Datasets:
mteb
/

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
32
32
corpus-id
stringlengths
32
32
score
int64
1
1
edb58f525bd14724d6f490722fa8a657
2c4fe63d3378ac39907b6b2648eb40c5
1
edb58f525bd14724d6f490722fa8a657
5bc347ff17d488f1704e2893c9e8ecfa
1
edb58f525bd14724d6f490722fa8a657
1132b79d0bc37fc0d6f975904a8c0343
1
edb58f525bd14724d6f490722fa8a657
6e67389d07da8ce02ed97167d23baf9d
1
edb58f525bd14724d6f490722fa8a657
ac02549bbcd642d8d43321b94cd9b62b
1
edb58f525bd14724d6f490722fa8a657
f659e0711490aee108fe656dafa4386d
1
a451acd1e9836b04b16664e9f0c290e5
3e13b2f29d500f54752a2c24ed9a5dba
1
a451acd1e9836b04b16664e9f0c290e5
2c839510f35d5495251c6b3c057bd300
1
a451acd1e9836b04b16664e9f0c290e5
1b3e3db2a7762c5f20b33fbe07b410a7
1
48a8338aefaff17573048a088a08de70
8f3c3630a2c26ef51e0e4c6d5eb152a4
1
48a8338aefaff17573048a088a08de70
64f962153f5572a3f3734d4e3ee64159
1
48a8338aefaff17573048a088a08de70
09047f2d4d9485eb1da4ae8486fd7e6d
1
7871706c5cb1a1d6912ff8222434ccbd
b01fd11c6c67b51ef91815f7fd9aabac
1
7871706c5cb1a1d6912ff8222434ccbd
743cd33d400e9855be25330a9c2d9a8e
1
7871706c5cb1a1d6912ff8222434ccbd
36907bbc4b375eb9b2b1a50c0b10806b
1
7871706c5cb1a1d6912ff8222434ccbd
53a1c13e2d7209f7434574772aab3dfe
1
2b22b972c4e30776b9160fc83ee05367
21a2ae356641db895ac0b74be29816b5
1
2b22b972c4e30776b9160fc83ee05367
a658d98c94bc40086a31d1e6a2146c95
1
2b22b972c4e30776b9160fc83ee05367
e6bb6ebab46cc6bef181ba0276ddb7cd
1
2b22b972c4e30776b9160fc83ee05367
6b08e78b75d8215fd126c46bdad6c5af
1
2b22b972c4e30776b9160fc83ee05367
cf4150ccf7ee89887218edfcd4f1133e
1
2b22b972c4e30776b9160fc83ee05367
58e9820abe7589d4d9baba072ce45f68
1
979f5cfe8a8cc82ef302b98e2de59648
a265d966014ff8cbc9455a8ad607d0aa
1
979f5cfe8a8cc82ef302b98e2de59648
2e2158cdbc6302692bf0c90d66b6b1c1
1
93052ecb6ad07eb3b6f27a704004226c
80226037b2d33bf1d961e2dfe5319d97
1
93052ecb6ad07eb3b6f27a704004226c
0045f9336bac80891ea597253ea218cf
1
93052ecb6ad07eb3b6f27a704004226c
ab9eb95e10cc4dec4953d68a996ac825
1
93052ecb6ad07eb3b6f27a704004226c
1ca41d6a1fea5fe0b18dede2e3a2376d
1
14c34a53aa3d9327ac30184c651ee4df
de75182f37a37e29f98dfbf69ba59086
1
14c34a53aa3d9327ac30184c651ee4df
5ec4a2a6689550e67ad1bbe54f473edb
1
14c34a53aa3d9327ac30184c651ee4df
4173a49e099baa223b9eb62501eb9937
1
a835a0d06cf0e5e7becca9a992a79b70
d0b3952ba66a5af3af51e3842911a942
1
a835a0d06cf0e5e7becca9a992a79b70
0f4350c996f1c604d1a63040542c9140
1
a835a0d06cf0e5e7becca9a992a79b70
118dea908c90d4b91f5ca14cd1d29bc1
1
a835a0d06cf0e5e7becca9a992a79b70
dbb931c92e569530c245674560b362a7
1
a835a0d06cf0e5e7becca9a992a79b70
c62d47ee26fb14088c9517b9594bc941
1
a835a0d06cf0e5e7becca9a992a79b70
8aef053cebf789d56468814dcbb257bc
1
a835a0d06cf0e5e7becca9a992a79b70
ea2a663871f8b13ed79e87ba392a65b2
1
a835a0d06cf0e5e7becca9a992a79b70
93ff81737f23aec62f0a0ca050adee5b
1
a835a0d06cf0e5e7becca9a992a79b70
7dbbb6306143a460579092beab2998e0
1
a835a0d06cf0e5e7becca9a992a79b70
54d6c6479017285b0981c4ee3d1335d6
1
a835a0d06cf0e5e7becca9a992a79b70
0fd5c685665ce8fafa9341cd468fede8
1
a835a0d06cf0e5e7becca9a992a79b70
2c2f3440782845e64c2daac49c2370bb
1
ba62cc123e5631fc2e8705241c20cd61
930663f4d0fba945f9e62d6c6374b3fc
1
ba62cc123e5631fc2e8705241c20cd61
6cd2e5fb976fe71a059c356348e4c12f
1
ba62cc123e5631fc2e8705241c20cd61
6f43a4578cd86e6b83f9998e314d9224
1
ba62cc123e5631fc2e8705241c20cd61
c45851df6718d1db93c4ef22308a6582
1
983f04bed5035f0d8993ebf6b9ed7bbb
a505335c68b0f21106f6eea8bcfd7e3b
1
983f04bed5035f0d8993ebf6b9ed7bbb
a4d72abaef4e15029c0249bdcbc4734c
1
983f04bed5035f0d8993ebf6b9ed7bbb
d0cd594bd362b9f8b02b1b14fc452c1f
1
983f04bed5035f0d8993ebf6b9ed7bbb
a4946b3d4c40bcae21a97fc1925c3d1a
1
2b68efa248d341064a71a1b7e75235aa
08a6fcdd98743eec1a47d7ad65c691e4
1
e043a94041c66f30fc72a85327f888b4
d21e59761c9be0dda0d740ea246fdd6d
1
0a427cb6c8f3d4596620ae8aa788f521
a163e676d4aacb81b61cafb02bfce966
1
0a427cb6c8f3d4596620ae8aa788f521
854073b166651c4bcd81e77327796635
1
0a427cb6c8f3d4596620ae8aa788f521
fa8246a79b7027db0b4fe0d9e7b0ca54
1
e906e3e9179e1ef28cde478e85ed90f2
257dd47e6baac44f7fab594e1872ee4d
1
e906e3e9179e1ef28cde478e85ed90f2
a3ebc4a907bc9fe28c08372460dbd99f
1
e906e3e9179e1ef28cde478e85ed90f2
8d078b2e46ced0883f79f0d560f28f92
1
21e1e2aec388380f4f73b90af0d906f7
aaec1acd55cfe816d85ae0abe07df120
1
21e1e2aec388380f4f73b90af0d906f7
9999121d19a8ce057a9bf3dbaa4ffc93
1
21e1e2aec388380f4f73b90af0d906f7
a89682755d47e897847302dcb4812136
1
ffe49854b8be8810c373aa54d0ac592a
b89a1f325a3196dfeb7466f79274a3bc
1
ffe49854b8be8810c373aa54d0ac592a
d6eec6a189fc1543adc75578b227d82e
1
ffe49854b8be8810c373aa54d0ac592a
925bee1f19599c1e0c9151c23723c2ea
1
ffe49854b8be8810c373aa54d0ac592a
ace0ba1ddc762194254e23c93ce02e7f
1
ffe49854b8be8810c373aa54d0ac592a
cba7995009b908681388a233d18358e8
1
e3b81da6fc91675e281ce359c545cd83
d31ecf99d1b375cdf6c35382de711436
1
e3b81da6fc91675e281ce359c545cd83
0b4188a19d812e699846c1cea4e341b2
1
e3b81da6fc91675e281ce359c545cd83
f4204c1e0ad57b1256250a6221489f09
1
e3b81da6fc91675e281ce359c545cd83
ca714c098a745ccab64d35e6fca142c5
1
e3b81da6fc91675e281ce359c545cd83
afdd95b3b4ad0f0aac2e69558b850a22
1
00a969b83d0bda551c8ba5ef9ad9d3e8
6dddded28d2d08edae67d48749bdc125
1
caea5c95483711de85c135cf734fb411
7193f7434ca52c09f08fa2318faad5cf
1
caea5c95483711de85c135cf734fb411
c392c4e929fe4947009117cda4f3fa7a
1
006806b2416cf439b8131aabd17a3f89
8ecef583475e2d7006ecfec12cbc2d80
1
006806b2416cf439b8131aabd17a3f89
f8201a4aba5f4d71bef5a454d4ebdd7b
1
006806b2416cf439b8131aabd17a3f89
62ac90a462ee0071a6329558f1283e55
1
c4582a3e1803a2c7908f3a8233ab9a6e
67f210162cde16bf443ba659aaaf4f51
1
c4582a3e1803a2c7908f3a8233ab9a6e
ff184bce527ab6266838432b4b406040
1
c4582a3e1803a2c7908f3a8233ab9a6e
e4766689e06222726e553b730995aa2b
1
c4582a3e1803a2c7908f3a8233ab9a6e
a08e536a5ca6f940f23475f25fbbb45d
1
c4582a3e1803a2c7908f3a8233ab9a6e
6092e6d9e1d1123057432236084e4a28
1
c4582a3e1803a2c7908f3a8233ab9a6e
4bd51bda3e71fffc87f8c4e1db96a1b4
1
4298ce94f4d9f593b2858cc49d2e390d
9c53618681ee99572f5090eda2aae53a
1
4298ce94f4d9f593b2858cc49d2e390d
59dacf6082f71868e259dcc6625da032
1
4298ce94f4d9f593b2858cc49d2e390d
c360a6cf4d89a496711cb4ba8d203fdd
1
52ee98a48afb029595125b44eee460af
65e39c010845b59f48ff34ccb6023cc1
1
52ee98a48afb029595125b44eee460af
2ece59916a0a085b8b8e3a004fcae084
1
52ee98a48afb029595125b44eee460af
4febafd3c588a582f37842015054e2bb
1
52ee98a48afb029595125b44eee460af
f8fdf5e3cc34c41dcf7a32ac84105682
1
52ee98a48afb029595125b44eee460af
38dcfe1e45b20027ab6cac079798ccf7
1
52ee98a48afb029595125b44eee460af
93c3fe3304247b0f842238f487bc7958
1
52ee98a48afb029595125b44eee460af
fb45952667079708dc2890ef1ccb8d0f
1
52ee98a48afb029595125b44eee460af
0fbd9b5f32401c818bee264115dc7412
1
52ee98a48afb029595125b44eee460af
d2e6703fe9a09e3d949e0721c26beceb
1
52ee98a48afb029595125b44eee460af
fc8a4ec4dc5c0b037ab7a570021c67bd
1
52ee98a48afb029595125b44eee460af
3a6806d5c9967af3dc9cf38afbb1958e
1
52ee98a48afb029595125b44eee460af
fb98910e0fb4532e504c04820a013615
1
52ee98a48afb029595125b44eee460af
00ffdcc530e904dc1d3bc39b52620cec
1
End of preview. Expand in Data Studio

DuRetrieval

An MTEB dataset
Massive Text Embedding Benchmark

A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine

Task category t2t
Domains None
Reference https://aclanthology.org/2022.emnlp-main.357.pdf

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["DuRetrieval"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@misc{qiu2022dureaderretrieval,
  archiveprefix = {arXiv},
  author = {Yifu Qiu and Hongyu Li and Yingqi Qu and Ying Chen and Qiaoqiao She and Jing Liu and Hua Wu and Haifeng Wang},
  eprint = {2203.10232},
  primaryclass = {cs.CL},
  title = {DuReader_retrieval: A Large-scale Chinese Benchmark for Passage Retrieval from Web Search Engine},
  year = {2022},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("DuRetrieval")

desc_stats = task.metadata.descriptive_stats
{
    "dev": {
        "num_samples": 102001,
        "number_of_characters": 33151109,
        "num_documents": 100001,
        "min_document_length": 1,
        "average_document_length": 331.3219967800322,
        "max_document_length": 60975,
        "unique_documents": 100001,
        "num_queries": 2000,
        "min_query_length": 3,
        "average_query_length": 9.289,
        "max_query_length": 55,
        "unique_queries": 2000,
        "none_queries": 0,
        "num_relevant_docs": 9839,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 4.9195,
        "max_relevant_docs_per_query": 31,
        "unique_relevant_docs": 9792,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
92