File size: 2,184 Bytes
afb99ee
 
 
 
 
 
 
 
 
 
 
 
 
 
 
708bd0e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a3b728
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
license: apache-2.0
task_categories:
- image-classification
language:
- en
tags:
- Indoor
- Outdoor
- Scene
- Classification
- 20K
- Net
size_categories:
- 10K<n<100K
---
# **IndoorOutdoorNet-20K**

**IndoorOutdoorNet-20K** is a labeled image dataset designed for the task of **image classification**, particularly focused on distinguishing between **indoor** and **outdoor** scenes. The dataset is publicly available on [Hugging Face Datasets](https://huggingface.co/datasets/prithivMLmods/IndoorOutdoorNet-20K) and is useful for scene understanding, transfer learning, and model benchmarking.

## Dataset Summary

- **Task**: Image Classification
- **Modalities**: Image
- **Labels**: Indoor, Outdoor (2 classes)
- **Total Images**: 19,998
- **Split**: Train (100%)
- **Languages**: English (metadata)
- **Size**: ~451 MB
- **License**: Apache-2.0

## Features

| Column | Type   | Description                     |
|--------|--------|---------------------------------|
| image  | Image  | Input image file                |
| label  | Class  | Scene label: `Indoor` or `Outdoor` |

## Example

| Image                         | Label   |
|------------------------------|---------|
| ![](image_sample1.png)       | Indoor  |
| ![](image_sample2.png)       | Outdoor |

> Note: For full visualization, visit the dataset viewer on Hugging Face.

## Usage

You can use this dataset directly with the `datasets` library:

```python
from datasets import load_dataset

dataset = load_dataset("prithivMLmods/IndoorOutdoorNet-20K")
```

To visualize a sample:

```python
import matplotlib.pyplot as plt

sample = dataset['train'][0]
plt.imshow(sample['image'])
plt.title(sample['label'])
plt.axis('off')
plt.show()
```

## Applications

- Scene classification
- Image context recognition
- Smart surveillance
- Autonomous navigation
- Indoor-outdoor transition detection in robotics

## Citation

If you use this dataset in your research or project, please cite it appropriately. (You can include a BibTeX entry here if available.)

## License

This dataset is licensed under the Apache 2.0 License.

---

*Curated & Maintained by [@prithivMLmods](https://huggingface.co/prithivMLmods).*