|
--- |
|
license: mit |
|
language: |
|
- en |
|
tags: |
|
- embedding |
|
- multimodal |
|
pretty_name: mmE5 labeled data |
|
size_categories: |
|
- 1M<n<10M |
|
configs: |
|
- config_name: TAT-DQA |
|
data_files: |
|
- split: train |
|
path: "TAT-DQA/TAT-DQA.parquet" |
|
- config_name: ArxivQA |
|
data_files: |
|
- split: train |
|
path: "ArxivQA/ArxivQA.parquet" |
|
- config_name: InfoSeek_it2t |
|
data_files: |
|
- split: train |
|
path: "InfoSeek_it2t/InfoSeek_it2t.parquet" |
|
- config_name: InfoSeek_it2it |
|
data_files: |
|
- split: train |
|
path: "InfoSeek_it2it/InfoSeek_it2it.parquet" |
|
- config_name: ImageNet_1K |
|
data_files: |
|
- split: train |
|
path: "ImageNet_1K/ImageNet_1K.parquet" |
|
- config_name: N24News |
|
data_files: |
|
- split: train |
|
path: "N24News/N24News.parquet" |
|
- config_name: HatefulMemes |
|
data_files: |
|
- split: train |
|
path: "HatefulMemes/HatefulMemes.parquet" |
|
- config_name: SUN397 |
|
data_files: |
|
- split: train |
|
path: "SUN397/SUN397.parquet" |
|
- config_name: VOC2007 |
|
data_files: |
|
- split: train |
|
path: "VOC2007/VOC2007.parquet" |
|
- config_name: InfographicsVQA |
|
data_files: |
|
- split: train |
|
path: "InfographicsVQA/InfographicsVQA.parquet" |
|
- config_name: ChartQA |
|
data_files: |
|
- split: train |
|
path: "ChartQA/ChartQA.parquet" |
|
- config_name: A-OKVQA |
|
data_files: |
|
- split: train |
|
path: "A-OKVQA/A-OKVQA.parquet" |
|
- config_name: DocVQA |
|
data_files: |
|
- split: train |
|
path: "DocVQA/DocVQA.parquet" |
|
- config_name: OK-VQA |
|
data_files: |
|
- split: train |
|
path: "OK-VQA/OK-VQA.parquet" |
|
- config_name: Visual7W |
|
data_files: |
|
- split: train |
|
path: "Visual7W/Visual7W.parquet" |
|
- config_name: VisDial |
|
data_files: |
|
- split: train |
|
path: "VisDial/VisDial.parquet" |
|
- config_name: CIRR |
|
data_files: |
|
- split: train |
|
path: "CIRR/CIRR.parquet" |
|
- config_name: NIGHTS |
|
data_files: |
|
- split: train |
|
path: "NIGHTS/NIGHTS.parquet" |
|
- config_name: WebQA |
|
data_files: |
|
- split: train |
|
path: "WebQA/WebQA.parquet" |
|
- config_name: VisualNews_i2t |
|
data_files: |
|
- split: train |
|
path: "VisualNews_i2t/VisualNews_i2t.parquet" |
|
- config_name: VisualNews_t2i |
|
data_files: |
|
- split: train |
|
path: "VisualNews_t2i/VisualNews_t2i.parquet" |
|
- config_name: MSCOCO_i2t |
|
data_files: |
|
- split: train |
|
path: "MSCOCO_i2t/MSCOCO_i2t.parquet" |
|
- config_name: MSCOCO_t2i |
|
data_files: |
|
- split: train |
|
path: "MSCOCO_t2i/MSCOCO_t2i.parquet" |
|
- config_name: MSCOCO |
|
data_files: |
|
- split: train |
|
path: "MSCOCO/MSCOCO.parquet" |
|
--- |
|
# mmE5 Labeled Data |
|
|
|
|
|
|
|
|
|
This dataset contains datasets used for the supervised finetuning of mmE5 ([mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data](https://arxiv.org/abs/2502.08468)): |
|
- **MMEB** (with hard negative) |
|
- **InfoSeek** (from M-BEIR) |
|
- **TAT-DQA** |
|
- **ArxivQA** |
|
|
|
[Github](https://github.com/haon-chen/mmE5) |
|
|
|
## Image Preparation |
|
|
|
First, you should prepare the images used for training: |
|
|
|
### Image Downloads |
|
|
|
- **Download All Images Used in mmE5**: |
|
|
|
You can use the script provided in our [source code](https://github.com/haon-chen/mmE5) to download all images used in mmE5. |
|
```bash |
|
git clone https://github.com/haon-chen/mmE5.git |
|
cd mmE5 |
|
bash scripts/prepare_images.sh |
|
``` |
|
|
|
### Image Organization |
|
|
|
``` |
|
images/ |
|
βββ mbeir_images/ |
|
β βββ oven_images/ |
|
β βββ ... .jpg (InfoSeek) |
|
βββ ArxivQA/ |
|
β βββ images/ |
|
β βββ ... .jpg (ArxivQA) |
|
βββ TAT-DQA/ |
|
β βββ ... .png (TAT-DQA) |
|
βββ A-OKVQA/ |
|
βββ Train/ |
|
β βββ ... .jpg (A-OKVQA) |
|
β |
|
... (MMEB Training images) |
|
``` |
|
|
|
You can refer to the image paths in each subset to view the image organization. |
|
|
|
You can also customize your image paths by altering the image_path fields. |
|
## Citation |
|
If you use this dataset in your research, please cite the associated paper. |
|
``` |
|
@article{chen2025mmE5, |
|
title={mmE5: Improving Multimodal Multilingual Embeddings via High-quality Synthetic Data}, |
|
author={Chen, Haonan and Wang, Liang and Yang, Nan and Zhu, Yutao and Zhao, Ziliang and Wei, Furu and Dou, Zhicheng}, |
|
journal={arXiv preprint arXiv:2502.08468}, |
|
year={2025} |
|
} |
|
``` |