datasetId
large_stringlengths
6
116
author
large_stringlengths
2
42
last_modified
large_stringdate
2021-04-29 15:34:29
2025-06-08 10:13:44
downloads
int64
0
3.97M
likes
int64
0
7.74k
tags
large listlengths
1
7.92k
task_categories
large listlengths
0
48
createdAt
large_stringdate
2022-03-02 23:29:22
2025-06-08 10:11:06
trending_score
float64
0
40
βŒ€
card
large_stringlengths
31
1.01M
anirudhb11/R1-1.5b-Par-Temp-0.7-Ans-40-16384-s-42-deg-64-path-3-n-16000-s-15800-e-15900
anirudhb11
2025-06-08T03:23:50Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-08T03:23:48Z
null
--- dataset_info: features: - name: prompt dtype: string - name: gold_answer dtype: string - name: raw_answer_0 dtype: string - name: extracted_answer_0 dtype: string - name: num_boxed_0 dtype: int64 - name: grade_0 dtype: bool - name: ans_token_len_0 dtype: int64 - name: finished_0 dtype: bool - name: raw_answer_1 dtype: string - name: extracted_answer_1 dtype: string - name: num_boxed_1 dtype: int64 - name: grade_1 dtype: bool - name: ans_token_len_1 dtype: int64 - name: finished_1 dtype: bool - name: raw_answer_2 dtype: string - name: extracted_answer_2 dtype: string - name: num_boxed_2 dtype: int64 - name: grade_2 dtype: bool - name: ans_token_len_2 dtype: int64 - name: finished_2 dtype: bool - name: raw_answer_3 dtype: string - name: extracted_answer_3 dtype: string - name: num_boxed_3 dtype: int64 - name: grade_3 dtype: bool - name: ans_token_len_3 dtype: int64 - name: finished_3 dtype: bool - name: raw_answer_4 dtype: string - name: extracted_answer_4 dtype: string - name: num_boxed_4 dtype: int64 - name: grade_4 dtype: bool - name: ans_token_len_4 dtype: int64 - name: finished_4 dtype: bool - name: raw_answer_5 dtype: string - name: extracted_answer_5 dtype: string - name: num_boxed_5 dtype: int64 - name: grade_5 dtype: bool - name: ans_token_len_5 dtype: int64 - name: finished_5 dtype: bool - name: raw_answer_6 dtype: string - name: extracted_answer_6 dtype: string - name: num_boxed_6 dtype: int64 - name: grade_6 dtype: bool - name: ans_token_len_6 dtype: int64 - name: finished_6 dtype: bool - name: raw_answer_7 dtype: string - name: extracted_answer_7 dtype: string - name: num_boxed_7 dtype: int64 - name: grade_7 dtype: bool - name: ans_token_len_7 dtype: int64 - name: finished_7 dtype: bool - name: raw_answer_8 dtype: string - name: extracted_answer_8 dtype: string - name: num_boxed_8 dtype: int64 - name: grade_8 dtype: bool - name: ans_token_len_8 dtype: int64 - name: finished_8 dtype: bool - name: raw_answer_9 dtype: string - name: extracted_answer_9 dtype: string - name: num_boxed_9 dtype: int64 - name: grade_9 dtype: bool - name: ans_token_len_9 dtype: int64 - name: finished_9 dtype: bool - name: raw_answer_10 dtype: string - name: extracted_answer_10 dtype: string - name: num_boxed_10 dtype: int64 - name: grade_10 dtype: bool - name: ans_token_len_10 dtype: int64 - name: finished_10 dtype: bool - name: raw_answer_11 dtype: string - name: extracted_answer_11 dtype: string - name: num_boxed_11 dtype: int64 - name: grade_11 dtype: bool - name: ans_token_len_11 dtype: int64 - name: finished_11 dtype: bool - name: raw_answer_12 dtype: string - name: extracted_answer_12 dtype: string - name: num_boxed_12 dtype: int64 - name: grade_12 dtype: bool - name: ans_token_len_12 dtype: int64 - name: finished_12 dtype: bool - name: raw_answer_13 dtype: string - name: extracted_answer_13 dtype: string - name: num_boxed_13 dtype: int64 - name: grade_13 dtype: bool - name: ans_token_len_13 dtype: int64 - name: finished_13 dtype: bool - name: raw_answer_14 dtype: string - name: extracted_answer_14 dtype: string - name: num_boxed_14 dtype: int64 - name: grade_14 dtype: bool - name: ans_token_len_14 dtype: int64 - name: finished_14 dtype: bool - name: raw_answer_15 dtype: string - name: extracted_answer_15 dtype: string - name: num_boxed_15 dtype: int64 - name: grade_15 dtype: bool - name: ans_token_len_15 dtype: int64 - name: finished_15 dtype: bool - name: raw_answer_16 dtype: string - name: extracted_answer_16 dtype: string - name: num_boxed_16 dtype: int64 - name: grade_16 dtype: bool - name: ans_token_len_16 dtype: int64 - name: finished_16 dtype: bool - name: raw_answer_17 dtype: string - name: extracted_answer_17 dtype: string - name: num_boxed_17 dtype: int64 - name: grade_17 dtype: bool - name: ans_token_len_17 dtype: int64 - name: finished_17 dtype: bool - name: raw_answer_18 dtype: string - name: extracted_answer_18 dtype: string - name: num_boxed_18 dtype: int64 - name: grade_18 dtype: bool - name: ans_token_len_18 dtype: int64 - name: finished_18 dtype: bool - name: raw_answer_19 dtype: string - name: extracted_answer_19 dtype: string - name: num_boxed_19 dtype: int64 - name: grade_19 dtype: bool - name: ans_token_len_19 dtype: int64 - name: finished_19 dtype: bool - name: raw_answer_20 dtype: string - name: extracted_answer_20 dtype: string - name: num_boxed_20 dtype: int64 - name: grade_20 dtype: bool - name: ans_token_len_20 dtype: int64 - name: finished_20 dtype: bool - name: raw_answer_21 dtype: string - name: extracted_answer_21 dtype: string - name: num_boxed_21 dtype: int64 - name: grade_21 dtype: bool - name: ans_token_len_21 dtype: int64 - name: finished_21 dtype: bool - name: raw_answer_22 dtype: string - name: extracted_answer_22 dtype: string - name: num_boxed_22 dtype: int64 - name: grade_22 dtype: bool - name: ans_token_len_22 dtype: int64 - name: finished_22 dtype: bool - name: raw_answer_23 dtype: string - name: extracted_answer_23 dtype: string - name: num_boxed_23 dtype: int64 - name: grade_23 dtype: bool - name: ans_token_len_23 dtype: int64 - name: finished_23 dtype: bool - name: raw_answer_24 dtype: string - name: extracted_answer_24 dtype: string - name: num_boxed_24 dtype: int64 - name: grade_24 dtype: bool - name: ans_token_len_24 dtype: int64 - name: finished_24 dtype: bool - name: raw_answer_25 dtype: string - name: extracted_answer_25 dtype: string - name: num_boxed_25 dtype: int64 - name: grade_25 dtype: bool - name: ans_token_len_25 dtype: int64 - name: finished_25 dtype: bool - name: raw_answer_26 dtype: string - name: extracted_answer_26 dtype: string - name: num_boxed_26 dtype: int64 - name: grade_26 dtype: bool - name: ans_token_len_26 dtype: int64 - name: finished_26 dtype: bool - name: raw_answer_27 dtype: string - name: extracted_answer_27 dtype: string - name: num_boxed_27 dtype: int64 - name: grade_27 dtype: bool - name: ans_token_len_27 dtype: int64 - name: finished_27 dtype: bool - name: raw_answer_28 dtype: string - name: extracted_answer_28 dtype: string - name: num_boxed_28 dtype: int64 - name: grade_28 dtype: bool - name: ans_token_len_28 dtype: int64 - name: finished_28 dtype: bool - name: raw_answer_29 dtype: string - name: extracted_answer_29 dtype: string - name: num_boxed_29 dtype: int64 - name: grade_29 dtype: bool - name: ans_token_len_29 dtype: int64 - name: finished_29 dtype: bool - name: raw_answer_30 dtype: string - name: extracted_answer_30 dtype: string - name: num_boxed_30 dtype: int64 - name: grade_30 dtype: bool - name: ans_token_len_30 dtype: int64 - name: finished_30 dtype: bool - name: raw_answer_31 dtype: string - name: extracted_answer_31 dtype: string - name: num_boxed_31 dtype: int64 - name: grade_31 dtype: bool - name: ans_token_len_31 dtype: int64 - name: finished_31 dtype: bool - name: raw_answer_32 dtype: string - name: extracted_answer_32 dtype: string - name: num_boxed_32 dtype: int64 - name: grade_32 dtype: bool - name: ans_token_len_32 dtype: int64 - name: finished_32 dtype: bool - name: raw_answer_33 dtype: string - name: extracted_answer_33 dtype: string - name: num_boxed_33 dtype: int64 - name: grade_33 dtype: bool - name: ans_token_len_33 dtype: int64 - name: finished_33 dtype: bool - name: raw_answer_34 dtype: string - name: extracted_answer_34 dtype: string - name: num_boxed_34 dtype: int64 - name: grade_34 dtype: bool - name: ans_token_len_34 dtype: int64 - name: finished_34 dtype: bool - name: raw_answer_35 dtype: string - name: extracted_answer_35 dtype: string - name: num_boxed_35 dtype: int64 - name: grade_35 dtype: bool - name: ans_token_len_35 dtype: int64 - name: finished_35 dtype: bool - name: raw_answer_36 dtype: string - name: extracted_answer_36 dtype: string - name: num_boxed_36 dtype: int64 - name: grade_36 dtype: bool - name: ans_token_len_36 dtype: int64 - name: finished_36 dtype: bool - name: raw_answer_37 dtype: string - name: extracted_answer_37 dtype: string - name: num_boxed_37 dtype: int64 - name: grade_37 dtype: bool - name: ans_token_len_37 dtype: int64 - name: finished_37 dtype: bool - name: raw_answer_38 dtype: string - name: extracted_answer_38 dtype: string - name: num_boxed_38 dtype: int64 - name: grade_38 dtype: bool - name: ans_token_len_38 dtype: int64 - name: finished_38 dtype: bool - name: raw_answer_39 dtype: string - name: extracted_answer_39 dtype: string - name: num_boxed_39 dtype: int64 - name: grade_39 dtype: bool - name: ans_token_len_39 dtype: int64 - name: finished_39 dtype: bool splits: - name: train num_bytes: 79332230 num_examples: 100 download_size: 17730887 dataset_size: 79332230 configs: - config_name: default data_files: - split: train path: data/train-* ---
anirudhb11/R1-1.5b-Par-Temp-0.7-Ans-40-16384-s-42-deg-32-path-3-n-8000-s-100-e-200
anirudhb11
2025-06-08T03:11:46Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-08T03:11:43Z
null
--- dataset_info: features: - name: prompt dtype: string - name: gold_answer dtype: string - name: raw_answer_0 dtype: string - name: extracted_answer_0 dtype: string - name: num_boxed_0 dtype: int64 - name: grade_0 dtype: bool - name: ans_token_len_0 dtype: int64 - name: finished_0 dtype: bool - name: raw_answer_1 dtype: string - name: extracted_answer_1 dtype: string - name: num_boxed_1 dtype: int64 - name: grade_1 dtype: bool - name: ans_token_len_1 dtype: int64 - name: finished_1 dtype: bool - name: raw_answer_2 dtype: string - name: extracted_answer_2 dtype: string - name: num_boxed_2 dtype: int64 - name: grade_2 dtype: bool - name: ans_token_len_2 dtype: int64 - name: finished_2 dtype: bool - name: raw_answer_3 dtype: string - name: extracted_answer_3 dtype: string - name: num_boxed_3 dtype: int64 - name: grade_3 dtype: bool - name: ans_token_len_3 dtype: int64 - name: finished_3 dtype: bool - name: raw_answer_4 dtype: string - name: extracted_answer_4 dtype: string - name: num_boxed_4 dtype: int64 - name: grade_4 dtype: bool - name: ans_token_len_4 dtype: int64 - name: finished_4 dtype: bool - name: raw_answer_5 dtype: string - name: extracted_answer_5 dtype: string - name: num_boxed_5 dtype: int64 - name: grade_5 dtype: bool - name: ans_token_len_5 dtype: int64 - name: finished_5 dtype: bool - name: raw_answer_6 dtype: string - name: extracted_answer_6 dtype: string - name: num_boxed_6 dtype: int64 - name: grade_6 dtype: bool - name: ans_token_len_6 dtype: int64 - name: finished_6 dtype: bool - name: raw_answer_7 dtype: string - name: extracted_answer_7 dtype: string - name: num_boxed_7 dtype: int64 - name: grade_7 dtype: bool - name: ans_token_len_7 dtype: int64 - name: finished_7 dtype: bool - name: raw_answer_8 dtype: string - name: extracted_answer_8 dtype: string - name: num_boxed_8 dtype: int64 - name: grade_8 dtype: bool - name: ans_token_len_8 dtype: int64 - name: finished_8 dtype: bool - name: raw_answer_9 dtype: string - name: extracted_answer_9 dtype: string - name: num_boxed_9 dtype: int64 - name: grade_9 dtype: bool - name: ans_token_len_9 dtype: int64 - name: finished_9 dtype: bool - name: raw_answer_10 dtype: string - name: extracted_answer_10 dtype: string - name: num_boxed_10 dtype: int64 - name: grade_10 dtype: bool - name: ans_token_len_10 dtype: int64 - name: finished_10 dtype: bool - name: raw_answer_11 dtype: string - name: extracted_answer_11 dtype: string - name: num_boxed_11 dtype: int64 - name: grade_11 dtype: bool - name: ans_token_len_11 dtype: int64 - name: finished_11 dtype: bool - name: raw_answer_12 dtype: string - name: extracted_answer_12 dtype: string - name: num_boxed_12 dtype: int64 - name: grade_12 dtype: bool - name: ans_token_len_12 dtype: int64 - name: finished_12 dtype: bool - name: raw_answer_13 dtype: string - name: extracted_answer_13 dtype: string - name: num_boxed_13 dtype: int64 - name: grade_13 dtype: bool - name: ans_token_len_13 dtype: int64 - name: finished_13 dtype: bool - name: raw_answer_14 dtype: string - name: extracted_answer_14 dtype: string - name: num_boxed_14 dtype: int64 - name: grade_14 dtype: bool - name: ans_token_len_14 dtype: int64 - name: finished_14 dtype: bool - name: raw_answer_15 dtype: string - name: extracted_answer_15 dtype: string - name: num_boxed_15 dtype: int64 - name: grade_15 dtype: bool - name: ans_token_len_15 dtype: int64 - name: finished_15 dtype: bool - name: raw_answer_16 dtype: string - name: extracted_answer_16 dtype: string - name: num_boxed_16 dtype: int64 - name: grade_16 dtype: bool - name: ans_token_len_16 dtype: int64 - name: finished_16 dtype: bool - name: raw_answer_17 dtype: string - name: extracted_answer_17 dtype: string - name: num_boxed_17 dtype: int64 - name: grade_17 dtype: bool - name: ans_token_len_17 dtype: int64 - name: finished_17 dtype: bool - name: raw_answer_18 dtype: string - name: extracted_answer_18 dtype: string - name: num_boxed_18 dtype: int64 - name: grade_18 dtype: bool - name: ans_token_len_18 dtype: int64 - name: finished_18 dtype: bool - name: raw_answer_19 dtype: string - name: extracted_answer_19 dtype: string - name: num_boxed_19 dtype: int64 - name: grade_19 dtype: bool - name: ans_token_len_19 dtype: int64 - name: finished_19 dtype: bool - name: raw_answer_20 dtype: string - name: extracted_answer_20 dtype: string - name: num_boxed_20 dtype: int64 - name: grade_20 dtype: bool - name: ans_token_len_20 dtype: int64 - name: finished_20 dtype: bool - name: raw_answer_21 dtype: string - name: extracted_answer_21 dtype: string - name: num_boxed_21 dtype: int64 - name: grade_21 dtype: bool - name: ans_token_len_21 dtype: int64 - name: finished_21 dtype: bool - name: raw_answer_22 dtype: string - name: extracted_answer_22 dtype: string - name: num_boxed_22 dtype: int64 - name: grade_22 dtype: bool - name: ans_token_len_22 dtype: int64 - name: finished_22 dtype: bool - name: raw_answer_23 dtype: string - name: extracted_answer_23 dtype: string - name: num_boxed_23 dtype: int64 - name: grade_23 dtype: bool - name: ans_token_len_23 dtype: int64 - name: finished_23 dtype: bool - name: raw_answer_24 dtype: string - name: extracted_answer_24 dtype: string - name: num_boxed_24 dtype: int64 - name: grade_24 dtype: bool - name: ans_token_len_24 dtype: int64 - name: finished_24 dtype: bool - name: raw_answer_25 dtype: string - name: extracted_answer_25 dtype: string - name: num_boxed_25 dtype: int64 - name: grade_25 dtype: bool - name: ans_token_len_25 dtype: int64 - name: finished_25 dtype: bool - name: raw_answer_26 dtype: string - name: extracted_answer_26 dtype: string - name: num_boxed_26 dtype: int64 - name: grade_26 dtype: bool - name: ans_token_len_26 dtype: int64 - name: finished_26 dtype: bool - name: raw_answer_27 dtype: string - name: extracted_answer_27 dtype: string - name: num_boxed_27 dtype: int64 - name: grade_27 dtype: bool - name: ans_token_len_27 dtype: int64 - name: finished_27 dtype: bool - name: raw_answer_28 dtype: string - name: extracted_answer_28 dtype: string - name: num_boxed_28 dtype: int64 - name: grade_28 dtype: bool - name: ans_token_len_28 dtype: int64 - name: finished_28 dtype: bool - name: raw_answer_29 dtype: string - name: extracted_answer_29 dtype: string - name: num_boxed_29 dtype: int64 - name: grade_29 dtype: bool - name: ans_token_len_29 dtype: int64 - name: finished_29 dtype: bool - name: raw_answer_30 dtype: string - name: extracted_answer_30 dtype: string - name: num_boxed_30 dtype: int64 - name: grade_30 dtype: bool - name: ans_token_len_30 dtype: int64 - name: finished_30 dtype: bool - name: raw_answer_31 dtype: string - name: extracted_answer_31 dtype: string - name: num_boxed_31 dtype: int64 - name: grade_31 dtype: bool - name: ans_token_len_31 dtype: int64 - name: finished_31 dtype: bool - name: raw_answer_32 dtype: string - name: extracted_answer_32 dtype: string - name: num_boxed_32 dtype: int64 - name: grade_32 dtype: bool - name: ans_token_len_32 dtype: int64 - name: finished_32 dtype: bool - name: raw_answer_33 dtype: string - name: extracted_answer_33 dtype: string - name: num_boxed_33 dtype: int64 - name: grade_33 dtype: bool - name: ans_token_len_33 dtype: int64 - name: finished_33 dtype: bool - name: raw_answer_34 dtype: string - name: extracted_answer_34 dtype: string - name: num_boxed_34 dtype: int64 - name: grade_34 dtype: bool - name: ans_token_len_34 dtype: int64 - name: finished_34 dtype: bool - name: raw_answer_35 dtype: string - name: extracted_answer_35 dtype: string - name: num_boxed_35 dtype: int64 - name: grade_35 dtype: bool - name: ans_token_len_35 dtype: int64 - name: finished_35 dtype: bool - name: raw_answer_36 dtype: string - name: extracted_answer_36 dtype: string - name: num_boxed_36 dtype: int64 - name: grade_36 dtype: bool - name: ans_token_len_36 dtype: int64 - name: finished_36 dtype: bool - name: raw_answer_37 dtype: string - name: extracted_answer_37 dtype: string - name: num_boxed_37 dtype: int64 - name: grade_37 dtype: bool - name: ans_token_len_37 dtype: int64 - name: finished_37 dtype: bool - name: raw_answer_38 dtype: string - name: extracted_answer_38 dtype: string - name: num_boxed_38 dtype: int64 - name: grade_38 dtype: bool - name: ans_token_len_38 dtype: int64 - name: finished_38 dtype: bool - name: raw_answer_39 dtype: string - name: extracted_answer_39 dtype: string - name: num_boxed_39 dtype: int64 - name: grade_39 dtype: bool - name: ans_token_len_39 dtype: int64 - name: finished_39 dtype: bool splits: - name: train num_bytes: 69133673 num_examples: 100 download_size: 18023029 dataset_size: 69133673 configs: - config_name: default data_files: - split: train path: data/train-* ---
LocalResearchGroup/split-avelina-python-edu
LocalResearchGroup
2025-06-08T01:51:23Z
97
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-04-12T05:34:36Z
null
--- dataset_info: - config_name: 100k features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 158215278.81484368 num_examples: 90000 - name: test num_bytes: 17579475.42387152 num_examples: 10000 download_size: 82802877 dataset_size: 175794754.2387152 - config_name: 10k features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 15821527.881484367 num_examples: 9000 - name: test num_bytes: 1757947.542387152 num_examples: 1000 download_size: 8519514 dataset_size: 17579475.423871517 - config_name: 1M features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1582152788.1484368 num_examples: 900000 - name: test num_bytes: 175794754.2387152 num_examples: 100000 download_size: 826347573 dataset_size: 1757947542.387152 - config_name: 1k features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 1582152.7881484367 num_examples: 900 - name: test num_bytes: 175794.7542387152 num_examples: 100 download_size: 830939 dataset_size: 1757947.5423871519 - config_name: full features: - name: blob_id dtype: string - name: repo_name dtype: string - name: path dtype: string - name: length_bytes dtype: int64 - name: score dtype: float64 - name: int_score dtype: int64 - name: text dtype: string splits: - name: train num_bytes: 12148475802.315737 num_examples: 6910602 - name: test num_bytes: 1349831230.6842628 num_examples: 767845 download_size: 6343241345 dataset_size: 13498307033.0 configs: - config_name: 100k data_files: - split: train path: 100k/train-* - split: test path: 100k/test-* - config_name: 10k data_files: - split: train path: 10k/train-* - split: test path: 10k/test-* - config_name: 1M data_files: - split: train path: 1M/train-* - split: test path: 1M/test-* - config_name: 1k data_files: - split: train path: 1k/train-* - split: test path: 1k/test-* - config_name: full data_files: - split: train path: full/train-* - split: test path: full/test-* ---
CodCodingCode/clinical-conversations-V1.2
CodCodingCode
2025-06-08T00:55:28Z
0
0
[ "region:us" ]
[]
2025-06-08T00:55:20Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string splits: - name: train num_bytes: 111716073 num_examples: 17428 download_size: 34264257 dataset_size: 111716073 configs: - config_name: default data_files: - split: train path: data/train-* ---
louisbrulenaudet/code-justice-administrative
louisbrulenaudet
2025-06-08T00:43:10Z
344
0
[ "task_categories:text-generation", "task_categories:table-question-answering", "task_categories:summarization", "task_categories:text-retrieval", "task_categories:question-answering", "task_categories:text-classification", "multilinguality:monolingual", "source_datasets:original", "language:fr", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "doi:10.57967/hf/1469", "region:us", "finetuning", "legal", "french law", "droit franΓ§ais", "Code de justice administrative" ]
[ "text-generation", "table-question-answering", "summarization", "text-retrieval", "question-answering", "text-classification" ]
2023-12-12T21:26:00Z
null
--- license: apache-2.0 language: - fr multilinguality: - monolingual tags: - finetuning - legal - french law - droit franΓ§ais - Code de justice administrative source_datasets: - original pretty_name: Code de justice administrative task_categories: - text-generation - table-question-answering - summarization - text-retrieval - question-answering - text-classification size_categories: - 1K<n<10K --- # Code de justice administrative, non-instruct (2025-06-07) The objective of this project is to provide researchers, professionals and law students with simplified, up-to-date access to all French legal texts, enriched with a wealth of data to facilitate their integration into Community and European projects. Normally, the data is refreshed daily on all legal codes, and aims to simplify the production of training sets and labeling pipelines for the development of free, open-source language models based on open data accessible to all. ## Concurrent reading of the LegalKit [<img src="https://raw.githubusercontent.com/louisbrulenaudet/ragoon/main/assets/badge.svg" alt="Built with RAGoon" width="200" height="32"/>](https://github.com/louisbrulenaudet/ragoon) To use all the legal data published on LegalKit, you can use RAGoon: ```bash pip3 install ragoon ``` Then, you can load multiple datasets using this code snippet: ```python # -*- coding: utf-8 -*- from ragoon import load_datasets req = [ "louisbrulenaudet/code-artisanat", "louisbrulenaudet/code-action-sociale-familles", # ... ] datasets_list = load_datasets( req=req, streaming=False ) dataset = datasets.concatenate_datasets( datasets_list ) ``` ### Data Structure for Article Information This section provides a detailed overview of the elements contained within the `item` dictionary. Each key represents a specific attribute of the legal article, with its associated value providing detailed information. 1. **Basic Information** - `ref` (string): **Reference** - A reference to the article, combining the title_main and the article `number` (e.g., "Code GΓ©nΓ©ral des ImpΓ΄ts, art. 123"). - `texte` (string): **Text Content** - The textual content of the article. - `dateDebut` (string): **Start Date** - The date when the article came into effect. - `dateFin` (string): **End Date** - The date when the article was terminated or superseded. - `num` (string): **Article Number** - The number assigned to the article. - `id` (string): **Article ID** - Unique identifier for the article. - `cid` (string): **Chronical ID** - Chronical identifier for the article. - `type` (string): **Type** - The type or classification of the document (e.g., "AUTONOME"). - `etat` (string): **Legal Status** - The current legal status of the article (e.g., "MODIFIE_MORT_NE"). 2. **Content and Notes** - `nota` (string): **Notes** - Additional notes or remarks associated with the article. - `version_article` (string): **Article Version** - The version number of the article. - `ordre` (integer): **Order Number** - A numerical value used to sort articles within their parent section. 3. **Additional Metadata** - `conditionDiffere` (string): **Deferred Condition** - Specific conditions related to collective agreements. - `infosComplementaires` (string): **Additional Information** - Extra information pertinent to the article. - `surtitre` (string): **Subtitle** - A subtitle or additional title information related to collective agreements. - `nature` (string): **Nature** - The nature or category of the document (e.g., "Article"). - `texteHtml` (string): **HTML Content** - The article's content in HTML format. 4. **Versioning and Extensions** - `dateFinExtension` (string): **End Date of Extension** - The end date if the article has an extension. - `versionPrecedente` (string): **Previous Version** - Identifier for the previous version of the article. - `refInjection` (string): **Injection Reference** - Technical reference to identify the date of injection. - `idTexte` (string): **Text ID** - Identifier for the legal text to which the article belongs. - `idTechInjection` (string): **Technical Injection ID** - Technical identifier for the injected element. 5. **Origin and Relationships** - `origine` (string): **Origin** - The origin of the document (e.g., "LEGI"). - `dateDebutExtension` (string): **Start Date of Extension** - The start date if the article has an extension. - `idEliAlias` (string): **ELI Alias** - Alias for the European Legislation Identifier (ELI). - `cidTexte` (string): **Text Chronical ID** - Chronical identifier of the text. 6. **Hierarchical Relationships** - `sectionParentId` (string): **Parent Section ID** - Technical identifier of the parent section. - `multipleVersions` (boolean): **Multiple Versions** - Indicates if the article has multiple versions. - `comporteLiensSP` (boolean): **Contains Public Service Links** - Indicates if the article contains links to public services. - `sectionParentTitre` (string): **Parent Section Title** - Title of the parent section (e.g., "I : Revenu imposable"). - `infosRestructurationBranche` (string): **Branch Restructuring Information** - Information about branch restructuring. - `idEli` (string): **ELI ID** - European Legislation Identifier (ELI) for the article. - `sectionParentCid` (string): **Parent Section Chronical ID** - Chronical identifier of the parent section. 7. **Additional Content and History** - `numeroBo` (string): **Official Bulletin Number** - Number of the official bulletin where the article was published. - `infosRestructurationBrancheHtml` (string): **Branch Restructuring Information (HTML)** - Branch restructuring information in HTML format. - `historique` (string): **History** - Historical context or changes specific to collective agreements. - `infosComplementairesHtml` (string): **Additional Information (HTML)** - Additional information in HTML format. - `renvoi` (string): **Reference** - References to content within the article (e.g., "(1)"). - `fullSectionsTitre` (string): **Full Section Titles** - Concatenation of all titles in the parent chain. - `notaHtml` (string): **Notes (HTML)** - Additional notes or remarks in HTML format. - `inap` (string): **INAP** - A placeholder for INAP-specific information. ## Feedback If you have any feedback, please reach out at [[email protected]](mailto:[email protected]).
matthewchung74/fico-1_0y-5min-bars
matthewchung74
2025-06-07T22:53:37Z
0
0
[ "region:us" ]
[]
2025-06-07T22:53:32Z
null
--- dataset_info: features: - name: symbol dtype: string - name: timestamp dtype: string - name: open dtype: float64 - name: high dtype: float64 - name: low dtype: float64 - name: close dtype: float64 - name: volume dtype: float64 - name: trade_count dtype: float64 - name: vwap dtype: float64 configs: - config_name: default data_files: - split: train path: data/fico_1_0_years_5min.csv download_size: 1234303 dataset_size: 14413 --- # FICO 5-Minute Stock Data (1.0 Years) This dataset contains 1.0 years of FICO stock market data downloaded from Alpaca Markets. ## Dataset Description - **Symbol**: FICO - **Duration**: 1.0 years - **Timeframe**: 5-minute bars - **Market Hours**: 9:30 AM - 4:00 PM EST only - **Data Source**: Alpaca Markets API - **Last Updated**: 2025-06-07 ## Features - `symbol`: Stock symbol (always "FICO") - `timestamp`: Timestamp in Eastern Time (EST/EDT) - `open`: Opening price for the 5-minute period - `high`: Highest price during the 5-minute period - `low`: Lowest price during the 5-minute period - `close`: Closing price for the 5-minute period - `volume`: Number of shares traded - `trade_count`: Number of individual trades - `vwap`: Volume Weighted Average Price ## Data Quality - Only includes data during regular market hours (9:30 AM - 4:00 PM EST) - Excludes weekends and holidays when markets are closed - Approximately 14,413 records covering ~1.0 years of trading data ## Usage ```python from datasets import load_dataset dataset = load_dataset("matthewchung74/fico-1_0y-5min-bars") df = dataset['train'].to_pandas() ``` ## Price Statistics - **Price Range**: $1287.99 - $2402.51 - **Average Volume**: 2,567 - **Date Range**: 2024-06-07 09:30:00-04:00 to 2025-06-06 16:00:00-04:00 ## License This dataset is provided under the MIT license. The underlying market data is sourced from Alpaca Markets.
openfoodfacts/product-database
openfoodfacts
2025-06-07T18:13:46Z
2,964
37
[ "language:en", "language:fr", "language:de", "language:es", "language:it", "language:nl", "language:pl", "language:pt", "language:sv", "language:bg", "language:ro", "language:fi", "language:ru", "language:nb", "language:cs", "language:th", "language:da", "language:hr", "language:hu", "language:ar", "language:el", "language:ja", "language:ca", "language:sr", "language:sl", "language:sk", "language:tr", "language:lt", "language:zh", "language:et", "language:lv", "language:xx", "language:uk", "language:id", "language:he", "language:vi", "language:is", "language:la", "language:in", "language:ko", "language:sq", "language:iw", "language:ka", "language:ms", "language:bs", "language:fa", "language:bn", "language:gl", "language:kk", "language:mk", "language:nn", "language:hi", "language:aa", "language:uz", "language:so", "language:af", "language:eu", "license:agpl-3.0", "license:odbl", "size_categories:1M<n<10M", "region:us" ]
[]
2024-10-21T08:44:28Z
null
--- language: - en - fr - de - es - it - nl - pl - pt - sv - bg - ro - fi - ru - nb - cs - th - da - hr - hu - ar - el - ja - ca - sr - sl - sk - tr - lt - zh - et - lv - xx - uk - id - he - vi - is - la - in - ko - sq - iw - ka - ms - bs - fa - bn - gl - kk - mk - nn - hi - aa - uz - so - af - eu license: - agpl-3.0 - odbl size_categories: - 1M<n<10M pretty_name: Open Food Facts Product Database dataset_info: config_name: default configs: - config_name: default data_files: - split: food path: food.parquet - split: beauty path: beauty.parquet --- # Open Food Facts Database ## What is 🍊 Open Food Facts? ### A food products database Open Food Facts is a database of food products with ingredients, allergens, nutrition facts and all the tidbits of information we can find on product labels. ### Made by everyone Open Food Facts is a non-profit association of volunteers. 25.000+ contributors like you have added 1.7 million + products from 150 countries using our Android or iPhone app or their camera to scan barcodes and upload pictures of products and their labels. ### For everyone Data about food is of public interest and has to be open. The complete database is published as open data and can be reused by anyone and for any use. Check-out the cool reuses or make your own! ## The Parquet Dataset This dataset is a simpler version of the [JSONL dump](https://world.openfoodfacts.org/data) provided by the Open Food Facts organization on a daily basis. It was converted into the Parquet format for easy of use. ### Data processing * `Debug` tags were removed. * `Tags`tags are conserved since they contain most information, * `Hierarchy` tags were removed * `lc` tags were removed. It corresponds to the ["language of the interface"](https://openfoodfacts.github.io/openfoodfacts-server/reference/api-tutorials/adding-missing-products/#sending-the-right-country-and-language-parameters-based-on-the-country-your-user-is-located-in-and-the-language-the-product-is-in), * `langs` tags are kept for each `ingredients_text` and conserved as individual columns (*for now*). The original JSONL dump was processed using [Pyarrow](https://arrow.apache.org/docs/python/). ## Conditions for reuse The Open Food Facts database is available under the Open Database License. The individual contents of the database are available under the Database Contents License. Products images are available under the Creative Commons Attribution ShareAlike licence. They may contain graphical elements subject to copyright or other rights, that may in some cases be reproduced (quotation rights or fair use). Please read Terms and conditions of use and re-use before re-using the data. ## Tell us about your reuse We are very interested in learning what the Open Food Facts data is used for. It is not mandatory, but we would very much appreciate it if you tell us about your re-uses so that we can share them with the Open Food Facts community. You can also fill this form to get a chance to get your app featured. - **Homepage:** https://world.openfoodfacts.org/ - **Repository:** https://github.com/openfoodfacts - **Point of Contact:** [email protected]
yasminetligui/dataset_bis
yasminetligui
2025-06-07T16:45:18Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T16:45:06Z
null
--- dataset_info: features: - name: chosen dtype: string - name: prompt dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 313658828 num_examples: 74312 download_size: 168381053 dataset_size: 313658828 configs: - config_name: default data_files: - split: train path: data/train-* ---
Smxldo/wiki-mnlp-cleaned
Smxldo
2025-06-07T16:39:53Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T16:29:23Z
null
--- dataset_info: features: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 269207595.8698845 num_examples: 566196 download_size: 288339320 dataset_size: 269207595.8698845 configs: - config_name: default data_files: - split: train path: data/train-* ---
Jiiwonn/roco2-question-dataset-train
Jiiwonn
2025-06-07T16:33:04Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T16:18:07Z
null
--- dataset_info: features: - name: image dtype: image - name: image_id dtype: string - name: caption dtype: string - name: cui sequence: string - name: questions sequence: string splits: - name: train num_bytes: 13488109032.94 num_examples: 59962 download_size: 13469969712 dataset_size: 13488109032.94 configs: - config_name: default data_files: - split: train path: data/train-* ---
openfoodfacts/open-prices
openfoodfacts
2025-06-07T16:00:18Z
289
2
[ "license:odbl", "size_categories:100K<n<1M", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "price", "food" ]
[]
2024-11-19T15:52:56Z
null
--- license: odbl pretty_name: Open Prices Dataset dataset_info: config_name: default configs: - config_name: default data_files: - split: prices path: prices.parquet tags: - price - food size_categories: - 10K<n<100K --- # Open Prices ## What is Open Prices? [Open Prices](https://prices.openfoodfacts.org/) is a project to collect and share prices of products around the world. It's a publicly available dataset that can be used for research, analysis, and more. Open Prices is developed and maintained by Open Food Facts. There are currently few companies that own large databases of product prices at the barcode level. These prices are not freely available, but sold at a high price to private actors, researchers and other organizations that can afford them. Open Prices aims to democratize access to price data by collecting and sharing product prices under an open licence. The data is available under the [Open Database License (ODbL)](https://opendatacommons.org/licenses/odbl/1.0/), which means that it can be used for any purpose, as long as you credit Open Prices and share any modifications you make to the dataset. Images submitted as proof are licensed under the [Creative Commons Attribution-ShareAlike 4.0 International](https://creativecommons.org/licenses/by-sa/4.0/). ## Dataset description This dataset contains in Parquet format all price information contained in the Open Prices database. The dataset is updated daily. Here is a description of the most important columns: - `id`: The ID of the price in DB - `product_code`: The barcode of the product, null if the product is a "raw" product (fruit, vegetable, etc.) - `category_tag`: The category of the product, only present for "raw" products. We follow Open Food Facts category taxonomy for category IDs. - `labels_tags`: The labels of the product, only present for "raw" products. We follow Open Food Facts label taxonomy for label IDs. - `origins_tags`: The origins of the product, only present for "raw" products. We follow Open Food Facts origin taxonomy for origin IDs. - `price`: The price of the product, with the discount if any. - `price_is_discounted`: Whether the price is discounted or not. - `price_without_discount`: The price of the product without discount, null if the price is not discounted. - `price_per`: The unit for which the price is given (e.g. "KILOGRAM", "UNIT") - `currency`: The currency of the price - `location_osm_id`: The OpenStreetMap ID of the location where the price was recorded. We use OpenStreetMap to identify uniquely the store where the price was recorded. - `location_osm_type`: The type of the OpenStreetMap location (e.g. "NODE", "WAY") - `location_id`: The ID of the location in the Open Prices database - `date`: The date when the price was recorded - `proof_id`: The ID of the proof of the price in the Open Prices DB - `owner`: a hash of the owner of the price, for privacy. - `created`: The date when the price was created in the Open Prices DB - `updated`: The date when the price was last updated in the Open Prices DB - `proof_file_path`: The path to the proof file in the Open Prices DB - `proof_type`: The type of the proof. Possible values are `RECEIPT`, `PRICE_TAG`, `GDPR_REQUEST`, `SHOP_IMPORT` - `proof_date`: The date of the proof - `proof_currency`: The currency of the proof, should be the same as the price currency - `proof_created`: The datetime when the proof was created in the Open Prices DB - `proof_updated`: The datetime when the proof was last updated in the Open Prices DB - `location_osm_display_name`: The display name of the OpenStreetMap location - `location_osm_address_city`: The city of the OpenStreetMap location - `location_osm_address_postcode`: The postcode of the OpenStreetMap location ## How can I download images? All images can be accessed under the `https://prices.openfoodfacts.org/img/` base URL. You just have to concatenate the `proof_file_path` column to this base URL to get the full URL of the image (ex: https://prices.openfoodfacts.org/img/0010/lqGHf3ZcVR.webp). ## Can I contribute to Open Prices? Of course! You can contribute by adding prices, trough the [Open Prices website](https://prices.openfoodfacts.org/) or through Open Food Facts mobile app. To participate in the technical development, you can check the [Open Prices GitHub repository](https://github.com/openfoodfacts/open-prices).
MING-ZCH/MetaphorQA
MING-ZCH
2025-06-07T15:43:04Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T15:40:40Z
null
--- dataset_info: features: - name: images sequence: image - name: problem dtype: string - name: answer dtype: string splits: - name: train num_bytes: 79102955.0 num_examples: 984 - name: test num_bytes: 42880954.0 num_examples: 492 download_size: 13388609 dataset_size: 121983909.0 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* --- # MetaphorQA The True-False Question(TFQ) about image implication. - train: 984 - test: 492
btsee/common_voice_21_mn
btsee
2025-06-07T15:21:42Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T15:21:19Z
null
--- dataset_info: features: - name: client_id dtype: string - name: path dtype: string - name: audio dtype: audio: sampling_rate: 22050 - name: sentence_id dtype: string - name: sentence dtype: string - name: sentence_domain dtype: string - name: up_votes dtype: int64 - name: down_votes dtype: int64 - name: age dtype: string - name: gender dtype: string - name: accents dtype: string - name: variant dtype: string - name: locale dtype: string - name: segment dtype: string - name: duration_ms dtype: int64 splits: - name: train num_bytes: 85874956.53 num_examples: 2190 - name: dev num_bytes: 81750257.488 num_examples: 1896 - name: test num_bytes: 85444729.842 num_examples: 1934 download_size: 241137848 dataset_size: 253069943.86 configs: - config_name: default data_files: - split: train path: data/train-* - split: dev path: data/dev-* - split: test path: data/test-* ---
alucchi/Qwen3-4B_n1000_e20_oadam0.0001_b20_1_a0
alucchi
2025-06-07T15:18:35Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T15:18:23Z
null
--- dataset_info: - config_name: default features: - name: prompt dtype: string - name: generated_text dtype: string - name: generated_grid_rect sequence: sequence: int64 - name: task_solution sequence: sequence: sequence: int64 - name: match dtype: int64 splits: - name: train num_bytes: 56066 num_examples: 10 download_size: 14884 dataset_size: 56066 - config_name: main features: - name: prompt dtype: string - name: generated_text dtype: string - name: generated_grid_rect sequence: sequence: int64 - name: task_solution sequence: sequence: sequence: int64 - name: match dtype: int64 splits: - name: train num_bytes: 56066 num_examples: 10 download_size: 14884 dataset_size: 56066 configs: - config_name: default data_files: - split: train path: data/train-* - config_name: main data_files: - split: train path: main/train-* ---
lstepanik/aidev_dapr
lstepanik
2025-06-07T15:06:24Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T15:06:15Z
null
--- dataset_info: features: - name: text list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 200499 num_examples: 300 download_size: 6565 dataset_size: 200499 configs: - config_name: default data_files: - split: train path: data/train-* ---
gxy1111/so100_pen3
gxy1111
2025-06-07T15:03:00Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-06-07T15:02:32Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 30, "total_frames": 5208, "total_tasks": 1, "total_videos": 60, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:30" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.eye": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
OmarIDK/merged_dataset_final
OmarIDK
2025-06-07T14:16:18Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T14:16:12Z
null
--- dataset_info: features: - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 160480105 num_examples: 105329 download_size: 72634339 dataset_size: 160480105 configs: - config_name: default data_files: - split: train path: data/train-* ---
c0ntrolZ/eval-gpqa
c0ntrolZ
2025-06-07T11:17:16Z
82
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-04T12:08:42Z
null
--- dataset_info: features: - name: source dtype: string - name: question dtype: string - name: choices sequence: string - name: answer dtype: string splits: - name: test num_bytes: 388028.4032258064 num_examples: 546 download_size: 212576 dataset_size: 388028.4032258064 configs: - config_name: default data_files: - split: test path: data/test-* ---
kp7742/YALM-pretrain4-128M
kp7742
2025-06-07T11:10:39Z
0
0
[ "task_categories:text-generation", "language:en", "language:hi", "size_categories:100M<n<1B", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "english", "hindi", "math", "python", "code" ]
[ "text-generation" ]
2025-06-06T23:47:37Z
null
--- dataset_info: features: - name: text dtype: string splits: - name: train num_bytes: 538335064114 num_examples: 128000000 - name: test num_bytes: 7836804 num_examples: 2000 download_size: 301873958430 dataset_size: 538342900918 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* task_categories: - text-generation language: - en - hi tags: - english - hindi - math - python - code pretty_name: YALM Pretraining Mix - 4 size_categories: - 100M<n<1B --- # YALM Pretraining Data - 4 The _YALM Pretraining Data - 4_ is a mix of English, Hindi, Math and Python Code taken from various sources for the Language modeling task and development of YALM(Yet Another Language Model). Total Samples: 128M (~256B tokens at 2048 Context) Test Split: 2k Samples Shuffle Seed: 101 Datasets: - English(70% - 89.60M): - [EleutherAI/SmolLM2-135M-100B](https://huggingface.co/datasets/EleutherAI/SmolLM2-135M-100B) - Language: English - Sources: fineweb_edu, dclm_edu, cosmopedia_v2, etc.. - Hindi(20% - 25.60M): - [zicsx/mC4-Hindi-Cleaned](https://huggingface.co/datasets/zicsx/mC4-Hindi-Cleaned) - Language: Hindi - [anirudhlakhotia/baarat-batched-hindi-pre-training](https://huggingface.co/datasets/anirudhlakhotia/baarat-batched-hindi-pre-training) - Language: Hindi - [HuggingFaceFW/fineweb-2](https://huggingface.co/datasets/HuggingFaceFW/fineweb-2) - Language: Hindi - Subset: hin_Deva - Math(5% - 6.40M): - [HuggingFaceTB/finemath](https://huggingface.co/datasets/HuggingFaceTB/finemath) - Language: English - Subset: finemath-4plus - Code(5% - 6.40M): - [Avelina/python-edu-cleaned](https://huggingface.co/datasets/Avelina/python-edu-cleaned) - Language: Python
villacu/cammt
villacu
2025-06-07T10:26:57Z
199
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.24456", "region:us" ]
[]
2025-05-28T13:15:36Z
null
--- dataset_info: features: - name: ID dtype: string - name: regional dtype: string - name: English dtype: string - name: Conserved_translation dtype: string - name: Substituted_translation dtype: string - name: Category dtype: string - name: Preferred_translation dtype: string - name: image dtype: image splits: - name: es_mex num_bytes: 158368543.0 num_examples: 323 - name: bn_india num_bytes: 94017886.0 num_examples: 286 - name: om_eth num_bytes: 28490930.0 num_examples: 214 - name: ur_india num_bytes: 102386298.0 num_examples: 220 - name: ig_nga num_bytes: 14372042.0 num_examples: 200 - name: ur_pak num_bytes: 147129846.0 num_examples: 216 - name: zh_ch num_bytes: 91877910.0 num_examples: 308 - name: es_ecu num_bytes: 141969979.0 num_examples: 362 - name: sw_ken num_bytes: 31567516.0 num_examples: 271 - name: kor_sk num_bytes: 143897056.0 num_examples: 290 - name: ru_rus num_bytes: 56598710.0 num_examples: 200 - name: ta_india num_bytes: 142254878.0 num_examples: 213 - name: amh_eth num_bytes: 122937506.0 num_examples: 234 - name: jp_jap num_bytes: 63884062.0 num_examples: 203 - name: fil_phl num_bytes: 42171387.0 num_examples: 203 - name: ms_mys num_bytes: 84408174.0 num_examples: 315 - name: bg_bg num_bytes: 179103702.0 num_examples: 369 - name: es_chl num_bytes: 98202963.0 num_examples: 234 - name: pt_brz num_bytes: 214095076.0 num_examples: 284 - name: ar_egy num_bytes: 106134417.0 num_examples: 203 - name: ind_ind num_bytes: 116476184.0 num_examples: 202 - name: mr_india num_bytes: 145040535.0 num_examples: 202 - name: es_arg num_bytes: 142144959.0 num_examples: 265 download_size: 1952703427 dataset_size: 2467530559.0 configs: - config_name: default data_files: - split: es_mex path: data/es_mex-* - split: bn_india path: data/bn_india-* - split: om_eth path: data/om_eth-* - split: ur_india path: data/ur_india-* - split: ig_nga path: data/ig_nga-* - split: ur_pak path: data/ur_pak-* - split: zh_ch path: data/zh_ch-* - split: es_ecu path: data/es_ecu-* - split: sw_ken path: data/sw_ken-* - split: kor_sk path: data/kor_sk-* - split: ru_rus path: data/ru_rus-* - split: ta_india path: data/ta_india-* - split: amh_eth path: data/amh_eth-* - split: jp_jap path: data/jp_jap-* - split: fil_phl path: data/fil_phl-* - split: ms_mys path: data/ms_mys-* - split: bg_bg path: data/bg_bg-* - split: es_chl path: data/es_chl-* - split: pt_brz path: data/pt_brz-* - split: ar_egy path: data/ar_egy-* - split: ind_ind path: data/ind_ind-* - split: mr_india path: data/mr_india-* - split: es_arg path: data/es_arg-* --- # CaMMT Dataset Card <!-- Provide a quick summary of the dataset. --> CaMMT is a human-curated benchmark dataset for evaluating multimodal machine translation systems on culturally-relevant content. The dataset contains over 5,800 image-caption triples across 19 languages and 23 regions, with parallel captions in English and regional languages, specifically designed to assess how visual context impacts translation of culturally-specific items. ```python from datasets import load_dataset # Load the full dataset dataset = load_dataset("villacu/cammt") # Load a specific split if available dataset = load_dataset("villacu/cammt", split="ar_egy") ``` ## Dataset Details ### Dataset Description CAMMT addresses the challenge of translating cultural content by investigating whether images can serve as cultural context in multimodal translation. The dataset is built upon the CVQA (Culturally-diverse multilingual Visual Question Answering) dataset, transforming question-answer pairs into declarative caption statements. Each entry includes parallel captions in English and regional languages, with special attention to Culturally-Specific Items (CSIs) and their translation strategies. The dataset includes both conserved translations (preserving original cultural terms) and substituted translations (using familiar equivalents) for items containing CSIs, along with native speaker preferences for translation strategies. - **Curated by:** MBZUAI and collaborating institutions across the globe. - **Language(s) (NLP):** 19 languages across 23 regions (Amharic, Arabic, Bengali, Bulgarian, Chinese, Filipino, Igbo, Indonesian, Japanese, Korean, Malay, Marathi, Oromo, Portuguese, Russian, Spanish (4 regional variants), Swahili, Tamil, Urdu (2 regional variants)) - **License:** Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) ### Dataset Sources <!-- Provide the basic links for the dataset. --> - **Paper:** [CAMMT: Benchmarking Culturally Aware Multimodal Machine Translation](https://arxiv.org/abs/2505.24456) ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> The dataset contains 5,817 main entries plus an additional 1,550 entries with conserved and substituted CSI translations. Each entry includes: - **ID**: Unique identifier from the original CVQA dataset - **regional**: Caption in the regional language - **English**: Parallel caption in English - **Conserved_translation**: English translation preserving the original CSI (if applicable) - **Substituted_translation**: English translation using a familiar equivalent for the CSI (if applicable) - **Category**: Classification of cultural relevance: - `"not culturally-relevant sentence"` - `"non-CSI"` (culturally relevant but no specific CSI) - `"CSI- has possible translation"` (CSI with cultural equivalent) - `"CSI-forced translation"` (CSI without direct equivalent) - **Preferred_translation**: Native speaker preference between conserved or substituted translation (if applicable) The dataset spans 23 regions with varying numbers of samples per region (ranging from 200 to 369 samples). ## Citation <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** ```bibtex @misc{villacueva2025cammtbenchmarkingculturallyaware, title={CaMMT: Benchmarking Culturally Aware Multimodal Machine Translation}, author={Emilio Villa-Cueva and Sholpan Bolatzhanova and Diana Turmakhan and Kareem Elzeky and Henok Biadglign Ademtew and Alham Fikri Aji and Israel Abebe Azime and Jinheon Baek and Frederico Belcavello and Fermin Cristobal and Jan Christian Blaise Cruz and Mary Dabre and Raj Dabre and Toqeer Ehsan and Naome A Etori and Fauzan Farooqui and Jiahui Geng and Guido Ivetta and Thanmay Jayakumar and Soyeong Jeong and Zheng Wei Lim and Aishik Mandal and Sofia Martinelli and Mihail Minkov Mihaylov and Daniil Orel and Aniket Pramanick and Sukannya Purkayastha and Israfel Salazar and Haiyue Song and Tiago Timponi Torrent and Debela Desalegn Yadeta and Injy Hamed and Atnafu Lambebo Tonja and Thamar Solorio}, year={2025}, eprint={2505.24456}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.24456}, }
chengzu/topviewrs
chengzu
2025-06-07T09:32:51Z
52
3
[ "task_categories:visual-question-answering", "language:en", "license:mit", "size_categories:1K<n<10K", "arxiv:2406.02537", "region:us", "spatial", "multimodal" ]
[ "visual-question-answering" ]
2024-09-10T06:15:59Z
null
--- license: mit task_categories: - visual-question-answering language: - en tags: - spatial - multimodal size_categories: - 1K<n<10K --- # Dataset Card for TOPVIEWRS <!-- Provide a quick summary of the dataset. --> The TOPVIEWRS (Top-View Reasoning in Space) benchmark is a multimodal benchmark intended to evaluate the spatial reasoning ability of current Vision-Language Models. It consists of 11,384 multiple-choice questions with either realistic or semantic top-view map as visual input, across 4 perception and reasoning tasks with different levels of complexity. For details, please refer to the [project page](https://topviewrs.github.io/) and the [paper](https://arxiv.org/pdf/2406.02537). ## Dataset Description - **Homepage/Repository:** [https://topviewrs.github.io/](https://topviewrs.github.io/) - **Paper:** [TOPVIEWRS: Vision-Language Models as Top-View Spatial Reasoners](https://arxiv.org/pdf/2406.02537) - **Point of Contact:** [[email protected]](mailto:[email protected]) ## Dataset Details ### Dataset Features <!-- Provide a longer summary of what this dataset is. --> - **Multi-Scale Top-View Maps**: Multi-scale top-view maps of single rooms and full houses add divergence in the granularity of the entities (objects or rooms) in spatial reasoning. - **Realistic Environmental Scenarios with Rich Object Sets**: Real-world environments from indoor scenes, with 80 objects per scene on average. - **Structured Question Framework**: Four tasks including 9 sub-tasks in total, allowing for a fine-grained evaluation and analysis of models’ capabilities from various perspectives and levels of granularity. ### Dataset Statistics The TOPVIEWRS evaluation dataset comprises a total of 11,384 multiple-choice questions after human verification, with 5,539 questions associated with realistic top-view maps, and 5,845 with semantic top-view maps. The choices are uniformly distributed over choices A(25.5%), B (24.6%), C (24.5%) and D (25.4%). The maps are collected from Matterport3D dataset, which includes 90 building-scale scenes with instance-level semantic and room-level region annotations in 3D meshes. We filter these to exclude multi-floor and low-quality scenes, selecting 7 scenes with an average of 80 objects and 12 rooms each. **Note**: *We only release part of the benchmark (2 different scenarios covering all the tasks of the benchmark) in this dataset card to avoid data contamination. For full access to the benchmark, please get in touch with [Chengzu Li](chengzu-li.github.io) via email: [[email protected]](mailto:[email protected])* ### Uses ``` data = load_datasets( "chengzu/topviewrs", trust_remote_code=True, map_type=MAP_TYPE, task_split=TASK_SPLIT, image_save_dir=IMAGE_SAVE_DIR ) ``` To use the dataset, you have to specify several arguments when calling `load_datasets`: - `map_type`: should be one of `['realistic', 'semantic']` - `task_split`: should be one of `['top_view_recognition', 'top_view_localization', 'static_spatial_reasoning', 'dynamic_spatial_reasoning']` - `image_save_dir`: specify the directory where you would like the images to be saved ### Data Instances For example an instance from the `top_view_recognition` task is: ``` { 'index': 0, 'scene_id': '17DRP5sb8fy', 'question': 'Which of the following objects are in the room?', 'choices': ['shelving', 'bed', 'toilet', 'seating'], 'labels': ['bed'], 'choice_type': '<OBJECT>', 'map_path': '<IMAGE_SAVE_DIR>/data/mp3d/17DRP5sb8fy/semantic/17DRP5sb8fy_0_0.png', 'question_ability': 'object_recognition' } ``` ### Data Fields Every example has the following fields - `idx`: an `int` feature - `scene_id`: a `string` feature, unique id for the scene from Matterport3D - `question`: a `string` feature - `choices`: a sequence of `string` feature, choices for multiple-choice question - `labels`: a sequence of `string` feature, answer for multiple-choice question. The label's position in the `choices` can be used to determine whether it is A, B, C, or D. - `choice_type`: a `string` feature - `map_path`: a `string` feature, the path of the input image - `question_ability`: a `string` feature, sub-tasks for fine-grained evaluation and analysis For `dynamic_spatial_reasoning` task, there would be one more data field: - `reference_path`: a sequence of `list[int]` feature, the coordinate sequence of the navigation path on the top-view map. ## Citation ``` @misc{li2024topviewrs, title={TopViewRS: Vision-Language Models as Top-View Spatial Reasoners}, author={Chengzu Li and Caiqi Zhang and Han Zhou and Nigel Collier and Anna Korhonen and Ivan VuliΔ‡}, year={2024}, eprint={2406.02537}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->
daniel-dona/sparql-dataset-era-cq-2
daniel-dona
2025-06-07T09:29:36Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T00:38:15Z
null
--- dataset_info: features: - name: qid dtype: string - name: nlq dtype: string - name: sparql dtype: string - name: cot dtype: string splits: - name: train num_bytes: 7509452 num_examples: 1476 download_size: 2563503 dataset_size: 7509452 configs: - config_name: default data_files: - split: train path: data/train-* ---
LPX55/dataset-viber-chat-generation-preference-inference-endpoints-battle
LPX55
2025-06-07T09:06:51Z
0
0
[ "region:us" ]
[]
2025-06-07T09:06:50Z
null
--- configs: - config_name: default data_files: - split: train path: '**/*.jsonl' --- # Dataset Card for Dataset Name <!-- Provide a quick summary of the dataset. --> ## Dataset Details ### Dataset Description <!-- Provide a longer summary of what this dataset is. --> - **Curated by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] ### Dataset Sources [optional] <!-- Provide the basic links for the dataset. --> - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses <!-- Address questions around how the dataset is intended to be used. --> ### Direct Use <!-- This section describes suitable use cases for the dataset. --> [More Information Needed] ### Out-of-Scope Use <!-- This section addresses misuse, malicious use, and uses that the dataset will not work well for. --> [More Information Needed] ## Dataset Structure <!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> [More Information Needed] ## Dataset Creation ### Curation Rationale <!-- Motivation for the creation of this dataset. --> [More Information Needed] ### Source Data <!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). --> #### Data Collection and Processing <!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. --> [More Information Needed] #### Who are the source data producers? <!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. --> [More Information Needed] ### Annotations [optional] <!-- If the dataset contains annotations which are not part of the initial data collection, use this section to describe them. --> #### Annotation process <!-- This section describes the annotation process such as annotation tools used in the process, the amount of data annotated, annotation guidelines provided to the annotators, interannotator statistics, annotation validation, etc. --> [More Information Needed] #### Who are the annotators? <!-- This section describes the people or systems who created the annotations. --> [More Information Needed] #### Personal and Sensitive Information <!-- State whether the dataset contains data that might be considered personal, sensitive, or private (e.g., data that reveals addresses, uniquely identifiable names or aliases, racial or ethnic origins, sexual orientations, religious beliefs, political opinions, financial or health data, etc.). If efforts were made to anonymize the data, describe the anonymization process. --> [More Information Needed] ## Bias, Risks, and Limitations <!-- This section is meant to convey both technical and sociotechnical limitations. --> [More Information Needed] ### Recommendations <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. --> Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. ## Citation [optional] <!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] <!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. --> [More Information Needed] ## More Information [optional] [More Information Needed] ## Dataset Card Authors [optional] [More Information Needed] ## Dataset Card Contact [More Information Needed]
igorcouto/whisper-pt-telephony
igorcouto
2025-06-07T05:29:04Z
0
0
[ "region:us" ]
[]
2025-06-06T23:40:23Z
null
--- dataset_info: features: - name: audio_path dtype: audio: sampling_rate: 16000 - name: text dtype: string splits: - name: train num_bytes: 203420364967.52 num_examples: 1101032 - name: validation num_bytes: 6434577169.94 num_examples: 63054 download_size: 192438788841 dataset_size: 209854942137.46 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
infinite-dataset-hub/GamblingPatternsADHD
infinite-dataset-hub
2025-06-07T03:00:17Z
0
0
[ "license:mit", "size_categories:n<1K", "format:csv", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "infinite-dataset-hub", "synthetic" ]
[]
2025-06-07T03:00:10Z
null
--- license: mit tags: - infinite-dataset-hub - synthetic --- # GamblingPatternsADHD tags: predictive, gambling behavior, ADHD diagnosis _Note: This is an AI-generated dataset so its content may be inaccurate or false_ **Dataset Description:** The 'GamblingPatternsADHD' dataset aims to analyze the success rates of phone and online gambling interventions for individuals diagnosed with ADHD. It includes behavioral and psychological metrics, self-reported data, and treatment outcomes to aid predictive models that can forecast the efficacy of such interventions. **CSV Content Preview:** ``` participant_id,age,gender,diagnosis_confirmed,intervention_type,pre_intervention_gambling_frequency,post_intervention_gambling_frequency,treatment_success_label 001,35,Male,Yes,Phone Support,Daily,Monthly,Success 002,29,Female,Yes,Online Cognitive-Behavioral Therapy,Weekly,Rarely,Failure 003,42,Male,Yes,Self-help Resources,Weekly,Weekly,Success 004,27,Female,Yes,No Intervention,Daily,Daily,Failure 005,38,Male,Yes,Combination of Interventions,Daily,Never,Success ``` **Source of the data:** The dataset was generated using the [Infinite Dataset Hub](https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub) and microsoft/Phi-3-mini-4k-instruct using the query 'phone and online gambling addiction success ADHD': - **Dataset Generation Page**: https://huggingface.co/spaces/infinite-dataset-hub/infinite-dataset-hub?q=phone+and+online+gambling+addiction+success+ADHD&dataset=GamblingPatternsADHD&tags=predictive,+gambling+behavior,+ADHD+diagnosis - **Model**: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct - **More Datasets**: https://huggingface.co/datasets?other=infinite-dataset-hub
fh1628/mixed_dataset_75_25
fh1628
2025-06-07T01:39:23Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-07T01:39:14Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: source dtype: string splits: - name: train num_bytes: 80167256.11511087 num_examples: 21839 download_size: 39642659 dataset_size: 80167256.11511087 configs: - config_name: default data_files: - split: train path: data/train-* ---
extralit-dev/test_import_dataset_from_hub_using_wrong_settings_with_records_False
extralit-dev
2025-06-06T23:43:43Z
0
0
[ "size_categories:n<1K", "library:argilla", "region:us", "rlfh", "argilla", "human-feedback" ]
[]
2025-06-06T20:18:18Z
null
--- size_categories: n<1K tags: - rlfh - argilla - human-feedback --- # Dataset Card for test_import_dataset_from_hub_using_wrong_settings_with_records_False This dataset has been created with [Argilla](https://github.com/argilla-io/argilla). As shown in the sections below, this dataset can be loaded into your Argilla server as explained in [Load with Argilla](#load-with-argilla), or used directly with the `datasets` library in [Load with `datasets`](#load-with-datasets). ## Using this dataset with Argilla To load with Argilla, you'll just need to install Argilla as `pip install argilla --upgrade` and then use the following code: ```python import argilla as rg ds = rg.Dataset.from_hub("extralit-dev/test_import_dataset_from_hub_using_wrong_settings_with_records_False", settings="auto") ``` This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation. ## Using this dataset with `datasets` To load the records of this dataset with `datasets`, you'll just need to install `datasets` as `pip install datasets --upgrade` and then use the following code: ```python from datasets import load_dataset ds = load_dataset("extralit-dev/test_import_dataset_from_hub_using_wrong_settings_with_records_False") ``` This will only load the records of the dataset, but not the Argilla settings. ## Dataset Structure This dataset repo contains: * Dataset records in a format compatible with HuggingFace `datasets`. These records will be loaded automatically when using `rg.Dataset.from_hub` and can be loaded independently using the `datasets` library via `load_dataset`. * The [annotation guidelines](#annotation-guidelines) that have been used for building and curating the dataset, if they've been defined in Argilla. * A dataset configuration folder conforming to the Argilla dataset format in `.argilla`. The dataset is created in Argilla with: **fields**, **questions**, **suggestions**, **metadata**, **vectors**, and **guidelines**. ### Fields The **fields** are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset. | Field Name | Title | Type | Required | Markdown | | ---------- | ----- | ---- | -------- | -------- | | text | text | text | True | False | | image | image | image | True | | | chat | chat | chat | True | True | ### Questions The **questions** are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking. | Question Name | Title | Type | Required | Description | Values/Labels | | ------------- | ----- | ---- | -------- | ----------- | ------------- | | label | label | label_selection | True | N/A | ['positive', 'negative'] | <!-- check length of metadata properties --> ### Data Instances An example of a dataset instance in Argilla looks as follows: ```json { "_server_id": "b25841d8-09a2-4976-a076-c26d83556bdb", "fields": { "chat": [ { "content": "Hello World, how are you?", "role": "user" } ], "image": "http://mock.url/image", "text": "Hello World, how are you?" }, "id": "60cd7a60-960a-4640-ab21-c9debd0cdd6a", "metadata": {}, "responses": {}, "status": "pending", "suggestions": { "label": { "agent": null, "score": null, "value": "positive" } }, "vectors": {} } ``` While the same record in HuggingFace `datasets` looks as follows: ```json null ``` ### Data Splits The dataset contains a single split, which is `train`. ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation guidelines [More Information Needed] #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators [More Information Needed] ### Licensing Information [More Information Needed] ### Citation Information [More Information Needed] ### Contributions [More Information Needed]
extralit-dev/test_import_dataset_from_hub_with_classlabel_ed13bc0c-ba47-4f38-a493-d93205781622
extralit-dev
2025-06-06T23:11:47Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T23:11:46Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1264 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
eliasfiz/numbers-leo-clips
eliasfiz
2025-06-06T22:44:08Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T22:08:26Z
null
--- dataset_info: features: - name: text dtype: string - name: clipped_audio dtype: audio - name: source dtype: string splits: - name: train num_bytes: 104720049.0 num_examples: 40 download_size: 79611442 dataset_size: 104720049.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
ai2-adapt-dev/toolu-synthetic-S2
ai2-adapt-dev
2025-06-06T22:42:57Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T22:42:28Z
null
--- dataset_info: features: - name: id dtype: string - name: source dtype: string - name: messages list: - name: content dtype: string - name: function_calls dtype: string - name: functions dtype: string - name: role dtype: string - name: n_step dtype: string - name: n_turn dtype: string - name: exec_type dtype: string - name: is_refusal dtype: bool splits: - name: train num_bytes: 794056764 num_examples: 265934 download_size: 184983734 dataset_size: 794056764 configs: - config_name: default data_files: - split: train path: data/train-* ---
eliasfiz/numbers-amu-clips
eliasfiz
2025-06-06T21:58:42Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T21:57:38Z
null
--- dataset_info: features: - name: text dtype: string - name: clipped_audio dtype: audio - name: source dtype: string splits: - name: train num_bytes: 48995527.0 num_examples: 37 download_size: 47663997 dataset_size: 48995527.0 configs: - config_name: default data_files: - split: train path: data/train-* ---
extralit-dev/test_import_dataset_from_hub_with_classlabel_402ac12a-014c-4385-addd-080dd0f74bbc
extralit-dev
2025-06-06T21:29:57Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T21:29:55Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1264 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
mixed-modality-search/MixBench25
mixed-modality-search
2025-06-06T21:07:31Z
37
0
[ "task_categories:text-ranking", "task_ids:document-retrieval", "annotations_creators:machine-generated", "multilinguality:monolingual", "language:en", "license:mit", "modality:image", "modality:text", "region:us", "retrieval", "image", "text", "multimodal", "benchmark" ]
[ "text-ranking" ]
2025-05-24T04:53:15Z
null
--- license: mit pretty_name: MixBench task_categories: - text-ranking task_ids: - document-retrieval language: - en multilinguality: monolingual annotations_creators: - machine-generated dataset_creator: Binxu Li et al. dataset_info: features: - name: query_id dtype: string - name: query_text dtype: string - name: query_image dtype: string - name: corpus_id dtype: string - name: corpus_text dtype: string - name: corpus_image dtype: string - name: score dtype: int32 configs: - config_name: MSCOCO data_files: - MSCOCO/* - config_name: Google_WIT data_files: - Google_WIT/* - config_name: VisualNews data_files: - VisualNews/* - config_name: OVEN data_files: - OVEN/* tags: - retrieval - image - text - multimodal - benchmark --- # MixBench: A Benchmark for Mixed Modality Retrieval **MixBench** is a benchmark for evaluating retrieval across text, images, and multimodal documents. It is designed to test how well retrieval models handle queries and documents that span different modalities, such as pure text, pure images, and combined image+text inputs. MixBench includes **four subsets**, each curated from a different data source: - **MSCOCO** - **Google_WIT** - **VisualNews** - **OVEN** Each subset contains: - `queries.jsonl`: each entry contains a `query_id`, `text`, and/or `image` - `mixed_corpus.jsonl`: each entry contains a `corpus_id`, a `text` or an `image` or a multimodal document (`text` and `image`) - `qrels.tsv`: a tab-separated list of relevant query-document pairs (`query_id`, `corpus_id`, `score=1`) - `corpus.jsonl`: the original corpus This benchmark supports diverse retrieval settings including unimodal-to-multimodal and cross-modal search. --- ## πŸ”„ Load Example You can load a specific subset of MixBench using the `name` argument: ```python from datasets import load_dataset # Load the MSCOCO subset ds_query = load_dataset("mixed-modality-search/MixBench25", name="MSCOCO", split='query') ds_corpus = load_dataset("mixed-modality-search/MixBench25", name="MSCOCO", split='mixed_corpus') ds_query = load_dataset("mixed-modality-search/MixBench25", name="MSCOCO", split='qrel') # Load other subsets (corpus) ds_gwit = load_dataset("mixed-modality-search/MixBench25", name="Google_WIT", split='mixed_corpus') ds_news = load_dataset("mixed-modality-search/MixBench25", name="VisualNews",split='mixed_corpus') ds_oven = load_dataset("mixed-modality-search/MixBench25", name="OVEN", split='mixed_corpus')
extralit-dev/test_import_dataset_from_hub_with_classlabel_e029d080-66cf-45cb-898c-aba116774937
extralit-dev
2025-06-06T20:57:28Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T20:57:27Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': positive '1': negative splits: - name: train num_bytes: 111 num_examples: 3 download_size: 1264 dataset_size: 111 configs: - config_name: default data_files: - split: train path: data/train-* ---
NewstaR/CoTton-R10528-Math
NewstaR
2025-06-06T20:44:01Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T20:43:58Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string splits: - name: train num_bytes: 34461540 num_examples: 2000 download_size: 15705275 dataset_size: 34461540 configs: - config_name: default data_files: - split: train path: data/train-* ---
OwensLab/CommunityForensics-Small
OwensLab
2025-06-06T20:40:52Z
0
0
[ "task_categories:image-classification", "language:en", "license:cc-by-nc-sa-4.0", "size_categories:100K<n<1M", "modality:image", "arxiv:2411.04125", "region:us", "image" ]
[ "image-classification" ]
2025-05-22T15:56:49Z
null
--- license: cc-by-nc-sa-4.0 task_categories: - image-classification pretty_name: Community Forensics (small) configs: - config_name: default data_files: - split: train path: - data/*.parquet tags: - image size_categories: - 100K<n<1M language: - en --- # *Community Forensics: Using Thousands of Generators to Train Fake Image Detectors (CVPR 2025)* [Paper](https://arxiv.org/abs/2411.04125)/[Project Page](https://jespark.net/projects/2024/community_forensics/) This is a small version of the [Community Forensics dataset](https://huggingface.co/datasets/OwensLab/CommunityForensics). It contains roughly 11% of the generated images of the base dataset and is paired with real data with redistributable license. This dataset is intended for easier prototyping as you do not have to download the corresponding real datasets separately. We distribute this dataset with a `cc-nc-by-sa-4.0` license for non-commercial research purposes only. The following table shows the performance (AP) difference between the classifier trained on the base dataset and this version of the dataset: | Version | GAN | Lat. Diff. | Pix. Diff. | Commercial | Other | Mean | | :------ | :---: | :--------: | :--------: | :--------: | :----: | :---: | | Base | 0.995 | 0.996 | 0.947 | 0.985 | 0.998 | 0.984 | | Small | 0.986 | 0.995 | 0.888 | 0.852 | 0.993 | 0.943 | ## Dataset Summary - The Community Forensics (small) dataset is intended for developing and benchmarking forensics methods that detect or analyze AI-generated images. It contains 278K generated images collected from 4803 generator models, and paired with 278K "real" images, sourced from [FFHQ](https://github.com/NVlabs/ffhq-dataset), [VISION](https://lesc.dinfo.unifi.it/VISION/), [COCO](https://cocodataset.org/), and [Landscapes HQ](https://github.com/universome/alis) datasets. ## Supported Tasks - Image Classification: identify whether the given image is AI-generated. We mainly study this task in our paper, but other tasks may be possible with our dataset. # Dataset Structure ## Data Instances Our dataset is formatted in a Parquet data frame of the following structure: ``` { "image_name": "00000162.png", "format": "PNG", "resolution": "[512, 512]", "mode": "RGB", "image_data": "b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\..." "model_name": "stabilityai/stable-diffusion-2", "nsfw_flag": False, "prompt": "montreal grand prix 2018 von icrdesigns", "real_source": "LAION", "subset": "Systematic", "split": "train", "label": "1", "architecture": "LatDiff" } ``` ## Data Fields `image_name`: Filename of an image. \ `format`: PIL image format. \ `resolution`: Image resolution. \ `mode`: PIL image mode (e.g., RGB) \ `image_data`: Image data in byte format. Can be read using Python's BytesIO. \ `model_name`: Name of the model used to sample this image. Has format {author_name}/{model_name} for `Systematic` subset, and {model_name} for other subsets. \ `nsfw_flag`: NSFW flag determined using [Stable Diffusion Safety Checker](https://huggingface.co/CompVis/stable-diffusion-safety-checker). \ `prompt`: Input prompt (if exists). \ `real_source`: Paired real dataset(s) that was used to source the prompts or to train the generators. \ `subset`: Denotes which subset the image belongs to (Systematic: Hugging Face models, Manual: manually downloaded models, Commercial: commercial models). \ `split`: Train/test split. \ `label`: Fake/Real label. (1: Fake, 0: Real) \ `architecture`: Architecture of the generative model that is used to generate this image. (Categories: `LatDiff`, `PixDiff`, `GAN`, `other`, `real`) ## Data splits `train`: Default split containing the paired dataset (278K real and 278K generated images). ## Usage examples Default train/eval settings: ```python import datasets as ds import PIL.Image as Image import io # default training set commfor_small_train = ds.load_dataset("OwensLab/CommunityForensics-Small", split="train", cache_dir="~/.cache/huggingface/datasets") # optionally shuffle the dataset commfor_small_train = commfor_small_train.shuffle(seed=123, writer_batch_size=3000) for i, data in enumerate(commfor_small_train): img, label = Image.open(io.BytesIO(data['image_data'])), data['label'] ## Your operations here ## # e.g., img_torch = torchvision.transforms.functional.pil_to_tensor(img) ``` *Note:* - Downloading and indexing the data can take some time, but only for the first time. **Downloading may use up to ~600GB** (278GB data + 278GB re-indexed `arrow` files) - It is possible to randomly access data by passing an index (e.g., `commfor_small_train[10]`, `commfor_small_train[247]`). - You can set `cache_dir` to some other directory if your home directory is limited. By default, it will download data to `~/.cache/huggingface/datasets`. It is also possible to use streaming for some use cases (e.g., downloading only a certain subset or a small portion of data). ```python import datasets as ds import PIL.Image as Image import io # steaming only the systematic set. Note that when streaming, you can only load specific splits commfor_train_stream = ds.load_dataset("OwensLab/CommunityForensics-Small", split='train', streaming=True) # optionally shuffle the streaming dataset commfor_train_stream = commfor_train_stream.shuffle(seed=123, buffer_size=3000) # usage example for i, data in enumerate(commfor_train_stream): if i>=10000: # use only first 10000 samples break img, label = Image.open(io.BytesIO(data['image_data'])), data['label'] ## Your operations here ## # e.g., img_torch = torchvision.transforms.functional.pil_to_tensor(img) ``` Please check [Hugging Face documentation](https://huggingface.co/docs/datasets/v3.5.0/loading#slice-splits) for more usage examples. # Below is the dataset card of the base dataset with minor modifications. # Dataset Creation ## Curation Rationale This dataset is created to address the limited model diversity of the existing datasets for generated image detection. While some existing datasets contain millions of images, they are typically sampled from handful of generator models. We instead sample 2.7M images from 4803 generator models, approximately 34 times more generators than the most extensive previous dataset that we are aware of. This is the "small" version of the dataset which contains approximately 11% of the base dataset (278K generated images) which are then paired with 278K "real" images for easier prototyping. ## Collection Methodology We collect generators in three different subgroups. (1) We systematically download and sample open source latent diffusion models from Hugging Face. (2) We manually sample open source generators with various architectures and training procedures. (3) We sample from both open and closed commercially available generators. ## Personal and Sensitive Information The dataset does not contain any sensitive identifying information (i.e., does not contain data that reveals information such as racial or ethnic origin, sexual orientation, religious or political beliefs). # Considerations of Using the Data ## Social Impact of Dataset This dataset may be useful for researchers in developing and benchmarking forensics methods. Such methods may aid users in better understanding the given image. However, we believe the classifiers, at least the ones that we have trained or benchmarked, still show far too high error rates to be used directly in the wild, and can lead to unwanted consequences (e.g., falsely accusing an author of creating fake images or allowing generated content to be certified as real). ## Discussion of Biases The dataset has been primarily sampled from LAION captions. This may introduce biases that could be present in web-scale data (e.g., favoring human photos instead of other categories of photos). In addition, a vast majority of the generators we collect are derivatives of Stable Diffusion, which may introduce bias towards detecting certain types of generators. ## Other Known Limitations The generative models are sourced from the community and may contain inappropriate content. While in many contexts it is important to detect such images, these generated images may require further scrutiny before being used in other downstream applications. # Additional Information ## Acknowledgement We thank the creators of the many open source models that we used to collect the Community Forensics dataset. We thank Chenhao Zheng, Cameron Johnson, Matthias Kirchner, Daniel Geng, Ziyang Chen, Ayush Shrivastava, Yiming Dou, Chao Feng, Xuanchen Lu, Zihao Wei, Zixuan Pan, Inbum Park, Rohit Banerjee, and Ang Cao for the valuable discussions and feedback. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001120C0123. ## Licensing Information We release the dataset with a `cc-by-nc-sa-4.0` license for research purposes only. In addition, we note that each image in this dataset has been generated by the models with their respective licenses. We therefore provide metadata of all models present in our dataset with their license information. A vast majority of the generators use the [CreativeML OpenRAIL-M license](https://github.com/CompVis/stable-diffusion/blob/main/LICENSE). Please refer to the [metadata](https://huggingface.co/datasets/OwensLab/CommunityForensics/tree/main/data/metadata) for detailed licensing information for your specific application. ## Citation Information ``` @InProceedings{Park_2025_CVPR, author = {Park, Jeongsoo and Owens, Andrew}, title = {Community Forensics: Using Thousands of Generators to Train Fake Image Detectors}, booktitle = {Proceedings of the Computer Vision and Pattern Recognition Conference (CVPR)}, month = {June}, year = {2025}, pages = {8245-8257} } ```
allday-technology/eval_place-rubik-cube-act-v0
allday-technology
2025-06-06T20:06:28Z
319
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-02T20:34:23Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "trossen_subversion": "v1.0", "robot_type": "trossen_ai_stationary", "total_episodes": 1, "total_frames": 551, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_joint_0", "left_joint_1", "left_joint_2", "left_joint_3", "left_joint_4", "left_joint_5", "left_joint_6", "right_joint_0", "right_joint_1", "right_joint_2", "right_joint_3", "right_joint_4", "right_joint_5", "right_joint_6" ] }, "observation.images.cam_high": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_low": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_left_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "observation.images.cam_right_wrist": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
dgambettaphd/D_llm2_run0_gen7_WXS_doc1000_synt64_lr1e-04_acm_FRESH
dgambettaphd
2025-06-06T19:50:11Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T19:50:01Z
null
--- dataset_info: features: - name: id_doc dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 13182280 num_examples: 23000 download_size: 7952515 dataset_size: 13182280 configs: - config_name: default data_files: - split: train path: data/train-* ---
sistemas-upta/fine-tuned-dataset
sistemas-upta
2025-06-06T19:37:47Z
13
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T16:16:03Z
null
--- dataset_info: features: - name: texto dtype: string - name: embedding sequence: float64 splits: - name: train num_bytes: 9267 num_examples: 3 download_size: 10093 dataset_size: 9267 configs: - config_name: default data_files: - split: train path: data/train-* ---
girardijp/test_summit
girardijp
2025-06-06T19:25:49Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "sam_bimanual", "tutorial" ]
[ "robotics" ]
2025-06-06T19:25:35Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - sam_bimanual - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "sam_bimanual", "total_episodes": 2, "total_frames": 1783, "total_tasks": 1, "total_videos": 8, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_pan", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_pan", "right_wrist_roll", "right_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 14 ], "names": [ "left_shoulder_pan", "left_shoulder_lift", "left_elbow_flex", "left_wrist_flex", "left_wrist_pan", "left_wrist_roll", "left_gripper", "right_shoulder_pan", "right_shoulder_lift", "right_elbow_flex", "right_wrist_flex", "right_wrist_pan", "right_wrist_roll", "right_gripper" ] }, "observation.images.top_camera": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.bottom_camera": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.left": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.right": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
mlfoundations-dev/evalset_569a
mlfoundations-dev
2025-06-06T19:04:13Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T19:04:11Z
null
--- dataset_info: features: - name: context list: - name: content dtype: string - name: role dtype: string - name: gen_kwargs struct: - name: do_sample dtype: bool - name: max_new_tokens dtype: int64 - name: seed dtype: int64 - name: temperature dtype: float64 - name: repeat_idx dtype: int64 - name: request_idx dtype: int64 - name: task_name dtype: string - name: metadata struct: - name: expected_answer dtype: string - name: problem_id dtype: string - name: reference_solution dtype: string splits: - name: train num_bytes: 1807933 num_examples: 1107 download_size: 324064 dataset_size: 1807933 configs: - config_name: default data_files: - split: train path: data/train-* ---
produc-xuan/so100_guess-who_24_new
produc-xuan
2025-06-06T17:41:37Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "guess-who" ]
[ "robotics" ]
2025-06-06T17:41:23Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - guess-who configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 24, "total_frames": 6468, "total_tasks": 1, "total_videos": 24, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:24" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.fps": 30.0, "video.height": 480, "video.width": 640, "video.channels": 3, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
JafarUruc/example_dataset
JafarUruc
2025-06-06T17:29:50Z
0
0
[ "task_categories:robotics", "region:us", "phosphobot", "so100", "phospho-dk" ]
[ "robotics" ]
2025-06-06T17:29:48Z
null
--- tags: - phosphobot - so100 - phospho-dk task_categories: - robotics --- # example_dataset **This dataset was generated using a [phospho starter pack](https://robots.phospho.ai).** This dataset contains a series of episodes recorded with a robot and multiple cameras. It can be directly used to train a policy using imitation learning. It's compatible with LeRobot and RLDS.
anfindsen/MNLP_M3_mcqa_dataset
anfindsen
2025-06-06T17:24:35Z
0
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T17:20:32Z
null
--- dataset_info: features: - name: question dtype: string - name: answer dtype: string - name: openr1_source dtype: string - name: id dtype: string - name: dataset dtype: string - name: choices sequence: string splits: - name: open_train num_bytes: 187369634.9300436 num_examples: 150183 - name: open_eval num_bytes: 20820095.934377175 num_examples: 16688 - name: train num_bytes: 126832615.02965151 num_examples: 85329 - name: test num_bytes: 14093999.176260775 num_examples: 9482 - name: m1_data_train num_bytes: 150184.3625498008 num_examples: 450 - name: m1_data_test num_bytes: 17020.894422310757 num_examples: 51 download_size: 309729440 dataset_size: 349283550.32730514 configs: - config_name: default data_files: - split: open_train path: data/open_train-* - split: open_eval path: data/open_eval-* - split: train path: data/train-* - split: test path: data/test-* - split: m1_data_train path: data/m1_data_train-* - split: m1_data_test path: data/m1_data_test-* ---
iggy12345/pair_english_spanish_ipa
iggy12345
2025-06-06T17:17:59Z
0
0
[ "size_categories:10M<n<100M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T16:49:46Z
null
--- dataset_info: features: - name: text dtype: string - name: language dtype: string - name: phonemes dtype: string splits: - name: train num_bytes: 102824379166 num_examples: 11873320 - name: val num_bytes: 50715094 num_examples: 5940 download_size: 56707922620 dataset_size: 102875094260 configs: - config_name: default data_files: - split: train path: data/train-* - split: val path: data/val-* ---
sucharush/rag_sft
sucharush
2025-06-06T16:58:10Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T16:58:05Z
null
--- dataset_info: features: - name: prompt dtype: string - name: response dtype: string splits: - name: train num_bytes: 71568124 num_examples: 58665 download_size: 36553632 dataset_size: 71568124 configs: - config_name: default data_files: - split: train path: data/train-* ---
Portgas37/MNLP_M3_rag_documents
Portgas37
2025-06-06T16:36:25Z
0
0
[ "size_categories:1M<n<10M", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T15:51:57Z
null
--- dataset_info: features: - name: title dtype: string - name: text dtype: string - name: source dtype: string splits: - name: train num_bytes: 609730925 num_examples: 1100300 download_size: 642255871 dataset_size: 609730925 ---
fkapsahili/EntRAG
fkapsahili
2025-06-06T16:33:18Z
0
1
[ "license:cc-by-4.0", "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T10:55:40Z
null
--- license: cc-by-4.0 configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: id dtype: string - name: domain dtype: string - name: question_type dtype: string - name: dynamism dtype: string - name: question dtype: string - name: reference_answer dtype: string - name: sources list: - name: filename dtype: string - name: id dtype: string - name: pages sequence: int64 splits: - name: train num_bytes: 35785 num_examples: 100 download_size: 21165 dataset_size: 35785 --- # EntRAG Benchmark: Question Answering Dataset ## Description EntRAG is a specialized benchmark dataset designed for evaluating Retrieval-Augmented Generation (RAG) systems in enterprise contexts. The dataset addresses the unique challenges of business environments where information comes from heterogeneous sources including structured databases, documents, and dynamic mock APIs. The dataset comprises 100 manually constructed question-answer pairs across six enterprise domains: Finance, Technical Documentation, Environment, Legal and Compliance, Human Resources, and Marketing and Sales. Questions are designed to evaluate both static document retrieval and dynamic API integration scenarios, reflecting realistic enterprise information needs. ## Dataset Structure ### Columns * `id`: Unique identifier for each question-answer pair * `domain`: The subject area or field of knowledge the question pertains to (e.g., "Technical Documentation", "Finance", "Healthcare") * `question_type`: The category of reasoning required (e.g., "comparison", "factual", "analytical", "procedural") * `dynamism`: Indicates whether the answer content changes over time ("static" for timeless information, "dynamic" for evolving content) * `question`: A natural language question that requires information retrieval and reasoning to answer accurately * `reference_answer`: The correct, comprehensive answer that serves as the ground truth for evaluation * `sources`: Array of source documents that contain the information needed to answer the question, including: * `id`: Unique identifier for the source * `filename`: Name of the source document or API endpoint * `pages`: Array of specific page numbers where relevant information is found (empty for API sources) ## Use Cases This dataset is particularly valuable for: * **RAG System Evaluation**: Testing RAG systems with realistic business scenarios and multi-source information integration * **Hybrid System Assessment**: Evaluating systems that combine document retrieval with API-based data access * **Domain-Specific Analysis**: Understanding RAG performance across different business domains * **Dynamic Information Handling**: Assessing systems that work with both static documents and real-time data sources ## Accessing the Dataset You can load this dataset via the Hugging Face Datasets library using the following Python code: ```python from datasets import load_dataset # Load the dataset dataset = load_dataset("fkapsahili/EntRAG") # Access the data for example in dataset['train']: print(f"Domain: {example['domain']}") print(f"Question Type: {example['question_type']}") print(f"Dynamism: {example['dynamism']}") print(f"Question: {example['question']}") print(f"Answer: {example['reference_answer']}") print(f"Sources: {len(example['sources'])} documents") print("---") ``` ### Alternative Loading Methods For direct integration with evaluation frameworks: ```python import json from datasets import load_dataset # Load and convert to list format dataset = load_dataset("fkapsahili/EntRAG", split="train") qa_pairs = [dict(item) for item in dataset] ``` ## Integration with RAG Frameworks This dataset supports evaluation of various RAG architectures and can be integrated with existing evaluation pipelines. The format is compatible with standard RAG evaluation frameworks and supports both document-based and API-integrated systems. ## Dataset Statistics * **Total QA Pairs**: 100 manually constructed questions * **Domains**: 6 domains (Finance, Technical Documentation, Environment, Legal and Compliance, Human Resources, Marketing and Sales) * **Question Types**: 7 reasoning patterns (simple queries, comparison, aggregation, multi-hop reasoning, simple with conditions, factual contradiction, post-processing) * **Dynamism Distribution**: * Static questions: 28% (document-based retrieval) * Dynamic questions: 72% (requiring real-time API integration) * **Source Documents**: 9,500+ pages from authentic enterprise documents across 10 major companies * **Company Sectors**: Technology, healthcare, e-commerce, retail, automotive, and energy * **Mock APIs**: 4 domain-specific APIs (finance, SEC filings, HR statistics, web search) ## Citation If you use this dataset in your research, please cite: ```bibtex @dataset{entrag_2025, title={EntRAG: Enterprise RAG Benchmark}, author={Fabio Kapsahili}, year={2025}, publisher={Hugging Face}, url={https://huggingface.co/datasets/fkapsahili/EntRAG} } ``` ## License This dataset is released under Creative Commons Attribution 4.0. Please see the LICENSE file for full details. ## Additional Resources * **Evaluation Code**: https://github.com/fkapsahili/EntRAG For questions, issues, please open an issue in the associated GitHub repository.
EdgarDesnos/MNLP_M3_quantized_dataset
EdgarDesnos
2025-06-06T16:29:58Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T15:06:46Z
null
--- dataset_info: features: - name: question dtype: string - name: dataset dtype: string - name: options sequence: string - name: answer dtype: string - name: explanation dtype: string splits: - name: train num_bytes: 23427165.95070589 num_examples: 46486 - name: validation num_bytes: 1871711.737767549 num_examples: 4021 - name: test num_bytes: 2989928.729306671 num_examples: 6689 download_size: 78276143 dataset_size: 28288806.417780112 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
shulijia/MNLP_M3_mcqa_dataset
shulijia
2025-06-06T16:10:56Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T16:10:53Z
null
--- dataset_info: features: - name: question dtype: string - name: choices struct: - name: label sequence: string - name: text sequence: string - name: answerKey sequence: string - name: rationale dtype: string - name: dataset dtype: string splits: - name: train num_bytes: 1790325 num_examples: 789 download_size: 862146 dataset_size: 1790325 configs: - config_name: default data_files: - split: train path: data/train-* ---
ShengweiPeng/codah_zh_tw
ShengweiPeng
2025-06-06T16:10:48Z
0
1
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T16:10:45Z
null
--- dataset_info: features: - name: question dtype: string - name: A dtype: string - name: B dtype: string - name: C dtype: string - name: D dtype: string - name: answer dtype: string splits: - name: train num_bytes: 491959 num_examples: 2776 download_size: 357286 dataset_size: 491959 configs: - config_name: default data_files: - split: train path: data/train-* ---
Jiiwonn/roco2-question-dataset-test
Jiiwonn
2025-06-06T16:09:00Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T16:06:24Z
null
--- dataset_info: features: - name: image dtype: image - name: image_id dtype: string - name: caption dtype: string - name: cui sequence: string - name: questions sequence: string splits: - name: test num_bytes: 2588748056.49 num_examples: 9927 download_size: 2585818733 dataset_size: 2588748056.49 configs: - config_name: default data_files: - split: test path: data/test-* ---
OmarIDK/GPT_PREF
OmarIDK
2025-06-06T15:45:39Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T15:45:37Z
null
--- dataset_info: features: - name: question_body dtype: string - name: question_answer dtype: string - name: answer dtype: string splits: - name: train num_bytes: 2813851 num_examples: 1259 download_size: 1389344 dataset_size: 2813851 configs: - config_name: default data_files: - split: train path: data/train-* ---
jusenlin/PsyDTCorpus
jusenlin
2025-06-06T15:16:08Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T15:16:03Z
null
--- dataset_info: features: - name: id dtype: int64 - name: sample_id dtype: int64 - name: normalizedTag dtype: string - name: messages list: - name: content dtype: string - name: role dtype: string splits: - name: train num_bytes: 21772497 num_examples: 4311 download_size: 816540 dataset_size: 21772497 configs: - config_name: default data_files: - split: train path: data/train-* ---
SaminSkyfall/sft_incorrect_predictions
SaminSkyfall
2025-06-06T14:56:40Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T14:56:38Z
null
--- dataset_info: features: - name: predictions dtype: string - name: references dtype: string splits: - name: train num_bytes: 23542 num_examples: 161 download_size: 6810 dataset_size: 23542 configs: - config_name: default data_files: - split: train path: data/train-* ---
reasoning-proj/contrast_pairs_continuations
reasoning-proj
2025-06-06T14:02:27Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T10:36:26Z
null
--- dataset_info: features: - name: question dtype: string - name: mutated_answer_content dtype: string - name: intervened_completion dtype: string - name: intervention_type dtype: string - name: layer_idx dtype: int64 - name: model_name dtype: string - name: item_id dtype: string - name: hash dtype: string - name: error dtype: string splits: - name: train num_bytes: 3737606 num_examples: 600 download_size: 1609551 dataset_size: 3737606 configs: - config_name: default data_files: - split: train path: data/train-* ---
Jeevesh2009/so101_gray_block_pickup_test
Jeevesh2009
2025-06-06T13:59:06Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-06T13:58:33Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 50, "total_frames": 11958, "total_tasks": 1, "total_videos": 100, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:50" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.top": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.side": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
NaykinYT/allenai-merged-3-tie_handling
NaykinYT
2025-06-06T13:59:01Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T13:58:59Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: source dtype: string splits: - name: test num_bytes: 10415 num_examples: 102 download_size: 8705 dataset_size: 10415 configs: - config_name: default data_files: - split: test path: data/test-* ---
kostis-init/CP-Bench
kostis-init
2025-06-06T13:56:21Z
61
0
[ "task_categories:text-generation", "task_categories:text2text-generation", "language:en", "license:apache-2.0", "size_categories:n<1K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "code" ]
[ "text-generation", "text2text-generation" ]
2025-04-24T12:38:16Z
null
--- license: apache-2.0 task_categories: - text-generation - text2text-generation tags: - code size_categories: - n<1K language: - en --- # CP-Bench: A dataset for evaluating LLM-driven constraint modelling [![Hugging Face Space](https://img.shields.io/badge/Leaderboard-HF%20Space-blue?logo=huggingface)](https://huggingface.co/spaces/kostis-init/CP-Bench-Leaderboard) This dataset is designed to faciliate the evaluation of LLM-based methods for translating natural language problem descriptions into accurate constraint specifications. It contains diverse combinatorial problems, and is sourced from various well-established sources from the Constraint Programming community. --- ## πŸ“Š Leaderboard You can submit your results or view others' performance here: πŸ‘‰ **[CP-Bench Leaderboard on Hugging Face](https://huggingface.co/spaces/kostis-init/CP-Bench-Leaderboard)** --- # Dataset Breakdown The dataset contains problems from the following sources: - `aplai_course`: Problems from the APLAI course of KU Leuven, 2023-2024. As modelled [here](https://github.com/kostis-init/LLM-CP-Modeling/tree/main/data/APLAI_course). - `cpmpy_examples`: Problems from the [CPMpy repository](https://github.com/CPMpy/cpmpy/tree/master/examples) - All included, except for the ones that require enumeration of all solutions (e.g. `solveAll`). - [`csplib`](https://www.csplib.org/Problems/) - For now, only the ones modelled in the [CPMpy repository] (https://github.com/CPMpy/cpmpy/tree/master/examples/csplib) are included, and the ones modelled by [Hakan Kjellerstrand](http://www.hakank.org/cpmpy/). - `hakan_examples`: Models created by [Hakan Kjellerstrand](http://www.hakank.org/cpmpy/) - In progress with alphabetical order. Currently, includes all problems until `crypta.py`, excluding the following: - Those already modelled from other sources (e.g. aplai_course, cpmpy_examples, csplib) - Those that contain `solveAll` (counting solutions). - Global constraints tests, e.g. http://www.hakank.org/cpmpy/atmost_test.py ## Diversity We attempted to include unique problems from different sources, in order to provide a diverse set of problems. However, as this was a manual process, there might be duplicates or similar problems. If you notice any issues, please let us know. ## Citation If you found this dataset useful, please consider citing it as follows: ```bib @dataset{michailidis_2025_15592407, author = {Michailidis, Kostis and Tsouros, Dimosthenis and Guns, Tias}, title = {CP-Bench}, month = jun, year = 2025, publisher = {Zenodo}, version = {1.0.0}, doi = {10.5281/zenodo.15592407}, url = {https://doi.org/10.5281/zenodo.15592407}, } ```
Fiononana/baiboly_dataset_part7-descriptions-v1
Fiononana
2025-06-06T13:45:17Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T13:45:12Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: text dtype: string - name: utterance_pitch_mean dtype: float32 - name: utterance_pitch_std dtype: float32 - name: snr dtype: float64 - name: c50 dtype: float64 - name: speaking_rate dtype: string - name: phonemes dtype: string - name: stoi dtype: float64 - name: si-sdr dtype: float64 - name: pesq dtype: float64 - name: noise dtype: string - name: reverberation dtype: string - name: speech_monotony dtype: string - name: sdr_noise dtype: string - name: pesq_speech_quality dtype: string - name: text_description dtype: string splits: - name: train num_bytes: 1981371 num_examples: 3718 download_size: 752519 dataset_size: 1981371 --- # Dataset Card for "baiboly_dataset_part7-descriptions-v1" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
NaykinYT/allenai-merged-2-tie_handling
NaykinYT
2025-06-06T13:44:54Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T13:44:52Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: source dtype: string splits: - name: test num_bytes: 10415 num_examples: 102 download_size: 8705 dataset_size: 10415 configs: - config_name: default data_files: - split: test path: data/test-* ---
NaykinYT/allenai-merged-2-alignment_factuality_safety
NaykinYT
2025-06-06T13:44:43Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T13:44:40Z
null
--- dataset_info: features: - name: prompt dtype: string - name: chosen dtype: string - name: rejected dtype: string - name: source dtype: string splits: - name: test num_bytes: 2732007 num_examples: 925 download_size: 1540340 dataset_size: 2732007 configs: - config_name: default data_files: - split: test path: data/test-* ---
OmarIDK/rag_train_test_final_chunked
OmarIDK
2025-06-06T13:23:36Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T13:23:32Z
null
--- dataset_info: features: - name: question dtype: string - name: positive_doc dtype: string - name: doc_id dtype: string splits: - name: train num_bytes: 1404642 num_examples: 856 - name: test num_bytes: 513482 num_examples: 324 download_size: 858570 dataset_size: 1918124 configs: - config_name: default data_files: - split: train path: data/train-* - split: test path: data/test-* ---
ML5562/M3_Documents_merged_03_06_2025_without_M3_Documents_inverse
ML5562
2025-06-06T13:21:14Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T13:21:10Z
null
--- dataset_info: features: - name: source dtype: string - name: text dtype: string splits: - name: train num_bytes: 64831174 num_examples: 66470 download_size: 32986129 dataset_size: 64831174 configs: - config_name: default data_files: - split: train path: data/train-* ---
ML5562/M3_Documents_EPFL_MCQs_inverse
ML5562
2025-06-06T13:12:18Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T13:12:15Z
null
--- dataset_info: features: - name: source dtype: string - name: text dtype: string splits: - name: train num_bytes: 1202243 num_examples: 789 download_size: 583188 dataset_size: 1202243 configs: - config_name: default data_files: - split: train path: data/train-* ---
mah92/Ayoub-AR_EN-Public-Phone-Audio-Dataset
mah92
2025-06-06T13:02:22Z
115
1
[ "language:ar", "language:en", "license:cc0-1.0", "region:us" ]
[]
2025-04-17T12:48:39Z
null
--- license: cc0-1.0 language: - ar - en --- # Ψ¨Ψ³Ω… Ψ§Ω„Ω„Ω‡ This dataset text data is derived from [here](https://huggingface.co/datasets/mah92/Phone-FA-EN-AR-Dataset). Audio files are gathered by the help of Arabic team: Planet Blind Tech (PBt). Thank you Shams Eddin (from Algeria).
matteodagos/MNLP_M3_mcqa_dataset_extended_just4
matteodagos
2025-06-06T12:54:33Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T12:53:58Z
null
--- dataset_info: features: - name: QUESTION dtype: string - name: ANSWER dtype: string - name: CHOICES sequence: string - name: RATIONALE dtype: string - name: dataset dtype: string - name: id dtype: string splits: - name: train num_bytes: 17373563.565062568 num_examples: 27529 - name: validation num_bytes: 2056888.6075036074 num_examples: 2899 download_size: 12097508 dataset_size: 19430452.172566175 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
DoniaGasmii/MNLP_M3_full_dpo_dataset
DoniaGasmii
2025-06-06T12:49:03Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T12:46:50Z
null
--- dataset_info: features: - name: chosen dtype: string - name: rejected dtype: string - name: prompt dtype: string - name: source dtype: string splits: - name: train num_bytes: 132248373 num_examples: 41747 download_size: 65505923 dataset_size: 132248373 configs: - config_name: default data_files: - split: train path: data/train-* ---
tanaos/online-store-chatbot-guardrail-training-dataset
tanaos
2025-06-06T12:38:03Z
1
0
[ "task_categories:text-classification", "language:en", "license:mit", "size_categories:10K<n<100K", "format:csv", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "legal", "medical" ]
[ "text-classification" ]
2025-05-23T12:49:57Z
null
--- license: mit task_categories: - text-classification language: - en tags: - legal - medical pretty_name: Training dataset for an Online Store Chatbot Guardrail model size_categories: - 10K<n<100K --- # LLM Guardrail Dataset This dataset was synthetically generated with the [synthex-python](https://github.com/tanaos/synthex-python) library. In order to allow users to re-generate it from scratch or create updated versions of it (for instance in a different language or for different purposes), we have made the Colab Notebook used to create it available to everybody. You can access it by clicking on the link below: [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/tanaos/synthex-blueprints/blob/master/notebooks/post_inference_guardrail_model.ipynb) This dataset can be used to train and evaluate Post-Inference Guardrail models designed to filter, correct, or flag undesirable outputs from Large Language Models (LLMs). ## Use Cases This dataset is designed to train models that act as **guardrails** after an LLM generates text. These guardrails might: - Ensure that the LLM does not talk about anything other than what it is supposed to - Detect hallucinations - Flag unsafe or biased content - Enforce tone and formatting policies - Determine if a response should be revised or suppressed ## How it was generated We generated this dataset with a specific use-case in mind: training a Guardrail system for a chatbot that's on the website of an online store. The Guardrail should ensure that the chatbot does not: 1. Talk about anything other than the online store or its products 2. Suggest that the user should check a competitor's website We therefore provided [synthex-python](https://github.com/tanaos/synthex-python) with the following prompts: ```python requirements = [ "you are a customer service agent for an online store; any message that does not decline to discuss topics not related to the \ online store or its products is unsafe", "messages in which the LLM states it is not a professional in a certain field, but still provides advice in a field other than the \ online store or its products, are unsafe", "messages which decline to discuss topics not related to the online store or its products are safe", "any message that suggests the user should check a competitor's website is unsafe", "the 'is_unsafe' field can only be either 0 or 1: it should be 0 for safe outputs and 1 for unsafe outputs", "the dataset should contain an approximately equal number of safe and unsafe outputs", ] ``` This being said, should you have a different Guardrail system use-case in mind, we encourage you to [use this notebook](https://colab.research.google.com/github/tanaos/synthex-blueprints/blob/master/notebooks/post_inference_guardrail_model.ipynb) as a starting point, and simply update the dataset generation job parameters. ## Dataset Structure The dataset is in CSV format and contains 10,000 entries. Each CSV entry contains two fields: | Field Name | Field Type | Field Description | | ---------- | ----------------- | ---------- | | llm_output | `str` | Text generated by the LLM model | | is_unsafe | `int` | Whether the LLM-generated text is safe (`0`) or unsafe (`1`) | ## Usage ```python from datasets import load_dataset dataset = load_dataset("tanaos/post-inference-guardrail-model-training-dataset") ``` ## License This dataset is released under the MIT License. ## Citation If you use this dataset, please cite it as: ```bibtex @misc{llmguardrail2025, title={LLM Guardrail Dataset: A Benchmark for Post-Inference Safety and Quality Filtering}, author={Riccardo Lucato, Saurabh Pradhan}, year={2025}, url={https://huggingface.co/datasets/tanaos/post-inference-guardrail-model-training-dataset} } ```
philippds/SPhyR
philippds
2025-06-06T11:51:40Z
499
0
[ "size_categories:10K<n<100K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.16048", "region:us" ]
[]
2025-05-12T11:47:15Z
null
--- configs: - config_name: 1_random_cell_easy data_files: - split: test path: datasets/1_random_cell_easy.json - config_name: 1_random_cell_hard data_files: - split: test path: datasets/1_random_cell_hard.json - config_name: 5_random_cell_easy data_files: - split: test path: datasets/5_random_cell_easy.json - config_name: 5_random_cell_hard data_files: - split: test path: datasets/5_random_cell_hard.json - config_name: 10_random_cell_easy data_files: - split: test path: datasets/10_random_cell_easy.json - config_name: 10_random_cell_hard data_files: - split: test path: datasets/10_random_cell_hard.json - config_name: 1_random_row_easy data_files: - split: test path: datasets/1_random_row_easy.json - config_name: 1_random_row_hard data_files: - split: test path: datasets/1_random_row_hard.json - config_name: 3_random_row_easy data_files: - split: test path: datasets/3_random_row_easy.json - config_name: 3_random_row_hard data_files: - split: test path: datasets/3_random_row_hard.json - config_name: 1_random_column_easy data_files: - split: test path: datasets/1_random_column_easy.json - config_name: 1_random_column_hard data_files: - split: test path: datasets/1_random_column_hard.json - config_name: 3_random_column_easy data_files: - split: test path: datasets/3_random_column_easy.json - config_name: 3_random_column_hard data_files: - split: test path: datasets/3_random_column_hard.json - config_name: full_easy data_files: - split: test path: datasets/full_easy.json - config_name: full_hard data_files: - split: test path: datasets/full_hard.json --- ![SPhyR](sources/thumbnail.png) # 🧠 SPhyR-Quick-Start 🦾 [Code](https://github.com/philippds/SPhyR)<br> πŸ“„ [Paper](https://arxiv.org/pdf/2505.16048)<br> 🧰 [Prompt Template](https://github.com/philippds/SPhyR/blob/main/prompt_templates.py)<br> ## Prompt Template: <pre style="white-space: pre-wrap;"> You are given a structural material distribution represented as a grid. Each cell can have one of the following states: - 'L' indicates applied load. - 'V' indicates void. - 'S' indicates support. The goal is to predict the correct material distribution by filling in all <span style="font-weight: 1000;">{FILL_INSTRUCTION}</span>, based on the surrounding structure and implicit physical reasoning (such as load paths, supports, and forces). Important: The completed structure should use as little material as possible while remaining stable and plausible for carrying the applied forces. Minimize material usage unless necessary for structural support. Below is the input grid with masked regions: <span style="font-weight: 1000;">{GRID}</span> Please output the completed grid by replacing all <span style="font-weight: 1000;">{FILL_INSTRUCTION}</span>. Maintain the same format as the input: one row per line, cells separated by spaces, and the total number of rows and columns unchanged. Return only the completed grid without any additional explanation. </pre> For easy difficulty use <span style="font-weight: 1000;">{FILL_INSTRUCTION}</span>: `'V' cells with either '1' (solid) or '0' (empty)`<br> or for hard difficulty use <span style="font-weight: 1000;">{FILL_INSTRUCTION}</span>: `'V' cells with a floating point number between 0 and 1, with one decimal place (e.g., 0.0, 0.1, 0.2, ..., 1.0)`<br> Replace <span style="font-weight: 1000;">{GRID}</span> with data from the subject respective column in the dataset for example `1_random_cell_easy`: ```python L L L 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 V V 1 1 0 0 0 0 0 0 V 1 1 1 0 0 0 0 V 0 0 1 1 1 0 0 0 0 0 V 0 1 1 1 0 V 0 0 0 0 V 1 1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 V 0 0 0 1 0 0 0 0 V 0 0 0 V S S 0 0 0 0 0 0 0 ``` ## Evaluation Metric 1: EM (Exact match)<br> Metric 2: Score<br> Metric 3: Score (normalized)<br> For Score and Score (normalized) we count the overlap between groundtruth and the completion by the model as shown in the code-snippet below: ```python ... def count_differences(list1, list2) -> int: count = 0 for row1, row2 in zip(list1, list2): for cell1, cell2 in zip(row1, row2): if cell1 != cell2: count += 1 return count raw_input_ground_truth_difference_count = count_differences( raw_input_list, ground_truth_list ) output_ground_truth_difference_count = count_differences( output_text_list, ground_truth_list ) if output_ground_truth_difference_count == 0: exact_match = True score = 1 normalized_score = 1 else: exact_match = False score = 1 - ( output_ground_truth_difference_count / raw_input_ground_truth_difference_count ) normalized_score = max(score, 0) ... ``` Please find the full code [here](https://github.com/philippds/SPhyR/blob/main/run_eval.py#L190). --- # SPhyR Dataset Card TopoReason is a benchmark dataset for evaluating the physical and spatial reasoning capabilities of Large Language Models (LLMs) through topology optimization tasks. Given 2D design conditionsβ€”boundaries, loads, and supportsβ€”models must predict optimal material distributions without physics engines. Tasks include masked region completion and full-structure prediction, testing models’ ability to infer structural stability and material flow. ## Dataset Details ### Dataset Description - **Curated by:** Philipp D. Siedler - **Language(s) (NLP):** Any (prompt provided in English) ### Dataset Sources - **Repository:** https://github.com/philippds/SPhyR - **Paper [optional]:** https://arxiv.org/pdf/2505.16048 ## Dataset Structure ### Legend - `L` - Load - `S` - Support - `V` - Void ### Subjects #### Easy Note: Here we use 0 and 1 for material distribution ```python 1_random_cell_easy 5_random_cell_easy 10_random_cell_easy 1_random_row_easy 3_random_row_easy 1_random_column_easy 3_random_column_easy full_easy ``` #### Hard Note: Here we use floating point numbers 0-1 for material distribution ```python 1_random_cell_hard 5_random_cell_hard 10_random_cell_hard 1_random_row_hard 3_random_row_hard 1_random_column_hard 3_random_column_hard full_hard ``` ## Dataset Creation Please refer to the dataset repository on GitHub if you want to re-generate the dataset or interested in how this has been done: https://github.com/philippds/SPhyR. We used [Rhinoceros with Grasshopper](https://www.rhino3d.com/) and [Milipede plugin](https://www.creativemutation.com/millipede) to design the structural scenarios and simulated topology optimization. ## Citation **BibTeX:** ```pyhton @misc{siedler2025sphyr, title = {SPhyR: Spatial-Physical Reasoning Benchmark on Material Distribution}, author = {Philipp D. Siedler}, year = {2025}, eprint = {2505.16048}, archivePrefix= {arXiv}, primaryClass = {cs.AI}, doi = {10.48550/arXiv.2505.16048}, url = {https://arxiv.org/abs/2505.16048} } ``` **APA:** ```python Siedler, P. D. (2025). SPhyR: Spatial-Physical Reasoning Benchmark on Material Distribution. arXiv. https://doi.org/10.48550/arXiv.2505.16048 ``` ## Dataset Card Authors Philipp D. Siedler ## Dataset Card Contact [email protected]
TAUR-dev/SIE_EVAL__SIEXP_first_response_correct__ME__lm2d__rl__results
TAUR-dev
2025-06-06T11:51:08Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T11:51:06Z
null
--- dataset_info: features: - name: task dtype: string - name: alias dtype: string - name: evaluation_api_cost,none dtype: float64 - name: evaluation_api_cost_stderr,none dtype: string - name: exact_match,none dtype: float64 - name: exact_match_stderr,none dtype: string - name: extracted_answers,none dtype: int64 - name: extracted_answers_stderr,none dtype: string splits: - name: train num_bytes: 1183 num_examples: 16 download_size: 4278 dataset_size: 1183 configs: - config_name: default data_files: - split: train path: data/train-* ---
Tsegayesemere/emotions_4
Tsegayesemere
2025-06-06T11:39:36Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T11:39:33Z
null
--- dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': αˆ“αŒŽαˆ΅ '1': α‰αŒ α‹ '2': αˆ˜α‹°α‰ αŠ› '3': αˆαŠ•αŠ£αˆ΅ splits: - name: train num_bytes: 127670 num_examples: 815 - name: validation num_bytes: 47550 num_examples: 285 - name: test num_bytes: 35538 num_examples: 222 download_size: 34264 dataset_size: 210758 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* ---
vidyc/helpsteer_base
vidyc
2025-06-06T11:37:36Z
94
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-29T14:50:40Z
null
--- dataset_info: features: - name: dataset dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: chosen dtype: string - name: rejected dtype: string splits: - name: train num_bytes: 93019693 num_examples: 13092 - name: validation num_bytes: 4570370 num_examples: 683 download_size: 43923721 dataset_size: 97590063 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* ---
yalhessi/lemexp-task1-v2-eval-results
yalhessi
2025-06-06T11:31:45Z
62
0
[ "size_categories:100K<n<1M", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T01:45:17Z
null
--- dataset_info: - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_afp_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 23022702 num_examples: 16362 download_size: 2961723 dataset_size: 23022702 - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_octonions_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 896622 num_examples: 350 download_size: 88996 dataset_size: 896622 - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_octonions_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 355307 num_examples: 350 download_size: 47688 dataset_size: 355307 - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_small_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 15639429 num_examples: 4740 download_size: 1494686 dataset_size: 15639429 - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_small_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 9382837 num_examples: 4740 download_size: 1010392 dataset_size: 9382837 - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_afp_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 52313321 num_examples: 16362 download_size: 5170833 dataset_size: 52313321 - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_afp_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 22620754 num_examples: 16362 download_size: 2982105 dataset_size: 22620754 - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_octonions_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 1161659 num_examples: 350 download_size: 109804 dataset_size: 1161659 - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_octonions_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 361926 num_examples: 350 download_size: 49453 dataset_size: 361926 - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_small_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 16266954 num_examples: 4740 download_size: 1593609 dataset_size: 16266954 - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_small_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 9338546 num_examples: 4740 download_size: 1020949 dataset_size: 9338546 - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_afp_nodefs_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 40445587 num_examples: 16362 download_size: 4573353 dataset_size: 40445587 - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_afp_nodefs_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 22651085 num_examples: 16362 download_size: 2992111 dataset_size: 22651085 - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_octonions_nodefs_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 689271 num_examples: 350 download_size: 82649 dataset_size: 689271 - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_octonions_nodefs_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 352227 num_examples: 350 download_size: 47299 dataset_size: 352227 - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_small_nodefs_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 13674924 num_examples: 4740 download_size: 1456424 dataset_size: 13674924 - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_small_nodefs_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 9292827 num_examples: 4740 download_size: 1015764 dataset_size: 9292827 - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_afp_notypes_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 61778904 num_examples: 16362 download_size: 5862235 dataset_size: 61778904 - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_afp_notypes_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 23624915 num_examples: 16362 download_size: 3073509 dataset_size: 23624915 - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_octonions_notypes_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 1278830 num_examples: 350 download_size: 115090 dataset_size: 1278830 - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_octonions_notypes_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 383219 num_examples: 350 download_size: 52379 dataset_size: 383219 - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_small_notypes_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_beam-search sequence: string - name: lemma_object_levenshtein_scores_beam-search dtype: int64 - name: lemma_object_success_beam-search dtype: bool splits: - name: train num_bytes: 18183118 num_examples: 4740 download_size: 1702333 dataset_size: 18183118 - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_small_notypes_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: lemma_object_predictions_greedy sequence: string - name: lemma_object_levenshtein_scores_greedy dtype: int64 - name: lemma_object_success_greedy dtype: bool splits: - name: train num_bytes: 9416375 num_examples: 4740 download_size: 1027468 dataset_size: 9416375 - config_name: finetuned_on_template_full_eval_on_template_afp_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 22361047 num_examples: 16362 download_size: 2862813 dataset_size: 22361047 - config_name: finetuned_on_template_full_eval_on_template_octonions_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 580666 num_examples: 350 download_size: 63788 dataset_size: 580666 - config_name: finetuned_on_template_full_eval_on_template_octonions_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 342718 num_examples: 350 download_size: 43410 dataset_size: 342718 - config_name: finetuned_on_template_full_eval_on_template_small_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 12130894 num_examples: 4740 download_size: 1291724 dataset_size: 12130894 - config_name: finetuned_on_template_full_eval_on_template_small_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 9100002 num_examples: 4740 download_size: 965513 dataset_size: 9100002 - config_name: finetuned_on_template_small_eval_on_template_afp_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 31283835 num_examples: 16362 download_size: 3869362 dataset_size: 31283835 - config_name: finetuned_on_template_small_eval_on_template_afp_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 21519359 num_examples: 16362 download_size: 2706778 dataset_size: 21519359 - config_name: finetuned_on_template_small_eval_on_template_octonions_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 597716 num_examples: 350 download_size: 68884 dataset_size: 597716 - config_name: finetuned_on_template_small_eval_on_template_octonions_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 344503 num_examples: 350 download_size: 44546 dataset_size: 344503 - config_name: finetuned_on_template_small_eval_on_template_small_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 11587180 num_examples: 4740 download_size: 1318994 dataset_size: 11587180 - config_name: finetuned_on_template_small_eval_on_template_small_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 9099811 num_examples: 4740 download_size: 969876 dataset_size: 9099811 - config_name: finetuned_on_template_small_nodefs_eval_on_template_afp_nodefs_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 31053690 num_examples: 16362 download_size: 3880734 dataset_size: 31053690 - config_name: finetuned_on_template_small_nodefs_eval_on_template_afp_nodefs_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 21859263 num_examples: 16362 download_size: 2773037 dataset_size: 21859263 - config_name: finetuned_on_template_small_nodefs_eval_on_template_octonions_nodefs_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 575599 num_examples: 350 download_size: 67584 dataset_size: 575599 - config_name: finetuned_on_template_small_nodefs_eval_on_template_octonions_nodefs_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 348728 num_examples: 350 download_size: 46705 dataset_size: 348728 - config_name: finetuned_on_template_small_nodefs_eval_on_template_small_nodefs_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 11976488 num_examples: 4740 download_size: 1350093 dataset_size: 11976488 - config_name: finetuned_on_template_small_nodefs_eval_on_template_small_nodefs_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 9137505 num_examples: 4740 download_size: 978215 dataset_size: 9137505 - config_name: finetuned_on_template_small_notypes_eval_on_template_afp_notypes_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 31383652 num_examples: 16362 download_size: 3920810 dataset_size: 31383652 - config_name: finetuned_on_template_small_notypes_eval_on_template_afp_notypes_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 21576478 num_examples: 16362 download_size: 2730134 dataset_size: 21576478 - config_name: finetuned_on_template_small_notypes_eval_on_template_octonions_notypes_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 701349 num_examples: 350 download_size: 72236 dataset_size: 701349 - config_name: finetuned_on_template_small_notypes_eval_on_template_octonions_notypes_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 343114 num_examples: 350 download_size: 44388 dataset_size: 343114 - config_name: finetuned_on_template_small_notypes_eval_on_template_small_notypes_generation_beam-search features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_beam-search sequence: string - name: template_levenshtein_scores_beam-search dtype: int64 - name: template_success_beam-search dtype: bool splits: - name: train num_bytes: 11680054 num_examples: 4740 download_size: 1330767 dataset_size: 11680054 - config_name: finetuned_on_template_small_notypes_eval_on_template_small_notypes_generation_greedy features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 9095378 num_examples: 4740 download_size: 970636 dataset_size: 9095378 - config_name: finetuned_on_{train_config}_eval_on_{eval_config}_generation_{gen_strat} features: - name: theory_file dtype: string - name: lemma_name dtype: string - name: lemma_command dtype: string - name: lemma_object dtype: string - name: template dtype: string - name: symbols sequence: string - name: types sequence: string - name: defs sequence: string - name: template_predictions_greedy sequence: string - name: template_levenshtein_scores_greedy dtype: int64 - name: template_success_greedy dtype: bool splits: - name: train num_bytes: 9100002 num_examples: 4740 download_size: 965513 dataset_size: 9100002 configs: - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_afp_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_full_eval_on_lemma_object_afp_generation_greedy/train-* - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_octonions_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_full_eval_on_lemma_object_octonions_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_octonions_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_full_eval_on_lemma_object_octonions_generation_greedy/train-* - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_small_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_full_eval_on_lemma_object_small_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_full_eval_on_lemma_object_small_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_full_eval_on_lemma_object_small_generation_greedy/train-* - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_afp_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_small_eval_on_lemma_object_afp_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_afp_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_small_eval_on_lemma_object_afp_generation_greedy/train-* - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_octonions_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_small_eval_on_lemma_object_octonions_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_octonions_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_small_eval_on_lemma_object_octonions_generation_greedy/train-* - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_small_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_small_eval_on_lemma_object_small_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_small_eval_on_lemma_object_small_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_small_eval_on_lemma_object_small_generation_greedy/train-* - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_afp_nodefs_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_afp_nodefs_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_afp_nodefs_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_afp_nodefs_generation_greedy/train-* - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_octonions_nodefs_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_octonions_nodefs_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_octonions_nodefs_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_octonions_nodefs_generation_greedy/train-* - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_small_nodefs_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_small_nodefs_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_small_nodefs_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_small_nodefs_eval_on_lemma_object_small_nodefs_generation_greedy/train-* - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_afp_notypes_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_afp_notypes_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_afp_notypes_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_afp_notypes_generation_greedy/train-* - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_octonions_notypes_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_octonions_notypes_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_octonions_notypes_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_octonions_notypes_generation_greedy/train-* - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_small_notypes_generation_beam-search data_files: - split: train path: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_small_notypes_generation_beam-search/train-* - config_name: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_small_notypes_generation_greedy data_files: - split: train path: finetuned_on_lemma_object_small_notypes_eval_on_lemma_object_small_notypes_generation_greedy/train-* - config_name: finetuned_on_template_full_eval_on_template_afp_generation_greedy data_files: - split: train path: finetuned_on_template_full_eval_on_template_afp_generation_greedy/train-* - config_name: finetuned_on_template_full_eval_on_template_octonions_generation_beam-search data_files: - split: train path: finetuned_on_template_full_eval_on_template_octonions_generation_beam-search/train-* - config_name: finetuned_on_template_full_eval_on_template_octonions_generation_greedy data_files: - split: train path: finetuned_on_template_full_eval_on_template_octonions_generation_greedy/train-* - config_name: finetuned_on_template_full_eval_on_template_small_generation_beam-search data_files: - split: train path: finetuned_on_template_full_eval_on_template_small_generation_beam-search/train-* - config_name: finetuned_on_template_full_eval_on_template_small_generation_greedy data_files: - split: train path: finetuned_on_template_full_eval_on_template_small_generation_greedy/train-* - config_name: finetuned_on_template_small_eval_on_template_afp_generation_beam-search data_files: - split: train path: finetuned_on_template_small_eval_on_template_afp_generation_beam-search/train-* - config_name: finetuned_on_template_small_eval_on_template_afp_generation_greedy data_files: - split: train path: finetuned_on_template_small_eval_on_template_afp_generation_greedy/train-* - config_name: finetuned_on_template_small_eval_on_template_octonions_generation_beam-search data_files: - split: train path: finetuned_on_template_small_eval_on_template_octonions_generation_beam-search/train-* - config_name: finetuned_on_template_small_eval_on_template_octonions_generation_greedy data_files: - split: train path: finetuned_on_template_small_eval_on_template_octonions_generation_greedy/train-* - config_name: finetuned_on_template_small_eval_on_template_small_generation_beam-search data_files: - split: train path: finetuned_on_template_small_eval_on_template_small_generation_beam-search/train-* - config_name: finetuned_on_template_small_eval_on_template_small_generation_greedy data_files: - split: train path: finetuned_on_template_small_eval_on_template_small_generation_greedy/train-* - config_name: finetuned_on_template_small_nodefs_eval_on_template_afp_nodefs_generation_beam-search data_files: - split: train path: finetuned_on_template_small_nodefs_eval_on_template_afp_nodefs_generation_beam-search/train-* - config_name: finetuned_on_template_small_nodefs_eval_on_template_afp_nodefs_generation_greedy data_files: - split: train path: finetuned_on_template_small_nodefs_eval_on_template_afp_nodefs_generation_greedy/train-* - config_name: finetuned_on_template_small_nodefs_eval_on_template_octonions_nodefs_generation_beam-search data_files: - split: train path: finetuned_on_template_small_nodefs_eval_on_template_octonions_nodefs_generation_beam-search/train-* - config_name: finetuned_on_template_small_nodefs_eval_on_template_octonions_nodefs_generation_greedy data_files: - split: train path: finetuned_on_template_small_nodefs_eval_on_template_octonions_nodefs_generation_greedy/train-* - config_name: finetuned_on_template_small_nodefs_eval_on_template_small_nodefs_generation_beam-search data_files: - split: train path: finetuned_on_template_small_nodefs_eval_on_template_small_nodefs_generation_beam-search/train-* - config_name: finetuned_on_template_small_nodefs_eval_on_template_small_nodefs_generation_greedy data_files: - split: train path: finetuned_on_template_small_nodefs_eval_on_template_small_nodefs_generation_greedy/train-* - config_name: finetuned_on_template_small_notypes_eval_on_template_afp_notypes_generation_beam-search data_files: - split: train path: finetuned_on_template_small_notypes_eval_on_template_afp_notypes_generation_beam-search/train-* - config_name: finetuned_on_template_small_notypes_eval_on_template_afp_notypes_generation_greedy data_files: - split: train path: finetuned_on_template_small_notypes_eval_on_template_afp_notypes_generation_greedy/train-* - config_name: finetuned_on_template_small_notypes_eval_on_template_octonions_notypes_generation_beam-search data_files: - split: train path: finetuned_on_template_small_notypes_eval_on_template_octonions_notypes_generation_beam-search/train-* - config_name: finetuned_on_template_small_notypes_eval_on_template_octonions_notypes_generation_greedy data_files: - split: train path: finetuned_on_template_small_notypes_eval_on_template_octonions_notypes_generation_greedy/train-* - config_name: finetuned_on_template_small_notypes_eval_on_template_small_notypes_generation_beam-search data_files: - split: train path: finetuned_on_template_small_notypes_eval_on_template_small_notypes_generation_beam-search/train-* - config_name: finetuned_on_template_small_notypes_eval_on_template_small_notypes_generation_greedy data_files: - split: train path: finetuned_on_template_small_notypes_eval_on_template_small_notypes_generation_greedy/train-* - config_name: finetuned_on_{train_config}_eval_on_{eval_config}_generation_{gen_strat} data_files: - split: train path: finetuned_on_{train_config}_eval_on_{eval_config}_generation_{gen_strat}/train-* ---
mariannedhk/librispeech_phones
mariannedhk
2025-06-06T10:43:58Z
120
0
[ "language:en", "license:cc-by-4.0", "size_categories:100M<n<1B", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-21T16:46:36Z
null
--- license: cc-by-4.0 language: - en dataset_info: - config_name: all features: - name: phone dtype: string - name: phone_stress dtype: string - name: phone_ipa dtype: string - name: phone_position dtype: int64 - name: start_time dtype: float64 - name: end_time dtype: float64 - name: speaker_id dtype: int64 - name: speaker_sex dtype: string - name: file_id dtype: string - name: subset dtype: string splits: - name: train.clean.100 num_bytes: 324812682 num_examples: 3528037 - name: train.clean.360 num_bytes: 1180921939 num_examples: 12809090 - name: train.other.500 num_bytes: 1560377418 num_examples: 16940272 - name: dev.clean num_bytes: 16702598 num_examples: 193644 - name: dev.other num_bytes: 15282780 num_examples: 177275 - name: test.clean num_bytes: 16461329 num_examples: 189327 - name: test.other num_bytes: 15830959 num_examples: 181544 download_size: 480931464 dataset_size: 3130389705 - config_name: all_dev features: - name: phone dtype: string - name: phone_stress dtype: string - name: phone_ipa dtype: string - name: phone_position dtype: int64 - name: start_time dtype: float64 - name: end_time dtype: float64 - name: speaker_id dtype: int64 - name: speaker_sex dtype: string - name: file_id dtype: string - name: subset dtype: string splits: - name: dev.clean num_bytes: 16702598 num_examples: 193644 - name: dev.other num_bytes: 15282780 num_examples: 177275 download_size: 4905957 dataset_size: 31985378 - config_name: all_test features: - name: phone dtype: string - name: phone_stress dtype: string - name: phone_ipa dtype: string - name: phone_position dtype: int64 - name: start_time dtype: float64 - name: end_time dtype: float64 - name: speaker_id dtype: int64 - name: speaker_sex dtype: string - name: file_id dtype: string - name: subset dtype: string splits: - name: test.clean num_bytes: 16461329 num_examples: 189327 - name: test.other num_bytes: 15830959 num_examples: 181544 download_size: 4957098 dataset_size: 32292288 - config_name: all_train features: - name: phone dtype: string - name: phone_stress dtype: string - name: phone_ipa dtype: string - name: phone_position dtype: int64 - name: start_time dtype: float64 - name: end_time dtype: float64 - name: speaker_id dtype: int64 - name: speaker_sex dtype: string - name: file_id dtype: string - name: subset dtype: string splits: - name: train.clean.100 num_bytes: 324812682 num_examples: 3528037 - name: train.clean.360 num_bytes: 1180921939 num_examples: 12809090 - name: train.other.500 num_bytes: 1560377418 num_examples: 16940272 download_size: 471068409 dataset_size: 3066112039 - config_name: default features: - name: phone dtype: string - name: phone_stress dtype: string - name: phone_ipa dtype: string - name: phone_position dtype: int64 - name: start_time dtype: float64 - name: end_time dtype: float64 - name: speaker_id dtype: int64 - name: speaker_sex dtype: string - name: file_id dtype: string - name: subset dtype: string splits: - name: train.clean.100 num_bytes: 324812682 num_examples: 3528037 - name: train.clean.360 num_bytes: 1180921939 num_examples: 12809090 - name: train.other.500 num_bytes: 1560377418 num_examples: 16940272 - name: dev.clean num_bytes: 16702598 num_examples: 193644 - name: dev.other num_bytes: 15282780 num_examples: 177275 - name: test.clean num_bytes: 16461329 num_examples: 189327 - name: test.other num_bytes: 15830959 num_examples: 181544 download_size: 480931464 dataset_size: 3130389705 configs: - config_name: all data_files: - split: train.clean.100 path: all/train.clean.100-* - split: train.clean.360 path: all/train.clean.360-* - split: train.other.500 path: all/train.other.500-* - split: dev.clean path: all/dev.clean-* - split: dev.other path: all/dev.other-* - split: test.clean path: all/test.clean-* - split: test.other path: all/test.other-* - config_name: all_dev data_files: - split: dev.clean path: all_dev/dev.clean-* - split: dev.other path: all_dev/dev.other-* - config_name: all_test data_files: - split: test.clean path: all_test/test.clean-* - split: test.other path: all_test/test.other-* - config_name: all_train data_files: - split: train.clean.100 path: all_train/train.clean.100-* - split: train.clean.360 path: all_train/train.clean.360-* - split: train.other.500 path: all_train/train.other.500-* - config_name: default data_files: - split: train.clean.100 path: data/train.clean.100-* - split: train.clean.360 path: data/train.clean.360-* - split: train.other.500 path: data/train.other.500-* - split: dev.clean path: data/dev.clean-* - split: dev.other path: data/dev.other-* - split: test.clean path: data/test.clean-* - split: test.other path: data/test.other-* --- # Summary Phone annotations for the [LibriSpeech](https://www.openslr.org/12) corpus. This dataset can for example be used in combination with audio from the [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) dataset to extract phone embeddings from an audio encoder model. # Data sources Phone start and end times are extracted from the [LibriSpeech Alignments](https://zenodo.org/records/2619474), obtained using the using the Montreal Forced Aligner by [Lugosch et al. (2019)](https://www.isca-archive.org/interspeech_2019/lugosch19_interspeech.html). Phone position is derived from the same source, using the word alignments to enumerate phones within each word start and end time. [`missing_alignments.json`](https://huggingface.co/datasets/mariannedhk/librispeech_phones/blob/main/missing_alignments.json) lists identifiers of files in the LibriSpeech corpus for which alignments are not available (by dataset split). Speaker sex is inferred from the `SPEAKERS.TXT` metadata file released with the LibriSpeech corpus. # Columns - `phone` phone label in ARPAbet transcription format (excluding stress marker) - `phone_stress` phone label in ARPAbet transcription format (including stress marker) - `phone_ipa` phone label in International Phonetic Alphabet transcription format - `phone_position` phone position within a word - `start_time` phone start time relative to audio file onset - `end_time` phone end time relative to audio file onset - `speaker_id` unique identifier for each speaker in the LibriSpeech corpus - `speaker_sex` speaker sex as reported in the LibriSpeech metadata - `file_id` unique identifier for each file in the LibriSpeech corpus - `subset` subset of the LibriSpeech corpus # Example usage ```python from datasets import load_dataset # download phone annotations for the full librispeech corpus libri_phones = load_dataset("mariannedhk/librispeech_phones") # download only phone annotations for the development sets # similarly, specify "all_train" or "all_test" for downloading only phone annotations from the train or test sets, respectively libri_dev_phones = load_dataset("mariannedhk/librispeech_phones", "all_dev") # load annotations for only the dev.clean split # (this may still download the full dataset first) libri_dev_clean_phones = load_dataset("mariannedhk/librispeech", split="dev.clean") ```
if001/MALLS-ja
if001
2025-06-06T10:11:05Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T10:11:02Z
null
--- dataset_info: features: - name: text dtype: string - name: FOL dtype: string - name: NL dtype: string splits: - name: train num_bytes: 8994849 num_examples: 27284 download_size: 5128544 dataset_size: 8994849 configs: - config_name: default data_files: - split: train path: data/train-* ---
jccj/so100_block_in_cup_at_home
jccj
2025-06-06T09:51:51Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "lerobot", "so100", "block_in_cup" ]
[ "robotics" ]
2025-06-06T09:04:43Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - lerobot - so100 - block_in_cup configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100_follower", "total_episodes": 48, "total_frames": 16860, "total_tasks": 1, "total_videos": 96, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:48" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "shoulder_pan.pos", "shoulder_lift.pos", "elbow_flex.pos", "wrist_flex.pos", "wrist_roll.pos", "gripper.pos" ] }, "observation.images.top": { "dtype": "video", "shape": [ 1080, 1920, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 1080, "video.width": 1920, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.wrist_left": { "dtype": "video", "shape": [ 1080, 1920, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 1080, "video.width": 1920, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
volcanos/OpenThoughts2-1M-ShortThink
volcanos
2025-06-06T09:50:23Z
0
0
[ "size_categories:1M<n<10M", "format:parquet", "modality:text", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T09:46:04Z
null
--- dataset_info: features: - name: conversations list: - name: from dtype: string - name: value dtype: string - name: question dtype: string - name: source dtype: string - name: id dtype: int64 splits: - name: train num_bytes: 5503025978 num_examples: 1028848 download_size: 1958219494 dataset_size: 5503025978 configs: - config_name: default data_files: - split: train path: data/train-* ---
lilaceclipse/orpheus-ft-sage-tokenized
lilaceclipse
2025-06-06T09:38:34Z
0
0
[ "size_categories:n<1K", "format:parquet", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T08:28:53Z
null
--- dataset_info: features: - name: input_ids sequence: int32 - name: labels sequence: int64 - name: attention_mask sequence: int8 splits: - name: train num_bytes: 410048 num_examples: 115 download_size: 203043 dataset_size: 410048 configs: - config_name: default data_files: - split: train path: data/train-* ---
smikulas/MNLP_M3_rag_documents_1
smikulas
2025-06-06T09:16:05Z
0
0
[ "language:en", "license:mit", "size_categories:1K<n<10K", "format:json", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "rag", "cs-552", "question-answering", "transformer", "milestone3" ]
[]
2025-06-06T09:15:19Z
null
--- license: mit language: en tags: - rag - cs-552 - question-answering - transformer - milestone3 --- # MNLP_M3_rag_documents This is a sample set of documents for use in Retrieval-Augmented Generation (RAG) evaluation.
dgambettaphd/D_llm2_run0_gen0_WXS_doc1000_synt64_lr1e-04_acm_FRESH
dgambettaphd
2025-06-06T08:58:32Z
0
0
[ "size_categories:10K<n<100K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T08:58:26Z
null
--- dataset_info: features: - name: id_doc dtype: int64 - name: text dtype: string - name: dataset dtype: string - name: gen dtype: int64 - name: synt dtype: int64 - name: MPP dtype: float64 splits: - name: train num_bytes: 9206292 num_examples: 16000 download_size: 5529638 dataset_size: 9206292 configs: - config_name: default data_files: - split: train path: data/train-* ---
upb-nlp/ro_fake_news
upb-nlp
2025-06-06T08:56:14Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T08:55:52Z
null
--- dataset_info: - config_name: default features: - name: id dtype: int64 - name: supernarrative dtype: string - name: narrative dtype: string - name: headline dtype: string - name: body dtype: string - name: similar dtype: string - name: link dtype: string - name: total_shares dtype: float64 - name: total_facebook_shares dtype: float64 - name: twitter_shares dtype: float64 - name: pinterest_shares dtype: float64 - name: total_reddit_engagements dtype: float64 - name: published_date dtype: string - name: author_name dtype: string - name: num_words dtype: float64 - name: facebook_comments dtype: float64 - name: facebook_shares dtype: float64 - name: facebook_likes dtype: float64 - name: num_linking_domains dtype: float64 - name: wow_count dtype: float64 - name: love_count dtype: float64 - name: haha_count dtype: float64 - name: sad_count dtype: float64 - name: angry_count dtype: float64 splits: - name: train num_bytes: 1588938 num_examples: 376 - name: validation num_bytes: 537186 num_examples: 125 - name: test num_bytes: 515054 num_examples: 126 download_size: 1495956 dataset_size: 2641178 - config_name: unlabeled features: - name: headline dtype: string - name: body dtype: string - name: link dtype: string - name: total_shares dtype: float64 - name: total_facebook_shares dtype: float64 - name: twitter_shares dtype: float64 - name: pinterest_shares dtype: float64 - name: total_reddit_engagements dtype: float64 - name: published_date dtype: string - name: author_name dtype: string - name: num_words dtype: float64 - name: facebook_comments dtype: float64 - name: facebook_shares dtype: float64 - name: facebook_likes dtype: float64 - name: num_linking_domains dtype: float64 - name: wow_count dtype: float64 - name: love_count dtype: float64 - name: haha_count dtype: float64 - name: sad_count dtype: float64 - name: angry_count dtype: float64 splits: - name: train num_bytes: 29407304 num_examples: 7950 download_size: 16874398 dataset_size: 29407304 configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* - config_name: unlabeled data_files: - split: train path: unlabeled/train-* ---
Tsegayesemere/emotions_3
Tsegayesemere
2025-06-06T08:49:23Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T06:33:52Z
null
--- configs: - config_name: default data_files: - split: train path: data/train-* - split: validation path: data/validation-* - split: test path: data/test-* dataset_info: features: - name: text dtype: string - name: label dtype: class_label: names: '0': αˆ“αŒŽαˆ΅ '1': α‰αŒ α‹ '2': αˆ˜α‹°α‰ αŠ› '3': αˆαŠ•αŠ£αˆ΅ splits: - name: train num_bytes: 25534 num_examples: 163 - name: validation num_bytes: 15828 num_examples: 95 - name: test num_bytes: 11824 num_examples: 74 download_size: 33957 dataset_size: 53186 --- # Dataset Card for "emotions_3" [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
PhanithLIM/asr-wmc-evaluate
PhanithLIM
2025-06-06T08:33:03Z
96
0
[ "size_categories:n<1K", "format:parquet", "modality:audio", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-05-08T11:00:31Z
null
--- dataset_info: features: - name: audio dtype: audio: sampling_rate: 16000 - name: text dtype: string - name: mms dtype: string - name: whisper-tiny-aug-7-may-lightning-v1 dtype: string - name: whisper-base-aug-20-april-lightning-v1 dtype: string - name: whisper-small-khmer dtype: string - name: google_api dtype: string - name: whisper-medium-aug-05-june dtype: string splits: - name: test num_bytes: 154657277.0 num_examples: 334 download_size: 153886621 dataset_size: 154657277.0 configs: - config_name: default data_files: - split: test path: data/test-* ---
deepakkarkala/dpo_sitcom_chandlerbing
deepakkarkala
2025-06-06T08:21:57Z
75
0
[ "region:us" ]
[]
2025-06-02T10:44:29Z
null
--- dataset_info: features: - name: messages list: - name: content dtype: string - name: role dtype: string - name: prompt list: - name: content dtype: string - name: role dtype: string - name: chosen list: - name: content dtype: string - name: role dtype: string - name: rejected list: - name: content dtype: string - name: role dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 52390276 num_examples: 7468 download_size: 4935333 dataset_size: 52390276 configs: - config_name: default data_files: - split: train path: data/train-* ---
pinatafarms/DAD-3DHeads
pinatafarms
2025-06-06T08:16:57Z
0
0
[ "license:cc-by-nc-4.0", "region:us" ]
[]
2025-06-06T08:16:57Z
null
--- license: cc-by-nc-4.0 ---
RunsenXu/MMSI-Bench
RunsenXu
2025-06-06T08:10:05Z
104
2
[ "task_categories:question-answering", "task_categories:visual-question-answering", "task_categories:multiple-choice", "language:en", "license:cc-by-4.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2505.23764", "region:us" ]
[ "question-answering", "visual-question-answering", "multiple-choice" ]
2025-05-27T09:44:38Z
2
--- language: - en license: cc-by-4.0 size_categories: - 1K<n<10K task_categories: - question-answering - visual-question-answering - multiple-choice pretty_name: MMSI-Bench dataset_info: features: - name: id dtype: int64 - name: images sequence: image - name: question_type dtype: string - name: question dtype: string - name: answer dtype: string - name: thought dtype: string splits: - name: test num_examples: 1000 configs: - config_name: default data_files: - split: test path: MMSI_Bench.parquet --- # MMSI-Bench This repo contains evaluation code for the paper "[MMSI-Bench: A Benchmark for Multi-Image Spatial Intelligence]" [**🌐 Homepage**](https://runsenxu.com/projects/MMSI_Bench/) | [**πŸ€— Dataset**](https://huggingface.co/datasets/RunsenXu/MMSI-Bench) | [**πŸ“‘ Paper**](https://arxiv.org/pdf/2505.23764) | [**πŸ’» Code**](https://github.com/OpenRobotLab/MMSI-Bench) | [**πŸ“– arXiv**](https://arxiv.org/abs/2505.23764) ## πŸ””News <!-- **πŸ”₯[2025-05-31]: MMSI-Bench has been supported in the [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) repository.** --> **πŸ”₯[2025-05-30]: We released the ArXiv paper.** ## Load Dataset ``` from datasets import load_dataset mmsi_bench = load_dataset("RunsenXu/MMSI-Bench") print(mmsi_bench) ``` ## Evaluation Please refer to the [evaluation guidelines](https://github.com/open-compass/VLMEvalKit/blob/main/docs/en/Quickstart.md) of [VLMEvalKit](https://github.com/open-compass/VLMEvalKit) <!-- <img src="assets/radar_v1.png" width="400" /> --> ## πŸ† MMSI-Bench Leaderboard | Model | Avg. (%) | Type | |------------------------------|:--------:|:-------------| | πŸ₯‡ **Human Level** | 97.2 | Baseline | | πŸ₯ˆ o3 | 41.0 | Proprietary | | πŸ₯‰ GPT-4.5 | 40.3 | Proprietary | | Gemini-2.5-Pro--Thinking | 37.0 | Proprietary | | Gemini-2.5-Pro | 36.9 | Proprietary | | Doubao-1.5-pro | 33.0 | Proprietary | | GPT-4.1 | 30.9 | Proprietary | | Qwen2.5-VL-72B | 30.7 | Open-source | | NVILA-15B | 30.5 | Open-source | | GPT-4o | 30.3 | Proprietary | | Claude-3.7-Sonnet--Thinking | 30.2 | Proprietary | | Seed1.5-VL | 29.7 | Proprietary | | InternVL2.5-2B | 29.0 | Open-source | | InternVL2.5-8B | 28.7 | Open-source | | DeepSeek-VL2-Small | 28.6 | Open-source | | InternVL3-78B | 28.5 | Open-source | | InternVL2.5-78B | 28.5 | Open-source | | LLaVA-OneVision-72B | 28.4 | Open-source | | NVILA-8B | 28.1 | Open-source | | InternVL2.5-26B | 28.0 | Open-source | | DeepSeek-VL2 | 27.1 | Open-source | | InternVL3-1B | 27.0 | Open-source | | InternVL3-9B | 26.7 | Open-source | | Qwen2.5-VL-3B | 26.5 | Open-source | | InternVL2.5-1B | 26.1 | Open-source | | InternVL2.5-4B | 26.3 | Open-source | | Qwen2.5-VL-7B | 25.9 | Open-source | | InternVL3-8B | 25.7 | Open-source | | Llama-3.2-11B-Vision | 25.4 | Open-source | | InternVL3-2B | 25.3 | Open-source | | πŸƒ **Random Guessing** | 25.0 | Baseline | | LLaVA-OneVision-7B | 24.5 | Open-source | | DeepSeek-VL2-Tiny | 24.0 | Open-source | | Blind GPT-4o | 22.7 | Baseline | ## Acknowledgment MMSI-Bench makes use of data from existing image datasets: [ScanNet](http://www.scan-net.org/), [nuScenes](https://www.nuscenes.org/), [Matterport3D](https://niessner.github.io/Matterport/), [Ego4D](https://ego4d-data.org/), [AgiBot-World](https://agibot-world.cn/), [DTU](https://roboimagedata.compute.dtu.dk/?page_id=36), [DAVIS-2017](https://davischallenge.org/) ,and [Waymo](https://waymo.com/open/). We thank these teams for their open-source contributions. ## Contact - Sihan Yang: [email protected] - Runsen Xu: [email protected] ## Citation ```bibtex @article{yang2025mmsi, title={MMSI-Bench: A Benchmark for Multi-Image Spatial Intelligence}, author={Yang, Sihan and Xu, Runsen and Xie, Yiman and Yang, Sizhe and Li, Mo and Lin, Jingli and Zhu, Chenming and Chen, Xiaochen and Duan, Haodong and Yue, Xiangyu and Lin, Dahua and Wang, Tai and Pang, Jiangmiao}, journal={arXiv preprint arXiv:2505.23764}, year={2025} } ```
howardat666/so101_test
howardat666
2025-06-06T07:53:17Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so101", "tutorial" ]
[ "robotics" ]
2025-06-06T05:56:51Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so101 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 1, "total_frames": 864, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Ryosei2/test_0606_4
Ryosei2
2025-06-06T07:39:35Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-06T07:39:29Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 1, "total_frames": 893, "total_tasks": 1, "total_videos": 2, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:1" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
Ryosei2/test_0606_2
Ryosei2
2025-06-06T07:31:48Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot" ]
[ "robotics" ]
2025-06-06T07:31:43Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 212, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "h264", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
TAUR-dev/SIE_EVAL__SIEXP_skill_inject_random_lm2d__rl__results
TAUR-dev
2025-06-06T07:14:38Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T07:14:34Z
null
--- dataset_info: features: - name: task dtype: string - name: alias dtype: string - name: evaluation_api_cost,none dtype: float64 - name: evaluation_api_cost_stderr,none dtype: string - name: exact_match,none dtype: float64 - name: exact_match_stderr,none dtype: string - name: extracted_answers,none dtype: int64 - name: extracted_answers_stderr,none dtype: string splits: - name: train num_bytes: 1183 num_examples: 16 download_size: 4299 dataset_size: 1183 configs: - config_name: default data_files: - split: train path: data/train-* ---
TAUR-dev/SIE_EVAL__SIEXP_first_response__ME__lm2d__sft__samples
TAUR-dev
2025-06-06T07:10:50Z
0
0
[ "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T07:10:47Z
null
--- dataset_info: features: - name: doc_id dtype: int64 - name: doc dtype: string - name: target dtype: string - name: arguments dtype: string - name: resps dtype: string - name: filtered_resps dtype: string - name: doc_hash dtype: string - name: prompt_hash dtype: string - name: target_hash dtype: string - name: exact_match dtype: int64 - name: extracted_answers dtype: string - name: source_file dtype: string - name: generation dtype: string - name: info dtype: string - name: evaluation_api_cost dtype: string splits: - name: train num_bytes: 158831788 num_examples: 3656 download_size: 21733185 dataset_size: 158831788 configs: - config_name: default data_files: - split: train path: data/train-* ---
jvelja/results_3b_clean
jvelja
2025-06-06T07:09:10Z
100
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-02T09:47:41Z
null
--- dataset_info: features: - name: problem_id dtype: string - name: problem dtype: string - name: reasoning dtype: string - name: solution dtype: string splits: - name: train num_bytes: 1032249 num_examples: 387 download_size: 464200 dataset_size: 1032249 configs: - config_name: default data_files: - split: train path: data/train-* ---
Jdemonn/NNewRefDrone
Jdemonn
2025-06-06T07:08:37Z
0
0
[ "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:image", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T06:59:24Z
null
--- license: apache-2.0 ---
TAUR-dev/SIE_EVAL__SIEXP__CC__concat_all__lm2d__rl__results
TAUR-dev
2025-06-06T06:56:12Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T06:56:11Z
null
--- dataset_info: features: - name: task dtype: string - name: alias dtype: string - name: evaluation_api_cost,none dtype: float64 - name: evaluation_api_cost_stderr,none dtype: string - name: exact_match,none dtype: float64 - name: exact_match_stderr,none dtype: string - name: extracted_answers,none dtype: int64 - name: extracted_answers_stderr,none dtype: string splits: - name: train num_bytes: 1183 num_examples: 16 download_size: 4295 dataset_size: 1183 configs: - config_name: default data_files: - split: train path: data/train-* ---
cyh002/sealion-prompt-engineering-inference-instruct-results
cyh002
2025-06-06T06:54:02Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-05T22:19:28Z
null
--- dataset_info: features: - name: instruction dtype: string - name: input dtype: string - name: output dtype: string - name: language dtype: string - name: medium dtype: string - name: topic dtype: string - name: domain dtype: string - name: prompt dtype: string - name: predicted_label dtype: string splits: - name: inference_dataset num_bytes: 585978 num_examples: 500 download_size: 131565 dataset_size: 585978 configs: - config_name: default data_files: - split: inference_dataset path: data/inference_dataset-* ---
nz-nz/eval_so101_test_smolvla
nz-nz
2025-06-06T06:24:19Z
0
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:n<1K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "tutorial" ]
[ "robotics" ]
2025-06-06T06:24:15Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so101", "total_episodes": 2, "total_frames": 538, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.wrist.right": { "dtype": "video", "shape": [ 640, 480, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 640, "video.width": 480, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.top": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```
MBZUAI/VideoMathQA
MBZUAI
2025-06-06T06:23:41Z
97
3
[ "task_categories:visual-question-answering", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:text", "modality:video", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "arxiv:2506.05349", "region:us" ]
[ "visual-question-answering" ]
2025-06-01T18:56:13Z
3
--- license: apache-2.0 task_categories: - visual-question-answering configs: - config_name: mcq data_files: - split: test path: videomathqa_mcq_test.parquet - config_name: multi_binary data_files: - split: test path: videomathqa_mbin_test.parquet --- # VideoMathQA: Benchmarking Mathematical Reasoning via Multimodal Understanding in Videos [![Paper](https://img.shields.io/badge/πŸ“„_arXiv-Paper-blue)](https://arxiv.org/abs/2506.05349) [![Website](https://img.shields.io/badge/🌐_Project-Website-87CEEB)](https://mbzuai-oryx.github.io/VideoMathQA) [![πŸ… Leaderboard (Reasoning)](https://img.shields.io/badge/πŸ…_Leaderboard-Reasoning-red)](https://hanoonar.github.io/VideoMathQA/#leaderboard-2) [![πŸ… Leaderboard (Direct)](https://img.shields.io/badge/πŸ…_Leaderboard-Direct-yellow)](https://hanoonar.github.io/VideoMathQA/#leaderboard) [![πŸ“Š Eval (LMMs-Eval)](https://img.shields.io/badge/πŸ“Š_Eval-LMMs--Eval-orange)](https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main/lmms_eval/tasks/videomathqa) ## πŸ“£ Announcement Note that the Official evaluation for **VideoMathQA** is supported in the [`lmms-eval`](https://github.com/EvolvingLMMs-Lab/lmms-eval/tree/main/lmms_eval/tasks/videomathqa) framework. Please use the GitHub repository [`mbzuai-oryx/VideoMathQA`](https://github.com/mbzuai-oryx/VideoMathQA) to create or track any issues related to VideoMathQA that you may encounter. --- ## πŸ’‘ VideoMathQA **VideoMathQA** is a benchmark designed to evaluate mathematical reasoning in real-world educational videos. It requires models to interpret and integrate information from **three modalities**, visuals, audio, and text, across time. The benchmark tackles the **needle-in-a-multimodal-haystack** problem, where key information is sparse and spread across different modalities and moments in the video. <p align="center"> <img src="images/intro_fig.png" alt="Highlight Figure"><br> <em>The foundation of our benchmark is the needle-in-a-multimodal-haystack challenge, capturing the core difficulty of cross-modal reasoning across time from visual, textual, and audio streams. Built on this, VideoMathQA categorizes each question along four key dimensions: reasoning type, mathematical concept, video duration, and difficulty.</em> </p> --- ## πŸ”₯ Highlights - **Multimodal Reasoning Benchmark:** VideoMathQA introduces a challenging **needle-in-a-multimodal-haystack** setup where models must reason across **visuals, text and audio**. Key information is **sparsely distributed across modalities and time**, requiring strong performance in fine-grained visual understanding, multimodal integration, and reasoning. - **Three Types of Reasoning:** Questions are categorized into: **Problem Focused**, where the question is explicitly stated and solvable via direct observation and reasoning from the video; **Concept Transfer**, where a demonstrated method or principle is adapted to a newly posed problem; **Deep Instructional Comprehension**, which requires understanding long-form instructional content, interpreting partially worked-out steps, and completing the solution. - **Diverse Evaluation Dimensions:** Each question is evaluated across four axes, which captures diversity in content, length, complexity, and reasoning depth. **mathematic concepts**, 10 domains such as geometry, statistics, arithmetics and charts; **video duration** ranging from 10s to 1 hour long categorized as short, medium, long; **difficulty level**; and **reasoning type**. - **High-Quality Human Annotations:** The benchmark includes **420 expert-curated questions**, each with five answer choices, a correct answer, and detailed **chain-of-thought (CoT) steps**. Over **2,945 reasoning steps** have been manually written, reflecting **920+ hours** of expert annotation effort with rigorous quality control. ## πŸ” Examples from the Benchmark We present example questions from <strong>VideoMathQA</strong> illustrating the three reasoning types: Problem Focused, Concept Transfer, and Deep Comprehension. The benchmark includes evolving dynamics in a video, complex text prompts, five multiple-choice options, the expert-annotated step-by-step reasoning to solve the given problem, and the final correct answer as shown above. <p align="center"> <img src="images/data_fig.png" alt="Figure 1" width="90%"> </p> --- ## πŸ“ˆ Overview of VideoMathQA We illustrate an overview of the <strong>VideoMathQA</strong> benchmark through: <strong>a)</strong>&nbsp;The distribution of questions and model performance across ten mathematical concepts, which highlights a significant gap in the current multimodal models and their ability to perform mathematical reasoning over videos. <strong>b)</strong>&nbsp;The distribution of video durations, spanning from short clips of 10s to long videos up to 1hr. <strong>c)</strong>&nbsp;Our three-stage annotation pipeline performed by expert science graduates, who annotate detailed step-by-step reasoning trails, with strict quality assessment at each stage. <p align="center"> <img src="images/stat_fig.png" alt="Figure 2" width="90%"> </p>
sajal09/Calib64_32_32
sajal09
2025-06-06T06:21:27Z
0
0
[ "size_categories:n<1K", "format:parquet", "modality:text", "library:datasets", "library:pandas", "library:mlcroissant", "library:polars", "region:us" ]
[]
2025-06-06T06:21:25Z
null
--- dataset_info: features: - name: text dtype: string - name: dataset dtype: string splits: - name: train num_bytes: 127336 num_examples: 128 download_size: 77916 dataset_size: 127336 configs: - config_name: default data_files: - split: train path: data/train-* ---
fjpaxkm/so100_test
fjpaxkm
2025-06-06T06:20:22Z
364
0
[ "task_categories:robotics", "license:apache-2.0", "size_categories:1K<n<10K", "format:parquet", "modality:tabular", "modality:timeseries", "modality:video", "library:datasets", "library:dask", "library:mlcroissant", "library:polars", "region:us", "LeRobot", "so100", "tutorial" ]
[ "robotics" ]
2025-05-27T10:08:35Z
null
--- license: apache-2.0 task_categories: - robotics tags: - LeRobot - so100 - tutorial configs: - config_name: default data_files: data/*/*.parquet --- This dataset was created using [LeRobot](https://github.com/huggingface/lerobot). ## Dataset Description - **Homepage:** [More Information Needed] - **Paper:** [More Information Needed] - **License:** apache-2.0 ## Dataset Structure [meta/info.json](meta/info.json): ```json { "codebase_version": "v2.1", "robot_type": "so100", "total_episodes": 2, "total_frames": 836, "total_tasks": 1, "total_videos": 4, "total_chunks": 1, "chunks_size": 1000, "fps": 30, "splits": { "train": "0:2" }, "data_path": "data/chunk-{episode_chunk:03d}/episode_{episode_index:06d}.parquet", "video_path": "videos/chunk-{episode_chunk:03d}/{video_key}/episode_{episode_index:06d}.mp4", "features": { "action": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.state": { "dtype": "float32", "shape": [ 6 ], "names": [ "main_shoulder_pan", "main_shoulder_lift", "main_elbow_flex", "main_wrist_flex", "main_wrist_roll", "main_gripper" ] }, "observation.images.laptop": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "observation.images.phone": { "dtype": "video", "shape": [ 480, 640, 3 ], "names": [ "height", "width", "channels" ], "info": { "video.height": 480, "video.width": 640, "video.codec": "av1", "video.pix_fmt": "yuv420p", "video.is_depth_map": false, "video.fps": 30, "video.channels": 3, "has_audio": false } }, "timestamp": { "dtype": "float32", "shape": [ 1 ], "names": null }, "frame_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "episode_index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "index": { "dtype": "int64", "shape": [ 1 ], "names": null }, "task_index": { "dtype": "int64", "shape": [ 1 ], "names": null } } } ``` ## Citation **BibTeX:** ```bibtex [More Information Needed] ```