|
--- |
|
{} |
|
--- |
|
|
|
# Dataset Card for KMNIST |
|
|
|
<!-- Provide a quick summary of the dataset. --> |
|
|
|
## Dataset Details |
|
|
|
### Dataset Description |
|
|
|
<!-- Provide a longer summary of what this dataset is. --> |
|
This dataset contains two variants, **Kuzushiji-MNIST** and **Kuzushiji-49**. |
|
|
|
**Kuzushiji-MNIST** is a drop-in replacement for the MNIST dataset. |
|
|
|
**Kuzushiji-49**, as the name suggests, has 49 classes, is a much larger, but imbalanced dataset containing 48 Hiragana characters and one Hiragana iteration mark. |
|
|
|
- **License:** CC BY-SA 4.0 |
|
|
|
### Dataset Sources |
|
|
|
<!-- Provide the basic links for the dataset. --> |
|
|
|
- **Homepage:** https://github.com/rois-codh/kmnist |
|
- **Paper:** Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., & Ha, D. (2018). Deep learning for classical japanese literature. arXiv preprint arXiv:1812.01718. |
|
|
|
## Dataset Structure |
|
|
|
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. --> |
|
|
|
#### Kuzushiji-MNIST: |
|
|
|
Total images: 70,000 |
|
|
|
Classes: 10 categories |
|
|
|
Splits: |
|
|
|
- **Train:** 60,000 images |
|
|
|
- **Test:** 10,000 images |
|
|
|
Image specs: 28×28 pixels, grayscale |
|
|
|
#### Kuzushiji-49: |
|
|
|
Total images: 270,912 |
|
|
|
Classes: 49 categories |
|
|
|
Splits: |
|
|
|
- **Train:** 232,365 images |
|
|
|
- **Test:** 38,547 images |
|
|
|
Image specs: 28×28 pixels, grayscale |
|
|
|
|
|
## Example Usage |
|
Below is a quick example of how to load this dataset via the Hugging Face Datasets library. |
|
``` |
|
from datasets import load_dataset |
|
|
|
# Load the dataset |
|
dataset = load_dataset("randall-lab/kmnist", name="kmnist", split="train", trust_remote_code=True) |
|
# dataset = load_dataset("randall-lab/kmnist", name="kmnist", split="test", trust_remote_code=True) |
|
# dataset = load_dataset("randall-lab/kmnist", name="k49mnist", split="train", trust_remote_code=True) |
|
# dataset = load_dataset("randall-lab/kmnist", name="k49mnist", split="test", trust_remote_code=True) |
|
|
|
# Access a sample from the dataset |
|
example = dataset[0] |
|
image = example["image"] |
|
label = example["label"] |
|
|
|
image.show() # Display the image |
|
print(f"Label: {label}") |
|
``` |
|
|
|
## Citation |
|
|
|
<!-- If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. --> |
|
|
|
**BibTeX:** |
|
|
|
@article{clanuwat2018deep, |
|
title={Deep learning for classical japanese literature}, |
|
author={Clanuwat, Tarin and Bober-Irizar, Mikel and Kitamoto, Asanobu and Lamb, Alex and Yamamoto, Kazuaki and Ha, David}, |
|
journal={arXiv preprint arXiv:1812.01718}, |
|
year={2018} |
|
} |
|
|