Datasets:
mteb
/

Modalities:
Text
Formats:
json
Languages:
German
Size:
< 1K
ArXiv:
Libraries:
Datasets
pandas
License:
Dataset Viewer
Auto-converted to Parquet
query-id
stringlengths
5
5
corpus-id
stringlengths
10
10
score
float64
1
1
00000
4efLerNHu9
1
00001
pkObaWoukd
1
00002
td26fEeVVh
1
00003
BovCzfAPxj
1
00004
7nvdE2ODH0
1
00005
Xoblu17rNy
1
00006
zgEz6cwB61
1
00007
B19sMLT6mn
1
00008
ZESFqZ8pIx
1
00009
YxPY8EcFK1
1
00010
2BGCSzOjD8
1
00011
GCLgR0OVSn
1
00012
WvTMVTucHY
1
00013
JtVEFEtb6F
1
00014
nabsPHGZpv
1
00015
efQrSO42uK
1
00016
MbyIbNiCdx
1
00017
FCIX3BYOtD
1
00018
NAp0mxDoJJ
1
00019
wmq6OLkTkx
1
00020
0lnXv2Rra6
1
00021
aVNqTIAae2
1
00022
aSQHqNgAC7
1
00023
YPZTQGOAww
1
00024
kWCRNYdWCs
1
00025
8Y7XsrSvBp
1
00026
CplTXJUk13
1
00027
ndZ4szi6sE
1
00028
nFbmOHnKYa
1
00029
gMXAdx9G81
1
00030
1v9r86eNwX
1
00031
TGUDWFgF6c
1
00032
JLQ6xVJGyO
1
00033
TtLFxJpRa5
1
00034
JXke1Mo4iC
1
00035
08YMNb5Zql
1
00036
Rtva1JyiNb
1
00037
uPGtk4vvVS
1
00038
scAXCg4KbF
1
00039
QsKDGAUuRq
1
00040
z52Dm7tO4f
1
00041
8IRh1E2JDB
1
00042
RCQ5WMO5AH
1
00043
q0Zf2pCLxb
1
00044
gQH8wylh0C
1
00045
YsP6ihgIqL
1
00046
piAMozPf8e
1
00047
tUeC99enq5
1
00048
DO4lKNEfvu
1
00049
P9K63LSFZH
1
00050
mRtv5XqhPx
1
00051
DXQsedBEmL
1
00052
Y7gbtP7ySe
1
00053
eNo41eoPni
1
00054
DIq2AnHTmt
1
00055
ILft9SGVZe
1
00056
UnAvwSWJfd
1
00057
U7sSaOQdht
1
00058
phlhHVlnES
1
00059
DmH5RiMKpP
1
00060
nBvbdFo9xb
1
00061
g3iCPU6zUj
1
00062
YkBzPoBrUB
1
00063
NbrnTP3fAb
1
00064
CtlRJoWcUR
1
00065
jQzW52Tdim
1
00066
wW1uhw3U3x
1
00067
GNdzSgVaI5
1
00068
GF9IyDN8pb
1
00069
NJOVzNEMr7
1
00070
FJjuGhmKfF
1
00071
BnD3XkfFNu
1
00072
zNmREpOaUV
1
00073
ln6Eoie0gV
1
00074
IqK3yn9Ffc
1
00075
rsK9EjHvIH
1
00076
0pKGytvukF
1
00077
FVr9Qh8yXv
1
00078
6UmFFciuDC
1
00079
nuVxUZpfbH
1
00080
ZFfPliupqo
1
00081
YCFCdCYSyY
1
00082
n62tOy4Cqp
1
00083
nnBbuQzkCh
1
00084
9vOWOU6mbj
1
00085
g00rVq4jB6
1
00086
ijULzIDHPn
1
00087
xavU07zUHL
1
00088
xG7YXipN2I
1
00089
50OXirZRiR
1
00090
qWCA79ISjs
1
00091
gcLRdTyon1
1
00092
2ceN59UAgN
1
00093
18Y2bTu5X1
1
00094
O4ZektUJrh
1
00095
zHzmA4KR1V
1
00096
A2TVwyJmIe
1
00097
YUPnmbpD0e
1
00098
r9HE60Dlgk
1
00099
sUkiH8G4Zp
1
End of preview. Expand in Data Studio

LegalQuAD

An MTEB dataset
Massive Text Embedding Benchmark

The dataset consists of questions and legal documents in German.

Task category t2t
Domains Legal, Written
Reference https://github.com/Christoph911/AIKE2021_Appendix

How to evaluate on this task

You can evaluate an embedding model on this dataset using the following code:

import mteb

task = mteb.get_tasks(["LegalQuAD"])
evaluator = mteb.MTEB(task)

model = mteb.get_model(YOUR_MODEL)
evaluator.run(model)

To learn more about how to run models on mteb task check out the GitHub repitory.

Citation

If you use this dataset, please cite the dataset as well as mteb, as this dataset likely includes additional processing as a part of the MMTEB Contribution.


@inproceedings{9723721,
  author = {Hoppe, Christoph and Pelkmann, David and Migenda, Nico and Hötte, Daniel and Schenck, Wolfram},
  booktitle = {2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering (AIKE)},
  doi = {10.1109/AIKE52691.2021.00011},
  keywords = {Knowledge engineering;Law;Semantic search;Conferences;Bit error rate;NLP;knowledge extraction;question-answering;semantic search;document retrieval;German language},
  number = {},
  pages = {29-32},
  title = {Towards Intelligent Legal Advisors for Document Retrieval and Question-Answering in German Legal Documents},
  volume = {},
  year = {2021},
}


@article{enevoldsen2025mmtebmassivemultilingualtext,
  title={MMTEB: Massive Multilingual Text Embedding Benchmark},
  author={Kenneth Enevoldsen and Isaac Chung and Imene Kerboua and Márton Kardos and Ashwin Mathur and David Stap and Jay Gala and Wissam Siblini and Dominik Krzemiński and Genta Indra Winata and Saba Sturua and Saiteja Utpala and Mathieu Ciancone and Marion Schaeffer and Gabriel Sequeira and Diganta Misra and Shreeya Dhakal and Jonathan Rystrøm and Roman Solomatin and Ömer Çağatan and Akash Kundu and Martin Bernstorff and Shitao Xiao and Akshita Sukhlecha and Bhavish Pahwa and Rafał Poświata and Kranthi Kiran GV and Shawon Ashraf and Daniel Auras and Björn Plüster and Jan Philipp Harries and Loïc Magne and Isabelle Mohr and Mariya Hendriksen and Dawei Zhu and Hippolyte Gisserot-Boukhlef and Tom Aarsen and Jan Kostkan and Konrad Wojtasik and Taemin Lee and Marek Šuppa and Crystina Zhang and Roberta Rocca and Mohammed Hamdy and Andrianos Michail and John Yang and Manuel Faysse and Aleksei Vatolin and Nandan Thakur and Manan Dey and Dipam Vasani and Pranjal Chitale and Simone Tedeschi and Nguyen Tai and Artem Snegirev and Michael Günther and Mengzhou Xia and Weijia Shi and Xing Han Lù and Jordan Clive and Gayatri Krishnakumar and Anna Maksimova and Silvan Wehrli and Maria Tikhonova and Henil Panchal and Aleksandr Abramov and Malte Ostendorff and Zheng Liu and Simon Clematide and Lester James Miranda and Alena Fenogenova and Guangyu Song and Ruqiya Bin Safi and Wen-Ding Li and Alessia Borghini and Federico Cassano and Hongjin Su and Jimmy Lin and Howard Yen and Lasse Hansen and Sara Hooker and Chenghao Xiao and Vaibhav Adlakha and Orion Weller and Siva Reddy and Niklas Muennighoff},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2502.13595},
  year={2025},
  url={https://arxiv.org/abs/2502.13595},
  doi = {10.48550/arXiv.2502.13595},
}

@article{muennighoff2022mteb,
  author = {Muennighoff, Niklas and Tazi, Nouamane and Magne, Lo{\"\i}c and Reimers, Nils},
  title = {MTEB: Massive Text Embedding Benchmark},
  publisher = {arXiv},
  journal={arXiv preprint arXiv:2210.07316},
  year = {2022}
  url = {https://arxiv.org/abs/2210.07316},
  doi = {10.48550/ARXIV.2210.07316},
}

Dataset Statistics

Dataset Statistics

The following code contains the descriptive statistics from the task. These can also be obtained using:

import mteb

task = mteb.get_task("LegalQuAD")

desc_stats = task.metadata.descriptive_stats
{
    "test": {
        "num_samples": 400,
        "number_of_characters": 3910984,
        "num_documents": 200,
        "min_document_length": 769,
        "average_document_length": 19482.955,
        "max_document_length": 94998,
        "unique_documents": 200,
        "num_queries": 200,
        "min_query_length": 22,
        "average_query_length": 71.965,
        "max_query_length": 119,
        "unique_queries": 200,
        "none_queries": 0,
        "num_relevant_docs": 200,
        "min_relevant_docs_per_query": 1,
        "average_relevant_docs_per_query": 1.0,
        "max_relevant_docs_per_query": 1,
        "unique_relevant_docs": 200,
        "num_instructions": null,
        "min_instruction_length": null,
        "average_instruction_length": null,
        "max_instruction_length": null,
        "unique_instructions": null,
        "num_top_ranked": null,
        "min_top_ranked_per_query": null,
        "average_top_ranked_per_query": null,
        "max_top_ranked_per_query": null
    }
}

This dataset card was automatically generated using MTEB

Downloads last month
132