id
stringlengths
22
42
metadata
dict
text
stringlengths
9
1.03M
proofpile-julia0005-42849
{ "provenance": "014.jsonl.gz:242850" }
function FDivRhoGrad2Vec!(F,cCG,RhoCG,CG,Param) nz=Param.Grid.nz; OP=CG.OrdPoly+1; NF=Param.Grid.NumFaces; D1cCG = Param.CacheC1 D2cCG = Param.CacheC2 grad1CG = Param.CacheC3 grad2CG = Param.CacheC4 D1gradCG = Param.CacheC1 D2gradCG = Param.CacheC2 vC1 = Param.CacheC3 vC2 = Param.CacheC4 JC = Param.cache.JC mul!(reshape(D1cCG,OP,OP*NF*nz),CG.DS,reshape(cCG,OP,OP*nz*NF)) mul!(reshape(PermutedDimsArray(D2cCG,(2,1,3,4)),OP,OP*NF*nz),CG.DS,reshape(PermutedDimsArray(cCG,(2,1,3,4)),OP,OP*nz*NF)) grad1CG .= RhoCG .* (Param.dXdxIC11.*D1cCG .+ Param.dXdxIC21.*D2cCG) grad2CG .= RhoCG .* (Param.dXdxIC12.*D1cCG .+ Param.dXdxIC22.*D2cCG) D1gradCG .= Param.dXdxIC11.*grad1CG .+ Param.dXdxIC12.*grad2CG D2gradCG .= Param.dXdxIC21.*grad1CG .+ Param.dXdxIC22.*grad2CG mul!(reshape(vC1,OP,OP*NF*nz),CG.DW,reshape(D1gradCG,OP,OP*nz*NF)) mul!(reshape(PermutedDimsArray(vC2,(2,1,3,4)),OP,OP*NF*nz),CG.DW,reshape(PermutedDimsArray(D2gradCG,(2,1,3,4)),OP,OP*nz*NF)) F .= F .- Param.HyperDDiv .* (vC1 .+ vC2) ./ JC end function FDivRhoGrad2Vec(cCG,RhoCG,CG,Param) nz=Param.Grid.nz; OP=CG.OrdPoly+1; NF=Param.Grid.NumFaces; dXdxIC = Param.cache.dXdxIC JC = Param.cache.JC D1cCG=reshape( CG.DS*reshape(cCG,OP,OP*NF*nz) ,OP,OP,NF,nz); D2cCG=permute(reshape( CG.DS*reshape( permute( reshape(cCG,OP,OP,NF,nz) ,[2 1 3 4]) ,OP,OP*NF*nz) ,OP,OP,NF,nz) ,[2 1 3 4]); gradCG1=RhoCG .* (dXdxIC[:,:,:,:,1,1].*D1cCG + dXdxIC[:,:,:,:,2,1].*D2cCG); gradCG2=RhoCG .* (dXdxIC[:,:,:,:,1,2].*D1cCG + dXdxIC[:,:,:,:,2,2].*D2cCG); divCG=(reshape( CG.DW*(reshape(gradCG1,OP,OP*NF*nz) .* reshape(dXdxIC[:,:,:,:,1,1],OP,OP*NF*nz) + reshape(gradCG2,OP,OP*NF*nz) .* reshape(dXdxIC[:,:,:,:,1,2],OP,OP*NF*nz)) ,OP,OP,NF,nz) + permute( reshape( CG.DW*reshape( permute( (reshape(gradCG1,OP,OP,NF,nz) .* dXdxIC[:,:,:,:,2,1] + reshape(gradCG2,OP,OP,NF,nz) .* dXdxIC[:,:,:,:,2,2]) ,[2 1 3 4]) ,OP,OP*NF*nz) ,OP,OP,NF,nz) ,[2 1 3 4]))./JC; return divCG end
proofpile-julia0005-42850
{ "provenance": "014.jsonl.gz:242851" }
function charttype_to_dict(chart::GoogleChart) [ :chart_type => chart.chart_type, :chart_id => chart.id, :width=>chart.width, :height=>chart.height, :chart_data => chart.data, :chart_options => JSON.json(chart.options) ] end ## take vector of google charts function charts_to_dict(charts) packages = union([chart.packages for chart in charts]...) [:chart_packages => JSON.json(packages), :charts => [charttype_to_dict(chart) for chart in charts], :chart_xtra => join([chart.xtra for chart in charts],"\n") ] end ## Render charts ## io -- render to io stream ## fname -- render to file ## none -- create html file, show in browser function render{T <: GoogleChart}(io::IO, charts::Vector{T}, # chart objects tpl::Union(Nothing, Mustache.MustacheTokens) # Mustache template. Default is entire page ) details = charts_to_dict(charts) ## defaults _tpl = isa(tpl, Nothing) ? chart_tpl : tpl Mustache.render(io, _tpl, details) end function render{T <: GoogleChart}(fname::String, charts::Vector{T}, tpl::Union(Nothing, Mustache.MustacheTokens)) io = open(fname, "w") render(io, charts, tpl) close(io) end function render{T <: GoogleChart}(charts::Vector{T}, tpl::Union(Nothing, Mustache.MustacheTokens)) fname = tempname() * ".html" render(fname, charts, tpl) open_url(fname) end ## no tpl render{T <: GoogleChart}(io::IO, charts::Vector{T}) = render(io, charts, nothing) render{T <: GoogleChart}(fname::String, charts::Vector{T}) = render(fname, charts, nothing) ## no io or file name specified, render to browser render{T <: GoogleChart}(charts::Vector{T}) = render(charts, nothing) render{T <: GoogleChart}(io::Nothing, charts::Vector{T}, tpl::Union(Nothing, Mustache.MustacheTokens)) = render(charts, tpl) render(io::IO, chart::GoogleChart, tpl::Union(Nothing, Mustache.MustacheTokens)) = render(io, [chart], tpl) render(io::IO, chart::GoogleChart) = render(io, chart, nothing) render(fname::String, chart::GoogleChart, tpl::Union(Nothing, Mustache.MustacheTokens)) = render(fname, [chart], tpl) render(fname::String, chart::GoogleChart) = render(fname, [chart], nothing) render(chart::GoogleChart, tpl::Union(Nothing, Mustache.MustacheTokens)) = render([chart], tpl) render(chart::GoogleChart) = render([chart]) render(io::Nothing, chart::GoogleChart, tpl::Union(Nothing, Mustache.MustacheTokens)) = render([chart], tpl) render(io::Nothing, chart::GoogleChart) = render([chart], nothing) ## for using within Gadfly.weave: gadfly_weave_tpl = """ <div id={{:id}} style="width:{{:width}}px; height:{{:height}}px;"></div> <script> var {{:id}}_data = {{{:chart_data}}}; var {{:id}}_options = {{{:chart_options}}}; var {{:id}}_chart = new google.visualization.{{:chart_type}}(document.getElementById('{{:id}}'));{{:id}}_chart.draw({{:id}}_data, {{:id}}_options); </script> """ ## this is used by weave... function gadfly_format(x::CoreChart) d = [:id => x.id, :width => 600, :height => 400, :chart_data => x.data, :chart_options => json(x.options), :chart_type => x.chart_type ] Mustache.render(gadfly_weave_tpl, d) end ## IJulia support import Base.writemime export writemime ## read https://developers.google.com/loader/#GoogleLoad to see if this can be tidied up writemime_tpl = """ <div id={{:id}} style="width:{{:width}}px; height:{{:height}}px;"></div> <script> function load_chart_{{:id}}() { var {{:id}}_data = {{{:chart_data}}}; var {{:id}}_options = {{{:chart_options}}}; var {{:id}}_chart = new google.visualization.{{:chart_type}}(document.getElementById('{{:id}}'));{{:id}}_chart.draw({{:id}}_data, {{:id}}_options); } setTimeout(function(){ google.load('visualization', '1', { 'callback':load_chart_{{:id}}, 'packages':['corechart'] } )}, 10); </script> """ function writemime(io::IO, ::MIME"text/html", x::GoogleChart) d = [:id => x.id, :width => 600, :height => 400, :chart_data => x.data, :chart_options => json(x.options), :chart_type => x.chart_type ] out = Mustache.render(writemime_tpl, d) print(io, out) end ## inject code into browser if displayable inject_javascript() = display("text/html", """ <script type='text/javascript' src='https://www.google.com/jsapi'></script> """) ## inject when package is loaded if displayable("text/html") inject_javascript() end ## in case surface plot is desired (not reliable) inject_surfaceplot_javascript() = Base.display("text/html", """ <script type='text/javascript' src='http://javascript-surface-plot.googlecode.com/svn/trunk/javascript/SurfacePlot.js'></script> <script type='text/javascript' src='http://javascript-surface-plot.googlecode.com/svn/trunk/javascript/ColourGradient.js'></script> """) ## display to browser, or writemime #function Base.repl_show(io::IO, chart::GoogleChart) function writemime(io::IO, ::MIME"text/plain", chart::GoogleChart) if io === STDOUT render(nothing, chart) else writemime(io, "text/html", chart) end end # Base.show(io::IO, chart::GoogleChart) = print(io, "<plot>")
proofpile-julia0005-42851
{ "provenance": "014.jsonl.gz:242852" }
export prune """ prune(m, xs...; trim_args = true) Returns a model transformed by removing `xs...` and all variables that depend on `xs...`. If `trim_args = true`, unneeded arguments are also removed. Use `trim_args = false` to leave arguments unaffected. # Examples ```jldoctest m = @model n begin α ~ Gamma() β ~ Gamma() θ ~ Beta(α,β) x ~ Binomial(n, θ) end; prune(m, :θ) # output @model begin β ~ Gamma() α ~ Gamma() end ``` ```jldoctest m = @model n begin α ~ Gamma() β ~ Gamma() θ ~ Beta(α,β) x ~ Binomial(n, θ) end; prune(m, :n) # output @model begin β ~ Gamma() α ~ Gamma() θ ~ Beta(α, β) end ``` """ function prune(m::Model, xs :: Symbol...; trim_args = true) po = poset(m) #Creates a new SimplePoset, so no need to copy before mutating newvars = variables(m) for x in xs setdiff!(newvars, above(po,x)) setdiff!(newvars, [x]) end # Keep arguments in newvars newargs = arguments(m) ∩ newvars setdiff!(newvars, newargs) if trim_args # keep arguments only if depended upon by newvars dependencies = mapfoldl(var -> below(po, var), vcat, newvars, init = Symbol[]) # mapfoldl needed since newvars can be empty newargs = dependencies ∩ newargs end theModule = getmodule(m) m_init = Model(theModule, newargs, NamedTuple(), NamedTuple(), nothing) m = foldl(newvars; init=m_init) do m0,v merge(m0, Model(theModule, findStatement(m, v))) end end
proofpile-julia0005-42852
{ "provenance": "014.jsonl.gz:242853" }
module Core import FileIO; include("res_dir_tree.jl"); include("add_to_log.jl"); include("build_description.jl"); include("save_and_load_data.jl"); include("save_and_load_desc.jl"); include("load_log.jl"); end
proofpile-julia0005-42853
{ "provenance": "014.jsonl.gz:242854" }
abstract type AbstractStdShape{T} end ##### # StdPoint ##### struct StdPoint{T} <: AbstractStdShape{T} end ##### # StdLine ##### struct StdLine{T} <: AbstractStdShape{T} half_length::T end get_half_length(line::StdLine) = line.half_length # head, tail, and vertices for StdLine get_head(line::StdLine{T}) where {T} = SA.SVector(get_half_length(line), zero(T)) get_tail(line::StdLine{T}) where {T} = SA.SVector(-get_half_length(line), zero(T)) get_vertices(line::StdLine) = (get_tail(line), get_head(line)) # head, tail, and vertices for StdLine at arbitrary position get_head(line::StdLine{T}, pos::SA.SVector{2, T}) where {T} = pos + get_head(line) get_tail(line::StdLine{T}, pos::SA.SVector{2, T}) where {T} = pos + get_tail(line) get_vertices(line::StdLine{T}, pos::SA.SVector{2, T}) where {T} = (get_tail(line, pos), get_head(line, pos)) # head, tail, and vertices for StdLine at arbitrary position and orientation get_head(line::StdLine{T}, pos::SA.SVector{2, T}, dir::SA.SVector{2, T}) where {T} = pos + get_half_length(line) * dir get_tail(line::StdLine{T}, pos::SA.SVector{2, T}, dir::SA.SVector{2, T}) where {T} = pos - get_half_length(line) * dir get_vertices(line::StdLine{T}, pos::SA.SVector{2, T}, dir::SA.SVector{2, T}) where {T} = (get_tail(line, pos, dir), get_head(line, pos, dir)) ##### # StdCircle ##### struct StdCircle{T} <: AbstractStdShape{T} radius::T end get_radius(circle::StdCircle) = circle.radius function get_area(circle::StdCircle{T}) where {T} radius = get_radius(circle) return convert(T, pi * radius * radius) end ##### # StdRect ##### struct StdRect{T} <: AbstractStdShape{T} half_width::T half_height::T end get_half_width(rect::StdRect) = rect.half_width get_half_height(rect::StdRect) = rect.half_height get_width(rect::StdRect) = 2 * get_half_width(rect) get_height(rect::StdRect) = 2 * get_half_height(rect) # bottom_left, bottom_right, top_left, top_right, and vertices for StdRect get_bottom_left(rect::StdRect) = SA.SVector(-get_half_width(rect), -get_half_height(rect)) get_bottom_right(rect::StdRect) = SA.SVector(get_half_width(rect), -get_half_height(rect)) get_top_right(rect::StdRect) = SA.SVector(get_half_width(rect), get_half_height(rect)) get_top_left(rect::StdRect) = SA.SVector(-get_half_width(rect), get_half_height(rect)) get_vertices(rect::StdRect{T}) where {T} = (get_bottom_left(rect), get_bottom_right(rect), get_top_right(rect), get_top_left(rect)) # bottom_left, bottom_right, top_left, top_right, and vertices for StdRect at arbitrary position get_bottom_left(rect::StdRect{T}, pos::SA.SVector{2, T}) where {T} = pos + SA.SVector(-get_half_width(rect), -get_half_height(rect)) get_bottom_right(rect::StdRect{T}, pos::SA.SVector{2, T}) where {T} = pos + SA.SVector(get_half_width(rect), -get_half_height(rect)) get_top_right(rect::StdRect{T}, pos::SA.SVector{2, T}) where {T} = pos + SA.SVector(get_half_width(rect), get_half_height(rect)) get_top_left(rect::StdRect{T}, pos::SA.SVector{2, T}) where {T} = pos + SA.SVector(-get_half_width(rect), get_half_height(rect)) get_vertices(rect::StdRect{T}, pos::SA.SVector{2, T}) where {T} = (get_bottom_left(rect, pos), get_bottom_right(rect, pos), get_top_right(rect, pos), get_top_left(rect, pos)) # bottom_left, bottom_right, top_left, top_right, and vertices for StdRect at arbitrary position and orientation get_bottom_left(rect::StdRect{T}, pos::SA.SVector{2, T}, dir::SA.SVector{2, T}) where {T} = pos - get_half_width(rect) * dir - get_half_height(rect) * rotate_plus_90(dir) get_bottom_right(rect::StdRect{T}, pos::SA.SVector{2, T}, dir::SA.SVector{2, T}) where {T} = pos + get_half_width(rect) * dir - get_half_height(rect) * rotate_plus_90(dir) get_top_right(rect::StdRect{T}, pos::SA.SVector{2, T}, dir::SA.SVector{2, T}) where {T} = pos + get_half_width(rect) * dir + get_half_height(rect) * rotate_plus_90(dir) get_top_left(rect::StdRect{T}, pos::SA.SVector{2, T}, dir::SA.SVector{2, T}) where {T} = pos - get_half_width(rect) * dir + get_half_height(rect) * rotate_plus_90(dir) get_vertices(rect::StdRect{T}, pos::SA.SVector{2, T}, dir::SA.SVector{2, T}) where {T} = (get_bottom_left(rect, pos, dir), get_bottom_right(rect, pos, dir), get_top_right(rect, pos, dir), get_top_left(rect, pos, dir)) get_area(rect::StdRect{T}) where {T} = convert(T, 4 * get_half_width(rect) * get_half_height(rect)) get_normals(rect::StdRect{T}) where {T} = get_normals(rect, SA.SVector(one(T), zero(T))) function get_normals(rect::StdRect{T}, dir::SA.SVector{2, T}) where {T} x_cap = dir y_cap = rotate_plus_90(dir) return (-y_cap, x_cap, y_cap, -x_cap) end
proofpile-julia0005-42854
{ "provenance": "014.jsonl.gz:242855" }
using RasterShadow using Test using JLD @testset "basic input" begin flat = ones(20,10) flat_sh = shadowing(flat,45,45,1) @test size(flat_sh) == size(flat) @test flat_sh == ones(20,10) end testdata = JLD.load(joinpath(@__DIR__,"testdata","testdata.jld")) dem = testdata["dem"] @testset "shadowing" begin @test testdata["sh_30_30"] == shadowing(dem,30,30,0.5) @test testdata["sh_150_80"] == shadowing(dem,150,80,0.5) @test testdata["sh_150_80"] == shadowing(dem,150,80,0.5) end
proofpile-julia0005-42855
{ "provenance": "014.jsonl.gz:242856" }
# -*- encoding: utf-8 -*- # # The MIT License (MIT) # # Copyright © 2021 Matteo Foglieni and Riccardo Gervasoni # """ Scene( materials::Dict{String, Material} = Dict{String, Material}(), world::World = World(), camera::Union{Camera, Nothing} = nothing, float_variables::Dict{String, Float64} = Dict{String, Float64}(), string_variables::Dict{String, String} = Dict{String, String}(), bool_variables::Dict{String, Bool} = Dict{String, Bool}(), vector_variables::Dict{String,Vec} = Dict{String,Vec}(), color_variables::Dict{String,RGB{Float32}} = Dict{String,RGB{Float32}}(), pigment_variables::Dict{String,Pigment} = Dict{String,Pigment}(), brdf_variables::Dict{String,BRDF} = Dict{String,BRDF}(), transformation_variables::Dict{String,Transformation} = Dict{String,Transformation}(), variable_names::Set{String} = Set{String}(), overridden_variables::Set{String} = Set{String}(), ) A scene read from a scene file. See also: [`Material`](@ref), [`World`](@ref), [`Camera`](@ref), [`Vec`](@ref), [`Pigment`](@ref), [`BRDF`](@ref), [`Transformation`](@ref) """ mutable struct Scene materials::Dict{String, Material} world::World camera::Union{Camera, Nothing} float_variables::Dict{String, Float64} string_variables::Dict{String, String} bool_variables::Dict{String,Bool} vector_variables::Dict{String,Vec} color_variables::Dict{String,RGB{Float32}} pigment_variables::Dict{String,Pigment} brdf_variables::Dict{String,BRDF} transformation_variables::Dict{String,Transformation} variable_names::Set{String} overridden_variables::Set{String} Scene( materials::Dict{String, Material} = Dict{String, Material}(), world::World = World(), camera::Union{Camera, Nothing} = nothing, float_variables::Dict{String, Float64} = Dict{String, Float64}(), string_variables::Dict{String, String} = Dict{String, String}(), bool_variables::Dict{String, Bool} = Dict{String, Bool}(), vector_variables::Dict{String,Vec} = Dict{String,Vec}(), color_variables::Dict{String,RGB{Float32}} = Dict{String,RGB{Float32}}(), pigment_variables::Dict{String,Pigment} = Dict{String,Pigment}(), brdf_variables::Dict{String,BRDF} = Dict{String,BRDF}(), transformation_variables::Dict{String,Transformation} = Dict{String,Transformation}(), variable_names::Set{String} = Set{String}(), overridden_variables::Set{String} = Set{String}(), ) = new( materials, world, camera, float_variables, string_variables, bool_variables, vector_variables, color_variables, pigment_variables, brdf_variables, transformation_variables, variable_names, overridden_variables, ) end ##########################################################################################92 function expect_symbol(inputstream::InputStream, symbol::String) token = read_token(inputstream) if (typeof(token.value) ≠ SymbolToken) || (token.value.symbol ≠ symbol) throw(GrammarError(token.location, "got $(token) insted of $(symbol)")) end end function expect_symbol(inputstream::InputStream, vec_symbol::Vector{String}) token = read_token(inputstream) if (typeof(token.value) ≠ SymbolToken) || (token.value.symbol ∉ vec_symbol) throw(GrammarError(token.location, "got $(token) instead of $(vec_symbol)")) end return token.value.symbol end """ expect_symbol(inputstream::InputStream, symbol::String) expect_symbol(inputstream::InputStream, vec_symbol::Vector{String}) :: String Read a token from `inputstream` and check that its type is `SymbolToken` and its value is `symbol`(first method) or a value inside `vec_symbol` (second method, and return it), throwing `GrammarError` otherwise. Call internally [`read_token`](@ref). See also: [`InputStream`](@ref), [`KeywordEnum`](@ref), [`SymbolToken`](@ref) """ expect_symbol """ expect_keywords(inputstream::InputStream, keywords::Vector{KeywordEnum}) :: KeywordEnum Read a token from `inputstream` and check that its type is `KeywordToken` and its value is one of the keywords in `keywords`, throwing `GrammarError` otherwise. Call internally [`read_token`](@ref). See also: [`InputStream`](@ref), [`KeywordEnum`](@ref), [`KeywordToken`](@ref) """ function expect_keywords(inputstream::InputStream, keywords::Vector{KeywordEnum}) token = read_token(inputstream) if typeof(token.value) ≠ KeywordToken throw(GrammarError(token.location, "expected a keyword instead of '$(token)' ")) end if token.value.keyword ∉ keywords throw(GrammarError( token.location, "expected one of the keywords $([x for x in keywords]) instead of '$(token)'" )) end return token.value.keyword end """ expect_number(inputstream::InputStream, scene::Scene) :: Float64 Read a token from `inputstream` and check that its type is `LiteralNumberToken` (i.e. a number) or `IdentifierToken` (i.e. a variable defined in `scene`), throwing `GrammarError` otherwise. Return the float64-parsed number or the identifier associated float64-parsed number, respectively. Call internally [`read_token`](@ref). See also: [`InputStream`](@ref), [`Scene`](@ref), [`LiteralNumberToken`](@ref), [`IdentifierToken`](@ref) """ function expect_number(inputstream::InputStream, scene::Scene, open::Bool=false) token = read_token(inputstream) result = "" if typeof(token.value) == SymbolToken && token.value.symbol == "(" result *= "("*expect_number(inputstream, scene, true) expect_symbol(inputstream, ")") result *= ")" token = read_token(inputstream) end if typeof(token.value) == SymbolToken && token.value.symbol == "-" result *= "-" token = read_token(inputstream) end while true if (typeof(token.value) == SymbolToken) && (token.value.symbol ∈ OPERATIONS) result *= token.value.symbol elseif (typeof(token.value) == IdentifierToken) && (token.value.identifier ∈ keys(SYM_NUM)) result *= string(SYM_NUM[token.value.identifier]) elseif typeof(token.value) == IdentifierToken variable_name = token.value.identifier if (variable_name ∈ keys(scene.float_variables) ) next_number = scene.float_variables[variable_name] result *= repr(next_number) elseif isdefined(Raytracing, Symbol(variable_name)) || isdefined(Base, Symbol(variable_name)) unread_token(inputstream, token) result *= parse_function(inputstream, scene) else throw(GrammarError(token.location, "unknown variable '$(token)'")) end elseif typeof(token.value) == LiteralNumberToken result *= repr(token.value.number) elseif (typeof(token.value) == SymbolToken) && (token.value.symbol=="(") result *= "("*expect_number(inputstream, scene, true) expect_symbol(inputstream, ")") result *= ")" else unread_token(inputstream, token) break end #= elseif (typeof(token.value) == SymbolToken) && (token.value.symbol==")") unread_token(inputstream, token) break else throw(GrammarError(token.location, "unknown variable '$(token)'")) end =# token = read_token(inputstream) end if open == true return result else return eval(Meta.parse(result)) end end """ expect_bool(inputstream::InputStream, scene::Scene) :: Bool Read a token from `inputstream` and check that its type is `KeywordToken` or `IdentifierToken` (i.e. a variable defined in `scene`), throwing `GrammarError` otherwise. Return the parsed bool or the identifier associated parsed bool, respectively. Call internally [`read_token`](@ref). See also: [`InputStream`](@ref), [`Scene`](@ref), [`KeywordToken`](@ref), [`IdentifierToken`](@ref) """ function expect_bool(inputstream::InputStream, scene::Scene) token = read_token(inputstream) if typeof(token.value) == KeywordToken unread_token(inputstream, token) keyword = expect_keywords(inputstream, [ TRUE, FALSE]) if keyword == TRUE return true elseif keyword == FALSE return false else throw(ArgumentError("how did you come here?")) end elseif typeof(token.value) == IdentifierToken variable_name = token.value.identifier (variable_name ∈ keys(scene.bool_variables) ) || throw(GrammarError(token.location, "unknown bool variable '$(token)'")) return scene.bool_variables[variable_name] else throw(GrammarError(token.location, "got '$(token)' instead of a bool variable")) end end """ expect_string(inputstream::InputStream, scene::Scene) :: String Read a token from `inputstream` and check that its type is `StringToken`, throwing `GrammarError` otherwise. Return the string associated with the readed `StringToken`. Call internally [`read_token`](@ref). See also: [`InputStream`](@ref), [`Scene`](@ref), [`StringToken`](@ref), """ function expect_string(inputstream::InputStream, scene::Scene) token = read_token(inputstream) if typeof(token.value) == StringToken return token.value.string elseif typeof(token.value) == IdentifierToken variable_name = token.value.identifier if variable_name ∉ keys(scene.string_variables) throw(GrammarError(token.location, "unknown string variable '$(token)'")) end return scene.string_variables[variable_name] else throw(GrammarError(token.location, "got $(token) instead of a string")) end end """ expect_identifier(inputstream::InputStream) :: String Read a token from `inputstream` and check that it is an identifier. Return the name of the identifier. Read a token from `inputstream` and check that its type is `IdentifierToken`, throwing `GrammarError` otherwise. Return the name of the identifier as a `String`. Call internally [`read_token`](@ref). See also: [`InputStream`](@ref), [`Scene`](@ref), [`IdentifierToken`](@ref), """ function expect_identifier(inputstream::InputStream) token = read_token(inputstream) if (typeof(token.value) ≠ IdentifierToken) throw(GrammarError(token.location, "got $(token) instead of an identifier")) end return token.value.identifier end ##########################################################################################92 """ parse_vector(inputstream::InputStream, scene::Scene) :: Vec Parse a vector from the given `inputstream` and return it. Call internally [`expect_number`](@ref) and [`expect_symbol`](@ref). See also: [`InputStream`](@ref), [`Scene`](@ref), [`Vec`](@ref) """ function parse_vector(inputstream::InputStream, scene::Scene, open::Bool=false) token = read_token(inputstream) result = "" if typeof(token.value) == SymbolToken && token.value.symbol == "(" result *= "("*parse_vector(inputstream, scene, true) expect_symbol(inputstream, ")") result *= ")" token = read_token(inputstream) end if typeof(token.value) == SymbolToken && token.value.symbol == "-" result *= "-" token = read_token(inputstream) end while true if (typeof(token.value) == SymbolToken) && (token.value.symbol ∈ OPERATIONS) result *= token.value.symbol elseif (typeof(token.value) == IdentifierToken) && (token.value.identifier ∈ keys(SYM_NUM)) result *= string(SYM_NUM[token.value.identifier]) elseif typeof(token.value) == IdentifierToken variable_name = token.value.identifier if (variable_name ∈ keys(scene.vector_variables) ) next_vector = scene.vector_variables[variable_name] result *= repr(next_vector) elseif (variable_name ∈ keys(scene.float_variables) ) next_number = scene.float_variables[variable_name] result *= repr(next_number) elseif isdefined(Raytracing, Symbol(variable_name)) || isdefined(Base, Symbol(variable_name)) unread_token(inputstream, token) result *= parse_function(inputstream, scene) else throw(GrammarError(token.location, "unknown float/vector variable '$(token)'")) end elseif typeof(token.value) == SymbolToken && token.value.symbol =="[" unread_token(inputstream, token) expect_symbol(inputstream, "[") x = expect_number(inputstream, scene) expect_symbol(inputstream, ",") y = expect_number(inputstream, scene) expect_symbol(inputstream, ",") z = expect_number(inputstream, scene) expect_symbol(inputstream, "]") result*= repr(Vec(x, y, z)) elseif (typeof(token.value) == SymbolToken) && (token.value.symbol=="(") result *= "("*parse_vector(inputstream, scene, true) expect_symbol(inputstream, ")") result *= ")" elseif typeof(token.value) == LiteralNumberToken result *= repr(token.value.number) else unread_token(inputstream, token) break end #= elseif (typeof(token.value) == SymbolToken) && (token.value.symbol==")") unread_token(inputstream, token) break else throw(GrammarError(token.location, "unknown variable '$(token)'")) end =# token = read_token(inputstream) end if open == true return result else return eval(Meta.parse(result)) end end #= function parse_vector(inputstream::InputStream, scene::Scene) token = read_token(inputstream) if typeof(token.value) == SymbolToken unread_token(inputstream, token) expect_symbol(inputstream, "[") x = expect_number(inputstream, scene) expect_symbol(inputstream, ",") y = expect_number(inputstream, scene) expect_symbol(inputstream, ",") z = expect_number(inputstream, scene) expect_symbol(inputstream, "]") return Vec(x, y, z) elseif typeof(token.value) == IdentifierToken variable_name = token.value.identifier if variable_name ∉ keys(scene.vector_variables) throw(GrammarError(token.location, "unknown variable '$(token)'")) end return scene.vector_variables[variable_name] end end =# """ parse_color(inputstream::InputStream, scene::Scene) :: RGB{Float32} Read the color from the given `inputstream` and return it. Call internally ['expect_symbol'](@ref) and ['expect_number'](@ref). See also: ['InputStream'](@ref), ['Scene'](@ref) """ function parse_color(inputstream::InputStream, scene::Scene, open::Bool=false) token = read_token(inputstream) result = "" if typeof(token.value) == SymbolToken && token.value.symbol == "(" result *= "("*parse_vector(inputstream, scene, true) expect_symbol(inputstream, ")") result *= ")" token = read_token(inputstream) end if typeof(token.value) == SymbolToken && token.value.symbol == "-" result *= "-" token = read_token(inputstream) end while true if (typeof(token.value) == SymbolToken) && (token.value.symbol ∈ OPERATIONS) result *= token.value.symbol elseif (typeof(token.value) == IdentifierToken) && (token.value.identifier ∈ keys(SYM_NUM)) result *= string(SYM_NUM[token.value.identifier]) elseif typeof(token.value) == IdentifierToken variable_name = token.value.identifier if (variable_name ∈ keys(scene.color_variables) ) next_color = scene.color_variables[variable_name] result *= repr(next_color) elseif (variable_name ∈ keys(scene.float_variables) ) next_number = scene.float_variables[variable_name] result *= repr(next_number) elseif isdefined(Raytracing, Symbol(variable_name)) || isdefined(Base, Symbol(variable_name)) unread_token(inputstream, token) result *= parse_function(inputstream, scene) else throw(GrammarError(token.location, "unknown float/color variable '$(token)'")) end elseif typeof(token.value) == SymbolToken && token.value.symbol =="<" unread_token(inputstream, token) expect_symbol(inputstream, "<") x = expect_number(inputstream, scene) expect_symbol(inputstream, ",") y = expect_number(inputstream, scene) expect_symbol(inputstream, ",") z = expect_number(inputstream, scene) expect_symbol(inputstream, ">") result*= repr(RGB{Float32}(x, y, z)) elseif (typeof(token.value) == SymbolToken) && (token.value.symbol=="(") result *= "("*parse_color(inputstream, scene, true) expect_symbol(inputstream, ")") result *= ")" elseif typeof(token.value) == LiteralNumberToken result *= repr(token.value.number) else unread_token(inputstream, token) break end #= elseif (typeof(token.value) == SymbolToken) && (token.value.symbol==")") unread_token(inputstream, token) break else throw(GrammarError(token.location, "unknown variable '$(token)'")) end =# token = read_token(inputstream) end if open == true return result else return eval(Meta.parse(result)) end end #= function parse_color(inputstream::InputStream, scene::Scene) token = read_token(inputstream) if typeof(token.value) == SymbolToken unread_token(inputstream, token) expect_symbol(inputstream, "<") red = expect_number(inputstream, scene) expect_symbol(inputstream, ",") green = expect_number(inputstream, scene) expect_symbol(inputstream, ",") blue = expect_number(inputstream, scene) expect_symbol(inputstream, ">") return RGB{Float32}(red, green, blue) elseif typeof(token.value) == IdentifierToken variable_name = token.value.identifier if variable_name ∉ keys(scene.color_variables) throw(GrammarError(token.location, "unknown variable '$(token)'")) end return scene.color_variables[variable_name] end end =# """ parse_pigment(inputstream::InputStream, scene::Scene) :: Pigment Parse a pigment from the given `inputstream` and return it. Call internally the following parsing functions: - [`expect_keywords`](@ref) - [`expect_symbol`](@ref) - [`parse_color`](@ref) - [`expect_number`](@ref) - [`expect_string`](@ref) Call internally the following functions and structs of the program: - [`UniformPigment`](@ref) - [`CheckeredPigment`](@ref) - [`ImagePigment`](@ref) - [`load_image`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`Pigment`](@ref) """ function parse_pigment(inputstream::InputStream, scene::Scene) token = read_token(inputstream) if typeof(token.value) == IdentifierToken variable_name = token.value.identifier if variable_name ∉ keys(scene.pigment_variables) throw(GrammarError(token.location, "unknown pigment '$(token)'")) end return scene.pigment_variables[variable_name] else unread_token(inputstream, token) end keyword = expect_keywords(inputstream, [ UNIFORM, CHECKERED, IMAGE]) expect_symbol(inputstream, "(") if keyword == UNIFORM color = parse_color(inputstream, scene) result = UniformPigment(color) elseif keyword == CHECKERED color1 = parse_color(inputstream, scene) expect_symbol(inputstream, ",") color2 = parse_color(inputstream, scene) expect_symbol(inputstream, ",") num_of_steps = Int(expect_number(inputstream, scene)) result = CheckeredPigment(color1, color2, num_of_steps) elseif keyword == IMAGE file_name = expect_string(inputstream, scene) image = open(file_name, "r") do image_file; load_image(image_file); end result = ImagePigment(image) else @assert false "This line should be unreachable" end expect_symbol(inputstream, ")") return result end """ parse_brdf(inputstream::InputStream, scene::Scene) :: BRDF Parse a BRDF from the given `inputstream` and return it. Call internally the following parsing functions: - [`expect_keywords`](@ref) - [`expect_symbol`](@ref) - [`parse_pigment`](@ref) Call internally the following functions and structs of the program: - [`DiffuseBRDF`](@ref) - [`SpecularBRDF`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`BRDF`](@ref) """ function parse_brdf(inputstream::InputStream, scene::Scene) token = read_token(inputstream) if typeof(token.value) == IdentifierToken variable_name = token.value.identifier if variable_name ∉ keys(scene.brdf_variables) throw(GrammarError(token.location, "unknown BRDF '$(token)'")) end return scene.brdf_variables[variable_name] else unread_token(inputstream, token) end brdf_keyword = expect_keywords(inputstream, [ DIFFUSE, SPECULAR]) expect_symbol(inputstream, "(") pigment = parse_pigment(inputstream, scene) expect_symbol(inputstream, ")") if (brdf_keyword == DIFFUSE) return DiffuseBRDF(pigment) elseif (brdf_keyword == SPECULAR) return SpecularBRDF(pigment) else @assert false "This line should be unreachable" end end """ parse_material(inputstream::InputStream, scene::Scene) :: (String, Material) Parse a Material from the given `inputstream` and return a tuple with the identifier name of the material and the material itself. Call internally the following parsing functions: - [`expect_identifier`](@ref) - [`expect_symbol`](@ref) - [`parse_brdf`](@ref) - [`parse_pigment`](@ref) Call internally the following functions and structs of the program: - [`Material`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`Token`](@ref), [`Material`](@ref) """ function parse_material(inputstream::InputStream, scene::Scene) name = expect_identifier(inputstream) expect_symbol(inputstream, "(") brdf = parse_brdf(inputstream, scene) expect_symbol(inputstream, ",") emitted_radiance = parse_pigment(inputstream, scene) expect_symbol(inputstream, ")") return name, Material(brdf, emitted_radiance) end """ parse_transformation(inputstream::InputStream, scene::Scene) :: Transformation Parse a Transformation from the given `inputstream` and return it. Call internally the following parsing functions: - [`expect_keywords`](@ref) - [`expect_symbol`](@ref) - [`expect_number`](@ref) - [`parse_vector`](@ref) - [`read_token`](@ref) - [`unread_token`](@ref) Call internally the following functions and structs of the program: - [`translation`](@ref) - [`rotation_x`](@ref) - [`rotation_y`](@ref) - [`rotation_z`](@ref) - [`scaling`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`Transformation`](@ref) """ function parse_transformation(inputstream::InputStream, scene::Scene) token = read_token(inputstream) if typeof(token.value) == IdentifierToken variable_name = token.value.identifier if variable_name ∉ keys(scene.transformation_variables) throw(GrammarError(token.location, "unknown pigment '$(token)'")) end return scene.transformation_variables[variable_name] else unread_token(inputstream, token) end result = Transformation() while true transformation_kw = expect_keywords(inputstream, [ IDENTITY, TRANSLATION, ROTATION_X, ROTATION_Y, ROTATION_Z, SCALING, ]) if transformation_kw == IDENTITY nothing # Do nothing (this is a primitive form of optimization!) elseif transformation_kw == TRANSLATION expect_symbol(inputstream, "(") result *= translation(parse_vector(inputstream, scene)) expect_symbol(inputstream, ")") elseif transformation_kw == ROTATION_X expect_symbol(inputstream, "(") result *= rotation_x(expect_number(inputstream, scene)) expect_symbol(inputstream, ")") elseif transformation_kw == ROTATION_Y expect_symbol(inputstream, "(") result *= rotation_y(expect_number(inputstream, scene)) expect_symbol(inputstream, ")") elseif transformation_kw == ROTATION_Z expect_symbol(inputstream, "(") result *= rotation_z(expect_number(inputstream, scene)) expect_symbol(inputstream, ")") elseif transformation_kw == SCALING expect_symbol(inputstream, "(") result *= scaling(parse_vector(inputstream, scene)) expect_symbol(inputstream, ")") end # We must peek the next token to check if there is another transformation that is being # chained or if the sequence ends. Thus, this is a LL(1) parser. next_kw = read_token(inputstream) if (typeof(next_kw.value) ≠ SymbolToken) || (next_kw.value.symbol ≠ "*") # Pretend you never read this token and put it back! unread_token(inputstream, next_kw) break end end return result end """ parse_camera(inputstream::InputStream, scene::Scene) :: Camera Parse a Camera from the given `inputstream` and return it. Call internally the following parsing functions: - [`expect_symbol`](@ref) - [`expect_keywords`](@ref) - [`expect_number`](@ref) - [`parse_transformation`](@ref) Call internally the following functions and structs of the program: - [`OrthogonalCamera`](@ref) - [`PerspectiveCamera`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`Camera`](@ref) """ function parse_camera(inputstream::InputStream, scene::Scene) expect_symbol(inputstream, "(") type_kw = expect_keywords(inputstream, [ PERSPECTIVE, ORTHOGONAL]) expect_symbol(inputstream, ",") transformation = parse_transformation(inputstream, scene) if type_kw == PERSPECTIVE expect_symbol(inputstream, ",") distance = expect_number(inputstream, scene) expect_symbol(inputstream, ")") result = PerspectiveCamera(distance, 1.0, transformation) elseif type_kw == ORTHOGONAL expect_symbol(inputstream, ")") result = OrthogonalCamera(1.0, transformation) end return result end ##########################################################################################92 """ parse_pointlight(inputstream::InputStream, scene::Scene) :: PointLight Parse a PointLight from the given `inputstream` and return it. Call internally the following parsing functions: - [`read_token`](@ref) - [`unread_token`](@ref) - [`expect_number`](@ref) - [`expect_symbol`](@ref) - [`parse_vector`](@ref) - [`parse_color`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`PointLight`](@ref) """ function parse_pointlight(inputstream::InputStream, scene::Scene) expect_symbol(inputstream, "(") point = parse_vector(inputstream, scene) expect_symbol(inputstream, ",") color = parse_color(inputstream, scene) token = read_token(inputstream) if typeof(token.value) == SymbolToken && token.value.symbol == "," unread_token(inputstream, token) expect_symbol(inputstream, ",") linear_radius = expect_number(inputstream, scene) else unread_token(inputstream, token) linear_radius = 0.0 end expect_symbol(inputstream, ")") return PointLight( Point(point.x, point.y, point.z), color, linear_radius, ) end """ parse_sphere(inputstream::InputStream, scene::Scene) :: Sphere Parse a Sphere from the given `inputstream` and return it. Throws `GrammarError` if the specified `Material` does not exist. Call internally the following parsing functions: - [`expect_symbol`](@ref) - [`expect_identifier`](@ref) - [`parse_transformation`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`Sphere`](@ref) [`Material`](@ref) """ function parse_sphere(inputstream::InputStream, scene::Scene) expect_symbol(inputstream, "(") material_name = expect_identifier(inputstream) if material_name ∉ keys(scene.materials) # We raise the exception here because inputstream is pointing to the end of the wrong identifier throw(GrammarError(inputstream.location, "unknown material $(material_name)")) end expect_symbol(inputstream, ",") transformation = parse_transformation(inputstream, scene) token = read_token(inputstream) if typeof(token.value) == SymbolToken && token.value.symbol == "," unread_token(inputstream, token) expect_symbol(inputstream, ",") flag_pointlight = expect_bool(inputstream, scene) expect_symbol(inputstream, ",") flag_background = expect_bool(inputstream, scene) expect_symbol(inputstream, ")") else unread_token(inputstream, token) expect_symbol(inputstream, ")") flag_pointlight = false flag_background = false end return Sphere(transformation, scene.materials[material_name], flag_pointlight, flag_background) end """ parse_plane(inputstream::InputStream, scene::Scene) :: Plane Parse a Plane from the given `inputstream` and return it. Throws `GrammarError` if the specified `Material` does not exist. Call internally the following parsing functions: - [`expect_symbol`](@ref) - [`expect_identifier`](@ref) - [`parse_transformation`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`Plane`](@ref), [`Material`](@ref) """ function parse_plane(inputstream::InputStream, scene::Scene) expect_symbol(inputstream, "(") material_name = expect_identifier(inputstream) if material_name ∉ keys(scene.materials) # We raise the exception here because inputstream is pointing to the end of the wrong identifier throw(GrammarError(inputstream.location, "unknown material $(material_name)")) end expect_symbol(inputstream, ",") transformation = parse_transformation(inputstream, scene) token = read_token(inputstream) if typeof(token.value) == SymbolToken && token.value.symbol == "," unread_token(inputstream, token) expect_symbol(inputstream, ",") flag_pointlight = expect_bool(inputstream, scene) expect_symbol(inputstream, ",") flag_background = expect_bool(inputstream, scene) expect_symbol(inputstream, ")") else unread_token(inputstream, token) expect_symbol(inputstream, ")") flag_pointlight = false flag_background = false end return Plane(transformation, scene.materials[material_name], flag_pointlight, flag_background) end """ parse_cube(inputstream::InputStream, scene::Scene) :: Cube Parse a Cube from the given `inputstream` and return it. Throws `GrammarError` if the specified `Material` does not exist. Call internally the following parsing functions: - [`expect_symbol`](@ref) - [`expect_identifier`](@ref) - [`parse_transformation`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`Cube`](@ref) [`Material`](@ref) """ function parse_cube(inputstream::InputStream, scene::Scene) expect_symbol(inputstream, "(") material_name = expect_identifier(inputstream) if material_name ∉ keys(scene.materials) # We raise the exception here because inputstream is pointing to the end of the wrong identifier throw(GrammarError(inputstream.location, "unknown material $(material_name)")) end expect_symbol(inputstream, ",") transformation = parse_transformation(inputstream, scene) token = read_token(inputstream) if typeof(token.value) == SymbolToken && token.value.symbol == "," unread_token(inputstream, token) expect_symbol(inputstream, ",") flag_pointlight = expect_bool(inputstream, scene) expect_symbol(inputstream, ",") flag_background = expect_bool(inputstream, scene) expect_symbol(inputstream, ")") else unread_token(inputstream, token) expect_symbol(inputstream, ")") flag_pointlight = false flag_background = false end return Cube(transformation, scene.materials[material_name], flag_pointlight, flag_background) end """ parse_triangle(inputstream::InputStream, scene::Scene) :: Triangle Parse a Triangle from the given `inputstream` and return it. Throws `GrammarError` if the specified `Material` does not exist. Call internally the following parsing functions: - [`expect_symbol`](@ref) - [`expect_identifier`](@ref) - [`parse_transformation`](@ref) See also: [`InputStream`](@ref), [`Scene`](@ref), [`Triangle`](@ref) [`Material`](@ref) """ function parse_triangle(inputstream::InputStream, scene::Scene) expect_symbol(inputstream, "(") material_name = expect_identifier(inputstream) if material_name ∉ keys(scene.materials) # We raise the exception here because inputstream is pointing to the end of the wrong identifier throw(GrammarError(inputstream.location, "unknown material $(material_name)")) end expect_symbol(inputstream, ",") p1 = parse_vector(inputstream, scene) expect_symbol(inputstream, ",") p2 = parse_vector(inputstream, scene) expect_symbol(inputstream, ",") p3 = parse_vector(inputstream, scene) token = read_token(inputstream) if typeof(token.value) == SymbolToken && token.value.symbol == "," unread_token(inputstream, token) expect_symbol(inputstream, ",") flag_pointlight = expect_bool(inputstream, scene) expect_symbol(inputstream, ",") flag_background = expect_bool(inputstream, scene) expect_symbol(inputstream, ")") else unread_token(inputstream, token) expect_symbol(inputstream, ")") flag_pointlight = false flag_background = false end return Triangle(p1, p2, p3, scene.materials[material_name], flag_pointlight, flag_background) end
proofpile-julia0005-42856
{ "provenance": "014.jsonl.gz:242857" }
struct SystemMatrix rows::Any cols::Any vals::Any function SystemMatrix(rows, cols, vals) @assert length(rows) == length(cols) == length(vals) new(rows, cols, vals) end end function SystemMatrix() rows = Int[] cols = Int[] vals = zeros(0) SystemMatrix(rows, cols, vals) end function Base.show(io::IO, sysmatrix::SystemMatrix) numvals = length(sysmatrix.rows) str = "SystemMatrix with $numvals entries" print(io, str) end function assemble!(matrix::SystemMatrix, rows, cols, vals) @assert length(rows) == length(cols) == length(vals) append!(matrix.rows, rows) append!(matrix.cols, cols) append!(matrix.vals, vals) end struct SystemRHS rows::Any vals::Any function SystemRHS(rows, vals) @assert length(rows) == length(vals) new(rows, vals) end end function SystemRHS() SystemRHS(Int[], zeros(0)) end function Base.show(io::IO, sysrhs::SystemRHS) numvals = length(sysrhs.rows) str = "SystemRHS with $numvals entries" print(io, str) end function assemble!(systemrhs::SystemRHS, rows, vals) @assert length(rows) == length(vals) append!(systemrhs.rows, rows) append!(systemrhs.vals, vals) end function node_to_dof_id(nodeid, dof, dofspernode) return (nodeid - 1) * dofspernode + dof end function element_dofs(nodeids, dofspernode) numnodes = length(nodeids) extnodeids = repeat(nodeids, inner = dofspernode) dofs = repeat(1:dofspernode, numnodes) edofs = [node_to_dof_id(n, d, dofspernode) for (n, d) in zip(extnodeids, dofs)] return edofs end function element_dofs_to_operator_dofs(rowdofs, coldofs) nr = length(rowdofs) nc = length(coldofs) rows = repeat(rowdofs, outer = nc) cols = repeat(coldofs, inner = nr) return rows, cols end function assemble_couple_cell_matrix!(sysmatrix, nodeids1, nodeids2, dofspernode, vals) edofs1 = element_dofs(nodeids1, dofspernode) edofs2 = element_dofs(nodeids2, dofspernode) rows, cols = element_dofs_to_operator_dofs(edofs1, edofs2) assemble!(sysmatrix, rows, cols, vals) end function assemble_cell_matrix!(sysmatrix::SystemMatrix, nodeids, dofspernode, vals) edofs = element_dofs(nodeids, dofspernode) rows, cols = element_dofs_to_operator_dofs(edofs, edofs) assemble!(sysmatrix, rows, cols, vals) end function assemble_bilinear_form!( sysmatrix::SystemMatrix, cellmatrix, nodalconnectivity, dofspernode, ) ncells = size(nodalconnectivity)[2] vals = vec(cellmatrix) for cellid = 1:ncells nodeids = nodalconnectivity[:, cellid] assemble_cell_matrix!(sysmatrix, nodeids, dofspernode, vals) end end function assemble_bilinear_form!(sysmatrix::SystemMatrix, cellmatrix, mesh::Mesh) dofspernode = dimension(mesh) nodalconnectivity = nodal_connectivity(mesh) assemble_bilinear_form!(sysmatrix, cellmatrix, nodalconnectivity, dofspernode) end function assemble_cell_rhs!(sysrhs, nodeids, dofspernode, vals) rows = element_dofs(nodeids, dofspernode) assemble!(sysrhs, rows, vals) end function assemble_body_force_linear_form!( systemrhs, rhsfunc, basis, quad, cellmaps, nodalconnectivity, ) ncells = length(cellmaps) nf = number_of_basis_functions(basis) dim = dimension(basis) @assert size(nodalconnectivity) == (nf, ncells) for (idx, cellmap) in enumerate(cellmaps) rhs = linear_form(rhsfunc, basis, quad, cellmap) edofs = element_dofs(nodalconnectivity[:, idx], dim) assemble!(systemrhs, edofs, rhs) end end function assemble_body_force_linear_form!(systemrhs, rhsfunc, basis, quad, mesh::Mesh) cellmaps = cell_maps(mesh) nodalconnectivity = nodal_connectivity(mesh) assemble_body_force_linear_form!( systemrhs, rhsfunc, basis, quad, cellmaps, nodalconnectivity, ) end function assemble_traction_force_linear_form!( systemrhs, tractionfunc, basis, facequads, cellmaps, nodalconnectivity, cellconnectivity, istractionboundary, ) dim = dimension(basis) refmidpoints = reference_face_midpoints() isboundarycell = is_boundary_cell(cellconnectivity) cellids = findall(isboundarycell) facedetjac = face_determinant_jacobian(cellmaps[1]) for cellid in cellids cellmap = cellmaps[cellid] for (faceid, nbrcellid) in enumerate(cellconnectivity[:, cellid]) if nbrcellid == 0 if istractionboundary(cellmap(refmidpoints[faceid])) rhs = linear_form( tractionfunc, basis, facequads[faceid], cellmap, facedetjac[faceid], ) edofs = element_dofs(nodalconnectivity[:, cellid], dim) assemble!(systemrhs, edofs, rhs) end end end end end function assemble_traction_force_component_linear_form!( systemrhs, tractionfunc, basis, facequads, cellmaps, nodalconnectivity, cellconnectivity, istractionboundary, component, ) dim = dimension(basis) refmidpoints = reference_face_midpoints() isboundarycell = is_boundary_cell(cellconnectivity) cellids = findall(isboundarycell) facedetjac = face_determinant_jacobian(cellmaps[1]) for cellid in cellids cellmap = cellmaps[cellid] for (faceid, nbrcellid) in enumerate(cellconnectivity[:, cellid]) if nbrcellid == 0 if istractionboundary(cellmap(refmidpoints[faceid])) rhs = component_linear_form( tractionfunc, basis, facequads[faceid], component, cellmap, facedetjac[faceid], ) edofs = element_dofs(nodalconnectivity[:, cellid], dim) assemble!(systemrhs, edofs, rhs) end end end end end function assemble_stress_linear_form!( systemrhs, basis, quad, stiffness, nodaldisplacement, nodalconnectivity, jacobian, ) dim = dimension(basis) sdim = number_of_symmetric_degrees_of_freedom(dim) nf, ncells = size(nodalconnectivity) for cellid = 1:ncells nodeids = nodalconnectivity[:, cellid] elementdofs = element_dofs(nodeids, dim) celldisp = nodaldisplacement[elementdofs] rhs = stress_cell_rhs(basis, quad, stiffness, celldisp, jacobian) stressdofs = element_dofs(nodeids, sdim) assemble!(systemrhs, stressdofs, rhs) end end function make_sparse(sysmatrix::SystemMatrix, ndofs::Int) return dropzeros!(sparse(sysmatrix.rows, sysmatrix.cols, sysmatrix.vals, ndofs, ndofs)) end function make_sparse(sysmatrix::SystemMatrix, mesh) totaldofs = number_of_degrees_of_freedom(mesh) return make_sparse(sysmatrix, totaldofs) end function make_sparse_stress_operator(sysmatrix, mesh) dim = dimension(mesh) sdim = number_of_symmetric_degrees_of_freedom(dim) numnodes = number_of_nodes(mesh) totaldofs = sdim * numnodes return make_sparse(sysmatrix, totaldofs) end function rhs(sysrhs::SystemRHS, ndofs::Int) return Array(sparsevec(sysrhs.rows, sysrhs.vals, ndofs)) end function rhs(sysrhs::SystemRHS, mesh) totaldofs = number_of_degrees_of_freedom(mesh) return rhs(sysrhs, totaldofs) end function stress_rhs(sysrhs, mesh) dim = dimension(mesh) sdim = number_of_symmetric_degrees_of_freedom(dim) numnodes = number_of_nodes(mesh) totaldofs = sdim * numnodes return rhs(sysrhs, totaldofs) end
proofpile-julia0005-42857
{ "provenance": "014.jsonl.gz:242858" }
module GameDataManager using Printf using REPL.TerminalMenus using JSON, JSONPointer, JSONSchema using XLSXasJSON using OrderedCollections using PrettyTables export init_project, xl, xlookup include("abstractmeta.jl") include("config.jl") include("tables.jl") include("init.jl") include("setup.jl") include("exporter.jl") include("localizer.jl") include("schema.jl") include("show.jl") include("utils.jl") end # module
proofpile-julia0005-42858
{ "provenance": "014.jsonl.gz:242859" }
using Hooks using Test @testset "Hooks.jl" begin @testset "Basic Notification" begin run = false handle(hook"test") do run = true end notify(hook"test") @test run reset(hook"test") end @testset "Multiple handlers" begin run1 = false run2 = false handle(hook"test") do run1 = true end handle(hook"test") do run2 = true end notify(hook"test") @test run1 @test run2 reset(hook"test") end @testset "Hook Resetting" begin run1 = false run2 = false handle(hook"test") do run1 = true end handle(hook"test") do run2 = true end reset(hook"test") notify(hook"test") @test !run1 @test !run2 reset(hook"test") end @testset "Reverse order registration" begin run1 = false run2 = false notify(hook"foobar") handle(hook"foobar") do run1 = true end handle(hook"foobar") do run2 = true end @test run1 @test run2 reset(hook"foobar") end @testset "Deregistration" begin run1 = false run2 = false h1 = handle(hook"test") do run1 = true end h2 = handle(hook"test") do run2 = true end unhandle(h1, hook"test") notify(hook"test") @test !run1 @test run2 reset(hook"test") end @testset "Multiple Hooks" begin run1 = false run2 = false h1 = handle(hook"test1") do run1 = true end h2 = handle(hook"test2") do run2 = true end notify(hook"test1") notify(hook"test2") @test run1 @test run2 reset(hook"test1") reset(hook"test2") end @testset "Errors on resettinging nonexistent hook" begin @test_throws ErrorException reset(hook"does-not-exist") end @testset "Errors on unhandling nonexistent hook" begin @test_throws ErrorException unhandle(()->100, hook"does-not-exist") end @testset "Errors on unhandling nonexistent handler" begin handle(()->42, hook"test") @test_throws ErrorException unhandle(()->100, hook"test") reset(hook"test") end @testset "Duplicate Handlers are merged" begin called = 0 function duphandle() called += 1 end handle(duphandle, hook"test") handle(duphandle, hook"test") notify(hook"test") @test called == 1 reset(hook"test") end @testset "Handlers can take arguments" begin args1 = nothing args2 = nothing handle(hook"test") do x, y args1 = (x,y) end notify(hook"test", 100, 200) # also test the handlers get called when registered afterwards handle(hook"test") do x, y args2 = (x,y) end @test args1 == (100, 200) @test args2 == (100, 200) reset(hook"test") end end
proofpile-julia0005-42859
{ "provenance": "014.jsonl.gz:242860" }
# MIPLearn: Extensible Framework for Learning-Enhanced Mixed-Integer Optimization # Copyright (C) 2020-2021, UChicago Argonne, LLC. All rights reserved. # Released under the modified BSD license. See COPYING.md for more details. function init_miplearn_ext(model)::Dict if :miplearn ∉ keys(model.ext) model.ext[:miplearn] = Dict() model.ext[:miplearn]["instance_features"] = [0.0] model.ext[:miplearn]["variable_features"] = Dict{AbstractString,Vector{Float64}}() model.ext[:miplearn]["variable_categories"] = Dict{AbstractString,String}() model.ext[:miplearn]["constraint_features"] = Dict{AbstractString,Vector{Float64}}() model.ext[:miplearn]["constraint_categories"] = Dict{AbstractString,String}() end return model.ext[:miplearn] end function set_features!(m::Model, f::Array{Float64})::Nothing ext = init_miplearn_ext(m) ext["instance_features"] = f return end function set_features!(v::VariableRef, f::Array{Float64})::Nothing ext = init_miplearn_ext(v.model) n = _get_and_check_name(v) ext["variable_features"][n] = f return end function set_category!(v::VariableRef, category::String)::Nothing ext = init_miplearn_ext(v.model) n = _get_and_check_name(v) ext["variable_categories"][n] = category return end function set_features!(c::ConstraintRef, f::Array{Float64})::Nothing ext = init_miplearn_ext(c.model) n = _get_and_check_name(c) ext["constraint_features"][n] = f return end function set_category!(c::ConstraintRef, category::String)::Nothing ext = init_miplearn_ext(c.model) n = _get_and_check_name(c) ext["constraint_categories"][n] = category return end function set_lazy_callback!(model::Model, find_cb::Function, enforce_cb::Function)::Nothing ext = init_miplearn_ext(model) ext["lazy_find_cb"] = find_cb ext["lazy_enforce_cb"] = enforce_cb return end macro feature(obj, features) quote set_features!($(esc(obj)), $(esc(features))) end end macro category(obj, category) quote set_category!($(esc(obj)), $(esc(category))) end end macro lazycb(obj, find_cb, enforce_cb) quote set_lazy_callback!($(esc(obj)), $(esc(find_cb)), $(esc(enforce_cb))) end end function _get_and_check_name(obj) n = name(obj) length(n) > 0 || error( "Features and categories can only be assigned to variables and " * "constraints that have names. Unnamed model element detected.", ) return n end export @feature, @category, @lazycb
proofpile-julia0005-42860
{ "provenance": "014.jsonl.gz:242861" }
const tf = TensorFlow function _make_infeed_op(sess, eltypes, sizes, inputs; device=nothing, device_ordinal=0) desc = tf.NodeDescription(tf_graph(sess), "InfeedEnqueueTuple", tf.get_name("InfeedEnqueueTuple")) tf.set_attr_shape_list(desc, "shapes", Vector{Int64}[collect(x) for x in sizes]) tf.set_attr_list(desc, "dtypes", DataType[eltypes...]) desc["device_ordinal"] = device_ordinal tf.add_input(desc, inputs) if device !== nothing tf.set_device(desc, device) end eq = tf.Tensor(tf.Operation(desc)); eq end function make_infeed_op(sess, tup::NTuple{N, AbstractArray} where N; device=nothing, device_ordinal=0) placeholders = [tf.placeholder(eltype(el), shape=size(el)) for el in tup] eq = _make_infeed_op(sess, map(eltype, tup), map(size, tup), placeholders; device=device, device_ordinal=device_ordinal) feeds = Dict((x=>y for (x, y) in zip(placeholders, tup))...) eq, feeds end function make_outfeed_op(sess, tup::Type{<:NTuple}; device=nothing, device_ordinal=0) desc = tf.NodeDescription(tf_graph(sess), "OutfeedDequeueTuple", tf.get_name("OutfeedDequeueTuple")) tf.set_attr_shape_list(desc, "shapes", Vector{Int64}[collect(size(x)) for x in tup.parameters]) tf.set_attr_list(desc, "dtypes", DataType[eltype(x) for x in tup.parameters]) desc["device_ordinal"] = device_ordinal if device !== nothing tf.set_device(desc, device) end eq = tf.Tensor(tf.Operation(desc)); eq end function infeed(sess, tup::NTuple{N, AbstractArray} where N; device=nothing) eq, feeds = make_infeed_op(sess, tup; device=device) run(sess, eq, feeds) end function outfeed(sess, tup::Type{<:NTuple}; device=nothing) eq = make_outfeed_op(sess, tup; device=device) run(sess, eq) end function infeed_and_outfeed(sess, infeed_tup::NTuple{N, AbstractArray} where N, outfeed_tup::Type{<:NTuple}; device=nothing) eq_infeed, feeds = make_infeed_op(sess, infeed_tup; device=device) eq_outfeed = make_outfeed_op(sess, outfeed_tup; device=device) run(sess, [eq_infeed, eq_outfeed], feeds)[2] end
proofpile-julia0005-42861
{ "provenance": "014.jsonl.gz:242862" }
using Pkg; using Flux; using DifferentialEquations; using DiffEqSensitivity; using StochasticDiffEq; using Zygote; using LinearAlgebra; using Optim; using Plots; using Serialization; using PyCall; Pkg.activate("./"); Pkg.instantiate(); include("learningProb.jl"); include("mleLearning.jl"); include("postProcess.jl"); # for this test args will be ignored function generateFullTetradLearningProblem(args) #--------------------begin problem setup--------------------# vgtDataPath = "/groups/chertkov/data/tetradData/InertialRangeData/aij_1024_gaus8_tetrad.bin"; rhoDataPath = "/groups/chertkov/data/tetradData/InertialRangeData/roij_1024_gaus8_tetrad.bin"; py""" import numpy as np mij = np.fromfile(file=$vgtDataPath, dtype=float) mij = mij.reshape([32768, 1500, 3, 3]) roij = np.fromfile(file=$rhoDataPath, dtype=float) roij = roij.reshape([32768, 1500, 3, 3]) """ roij = PyArray(py"roij"o); mij = PyArray(py"mij"o); roij = reshape(roij, (32768, 1500, 9)); mij = reshape(mij, (32768, 1500, 9)); trainingData = cat(roij,mij,dims=3); trainingData = permutedims(trainingData, (3, 2, 1)); trainingData = trainingData[:,1:200,:]; #only look at first 200 timesteps initialConditions = trainingData[:,1,:]; #split into training/test validationData = trainingData[:,:,:]; trainingData = trainingData[:,:,:]; numDims, numSteps, numTrajs = size(trainingData); dt = 4e-4; tsteps = Array{Float64, 1}(range(0.0, step=dt, length=numSteps)); x,y = parseTrainingData(trainingData, dt); miniBatchSize = 1000; #see HyperParameterTuning for justification maxiters = 5000; #plateau's around 4k #optimizer = Flux.Optimise.Optimiser(ExpDecay(0.001, 0.5, 1000, 1e-7), ADAM(0.001)); optimizer = ADAM(0.01); # see https://fluxml.ai/Flux.jl/stable/training/optimisers/ hiddenDim = 80; θ_f, drift_nn = Flux.destructure(Chain(Dense(18,hiddenDim,tanh), Dense(hiddenDim,hiddenDim,tanh), Dense(hiddenDim,9))); function encode(u,p,args...) return u; end function decode(u,p,args...) return u; end function trueDrift(u,p,t) return nothing; end function truePrecisionMat(u,p,t) return nothing; end function trueDiff(u, p, t) return nothing; end function parameterizedDriftClosure(u,p) return drift_nn(p)(u); end function parameterizedPrecisionMat(u,p) matPiece = p[1:9]; biasPiece = p[10:end]; prescribedMat = (matPiece .* (u)).^2 + biasPiece; return prescribedMat; end driftLength = length(θ_f); diffLength = 0; driftStart = 1; if (driftLength > 0) driftEnd = driftStart + (driftLength-1); diffStart = driftEnd+1; else driftEnd = 0; diffStart = 1; end diffEnd = diffStart + (diffLength-1); function modelDrift(u,p,t) numSamples = size(u)[end]; ρ = [reshape(u[1:9,i], (3,3)) for i in 1:numSamples]; M = [reshape(u[10:18,i], (3,3)) for i in 1:numSamples]; closure = parameterizedDriftClosure(u,p); placeholder = [ reshape(-M[i]^2 + reshape(closure[:,i],(3,3)), 9) for i in 1:numSamples]; return hcat(placeholder...); end function fullSystemDrift(u,p,t) return modelDrift(u,p,t); end function createNoiseRateForcingHIT(D_a, D_s) c = zeros(3,3,3,3); delta(i,j) = (i==j) ? 1 : 0; for i in 1:3 for j in 1:3 for k in 1:3 for l in 1:3 term1 = -(1/3)*sqrt(D_s/5)*delta(i,j)*delta(k,l); term2 = (1/2)*(sqrt(D_s/5) + sqrt(D_a/3))*delta(i,k)*delta(j,l); term3 = (1/2)*(sqrt(D_s/5) - sqrt(D_a/3))*delta(i,l)*delta(j,k); c[i,j,k,l] = term1 + term2 + term3; end end end end return c; end c = reshape(createNoiseRateForcingHIT(15,15), (9,9)); function modelDiff(u,p,t) return [Matrix(I,9,9) zeros(9,9) zeros(9,9) c]; end #statically allocate for training driftGrad = zeros(driftLength); driftGradHolder = zeros(driftLength, miniBatchSize); predictionErrorGrad = zeros(diffLength); predictionErrorGradHolder = zeros(diffLength, miniBatchSize); detPiece = zeros(diffLength); detPieceHolder = zeros(diffLength, miniBatchSize); precisionMat = zeros(9,miniBatchSize); lossPerStep = zeros(miniBatchSize); debiasWeight = zeros(miniBatchSize); function predict_(x, p) #assume autonomous return prob.modelDrift_(x, p, 0.0); end function lossAndGrads(x,y,p,_drift,_precisionMat) eps = 64.0; #approximately median(\dot M) δ = _drift(x,p,0.0) .- y[10:18,:]; for i in 1:miniBatchSize debiasWeight[i] = 1.0/(norm(reshape(y[10:18,i], (3,3)))^2 + eps); lossPerStep[i] = debiasWeight[i]*dot(δ[:,i],δ[:,i]); end sumLoss = (dt*eps/miniBatchSize)*sum(lossPerStep); #-----------------------------drift grad-----------------------------# if (driftLength > 0) #x is state variable, w is weight vector, pullback(p->f(x,p), p)[2](w)[1] performs the tensor contraction # (∂/∂p_i f_k) w^k ∂f(x,w) = pullback(p->parameterizedDriftClosure(x,p), p[driftStart:driftEnd])[2](w)[1]; Threads.@threads for i in 1:miniBatchSize driftGradHolder[:,i] .= ∂f(x[:,i], debiasWeight[i]*δ[:,i]); end driftGrad = ((2*dt*eps)/miniBatchSize)*sum(driftGradHolder, dims=2); end #-----------------------------diff grad-----------------------------# diffGrad = zeros(diffLength); if (diffLength > 0) #x is state variable, w is weight vector, pullback(p->f(x,p), p)[2](w)[1] performs the tensor contraction # (∂/∂p_i f_k) w^k ∂Π(x,w) = pullback(p_->_precisionMat(x,p_), p[diffStart:diffEnd])[2](w)[1]; #Threads.@threads for i in 1:miniBatchSize for i in 1:miniBatchSize predictionErrorGradHolder[:,i] .= ∂Π(x[:,i], abs2.(δ[:,i])); detPieceHolder[:,i] .= ∂Π(x[:,i], precisionMat[:,i].^(-1)); end predictionErrorGrad = dt*sum(predictionErrorGradHolder, dims=2); detPiece = sum(detPieceHolder, dims=2); diffGrad = (predictionErrorGrad - detPiece)/miniBatchSize; #add in bias regularization gradient piece: regularizationGrad = zeros(18); for i in 1:size(regularizationGrad)[1] if ((-p[diffStart+17+i] + biasRegularizationOffset) > 0) regularizationGrad[i] = -1.0; end end diffGrad[19:36] .+= biasRegularizationWeight*regularizationGrad; end grads = vcat(driftGrad, diffGrad); grads = reshape(grads, size(grads)[1]); return sumLoss,grads; end #covariance matrix is length(u)^2 initialParams = []; if (driftLength > 0) initialParams = vcat(initialParams, θ_f) end if (diffLength > 0) initialParams = vcat(initialParams, ones(diffLength)); #currently using diagonal covariance end initialParams = Array{Float64}(initialParams); @assert length(initialParams) == (driftLength + diffLength) #--------------------end problem setup--------------------# lProb = LearningProblem(initialConditions, trainingData, x, y, validationData, tsteps, miniBatchSize, maxiters, optimizer, trueDrift, trueDiff, encode, decode, modelDrift, modelDiff, fullSystemDrift, nothing, lossAndGrads, initialParams, driftLength, diffLength, parameterizedDriftClosure, parameterizedPrecisionMat); println("Setup complete, beginning learning"); return lProb; end #prob = main(nothing); #Learn(prob); #myserialize("/groups/chertkov/cmhyett/DNSLearning/MLCoarseGrainedVGT/results/prob.dat",prob);
proofpile-julia0005-42862
{ "provenance": "014.jsonl.gz:242863" }
module Spatial # types export CartesianFrame3D, Transform3D, FreeVector3D, Point3D, GeometricJacobian, PointJacobian, Twist, SpatialAcceleration, MomentumMatrix, # TODO: consider combining with WrenchMatrix WrenchMatrix, # TODO: consider combining with MomentumMatrix Momentum, Wrench, SpatialInertia # functions export transform, rotation, translation, angular, linear, point_velocity, point_acceleration, change_base, log_with_time_derivative, center_of_mass, newton_euler, torque, torque!, kinetic_energy, rotation_vector_rate, quaternion_derivative, spquat_derivative, angular_velocity_in_body, velocity_jacobian, linearized_rodrigues_vec # macros export @framecheck using LinearAlgebra using Random using StaticArrays using Rotations using DocStringExtensions using Base: promote_eltype include("frame.jl") include("util.jl") include("transform3d.jl") include("threevectors.jl") include("spatialmotion.jl") include("spatialforce.jl") include("motion_force_interaction.jl") include("common.jl") end # module
proofpile-julia0005-42863
{ "provenance": "014.jsonl.gz:242864" }
mutable struct CanvasPlot # command list passed to javascript jsdict::Dict{String,Any} # size in canvas coordinates w::Float64 h::Float64 # world coordinates xmin::Float64 xmax::Float64 ymin::Float64 ymax::Float64 # transformation data ax::Float64 bx::Float64 ay::Float64 by::Float64 # unique identifier of html entity uuid::UUID CanvasPlot(::Nothing)=new() end """ ```` CanvasPlot(;resolution=(300,300), xrange::AbstractVector=0:1, yrange::AbstractVector=0:1) ```` Create a canvas plot with given resolution in the notebook and given "world coordinate" range. """ function CanvasPlot(;resolution=(300,300), xrange::AbstractVector=0:1, yrange::AbstractVector=0:1) p=CanvasPlot(nothing) p.uuid=uuid1() p.jsdict=Dict{String,Any}("cmdcount" => 0) p.w=resolution[1] p.h=resolution[2] _world!(p,extrema(xrange)...,extrema(yrange)...) p end const canvasdraw = read(joinpath(@__DIR__, "..", "assets", "canvasdraw.js"), String) """ Show plot """ function Base.show(io::IO, ::MIME"text/html", p::CanvasPlot) result=""" <script> $(canvasdraw) const jsdict = $(Main.PlutoRunner.publish_to_js(p.jsdict)) canvasdraw("$(p.uuid)",jsdict) </script> <canvas id="$(p.uuid)" width="$(p.w)" height="$(p.h)"></canvas> """ write(io,result) end """ lines!(p::CanvasPlot,x,y) Plot lines. Every two coordinates define a line. """ function lines!(p::CanvasPlot,x,y) _poly!(p,"lines",x,y) end """ polyline!(p::CanvasPlot,x,y) Plot a polyline. """ function polyline!(p::CanvasPlot,x,y) _poly!(p,"polyline",x,y) end """ polygon!(p::CanvasPlot,x,y) Plot a polygon and fill it. """ function polygon!(p::CanvasPlot,x,y) _poly!(p,"polygon",x,y) end """ linecolor!(p::CanvasPlot,r,g,b) Set line color. """ function linecolor!(p::CanvasPlot,r,g,b) pfx=command!(p,"linecolor") p.jsdict[pfx*"_rgb"]=255*Float32[r,g,b] end """ linewidth!(p::CanvasPlot,w) Set line width in pixels """ function linewidth!(p::CanvasPlot,w) pfx=command!(p,"linewidth") p.jsdict[pfx*"_w"]=w end """ fillcolor!(p::CanvasPlot,r,g,b) Set polygon fill color. """ function fillcolor!(p::CanvasPlot,r,g,b) pfx=command!(p,"fillcolor") p.jsdict[pfx*"_rgb"]=255*Float32[r,g,b] end """ textcolor!(p::CanvasPlot,r,g,b) Set text color """ function textcolor!(p::CanvasPlot,r,g,b) pfx=command!(p,"textcolor") p.jsdict[pfx*"_rgb"]=255*Float32[r,g,b] end """ textsize!(p::CanvasPlot,px) Set text size in pixels """ function textsize!(p::CanvasPlot,px) pfx=command!(p,"textsize") p.jsdict[pfx*"_pt"]=px end const halign=Dict("c"=>"center", "l"=>"left", "r"=>"right") const valign=Dict("b"=>"bottom", "c"=>"middle", "t"=>"top") """ textalign!(p::CanvasPlot,align) Set text alignment. `align:` one of `[:lt,:lc,lb,:ct,:cc,:cb,:rt,:rc,:rb]` """ function textalign!(p::CanvasPlot,align) a=String(align) pfx=command!(p,"textalign") p.jsdict[pfx*"_align"]=halign[a[1:1]] pfx=command!(p,"textbaseline") p.jsdict[pfx*"_align"]=valign[a[2:2]] end """ text!(p::CanvasPlot,txt,x,y) Draw text at position x,y. """ function text!(p::CanvasPlot,txt,x,y) pfx=command!(p,"text") tx,ty=_tran2d(p,x,y) p.jsdict[pfx*"_x"]=tx p.jsdict[pfx*"_y"]=ty p.jsdict[pfx*"_txt"]=txt end """ axis!(p::CanvasPlot; xtics=0:1, ytics=0:1, axislinewidth=2, gridlinewidth=1.5, ticlength=7, ticsize=15, xpad=30, ypad=30) Draw an axis with grid and tics, set new world coordinates according to tics. """ function axis!(p::CanvasPlot; xtics=0:1, ytics=0:1, axislinewidth=2, gridlinewidth=1.5, ticlength=7, ticsize=15, xpad=30, ypad=30) linecolor!(p,0,0,0) xmin,xmax=extrema(xtics) ymin,ymax=extrema(ytics) world_ypad=ypad*(ymax-ymin)/p.h world_xpad=xpad*(xmax-xmin)/p.w _world!(p,xmin-world_xpad,xmax+world_xpad/2,ymin-world_ypad,ymax+world_ypad/2) linewidth!(p,gridlinewidth) linecolor!(p,0.85,0.85,0.85) for y in ytics lines!(p,[xmin,xmax],[y,y]) end for x in xtics lines!(p,[x,x],[ymin,ymax]) end linewidth!(p,axislinewidth) linecolor!(p,0,0,0) lines!(p,[xmin,xmax],[ymin,ymin]) lines!(p,[xmin,xmax],[ymax,ymax]) lines!(p,[xmin,xmin],[ymin,ymax]) lines!(p,[xmax,xmax],[ymin,ymax]) linewidth!(p,gridlinewidth) linecolor!(p,0,0,0) world_xticlength=-ticlength/p.ay world_yticlength=ticlength/p.ax textcolor!(p,0,0,0) textsize!(p,ticsize) textalign!(p,:rc) for y in ytics lines!(p,[xmin-world_yticlength,xmin],[y,y]) text!(p, string(y), xmin-world_yticlength,y) end textalign!(p,:ct) for x in xtics lines!(p,[x,x],[ymin-world_xticlength,ymin]) text!(p, string(x), x,ymin-world_xticlength) end end
proofpile-julia0005-42864
{ "provenance": "014.jsonl.gz:242865" }
# basic test that parsing works correctly testdir = dirname(@__FILE__) @test_throws Gumbo.InvalidHTMLException parsehtml("", strict=true) let page = open("$testdir/example.html") do example example |> readstring |> parsehtml end @test page.doctype == "html" root = page.root @test tag(root[1][1]) == :meta @test root[2][1][1].text == "A simple test page." @test is(root[2][1][1].parent, root[2][1]) end # test that nonexistant tags are parsed as their actual name and not "unknown" let page = parsehtml("<weird></weird") @test tag(page.root[2][1]) == :weird end
proofpile-julia0005-42865
{ "provenance": "014.jsonl.gz:242866" }
# This file is part of Fatou.jl. It is licensed under the MIT license # Copyright (C) 2017 Michael Reed import Base: invokelatest rdpm(tex) = split(split(tex,"\n\\end{displaymath}")[1],"\\begin{displaymath}\n")[2] # we can substitute the expression into Newton's method and display it with LaTeX function newton_raphson(F,m) f = RExpr(F) return Algebra.:-(R"z",Algebra.:*(m,Algebra.:/(f,Algebra.df(f,:z)))) |> factor |> parse end # define recursive composition on functions recomp(E,x,j::Int) = Algebra.sub((Expr(:(=),:z,j > 1 ? recomp(E,x,j-1) : x),:(c=0)),E) # we can convert the j-th function composition into a latex expresion nL(E,m,j) = recomp(newton_raphson(E,m),:z,j) |> Algebra.latex |> rdpm jL(E,j) = recomp(E,:z,j) |> Algebra.latex |> rdpm # set of points that are within an ϵ neighborhood of the roots ri of the function f ds = "\\displaystyle" set0 = "D_0(\\epsilon) = \\left\\{ z\\in\\mathbb{C}: \\left|\\,z" setj(j) = "$ds D_$j(\\epsilon) = \\left\\{z\\in\\mathbb{C}:\\left|\\," nsetstr = "- r_i\\,\\right|<\\epsilon,\\,\\forall r_i(\\,f(r_i)=0 )\\right\\}" jsetstr = "\\,\\right|>\\epsilon\\right\\}" nset0 = latexstring("$set0 $nsetstr") jset0 = latexstring("$set0 $jsetstr") nrset(f,m,j) = latexstring( j == 0 ? "$set0 $nsetstr" : "$(setj(j))$(nL(f,m,j)) $nsetstr") jset(f,j) = latexstring( j == 0 ? "$set0 $jsetstr" : "$(setj(j))$(jL(f,j)) $jsetstr")
proofpile-julia0005-42866
{ "provenance": "014.jsonl.gz:242867" }
""" mutable struct DynamicGenerator{ M <: Machine, S <: Shaft, A <: AVR, TG <: TurbineGov, P <: PSS, } <: DynamicInjection name::String ω_ref::Float64 machine::M shaft::S avr::A prime_mover::TG pss::P n_states::Int states::Vector{Symbol} ext::Dict{String, Any} internal::InfrastructureSystemsInternal end A dynamic generator is composed by 5 components, namely a Machine, a Shaft, an Automatic Voltage Regulator (AVR), a Prime Mover (o Turbine Governor) and Power System Stabilizer (PSS). It requires a Static Injection device that is attached to it. # Arguments - `name::String`: Name of generator. - `ω_ref::Float64`: Frequency reference set-point in pu. - `machine <: Machine`: Machine model for modeling the electro-magnetic phenomena. - `shaft <: Shaft`: Shaft model for modeling the electro-mechanical phenomena. - `avr <: AVR`: AVR model of the excitacion system. - `prime_mover <: TurbineGov`: Prime Mover and Turbine Governor model for mechanical power. - `pss <: PSS`: Power System Stabilizer model. - `n_states::Int`: Number of states (will depend on the components). - `states::Vector{Symbol}`: Vector of states (will depend on the components). - `ext::Dict{String, Any}` - `internal::InfrastructureSystemsInternal`: power system internal reference, do not modify """ mutable struct DynamicGenerator{ M <: Machine, S <: Shaft, A <: AVR, TG <: TurbineGov, P <: PSS, } <: DynamicInjection name::String ω_ref::Float64 machine::M shaft::S avr::A prime_mover::TG pss::P n_states::Int states::Vector{Symbol} ext::Dict{String, Any} internal::InfrastructureSystemsInternal end function DynamicGenerator( name::String, ω_ref::Float64, machine::M, shaft::S, avr::A, prime_mover::TG, pss::P, ext::Dict{String, Any} = Dict{String, Any}(), ) where {M <: Machine, S <: Shaft, A <: AVR, TG <: TurbineGov, P <: PSS} n_states = _calc_n_states(machine, shaft, avr, prime_mover, pss) states = _calc_states(machine, shaft, avr, prime_mover, pss) return DynamicGenerator{M, S, A, TG, P}( name, ω_ref, machine, shaft, avr, prime_mover, pss, n_states, states, ext, InfrastructureSystemsInternal(), ) end function DynamicGenerator(; name::String, ω_ref::Float64, machine::M, shaft::S, avr::A, prime_mover::TG, pss::P, n_states = _calc_n_states(machine, shaft, avr, prime_mover, pss), states = _calc_states(machine, shaft, avr, prime_mover, pss), ext::Dict{String, Any} = Dict{String, Any}(), internal = InfrastructureSystemsInternal(), ) where {M <: Machine, S <: Shaft, A <: AVR, TG <: TurbineGov, P <: PSS} DynamicGenerator( name, ω_ref, machine, shaft, avr, prime_mover, pss, n_states, states, ext, internal, ) end IS.get_name(device::DynamicGenerator) = device.name get_states(device::DynamicGenerator) = device.states get_n_states(device::DynamicGenerator) = device.n_states get_ω_ref(device::DynamicGenerator) = device.ω_ref get_machine(device::DynamicGenerator) = device.machine get_shaft(device::DynamicGenerator) = device.shaft get_avr(device::DynamicGenerator) = device.avr get_prime_mover(device::DynamicGenerator) = device.prime_mover get_pss(device::DynamicGenerator) = device.pss get_ext(device::DynamicGenerator) = device.ext get_internal(device::DynamicGenerator) = device.internal get_V_ref(value::DynamicGenerator) = get_V_ref(get_avr(value)) get_P_ref(value::DynamicGenerator) = get_P_ref(get_prime_mover(value)) function _calc_n_states(machine, shaft, avr, prime_mover, pss) return get_n_states(machine) + get_n_states(shaft) + get_n_states(avr) + get_n_states(prime_mover) + get_n_states(pss) end function _calc_states(machine, shaft, avr, prime_mover, pss) return vcat( get_states(machine), get_states(shaft), get_states(avr), get_states(prime_mover), get_states(pss), ) end
proofpile-julia0005-42867
{ "provenance": "014.jsonl.gz:242868" }
module MitosisStochasticDiffEq using Mitosis using RecursiveArrayTools using StochasticDiffEq using OrdinaryDiffEq using DiffEqNoiseProcess import DiffEqNoiseProcess.pCN using LinearAlgebra using Random using UnPack using Statistics using StaticArrays using ForwardDiff using PaddedViews import SciMLBase.isinplace export pCN include("types.jl") include("sample.jl") include("filter.jl") include("guiding.jl") include("regression.jl") include("utils.jl") include("derivative_utils.jl") include("solver.jl") end
proofpile-julia0005-42868
{ "provenance": "014.jsonl.gz:242869" }
export chebyshev, chebyshev! chebyshev(A, b, λmin::Real, λmax::Real, Pr = 1, n = size(A,2); tol::Real = sqrt(eps(typeof(real(b[1])))), maxiter::Int = n^3) = chebyshev!(zerox(A, b), A, b, λmin, λmax, Pr, n; tol=tol,maxiter=maxiter) function chebyshev!(x, A, b, λmin::Real, λmax::Real, Pr = 1, n = size(A,2); tol::Real = sqrt(eps(typeof(real(b[1])))), maxiter::Int = n^3) K = KrylovSubspace(A, n, 1, Adivtype(A, b)) init!(K, x) chebyshev!(x, K, b, λmin, λmax, Pr; tol = tol, maxiter = maxiter) end function chebyshev!(x, K::KrylovSubspace, b, λmin::Real, λmax::Real, Pr = 1; tol::Real = sqrt(eps(typeof(real(b[1])))), maxiter::Int = K.n^3) local α, p K.order = 1 tol = tol*norm(b) r = b - nextvec(K) d::eltype(b) = (λmax + λmin)/2 c::eltype(b) = (λmax - λmin)/2 resnorms = zeros(typeof(real(b[1])), maxiter) for iter = 1:maxiter z = Pr\r if iter == 1 p = z α = 2/d else β = (c*α/2)^2 α = 1/(d - β) p = z + β*p end append!(K, p) update!(x, α, p) r -= α*nextvec(K) #Check convergence resnorms[iter] = norm(r) if resnorms[iter] < tol resnorms = resnorms[1:iter] break end end x, ConvergenceHistory(resnorms[end] < tol, tol, K.mvps, resnorms) end
proofpile-julia0005-42869
{ "provenance": "014.jsonl.gz:242870" }
using CompScienceMeshes, BEAST fn = joinpath(dirname(pathof(BEAST)),"../examples/assets/torus.msh") m = CompScienceMeshes.read_gmsh_mesh(fn) @show numcells(m) X = raviartthomas(m) @show numfunctions(X) Y = buffachristiansen(m) @show numfunctions(Y) verts = skeleton(m,0) edges = skeleton(m,1) faces = skeleton(m,2) Λ = connectivity(verts, edges) Σᵀ = connectivity(edges, faces) @assert all(sum(Σᵀ,dims=1) .== 0) κ = 1.0e-5 S = Maxwell3D.singlelayer(wavenumber=κ) D = Maxwell3D.doublelayer(wavenumber=κ) C = BEAST.DoubleLayerRotatedMW3D(im*κ) J = BEAST.Identity() N = BEAST.NCross() # Sxx = assemble(S,X,X) # Myx = assemble(D+0.5N,Y,X) # Mxx = assemble(C-0.5J,X,X) using JLD2 @load "temp/matrices.jld2" using LinearAlgebra norm(Σᵀ*Myx*Λ) ϵ, μ = 1.0, 1.0 ω = κ / √(ϵ*μ) E = Maxwell3D.planewave(direction=ẑ, polarization=x̂, wavenumber=κ) H = -1/(im*μ*ω)*curl(E) e = (n × E) × n h = (n × H) × n ex = assemble(e, X) hy = assemble(h, Y) hx = assemble(n × H,X) u1 = Sxx \ ex u2 = Myx \ hy u3 = Mxx \ hx Φ, Θ = [0.0], range(0,stop=π,length=100) pts = [point(cos(ϕ)*sin(θ), sin(ϕ)*sin(θ), cos(θ)) for ϕ in Φ for θ in Θ] ff1 = potential(MWFarField3D(wavenumber=κ), pts, u1, X) ff2 = potential(MWFarField3D(wavenumber=κ), pts, u2, X) ff3 = potential(MWFarField3D(wavenumber=κ), pts, u3, X) #Why: projectors Σ = copy(transpose(Σᵀ)) Ps = Σ*pinv(Array(Σᵀ*Σ))*Σᵀ Pl = I - Ps u1s = Ps*u1 u2s = Ps*u2 u3s = Ps*u3 u1l = Pl*u1 u2l = Pl*u2 u3l = Pl*u3 # s = svdvals(M) # h = nullspace(M,s[end]*1.0001) # # fcr, geo = facecurrents(h[:,end],X) # # V,F = vertexarray(m), cellarray(m) # B = [real(f[i]) for f in fcr, i in 1:3] # using MATLAB # mat"mesh = Mesh($V,$F)" # mat"[C,N] = faceNormals(mesh)" # mat"figure; hold on" # mat"patch(mesh,$(norm.(fcr)))" # mat"quiver3x(C,$B)"
proofpile-julia0005-42870
{ "provenance": "014.jsonl.gz:242871" }
l=[ "l=[","print(l[1]", "for i in l print(\" \$(repr(i))\") end", "print(l[end])", "for i in l[2:end-1] print(\"\$i\") end", "]", ] println(l[1]) for i in l println(" $(repr(i)),") end println(l[end]) for i in l[2:end-1] println("$i") end
proofpile-julia0005-42871
{ "provenance": "014.jsonl.gz:242872" }
import ProximalBundleMethod import Printf import Convex import Gurobi import SCS using LinearAlgebra using Random using SparseArrays include("utils.jl") include("csv_exporter.jl") include("plot_utils.jl") """ The following functions are used to process LIBSVM files. """ mutable struct LearningData feature_matrix::SparseMatrixCSC{Float64,Int64} labels::Vector{Float64} end function load_libsvm_file(file_name::String) open(file_name, "r") do io target = Array{Float64,1}() row_indicies = Array{Int64,1}() col_indicies = Array{Int64,1}() matrix_values = Array{Float64,1}() row_index = 0 for line in eachline(io) row_index += 1 split_line = split(line) label = parse(Float64, split_line[1]) # This ensures that labels are 1 or -1. Different dataset use {-1, 1}, {0, 1}, and {1, 2}. if abs(label - 1.0) < 1e-05 label = 1.0 else label = -1.0 end push!(target, label) for i = 2:length(split_line) push!(row_indicies, row_index) matrix_coef = split(split_line[i], ":") push!(col_indicies, parse(Int64, matrix_coef[1])) push!(matrix_values, parse(Float64, matrix_coef[2])) end end feature_matrix = sparse(row_indicies, col_indicies, matrix_values) return LearningData(feature_matrix, target) end end function normalize_columns(feature_matrix::SparseMatrixCSC{Float64,Int64}) m = size(feature_matrix, 2) normalize_columns_by = ones(m) for j = 1:m col_vals = feature_matrix[:, j].nzval if length(col_vals) > 0 normalize_columns_by[j] = 1.0 / norm(col_vals, 2) end end return feature_matrix * sparse(1:m, 1:m, normalize_columns_by) end function remove_empty_columns(feature_matrix::SparseMatrixCSC{Float64,Int64}) keep_cols = Array{Int64,1}() for j = 1:size(feature_matrix, 2) if length(feature_matrix[:, j].nzind) > 0 push!(keep_cols, j) end end return feature_matrix[:, keep_cols] end function add_intercept(feature_matrix::SparseMatrixCSC{Float64,Int64}) return [sparse(ones(size(feature_matrix, 1))) feature_matrix] end function preprocess_learning_data(result::LearningData) result.feature_matrix = remove_empty_columns(result.feature_matrix) result.feature_matrix = add_intercept(result.feature_matrix) result.feature_matrix = normalize_columns(result.feature_matrix) return result end function svm_objective(w, Xp, y, coeff) n, _ = size(Xp) soft_margin = map(x -> max(0, x), ones(length(y)) - y .* (Xp * w)) return sum(soft_margin) / n + coeff / 2 * LinearAlgebra.norm(w)^2 end function svm_subgradient(w, Xp, y, coeff) n, m = size(Xp) soft_margin = map(x -> max(0, x), ones(length(y)) - y .* (Xp * w)) result = zeros(length(w)) for i = 1:length(soft_margin) if soft_margin[i] > 0.0 result += -y[i] * Xp[i, :] / n end end return result + coeff * w end function compute_minimum_with_cvx(Xp, y, reg_coeff) n, m = size(Xp) w = Convex.Variable(m) problem = Convex.minimize( (reg_coeff / 2) * Convex.sumsquares(w) + Convex.sum(Convex.pos((1 - y .* (Xp * w)) / n)), ) Convex.solve!( problem, () -> Gurobi.Optimizer(BarConvTol = 1e-10, BarQCPConvTol = 1e-10), ) #() -> SCS.Optimizer(verbose=false), verbose=false) return problem end function main() Random.seed!(2625) instance_names = ["colon-cancer", "duke", "leu"] coefficients = [0.001, 0.01, 0.1, 0.5, 1.0, 1.5, 2.0, 10.0] step_sizes = [1e-15 * 100^j for j = 0:10] instances = Dict() for name in instance_names instances[name] = preprocess_learning_data(load_libsvm_file("data/" * name)) end errors = DataFrame( instance = String[], coeff = Float64[], error_subg = Float64[], error_bundle = Float64[], ) params_subgradient = create_subgradient_method_parameters( iteration_limit = 2000, verbose = true, printing_frequency = 100, ) params_bundle = create_bundle_method_parameters( iteration_limit = 2000, verbose = true, printing_frequency = 100, full_memory = false, ) for (name, instance) in instances Xp = (instance.feature_matrix) y = instance.labels _, m = size(Xp) x_init = randn(m) / m for coeff in coefficients print("\n------------------------------------\n") Printf.@printf("Instance %s, coeff %12g\n", name, coeff) println("Solving with Convex.jl first") problem = compute_minimum_with_cvx(Xp, y, coeff) Printf.@printf("Obj=%12g\n", problem.optval,) objective = (w -> svm_objective(w, Xp, y, coeff) - problem.optval) gradient = (w -> svm_subgradient(w, Xp, y, coeff)) poly_step_size = ((_, _, t) -> 1 / (coeff * t)) println("\nAbout to solve a random SVM problem using subgradient method.") sol_subgradient = ProximalBundleMethod.solve( objective, gradient, params_subgradient, poly_step_size, x_init, ) println("\nAbout to solve a random SVM problem using adaptive parallel method.") sol_bundle, iter_info_agents = ProximalBundleMethod.solve_adaptive( objective, gradient, params_bundle, step_sizes, x_init, ) push!( errors, [ name, coeff, objective(sol_subgradient.solution), objective(sol_bundle.solution), ], ) # Uncomment this block of code if you want to save stats about each run. # csv_path_sol = # "results/svm/results_subgradient_" * name * "_" * string(coeff) * "_svm.csv" # output_stepsize_plot = # "results/svm/results_subgradient_" * name * "_" * # string(coeff) * # "_stepsize_svm.pdf" # output_objective_plot = # "results/svm/results_subgradient_" * name * "_" * # string(coeff) * # "_objective_svm.pdf" # export_statistics(sol_subgradient, csv_path_sol) # plot_step_sizes(csv_path_sol, output_stepsize_plot) # plot_objective(csv_path_sol, output_objective_plot) # csv_path_sol = # "results/svm/results_bundle_" * name * "_" * string(coeff) * "_svm.csv" # output_stepsize_plot = # "results/svm/results_bundle_" * name * "_" * # string(coeff) * # "_stepsize_svm.pdf" # output_objective_plot = # "results/svm/results_bundle_" * name * "_" * # string(coeff) * # "_objective_svm.pdf" # csv_path = # "results/svm/results_" * name * "_" * string(coeff) * "_agents_svm.csv" # output_path = # "results/svm/results_" * name * "_" * string(coeff) * "_agents_svm.pdf" # export_statistics(sol_bundle, csv_path_sol) # plot_step_sizes(csv_path_sol, output_stepsize_plot) # plot_objective(csv_path_sol, output_objective_plot) # export_losses_agents(iter_info_agents, step_sizes, csv_path) # plot_agent_losses(csv_path, output_path) end end print(errors) CSV.write("results/svm/results_svm.csv", errors) end main()
proofpile-julia0005-42872
{ "provenance": "014.jsonl.gz:242873" }
type Trie{T} value::T children::Dict{Char,Trie{T}} is_key::Bool function Trie() self = new() self.children = (Char=>Trie{T})[] self.is_key = false self end end Trie() = Trie{Any}() function setindex!{T}(t::Trie{T}, val::T, key::String) node = t for char in key if !haskey(node.children, char) node.children[char] = Trie{T}() end node = node.children[char] end node.is_key = true node.value = val end function subtrie(t::Trie, prefix::String) node = t for char in prefix if !haskey(node.children, char) return nothing else node = node.children[char] end end node end function haskey(t::Trie, key::String) node = subtrie(t, key) node != nothing && node.is_key end get(t::Trie, key::String) = get(t, key, nothing) function get(t::Trie, key::String, notfound) node = subtrie(t, key) if node != nothing && node.is_key return node.value end notfound end function keys(t::Trie, prefix::String, found) if t.is_key push(found, prefix) end for (char,child) in t.children keys(child, strcat(prefix,char), found) end end keys(t::Trie, prefix::String) = (found=String[]; keys(t, prefix, found); found) keys(t::Trie) = keys(t, "") function keys_with_prefix(t::Trie, prefix::String) st = subtrie(t, prefix) st != nothing ? keys(st,prefix) : [] end
proofpile-julia0005-42873
{ "provenance": "014.jsonl.gz:242874" }
using CImGui using CImGui.CSyntax using CImGui.CSyntax.CSwitch using CImGui.CSyntax.CStatic using Printf """ ShowExampleAppLongText(p_open::Ref{Bool}) Test rendering huge amount of text, and the incidence of clipping. """ function ShowExampleAppLongText(p_open::Ref{Bool}) CImGui.SetNextWindowSize((520,600), CImGui.ImGuiCond_FirstUseEver) CImGui.Begin("Example: Long text display", p_open) || (CImGui.End(); return) @cstatic test_type=Cint(0) lines=0 log=CImGui.TextBuffer() begin CImGui.Text("Printing unusually long amount of text.") @c CImGui.Combo("Test type", &test_type, "Single call to TextUnformatted()\0Multiple calls to Text(), clipped manually\0Multiple calls to Text(), not clipped (slow)\0") CImGui.Text("Buffer contents: $lines lines, $(CImGui.Size(log)) bytes") if CImGui.Button("Clear") @info "Trigger Clear | find me here: $(@__FILE__) at line $(@__LINE__)" CImGui.Clear(log) lines = 0 end CImGui.SameLine() if CImGui.Button("Add 1000 lines") @info "Trigger Add 1000 lines | find me here: $(@__FILE__) at line $(@__LINE__)" foreach(i->CImGui.Append(log, "$(lines+i) The quick brown fox jumps over the lazy dog\n"), 1:1000) lines += 1000 end CImGui.BeginChild("Log") @cswitch test_type begin @case 0 # single call to TextUnformatted() with a big buffer CImGui.TextUnformatted(CImGui.Begin(log), CImGui.End(log)) break @case 1 # multiple calls to Text(), manually coarsely clipped - demonstrate how to use the ImGuiListClipper helper. CImGui.PushStyleVar(CImGui.ImGuiStyleVar_ItemSpacing, (0,0)) clipper = CImGui.Clipper() CImGui.Begin(clipper, lines) while CImGui.Step(clipper) s = CImGui.Get(clipper, :DisplayStart) e = CImGui.Get(clipper, :DisplayEnd)-1 foreach(i->CImGui.Text("$i The quick brown fox jumps over the lazy dog"), s:e) end CImGui.PopStyleVar() CImGui.Destroy(clipper) break @case 2 # multiple calls to Text(), not clipped (slow) CImGui.PushStyleVar(CImGui.ImGuiStyleVar_ItemSpacing, (0,0)) foreach(i->CImGui.Text("$i The quick brown fox jumps over the lazy dog"), 1:lines) CImGui.PopStyleVar() break end CImGui.EndChild() CImGui.End() end # @cstatic end
proofpile-julia0005-42874
{ "provenance": "014.jsonl.gz:242875" }
using HypothesisTests, Test using HypothesisTests: default_tail using StableRNGs @testset "F-tests" begin @testset "Basic variance F-test" begin rng = StableRNG(12) y1_h0 = 4 .+ randn(rng, 500) y2_h0 = 4 .+ randn(rng, 400) t = VarianceFTest(y1_h0, y2_h0) @test t.n_x == 500 @test t.n_y == 400 @test t.df_x == 499 @test t.df_y == 399 @test t.F ≈ 0.859582 rtol=1e-5 @test pvalue(t) ≈ 0.109714 rtol=1e-5 @test pvalue(t, tail=:left) ≈ 0.0548572 rtol=1e-5 @test pvalue(t, tail=:right) ≈ 0.945143 rtol=1e-5 @test default_tail(t) == :both t = VarianceFTest(y2_h0, y1_h0) @test t.n_x == 400 @test t.n_y == 500 @test t.df_x == 399 @test t.df_y == 499 @test t.F ≈ 1.163355 rtol=1e-5 @test pvalue(t) ≈ 0.109714 rtol=1e-5 @test pvalue(t, tail=:right) ≈ 0.0548572 rtol=1e-5 @test pvalue(t, tail=:left) ≈ 0.945143 rtol=1e-5 @test default_tail(t) == :both y1_h1 = 0.7*randn(rng, 200) y2_h1 = 1.3*randn(rng, 120) t = VarianceFTest(y1_h1, y2_h1) @test t.n_x == 200 @test t.n_y == 120 @test t.df_x == 199 @test t.df_y == 119 @test t.F ≈ 0.264161 rtol=1e-5 @test pvalue(t) < 1e-8 @test default_tail(t) == :both @test pvalue(t, tail=:left) < 1e-8 @test pvalue(t, tail=:right) > 1.0 - 1e-8 end end
proofpile-julia0005-42875
{ "provenance": "014.jsonl.gz:242876" }
using Random: randperm! using HDF5 """ MODIFIED DataLoader Class Modifications: - Altered "Base.iterate" implementation to handle hdf5 (.h5) files - Files are only read from disk when they're needed Original version: https://github.com/boathit/Benchmark-Flux-PyTorch/blob/master/dataloader.jl Original documentation: DataLoader(dataset::AbstractArray...; batchsize::Int, shuffle::Bool) DataLoader provides iterators over the dataset. ```julia X = rand(10, 1000) Y = rand(1, 1000) m = Dense(10, 1) loss(x, y) = Flux.mse(m(x), y) opt = ADAM(params(m)) trainloader = DataLoader(X, Y, batchsize=256, shuffle=true) Flux.train!(loss, trainloader, opt) ``` """ struct DataLoader dataset::Tuple batchsize::Int shuffle::Bool indices::Vector{Int} n::Int end function DataLoader( dataset::Tuple{AbstractArray,Vararg{AbstractArray}}; batchsize::Int, shuffle::Bool, ) l = last.(size.(dataset)) n = first(l) all(n .== l) || throw(DimensionMismatch("All data should have the same length.")) indices = collect(1:n) shuffle && randperm!(indices) DataLoader(dataset, batchsize, shuffle, indices, n) end DataLoader(dataset::AbstractArray...; batchsize::Int, shuffle::Bool) = DataLoader(dataset, batchsize = batchsize, shuffle = shuffle) function Base.iterate(it::DataLoader, start = 1) if start > it.n it.shuffle && randperm!(it.indices) return nothing end nextstart = min(start + it.batchsize, it.n + 1) i = it.indices[start:nextstart-1] # Select batch data raw_batch = Tuple(copy(selectdim(x, ndims(x), i)) for x in it.dataset) # Prepare empty batch arrays of size (dim1, dim2 .... dimN, 1) # Added dimension: index in batch X_batch = Array{Float32}(undef, 40, 40, 4, it.batchsize) Y_batch = Array{Float32}(undef, 1, it.batchsize) for i in 1:length(raw_batch[1]) # last batch could be smaller than (it.batchsize) # raw_batch[1][i] here includes the path to the h5 file to be read # img = permutedims(cpu(h5open(raw_batch[1][i], "r"))["data"][1:4,:,1:40], [2, 3, 1]) f = cpu(h5open(raw_batch[1][i], "r")) img = permutedims(f["data"][1:4,:,1:40], [2, 3, 1]) close(f) X_batch[:, :, :, i] = img depth = raw_batch[2][i] Y_batch[1, i] = depth end new_element = (X_batch, Y_batch) return gpu(new_element), nextstart end Base.length(it::DataLoader) = it.n Base.eltype(it::DataLoader) = typeof(it.dataset) function Base.show(io::IO, it::DataLoader) print(io, "DataLoader(dataset size = $(it.n)") print(io, ", batchsize = $(it.batchsize), shuffle = $(it.shuffle)") print(io, ")") end
proofpile-julia0005-42876
{ "provenance": "014.jsonl.gz:242877" }
# ---------------------------------------------------------------------------- # # # master.jl # # Abstract master element type # This allows for writing an n-dimensional version of solver methods # # λυτέος # Fall 2017 # # Max Opgenoord # # ---------------------------------------------------------------------------- # """ Master Master abstract type: Overarching abstract type for master element types. Currently triangle and tetrahedron implemented. """ abstract type Master end include("../integration/quadratureLine.jl") include("../integration/quadratureTriangle.jl") include("../integration/quadratureTet.jl") include("../integration/basisFuncLineLag.jl") include("../integration/basisFuncTriangleLag.jl") include("../integration/basisFuncTetLag.jl") include("master2D.jl") include("master3D.jl")
proofpile-julia0005-42877
{ "provenance": "014.jsonl.gz:242878" }
function Temperature_dist(T,theta_l,theta_v,q_l,q_v,rho_vs,soil_parameters, Ta, Hr_atm, St,u, psi_H, psi_m, soil_numerical_parameters,constants,atm_parameters,dt) theta_top = theta_l[end]; # top layer water content rs = 10*exp(35.63*(0.15-theta_top)); # soil surface resistance to vapor flow rv = 1/(u*constants.k^2)*(log((atm_parameters.z_ref-atm_parameters.d+atm_parameters.z_H)/atm_parameters.z_oH)+psi_H)* (log((atm_parameters.z_ref-atm_parameters.d+atm_parameters.z_m)/atm_parameters.z_om)+psi_m); rH = rv; e_a = 0.611*exp(17.27*(Ta-273.15)/(Ta-35.85))*Hr_atm; # atm. vapor pressure rho_sa = 1e-3.*exp(19.84-4975.9./Ta); rho_va = rho_sa*Hr_atm; eps_a = 0.7+5.95e-5*e_a*exp(1500/Ta); # atm. emmisivity; eps_s = min(0.9+0.18*theta_top,1); #soil emmisivity Cp = constants.Cs.*(soil_parameters.theta_s.-theta_l)+constants.Cw.*theta_l.+constants.Cv.*theta_v; lambda = soil_parameters.b1.+soil_parameters.b2.*theta_l+soil_parameters.b3.*sqrt.(theta_l); rho_w = 1000 .-7.3e-3.*(T.-(273+4)).^2 .+ 3.79e-5.*(T.-(273+4)).^3; #water density [kg m^-3] Lw = 2.501e6 .- 2369.2.*(T .- 273); # latent heat [J kg^-1] Lo = Lw.*rho_w; # vol. latent heat [J m^-3] L = 2.260e6; # latent heat for vaporazation [J kg^-1] T_old = T; O=zeros(2) O[1] = 1; LE=0 while O[1]>soil_numerical_parameters.eps_T temp_T_2 = T; temp_T = (T+T_old)./2; for i = 2:soil_numerical_parameters.Ns-1 T[i] = T_old[i]+dt/(soil_numerical_parameters.dz_s^2*Cp[i])*(lambda[i]*(temp_T[i+1]-2*temp_T[i]+temp_T[i-1])+ (lambda[i+1]-lambda[i])*(temp_T[i+1]-temp_T[i])-(constants.Cw*q_l[i]+constants.Cv*q_v[i])*soil_numerical_parameters.dz_s*(temp_T[i+1]-temp_T[i])); end #set bottom boundary T[1] = T_old[1]; #set top boundary Rn = (1-albedo)*St+eps_s*eps_a*constants.sigma*Ta^4- eps_s*constants.sigma*temp_T[end]^4; H = constants.Ca*(temp_T[end]-Ta)/rH; LE = L.*(rho_vs[end].-rho_va)./(rv.+rs); G = Rn.-H.-LE; T[end] = (G+T[end-1]*lambda[end]/soil_numerical_parameters.dz_s+Lo[end]*q_v[end])/(lambda[end]/soil_numerical_parameters.dz_s-constants.Cv*q_v[end]-constants.Cw*q_l[end]); rho_w = 1000 .- 7.3e-3.*(T.-(273+4)).^2 .+ 3.79e-5.*(T.-(273+4)).^3; #water density [kg m^-3] Lw = 2.501e6.-2369.2.*(T.-273); # latent heat [J kg^-1] Lo = Lw.*rho_w; # vol. latent heat [J m^-3] O[2] = mean(abs.(temp_T_2.-T)./temp_T); if O[2]<O[1] O[1] = O[2]; else dt = dt/2; T = T_old; O[1] = 1; end if dt==0 dt = 1; end #println(dt) end E = LE/(L*rho_w[end]); return T,E,dt end
proofpile-julia0005-42878
{ "provenance": "014.jsonl.gz:242879" }
"`base(::Type{T}, i)` singleton (`i`,) of collection type `T` " function base end "Id of Random Variable in projection" function randvarid end "`combine(a, b)` Combine (e.g. concatenate) `a` and `b`" function combine end "`append(a, b)` append `b` to the end of `a`, like `push!` but functional" function append end "`Increment(id::ID)` the id" function increment end
proofpile-julia0005-42879
{ "provenance": "014.jsonl.gz:242880" }
import Base: isidentifier, is_id_start_char, is_id_char const RESERVED_WORDS = Set(["begin", "while", "if", "for", "try", "return", "break", "continue", "function", "macro", "quote", "let", "local", "global", "const", "abstract", "typealias", "type", "bitstype", "immutable", "do", "module", "baremodule", "using", "import", "export", "importall", "end", "else", "elseif", "catch", "finally"]) VERSION < v"0.6.0-dev.2194" && push!(RESERVED_WORDS, "ccall") VERSION >= v"0.6.0-dev.2698" && push!(RESERVED_WORDS, "struct") function identifier(s::AbstractString) s = normalize_string(s) if !isidentifier(s) s = makeidentifier(s) end @compat(Symbol(in(s, RESERVED_WORDS) ? "_"*s : s)) end function makeidentifier(s::AbstractString) i = start(s) done(s, i) && return "x" res = IOBuffer(sizeof(s) + 1) (c, i) = next(s, i) under = if is_id_start_char(c) write(res, c) c == '_' elseif is_id_char(c) write(res, 'x', c) false else write(res, '_') true end while !done(s, i) (c, i) = next(s, i) if c != '_' && is_id_char(c) write(res, c) under = false elseif !under write(res, '_') under = true end end return String(take!(res)) end function make_unique(names::Vector{Symbol}; allow_duplicates=true) seen = Set{Symbol}() names = copy(names) dups = Int[] for i in 1:length(names) name = names[i] in(name, seen) ? push!(dups, i) : push!(seen, name) end if !allow_duplicates && length(dups) > 0 d = unique(names[dups]) msg = """Duplicate variable names: $d. Pass allow_duplicates=true to make them unique using a suffix automatically.""" throw(ArgumentError(msg)) end for i in dups nm = names[i] k = 1 while true newnm = Symbol("$(nm)_$k") if !in(newnm, seen) names[i] = newnm push!(seen, newnm) break end k += 1 end end return names end #' @description #' #' Generate standardized names for columns of a DataTable. The #' first name will be :x1, the second :x2, etc. #' #' @field n::Integer The number of names to generate. #' #' @returns names::Vector{Symbol} A vector of standardized column names. #' #' @examples #' #' DataTables.gennames(10) function gennames(n::Integer) res = Array{Symbol}(n) for i in 1:n res[i] = Symbol(@sprintf "x%d" i) end return res end #' @description #' #' Count the number of null values in an array. #' #' @field a::AbstractArray The array whose missing values are to be counted. #' #' @returns count::Int The number of null values in `a`. #' #' @examples #' #' DataTables.countnull([1, 2, 3]) function countnull(a::AbstractArray) res = 0 for x in a res += _isnull(x) end return res end #' @description #' #' Count the number of missing values in a NullableArray. #' #' @field a::NullableArray The NullableArray whose missing values are to be counted. #' #' @returns count::Int The number of null values in `a`. #' #' @examples #' #' DataTables.countnull(NullableArray([1, 2, 3])) countnull(a::NullableArray) = sum(a.isnull) #' @description #' #' Count the number of missing values in a NullableCategoricalArray. #' #' @field na::CategoricalArray The CategoricalArray whose missing values #' are to be counted. #' #' @returns count::Int The number of null values in `a`. #' #' @examples #' #' DataTables.countnull(CategoricalArray([1, 2, 3])) function countnull(a::CategoricalArray) res = 0 for x in a.refs res += x == 0 end return res end # Gets the name of a function. Used in groupedatatable/grouping.jl function _fnames{T<:Function}(fs::Vector{T}) λcounter = 0 names = map(fs) do f name = string(f) if name == "(anonymous function)" # Anonymous functions with Julia < 0.5 λcounter += 1 name = "λ$(λcounter)" end name end names end _isnull(x::Any) = false _isnull(x::Nullable) = isnull(x)
proofpile-julia0005-42880
{ "provenance": "014.jsonl.gz:242881" }
using DataDeps register(DataDep( "breast-cancer", "http://archive.ics.uci.edu/ml/datasets/Breast+Cancer", "http://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer/breast-cancer.data", "ca7d3fa97b62ff967b6894ffbb3acaaf4a51062e0149e5950b3ad6f685970b65", post_fetch_method=(path -> begin UCIData.process_dataset(path, target_index=10, feature_indices=1:9, categoric_indices=[1:6; 8:9], ) end), ))
proofpile-julia0005-42881
{ "provenance": "014.jsonl.gz:242882" }
function f(x,y) :: Int64 end
proofpile-julia0005-42882
{ "provenance": "014.jsonl.gz:242883" }
function compute_edge_faces_ring(faces) """ compute_edge_face_ring - compute faces adjacent to each edge e2f = compute_edge_face_ring(faces); e2f(i,j) and e2f(j,i) are the number of the two faces adjacent to edge (i,j). Copyright (c) 2007 Gabriel Peyre """ n = maximum(faces) m = size(faces,2) i = [faces[1,:] faces[2,:] faces[3,:]] j = [faces[2,:] faces[3,:] faces[1,:]] s = [1:m 1:m 1:m]; # first without duplicate tmp = unique(i + (maximum(i) + 1)*j) # unique I = indexin(tmp, i + (maximum(i) + 1)*j) # remaining items J = setdiff(1:length(s), I); # flip the duplicates i1 = [i[I]; j[J]] j1 = [j[I]; i[J]] s = [s[I]; s[J]] # remove doublons tmp = unique(i1 + (maximum(i1) + 1)*j1) I = indexin(tmp, i1 + (maximum(i1) + 1)*j1) i1 = i1[I] j1 = j1[I] s = s[I] A = sparse(i1,j1,s,n,n) # add missing points I = findall(A'.!=0) I = I[A[I].==0] A[I]=-1 return A end;