Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

8-Calves Dataset

arXiv

A benchmark dataset for occlusion-rich object detection, identity classification, and multi-object tracking. Features 8 Holstein Friesian calves with unique coat patterns in a 1-hour video with temporal annotations.


Overview

This dataset provides:

  • 🕒 1-hour video (67,760 frames @20 fps, 600x800 resolution)
  • 🎯 537,908 verified bounding boxes with calf identities (1-8)
  • 🖼️ 900 hand-labeled static frames for detection tasks
  • Designed to evaluate robustness in occlusion handling, identity preservation, and temporal consistency.
Dataset Example Frame *Example frame with bounding boxes (green) and calf identities. Challenges include occlusion, motion blur, and pose variation.*

Key Features

  • Temporal Richness: 1-hour continuous recording (vs. 10-minute benchmarks like 3D-POP)
  • High-Quality Labels:
    • Generated via ByteTrack + YOLOv8m pipeline with manual correction
    • <0.56% annotation error rate
  • Unique Challenges: Motion blur, pose variation, and frequent occlusions
  • Efficiency Testing: Compare lightweight (e.g., YOLOv9t) vs. large models (e.g., ConvNextV2)

Dataset Structure

hand_labelled_frames/ # 900 manually annotated frames and labels in YOLO format, class=0 for cows

pmfeed_4_3_16.avi # 1-hour video (4th March 2016)

pmfeed_4_3_16_bboxes_and_labels.pkl # Temporal annotations

Annotation Details

PKL File Columns:

Column Description
class Always 0 (cow detection)
x, y, w, h YOLO-format bounding boxes
conf Ignore (detections manually verified)
tracklet_id Calf identity (1-8)
frame_id Temporal index matching video

Load annotations:

import pandas as pd
df = pd.read_pickle("pmfeed_4_3_16_bboxes_and_labels.pkl")

Usage

Dataset Download:

Step 1: install git-lfs: git lfs install

Step 2: git clone [email protected]:datasets/tonyFang04/8-calves

Step 3: install conda and pip environments:

conda create --name new_env --file conda_requirements.txt
pip install -r pip_requirements.txt

Object Detection

  • Training/Validation: Use the first 600 frames from hand_labelled_frames/ (chronological split).
  • Testing: Evaluate on the full video (pmfeed_4_3_16.avi) using the provided PKL annotations.
  • ⚠️ Avoid Data Leakage: Do not use all 900 frames for training - they are temporally linked to the test video.

Recommended Split:

Split Frames Purpose
Training 500 Model training
Validation 100 Hyperparameter tuning
Test 67,760 Final evaluation

Benchmarking YOLO Models:

Step 1: cd 8-calves/object_detector_benchmark. Run ./create_yolo_dataset.sh and create_yolo_testset.py. This creates a YOLO dataset with the 500/100/67760 train/val/test split recommended above.

Step 2: find the Albumentations class in the data/augment.py file in ultralytics source code. And replace the default transforms to:

# Transforms
T = [
    A.RandomRotate90(p=1.0),
    A.HorizontalFlip(p=0.5),
    A.RandomBrightnessContrast(p=0.4),
    A.ElasticTransform(
        alpha=100.0, 
        sigma=5.0, 
        p=0.5
    ),
]

Step 3: run the yolo detectors following the following commands:

cd yolo_benchmark

Model_Name=yolov9t

yolo cfg=experiment.yaml model=$Model_Name.yaml name=$Model_Name

Benchmark Transformer Based Models:

Step 1: run the following commands to load the data into yolo format, then into coco, then into arrow:

cd 8-calves/object_detector_benchmark
./create_yolo_dataset.sh
python create_yolo_testset.py
python yolo_to_coco.py
python data_wrangling.py

Step 2: run the following commands to train:

cd transformer_benchmark
python train.py --config Configs/conditional_detr.yaml

Temporal Classification

  • Use tracklet_id (1-8) from the PKL file as labels.
  • Temporal Split: 30% train / 30% val / 40% test (chronological order).

Benchmark vision models for temporal classification:

Step 1: cropping the bounding boxes from pmfeed_4_3_16.mp4 using the correct labels in pmfeed_4_3_16_bboxes_and_labels.pkl. Then convert the folder of images cropped from pmfeed_4_3_16.mp4 into lmdb dataset for fast loading:

cd identification_benchmark
python crop_pmfeed_4_3_16.py
python construct_lmdb.py

Step 2: get embeddings from vision model:

cd big_model_inference

Use inference_resnet.py to get embeddings from resnet and inference_transformers.py to get embeddings from transformer weights available on Huggingface:

python inference_resnet.py --resnet_type resnet18
python inference_transformers.py --model_name facebook/convnextv2-nano-1k-224

Step 3: use the embeddings and labels obtained from step 2 to conduct knn evaluation and linear classification:

cd ../classification
python train.py
python knn_evaluation.py

Key Results

Object Detection (YOLO Models)

Model Parameters (M) mAP50:95 (%) Inference Speed (ms/sample)
YOLOv9c 25.6 68.4 2.8
YOLOv8x 68.2 68.2 4.4
YOLOv10n 2.8 64.6 0.7

Identity Classification (Top Models)

Model Accuracy (%) KNN Top-1 (%) Parameters (M)
ConvNextV2-Nano 73.1 50.8 15.6
Swin-Tiny 68.7 43.9 28.3
ResNet50 63.7 38.3 25.6

Notes:

  • mAP50:95: Mean Average Precision at IoU thresholds 0.5–0.95.
  • KNN Top-1: Nearest-neighbor accuracy using embeddings.
  • Full results and methodology: arXiv paper.

License

This dataset is released under CC-BY 4.0.
Modifications/redistribution must include attribution.

Citation

@article{fang20248calves,
  title={8-Calves: A Benchmark for Object Detection and Identity Classification in Occlusion-Rich Environments},
  author={Fang, Xuyang and Hannuna, Sion and Campbell, Neill},
  journal={arXiv preprint arXiv:2503.13777},
  year={2024}
}

Contact

Dataset Maintainer:
Xuyang Fang
Email: [email protected]

Downloads last month
178