %2d (%2d) %08lx %p %zd\n", etnaviv_obj->flags, is_active(etnaviv_obj) ? 'A' : 'I', obj->name, obj->refcount.refcount.counter, off, etnaviv_obj->vaddr, obj->size); + seq_printf(m, "%08x: %c %2d (%2d) %08lx %p %zd\n", etnaviv_obj->flags, is_active(etnaviv_obj) ? 'A' : 'I', obj->name, kref_read(&obj->refcount), off, etnaviv_obj->vaddr, obj->size); rcu_read_lock(); fobj = rcu_dereference(robj->fence); if (fobj) { unsigned int i, shared_count = fobj->shared_count; for (i = 0; i < shared_count; i++) { fence = rcu_dereference(fobj->shared[i]); etnaviv_gem_describe_fence(fence, "Shared", m); } } fence = rcu_dereference(robj->fence_excl); if (fence) etnaviv_gem_describe_fence(fence, "Exclusive", m); rcu_read_unlock(); }<sep>@@ expression e; @@ - e.refcount.counter + kref_read(&e) <|end_of_text|>
8,902
--- initial +++ final @@ -1,14 +1,14 @@ static int c_show(struct seq_file *m, void *p) { struct cache_head *cp = p; struct cache_detail *cd = m->private; if (p == SEQ_START_TOKEN) return cd->cache_show(m, cd, NULL); - ifdebug(CACHE) seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", convert_to_wallclock(cp->expiry_time), atomic_read(&cp->ref.refcount), cp->flags); + ifdebug(CACHE) seq_printf(m, "# expiry=%ld refcnt=%d flags=%lx\n", convert_to_wallclock(cp->expiry_time), kref_read(&cp->ref), cp->flags); cache_get(cp); if (cache_check(cd, cp, NULL)) /* cache_check does a cache_put on failure */ seq_printf(m, "# "); else { if (cache_is_expired(cd, cp)) seq_printf(m, "# "); cache_put(cp, cd); } return cd->cache_show(m, cd, cp); }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,883
--- initial +++ final @@ -1,15 +1,15 @@ static struct svc_xprt *svc_xprt_dequeue(struct svc_pool *pool) { struct svc_xprt *xprt = NULL; if (list_empty(&pool->sp_sockets)) goto out; spin_lock_bh(&pool->sp_lock); if (likely(!list_empty(&pool->sp_sockets))) { xprt = list_first_entry(&pool->sp_sockets, struct svc_xprt, xpt_ready); list_del_init(&xprt->xpt_ready); svc_xprt_get(xprt); - dprintk("svc: transport %p dequeued, inuse=%d\n", xprt, atomic_read(&xprt->xpt_ref.refcount)); + dprintk("svc: transport %p dequeued, inuse=%d\n", xprt, kref_read(&xprt->xpt_ref)); } spin_unlock_bh(&pool->sp_lock); out: trace_svc_xprt_dequeue(xprt); return xprt; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,942
--- initial +++ final @@ -1,95 +1,95 @@ static void bnx2fc_cmd_timeout(struct work_struct *work) { struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd, timeout_work.work); u8 cmd_type = io_req->cmd_type; struct bnx2fc_rport *tgt = io_req->tgt; int rc; BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d," "req_flags = %lx\n", cmd_type, io_req->req_flags); spin_lock_bh(&tgt->tgt_lock); if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) { clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags); /* * ideally we should hold the io_req until RRQ complets, * and release io_req from timeout hold. */ spin_unlock_bh(&tgt->tgt_lock); bnx2fc_send_rrq(io_req); return; } if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) { BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n"); goto done; } switch (cmd_type) { case BNX2FC_SCSI_CMD: if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags)) { /* Handle eh_abort timeout */ BNX2FC_IO_DBG(io_req, "eh_abort timed out\n"); complete(&io_req->tm_done); } else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { /* Handle internally generated ABTS timeout */ - BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n", io_req->refcount.refcount.counter); + BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n", kref_read(&io_req->refcount)); if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags))) { /* * Cleanup and return original command to * mid-layer. */ bnx2fc_initiate_cleanup(io_req); kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); return; } } else { /* Hanlde IO timeout */ BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n"); if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) { BNX2FC_IO_DBG(io_req, "IO completed before " " timer expiry\n"); goto done; } if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { rc = bnx2fc_initiate_abts(io_req); if (rc == SUCCESS) goto done; kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); return; } else { BNX2FC_IO_DBG(io_req, "IO already in " "ABTS processing\n"); } } break; case BNX2FC_ELS: if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) { BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n"); if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE, &io_req->req_flags)) { kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); return; } } else { /* * Handle ELS timeout. * tgt_lock is used to sync compl path and timeout * path. If els compl path is processing this IO, we * have nothing to do here, just release the timer hold */ BNX2FC_IO_DBG(io_req, "ELS timed out\n"); if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE, &io_req->req_flags)) goto done; /* Indicate the cb_func that this ELS is timed out */ set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags); if ((io_req->cb_func) && (io_req->cb_arg)) { io_req->cb_func(io_req->cb_arg); io_req->cb_arg = NULL; } } break; default: printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n", cmd_type); break; } done: /* release the cmd that was held when timer was set */ kref_put(&io_req->refcount, bnx2fc_cmd_release); spin_unlock_bh(&tgt->tgt_lock); }<sep>@@ expression e; @@ - e.refcount.counter + kref_read(&e) <|end_of_text|>
8,879
--- initial +++ final @@ -1,24 +1,24 @@ static void lpfc_nlp_release(struct kref *kref) { struct lpfc_hba *phba; unsigned long flags; struct lpfc_nodelist *ndlp = container_of(kref, struct lpfc_nodelist, kref); lpfc_debugfs_disc_trc(ndlp->vport, LPFC_DISC_TRC_NODE, "node release: did:x%x flg:x%x type:x%x", ndlp->nlp_DID, ndlp->nlp_flag, ndlp->nlp_type); lpfc_printf_vlog(ndlp->vport, KERN_INFO, LOG_NODE, "0279 lpfc_nlp_release: ndlp:x%p did %x " "usgmap:x%x refcnt:%d rpi:%x\n", - (void *)ndlp, ndlp->nlp_DID, ndlp->nlp_usg_map, atomic_read(&ndlp->kref.refcount), ndlp->nlp_rpi); + (void *)ndlp, ndlp->nlp_DID, ndlp->nlp_usg_map, kref_read(&ndlp->kref), ndlp->nlp_rpi); /* remove ndlp from action. */ lpfc_nlp_remove(ndlp->vport, ndlp); /* clear the ndlp active flag for all release cases */ phba = ndlp->phba; spin_lock_irqsave(&phba->ndlp_lock, flags); NLP_CLR_NODE_ACT(ndlp); spin_unlock_irqrestore(&phba->ndlp_lock, flags); if (phba->sli_rev == LPFC_SLI_REV4) lpfc_sli4_free_rpi(phba, ndlp->nlp_rpi); /* free ndlp memory for final ndlp release */ if (NLP_CHK_FREE_REQ(ndlp)) { kfree(ndlp->lat_data); if (phba->sli_rev == LPFC_SLI_REV4) mempool_free(ndlp->active_rrqs_xri_bitmap, ndlp->phba->active_rrq_pool); mempool_free(ndlp, ndlp->phba->nlp_mem_pool); } }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,919
--- initial +++ final @@ -1,177 +1,177 @@ int iwch_modify_qp(struct iwch_dev *rhp, struct iwch_qp *qhp, enum iwch_qp_attr_mask mask, struct iwch_qp_attributes *attrs, int internal) { int ret = 0; struct iwch_qp_attributes newattr = qhp->attr; unsigned long flag; int disconnect = 0; int terminate = 0; int abort = 0; int free = 0; struct iwch_ep *ep = NULL; PDBG("%s qhp %p qpid 0x%x ep %p state %d -> %d\n", __func__, qhp, qhp->wq.qpid, qhp->ep, qhp->attr.state, (mask & IWCH_QP_ATTR_NEXT_STATE) ? attrs->next_state : -1); spin_lock_irqsave(&qhp->lock, flag); /* Process attr changes if in IDLE */ if (mask & IWCH_QP_ATTR_VALID_MODIFY) { if (qhp->attr.state != IWCH_QP_STATE_IDLE) { ret = -EIO; goto out; } if (mask & IWCH_QP_ATTR_ENABLE_RDMA_READ) newattr.enable_rdma_read = attrs->enable_rdma_read; if (mask & IWCH_QP_ATTR_ENABLE_RDMA_WRITE) newattr.enable_rdma_write = attrs->enable_rdma_write; if (mask & IWCH_QP_ATTR_ENABLE_RDMA_BIND) newattr.enable_bind = attrs->enable_bind; if (mask & IWCH_QP_ATTR_MAX_ORD) { if (attrs->max_ord > rhp->attr.max_rdma_read_qp_depth) { ret = -EINVAL; goto out; } newattr.max_ord = attrs->max_ord; } if (mask & IWCH_QP_ATTR_MAX_IRD) { if (attrs->max_ird > rhp->attr.max_rdma_reads_per_qp) { ret = -EINVAL; goto out; } newattr.max_ird = attrs->max_ird; } qhp->attr = newattr; } if (!(mask & IWCH_QP_ATTR_NEXT_STATE)) goto out; if (qhp->attr.state == attrs->next_state) goto out; switch (qhp->attr.state) { case IWCH_QP_STATE_IDLE: switch (attrs->next_state) { case IWCH_QP_STATE_RTS: if (!(mask & IWCH_QP_ATTR_LLP_STREAM_HANDLE)) { ret = -EINVAL; goto out; } if (!(mask & IWCH_QP_ATTR_MPA_ATTR)) { ret = -EINVAL; goto out; } qhp->attr.mpa_attr = attrs->mpa_attr; qhp->attr.llp_stream_handle = attrs->llp_stream_handle; qhp->ep = qhp->attr.llp_stream_handle; qhp->attr.state = IWCH_QP_STATE_RTS; /* * Ref the endpoint here and deref when we * disassociate the endpoint from the QP. This * happens in CLOSING->IDLE transition or *->ERROR * transition. */ get_ep(&qhp->ep->com); spin_unlock_irqrestore(&qhp->lock, flag); ret = rdma_init(rhp, qhp, mask, attrs); spin_lock_irqsave(&qhp->lock, flag); if (ret) goto err; break; case IWCH_QP_STATE_ERROR: qhp->attr.state = IWCH_QP_STATE_ERROR; flush_qp(qhp); break; default: ret = -EINVAL; goto out; } break; case IWCH_QP_STATE_RTS: switch (attrs->next_state) { case IWCH_QP_STATE_CLOSING: - BUG_ON(atomic_read(&qhp->ep->com.kref.refcount) < 2); + BUG_ON(kref_read(&qhp->ep->com.kref) < 2); qhp->attr.state = IWCH_QP_STATE_CLOSING; if (!internal) { abort = 0; disconnect = 1; ep = qhp->ep; get_ep(&ep->com); } break; case IWCH_QP_STATE_TERMINATE: qhp->attr.state = IWCH_QP_STATE_TERMINATE; if (qhp->ibqp.uobject) cxio_set_wq_in_error(&qhp->wq); if (!internal) terminate = 1; break; case IWCH_QP_STATE_ERROR: qhp->attr.state = IWCH_QP_STATE_ERROR; if (!internal) { abort = 1; disconnect = 1; ep = qhp->ep; get_ep(&ep->com); } goto err; break; default: ret = -EINVAL; goto out; } break; case IWCH_QP_STATE_CLOSING: if (!internal) { ret = -EINVAL; goto out; } switch (attrs->next_state) { case IWCH_QP_STATE_IDLE: flush_qp(qhp); qhp->attr.state = IWCH_QP_STATE_IDLE; qhp->attr.llp_stream_handle = NULL; put_ep(&qhp->ep->com); qhp->ep = NULL; wake_up(&qhp->wait); break; case IWCH_QP_STATE_ERROR: goto err; default: ret = -EINVAL; goto err; } break; case IWCH_QP_STATE_ERROR: if (attrs->next_state != IWCH_QP_STATE_IDLE) { ret = -EINVAL; goto out; } if (!Q_EMPTY(qhp->wq.sq_rptr, qhp->wq.sq_wptr) || !Q_EMPTY(qhp->wq.rq_rptr, qhp->wq.rq_wptr)) { ret = -EINVAL; goto out; } qhp->attr.state = IWCH_QP_STATE_IDLE; break; case IWCH_QP_STATE_TERMINATE: if (!internal) { ret = -EINVAL; goto out; } goto err; break; default: printk(KERN_ERR "%s in a bad state %d\n", __func__, qhp->attr.state); ret = -EINVAL; goto err; break; } goto out; err: PDBG("%s disassociating ep %p qpid 0x%x\n", __func__, qhp->ep, qhp->wq.qpid); /* disassociate the LLP connection */ qhp->attr.llp_stream_handle = NULL; ep = qhp->ep; qhp->ep = NULL; qhp->attr.state = IWCH_QP_STATE_ERROR; free = 1; wake_up(&qhp->wait); BUG_ON(!ep); flush_qp(qhp); out: spin_unlock_irqrestore(&qhp->lock, flag); if (terminate) iwch_post_terminate(qhp, NULL); /* * If disconnect is 1, then we need to initiate a disconnect * on the EP. This can be a normal close (RTS->CLOSING) or * an abnormal close (RTS/CLOSING->ERROR). */ if (disconnect) { iwch_ep_disconnect(ep, abort, GFP_KERNEL); put_ep(&ep->com); } /* * If free is 1, then we've disassociated the EP from the QP * and we need to dereference the EP. */ if (free) put_ep(&ep->com); PDBG("%s exit state %d\n", __func__, qhp->attr.state); return ret; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,905
--- initial +++ final @@ -1,48 +1,48 @@ static int lpfc_debugfs_nodelist_data(struct lpfc_vport *vport, char *buf, int size) { int len = 0; int cnt; struct Scsi_Host *shost = lpfc_shost_from_vport(vport); struct lpfc_nodelist *ndlp; unsigned char *statep, *name; cnt = (LPFC_NODELIST_SIZE / LPFC_NODELIST_ENTRY_SIZE); spin_lock_irq(shost->host_lock); list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { if (!cnt) { len += snprintf(buf + len, size - len, "Missing Nodelist Entries\n"); break; } cnt--; switch (ndlp->nlp_state) { case NLP_STE_UNUSED_NODE: statep = "UNUSED"; break; case NLP_STE_PLOGI_ISSUE: statep = "PLOGI "; break; case NLP_STE_ADISC_ISSUE: statep = "ADISC "; break; case NLP_STE_REG_LOGIN_ISSUE: statep = "REGLOG"; break; case NLP_STE_PRLI_ISSUE: statep = "PRLI "; break; case NLP_STE_LOGO_ISSUE: statep = "LOGO "; break; case NLP_STE_UNMAPPED_NODE: statep = "UNMAP "; break; case NLP_STE_MAPPED_NODE: statep = "MAPPED"; break; case NLP_STE_NPR_NODE: statep = "NPR "; break; default: statep = "UNKNOWN"; } len += snprintf(buf + len, size - len, "%s DID:x%06x ", statep, ndlp->nlp_DID); name = (unsigned char *)&ndlp->nlp_portname; len += snprintf(buf + len, size - len, "WWPN %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ", *name, *(name + 1), *(name + 2), *(name + 3), *(name + 4), *(name + 5), *(name + 6), *(name + 7)); name = (unsigned char *)&ndlp->nlp_nodename; len += snprintf(buf + len, size - len, "WWNN %02x:%02x:%02x:%02x:%02x:%02x:%02x:%02x ", *name, *(name + 1), *(name + 2), *(name + 3), *(name + 4), *(name + 5), *(name + 6), *(name + 7)); if (ndlp->nlp_flag & NLP_RPI_REGISTERED) len += snprintf(buf + len, size - len, "RPI:%03d ", ndlp->nlp_rpi); else len += snprintf(buf + len, size - len, "RPI:none "); len += snprintf(buf + len, size - len, "flag:x%08x ", ndlp->nlp_flag); if (!ndlp->nlp_type) len += snprintf(buf + len, size - len, "UNKNOWN_TYPE "); if (ndlp->nlp_type & NLP_FC_NODE) len += snprintf(buf + len, size - len, "FC_NODE "); if (ndlp->nlp_type & NLP_FABRIC) len += snprintf(buf + len, size - len, "FABRIC "); if (ndlp->nlp_type & NLP_FCP_TARGET) len += snprintf(buf + len, size - len, "FCP_TGT sid:%d ", ndlp->nlp_sid); if (ndlp->nlp_type & NLP_FCP_INITIATOR) len += snprintf(buf + len, size - len, "FCP_INITIATOR "); len += snprintf(buf + len, size - len, "usgmap:%x ", ndlp->nlp_usg_map); - len += snprintf(buf + len, size - len, "refcnt:%x", atomic_read(&ndlp->kref.refcount)); + len += snprintf(buf + len, size - len, "refcnt:%x", kref_read(&ndlp->kref)); len += snprintf(buf + len, size - len, "\n"); } spin_unlock_irq(shost->host_lock); return len; }<sep>@@ expression e; @@ - atomic_read(&e.refcount) + kref_read(&e) <|end_of_text|>
8,908