text
stringlengths 0
3.06M
| meta
stringlengths 57
121
|
---|---|
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Defs", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Algebra.Order.Group.Bounds", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b✝ c : α
n : ℤ
b : α
⊢ toIcoMod hp 0 b ∈ Set.Ico 0 p
[PROOFSTEP]
convert toIcoMod_mem_Ico hp 0 b
[GOAL]
case h.e'_5.h.e'_4
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b✝ c : α
n : ℤ
b : α
⊢ p = 0 + p
[PROOFSTEP]
exact (zero_add p).symm
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp a b • p - b = -toIcoMod hp a b
[PROOFSTEP]
rw [toIcoMod, neg_sub]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a b • p - b = -toIocMod hp a b
[PROOFSTEP]
rw [toIocMod, neg_sub]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp a b - b = -toIcoDiv hp a b • p
[PROOFSTEP]
rw [toIcoMod, sub_sub_cancel_left, neg_smul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp a b - b = -toIocDiv hp a b • p
[PROOFSTEP]
rw [toIocMod, sub_sub_cancel_left, neg_smul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ b - toIcoMod hp a b = toIcoDiv hp a b • p
[PROOFSTEP]
rw [toIcoMod, sub_sub_cancel]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ b - toIocMod hp a b = toIocDiv hp a b • p
[PROOFSTEP]
rw [toIocMod, sub_sub_cancel]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp a b + toIcoDiv hp a b • p = b
[PROOFSTEP]
rw [toIcoMod, sub_add_cancel]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp a b + toIocDiv hp a b • p = b
[PROOFSTEP]
rw [toIocMod, sub_add_cancel]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp a b • p + toIcoMod hp a b = b
[PROOFSTEP]
rw [add_comm, toIcoMod_add_toIcoDiv_zsmul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a b • p + toIocMod hp a b = b
[PROOFSTEP]
rw [add_comm, toIocMod_add_toIocDiv_zsmul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ toIcoMod hp a b = c ↔ c ∈ Set.Ico a (a + p) ∧ ∃ z, b = c + z • p
[PROOFSTEP]
refine' ⟨fun h => ⟨h ▸ toIcoMod_mem_Ico hp a b, toIcoDiv hp a b, h ▸ (toIcoMod_add_toIcoDiv_zsmul _ _ _).symm⟩, _⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ (c ∈ Set.Ico a (a + p) ∧ ∃ z, b = c + z • p) → toIcoMod hp a b = c
[PROOFSTEP]
simp_rw [← @sub_eq_iff_eq_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ (c ∈ Set.Ico a (a + p) ∧ ∃ z, b - z • p = c) → toIcoMod hp a b = c
[PROOFSTEP]
rintro ⟨hc, n, rfl⟩
[GOAL]
case intro.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b : α
n✝ n : ℤ
hc : b - n • p ∈ Set.Ico a (a + p)
⊢ toIcoMod hp a b = b - n • p
[PROOFSTEP]
rw [← toIcoDiv_eq_of_sub_zsmul_mem_Ico hp hc, toIcoMod]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ toIocMod hp a b = c ↔ c ∈ Set.Ioc a (a + p) ∧ ∃ z, b = c + z • p
[PROOFSTEP]
refine' ⟨fun h => ⟨h ▸ toIocMod_mem_Ioc hp a b, toIocDiv hp a b, h ▸ (toIocMod_add_toIocDiv_zsmul hp _ _).symm⟩, _⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ (c ∈ Set.Ioc a (a + p) ∧ ∃ z, b = c + z • p) → toIocMod hp a b = c
[PROOFSTEP]
simp_rw [← @sub_eq_iff_eq_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ (c ∈ Set.Ioc a (a + p) ∧ ∃ z, b - z • p = c) → toIocMod hp a b = c
[PROOFSTEP]
rintro ⟨hc, n, rfl⟩
[GOAL]
case intro.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b : α
n✝ n : ℤ
hc : b - n • p ∈ Set.Ioc a (a + p)
⊢ toIocMod hp a b = b - n • p
[PROOFSTEP]
rw [← toIocDiv_eq_of_sub_zsmul_mem_Ioc hp hc, toIocMod]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a - 0 • p ∈ Set.Ico a (a + p)
[PROOFSTEP]
simp [hp]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a - -1 • p ∈ Set.Ioc a (a + p)
[PROOFSTEP]
simp [hp]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ toIcoMod hp a a = a
[PROOFSTEP]
rw [toIcoMod_eq_iff hp, Set.left_mem_Ico]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a < a + p ∧ ∃ z, a = a + z • p
[PROOFSTEP]
exact ⟨lt_add_of_pos_right _ hp, 0, by simp⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a = a + 0 • p
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ toIocMod hp a a = a + p
[PROOFSTEP]
rw [toIocMod_eq_iff hp, Set.right_mem_Ioc]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a < a + p ∧ ∃ z, a = a + p + z • p
[PROOFSTEP]
exact ⟨lt_add_of_pos_right _ hp, -1, by simp⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a = a + p + -1 • p
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a + p - 1 • p ∈ Set.Ico a (a + p)
[PROOFSTEP]
simp [hp]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a + p - 0 • p ∈ Set.Ioc a (a + p)
[PROOFSTEP]
simp [hp]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ toIcoMod hp a (a + p) = a
[PROOFSTEP]
rw [toIcoMod_eq_iff hp, Set.left_mem_Ico]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a < a + p ∧ ∃ z, a + p = a + z • p
[PROOFSTEP]
exact ⟨lt_add_of_pos_right _ hp, 1, by simp⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a + p = a + 1 • p
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ toIocMod hp a (a + p) = a + p
[PROOFSTEP]
rw [toIocMod_eq_iff hp, Set.right_mem_Ioc]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a < a + p ∧ ∃ z, a + p = a + p + z • p
[PROOFSTEP]
exact ⟨lt_add_of_pos_right _ hp, 0, by simp⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a : α
⊢ a + p = a + p + 0 • p
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b + m • p - (toIcoDiv hp a b + m) • p ∈ Set.Ico a (a + p)
[PROOFSTEP]
simpa only [add_smul, add_sub_add_right_eq_sub] using sub_toIcoDiv_zsmul_mem_Ico hp a b
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoDiv hp (a + m • p) b = toIcoDiv hp a b - m
[PROOFSTEP]
refine' toIcoDiv_eq_of_sub_zsmul_mem_Ico _ _
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b - (toIcoDiv hp a b - m) • p ∈ Set.Ico (a + m • p) (a + m • p + p)
[PROOFSTEP]
rw [sub_smul, ← sub_add, add_right_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b - toIcoDiv hp a b • p + m • p ∈ Set.Ico (a + m • p) (a + p + m • p)
[PROOFSTEP]
simpa using sub_toIcoDiv_zsmul_mem_Ico hp a b
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b + m • p - (toIocDiv hp a b + m) • p ∈ Set.Ioc a (a + p)
[PROOFSTEP]
simpa only [add_smul, add_sub_add_right_eq_sub] using sub_toIocDiv_zsmul_mem_Ioc hp a b
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocDiv hp (a + m • p) b = toIocDiv hp a b - m
[PROOFSTEP]
refine' toIocDiv_eq_of_sub_zsmul_mem_Ioc _ _
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b - (toIocDiv hp a b - m) • p ∈ Set.Ioc (a + m • p) (a + m • p + p)
[PROOFSTEP]
rw [sub_smul, ← sub_add, add_right_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b - toIocDiv hp a b • p + m • p ∈ Set.Ioc (a + m • p) (a + p + m • p)
[PROOFSTEP]
simpa using sub_toIocDiv_zsmul_mem_Ioc hp a b
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoDiv hp a (m • p + b) = m + toIcoDiv hp a b
[PROOFSTEP]
rw [add_comm, toIcoDiv_add_zsmul, add_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocDiv hp a (m • p + b) = m + toIocDiv hp a b
[PROOFSTEP]
rw [add_comm, toIocDiv_add_zsmul, add_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoDiv hp a (b - m • p) = toIcoDiv hp a b - m
[PROOFSTEP]
rw [sub_eq_add_neg, ← neg_smul, toIcoDiv_add_zsmul, sub_eq_add_neg]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoDiv hp (a - m • p) b = toIcoDiv hp a b + m
[PROOFSTEP]
rw [sub_eq_add_neg, ← neg_smul, toIcoDiv_add_zsmul', sub_neg_eq_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocDiv hp a (b - m • p) = toIocDiv hp a b - m
[PROOFSTEP]
rw [sub_eq_add_neg, ← neg_smul, toIocDiv_add_zsmul, sub_eq_add_neg]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocDiv hp (a - m • p) b = toIocDiv hp a b + m
[PROOFSTEP]
rw [sub_eq_add_neg, ← neg_smul, toIocDiv_add_zsmul', sub_neg_eq_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp a (b + p) = toIcoDiv hp a b + 1
[PROOFSTEP]
simpa only [one_zsmul] using toIcoDiv_add_zsmul hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp (a + p) b = toIcoDiv hp a b - 1
[PROOFSTEP]
simpa only [one_zsmul] using toIcoDiv_add_zsmul' hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a (b + p) = toIocDiv hp a b + 1
[PROOFSTEP]
simpa only [one_zsmul] using toIocDiv_add_zsmul hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp (a + p) b = toIocDiv hp a b - 1
[PROOFSTEP]
simpa only [one_zsmul] using toIocDiv_add_zsmul' hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp a (p + b) = toIcoDiv hp a b + 1
[PROOFSTEP]
rw [add_comm, toIcoDiv_add_right]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp (p + a) b = toIcoDiv hp a b - 1
[PROOFSTEP]
rw [add_comm, toIcoDiv_add_right']
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a (p + b) = toIocDiv hp a b + 1
[PROOFSTEP]
rw [add_comm, toIocDiv_add_right]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp (p + a) b = toIocDiv hp a b - 1
[PROOFSTEP]
rw [add_comm, toIocDiv_add_right']
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp a (b - p) = toIcoDiv hp a b - 1
[PROOFSTEP]
simpa only [one_zsmul] using toIcoDiv_sub_zsmul hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp (a - p) b = toIcoDiv hp a b + 1
[PROOFSTEP]
simpa only [one_zsmul] using toIcoDiv_sub_zsmul' hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a (b - p) = toIocDiv hp a b - 1
[PROOFSTEP]
simpa only [one_zsmul] using toIocDiv_sub_zsmul hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp (a - p) b = toIocDiv hp a b + 1
[PROOFSTEP]
simpa only [one_zsmul] using toIocDiv_sub_zsmul' hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ toIcoDiv hp a (b - c) = toIcoDiv hp (a + c) b
[PROOFSTEP]
apply toIcoDiv_eq_of_sub_zsmul_mem_Ico
[GOAL]
case h
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ b - c - toIcoDiv hp (a + c) b • p ∈ Set.Ico a (a + p)
[PROOFSTEP]
rw [← sub_right_comm, Set.sub_mem_Ico_iff_left, add_right_comm]
[GOAL]
case h
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ b - toIcoDiv hp (a + c) b • p ∈ Set.Ico (a + c) (a + c + p)
[PROOFSTEP]
exact sub_toIcoDiv_zsmul_mem_Ico hp (a + c) b
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ toIocDiv hp a (b - c) = toIocDiv hp (a + c) b
[PROOFSTEP]
apply toIocDiv_eq_of_sub_zsmul_mem_Ioc
[GOAL]
case h
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ b - c - toIocDiv hp (a + c) b • p ∈ Set.Ioc a (a + p)
[PROOFSTEP]
rw [← sub_right_comm, Set.sub_mem_Ioc_iff_left, add_right_comm]
[GOAL]
case h
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ b - toIocDiv hp (a + c) b • p ∈ Set.Ioc (a + c) (a + c + p)
[PROOFSTEP]
exact sub_toIocDiv_zsmul_mem_Ioc hp (a + c) b
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ toIcoDiv hp (a - c) b = toIcoDiv hp a (b + c)
[PROOFSTEP]
rw [← sub_neg_eq_add, toIcoDiv_sub_eq_toIcoDiv_add, sub_eq_add_neg]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ toIocDiv hp (a - c) b = toIocDiv hp a (b + c)
[PROOFSTEP]
rw [← sub_neg_eq_add, toIocDiv_sub_eq_toIocDiv_add, sub_eq_add_neg]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp a (-b) = -(toIocDiv hp (-a) b + 1)
[PROOFSTEP]
suffices toIcoDiv hp a (-b) = -toIocDiv hp (-(a + p)) b by
rwa [neg_add, ← sub_eq_add_neg, toIocDiv_sub_eq_toIocDiv_add', toIocDiv_add_right] at this
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
this : toIcoDiv hp a (-b) = -toIocDiv hp (-(a + p)) b
⊢ toIcoDiv hp a (-b) = -(toIocDiv hp (-a) b + 1)
[PROOFSTEP]
rwa [neg_add, ← sub_eq_add_neg, toIocDiv_sub_eq_toIocDiv_add', toIocDiv_add_right] at this
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp a (-b) = -toIocDiv hp (-(a + p)) b
[PROOFSTEP]
rw [← neg_eq_iff_eq_neg, eq_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp (-(a + p)) b = -toIcoDiv hp a (-b)
[PROOFSTEP]
apply toIocDiv_eq_of_sub_zsmul_mem_Ioc
[GOAL]
case h
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)
[PROOFSTEP]
obtain ⟨hc, ho⟩ := sub_toIcoDiv_zsmul_mem_Ico hp a (-b)
[GOAL]
case h.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
hc : a ≤ -b - toIcoDiv hp a (-b) • p
ho : -b - toIcoDiv hp a (-b) • p < a + p
⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)
[PROOFSTEP]
rw [← neg_lt_neg_iff, neg_sub' (-b), neg_neg, ← neg_smul] at ho
[GOAL]
case h.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
hc : a ≤ -b - toIcoDiv hp a (-b) • p
ho✝ : -b - toIcoDiv hp a (-b) • p < a + p
ho : -(a + p) < b - -toIcoDiv hp a (-b) • p
⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)
[PROOFSTEP]
rw [← neg_le_neg_iff, neg_sub' (-b), neg_neg, ← neg_smul] at hc
[GOAL]
case h.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
hc✝ : a ≤ -b - toIcoDiv hp a (-b) • p
hc : b - -toIcoDiv hp a (-b) • p ≤ -a
ho✝ : -b - toIcoDiv hp a (-b) • p < a + p
ho : -(a + p) < b - -toIcoDiv hp a (-b) • p
⊢ b - -toIcoDiv hp a (-b) • p ∈ Set.Ioc (-(a + p)) (-(a + p) + p)
[PROOFSTEP]
refine' ⟨ho, hc.trans_eq _⟩
[GOAL]
case h.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
hc✝ : a ≤ -b - toIcoDiv hp a (-b) • p
hc : b - -toIcoDiv hp a (-b) • p ≤ -a
ho✝ : -b - toIcoDiv hp a (-b) • p < a + p
ho : -(a + p) < b - -toIcoDiv hp a (-b) • p
⊢ -a = -(a + p) + p
[PROOFSTEP]
rw [neg_add, neg_add_cancel_right]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp (-a) b = -(toIocDiv hp a (-b) + 1)
[PROOFSTEP]
simpa only [neg_neg] using toIcoDiv_neg hp (-a) (-b)
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a (-b) = -(toIcoDiv hp (-a) b + 1)
[PROOFSTEP]
rw [← neg_neg b, toIcoDiv_neg, neg_neg, neg_neg, neg_add', neg_neg, add_sub_cancel]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp (-a) b = -(toIcoDiv hp a (-b) + 1)
[PROOFSTEP]
simpa only [neg_neg] using toIocDiv_neg hp (-a) (-b)
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoMod hp a (b + m • p) = toIcoMod hp a b
[PROOFSTEP]
rw [toIcoMod, toIcoDiv_add_zsmul, toIcoMod, add_smul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b + m • p - (toIcoDiv hp a b • p + m • p) = b - toIcoDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b + m • p - (toIcoDiv hp a b • p + m • p) = b - toIcoDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoMod hp (a + m • p) b = toIcoMod hp a b + m • p
[PROOFSTEP]
simp only [toIcoMod, toIcoDiv_add_zsmul', sub_smul, sub_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocMod hp a (b + m • p) = toIocMod hp a b
[PROOFSTEP]
rw [toIocMod, toIocDiv_add_zsmul, toIocMod, add_smul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b + m • p - (toIocDiv hp a b • p + m • p) = b - toIocDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ b + m • p - (toIocDiv hp a b • p + m • p) = b - toIocDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocMod hp (a + m • p) b = toIocMod hp a b + m • p
[PROOFSTEP]
simp only [toIocMod, toIocDiv_add_zsmul', sub_smul, sub_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoMod hp a (m • p + b) = toIcoMod hp a b
[PROOFSTEP]
rw [add_comm, toIcoMod_add_zsmul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoMod hp (m • p + a) b = m • p + toIcoMod hp a b
[PROOFSTEP]
rw [add_comm, toIcoMod_add_zsmul', add_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocMod hp a (m • p + b) = toIocMod hp a b
[PROOFSTEP]
rw [add_comm, toIocMod_add_zsmul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocMod hp (m • p + a) b = m • p + toIocMod hp a b
[PROOFSTEP]
rw [add_comm, toIocMod_add_zsmul', add_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoMod hp a (b - m • p) = toIcoMod hp a b
[PROOFSTEP]
rw [sub_eq_add_neg, ← neg_smul, toIcoMod_add_zsmul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIcoMod hp (a - m • p) b = toIcoMod hp a b - m • p
[PROOFSTEP]
simp_rw [sub_eq_add_neg, ← neg_smul, toIcoMod_add_zsmul']
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocMod hp a (b - m • p) = toIocMod hp a b
[PROOFSTEP]
rw [sub_eq_add_neg, ← neg_smul, toIocMod_add_zsmul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
m : ℤ
⊢ toIocMod hp (a - m • p) b = toIocMod hp a b - m • p
[PROOFSTEP]
simp_rw [sub_eq_add_neg, ← neg_smul, toIocMod_add_zsmul']
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp a (b + p) = toIcoMod hp a b
[PROOFSTEP]
simpa only [one_zsmul] using toIcoMod_add_zsmul hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp (a + p) b = toIcoMod hp a b + p
[PROOFSTEP]
simpa only [one_zsmul] using toIcoMod_add_zsmul' hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp a (b + p) = toIocMod hp a b
[PROOFSTEP]
simpa only [one_zsmul] using toIocMod_add_zsmul hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp (a + p) b = toIocMod hp a b + p
[PROOFSTEP]
simpa only [one_zsmul] using toIocMod_add_zsmul' hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp a (p + b) = toIcoMod hp a b
[PROOFSTEP]
rw [add_comm, toIcoMod_add_right]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp (p + a) b = p + toIcoMod hp a b
[PROOFSTEP]
rw [add_comm, toIcoMod_add_right', add_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp a (p + b) = toIocMod hp a b
[PROOFSTEP]
rw [add_comm, toIocMod_add_right]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp (p + a) b = p + toIocMod hp a b
[PROOFSTEP]
rw [add_comm, toIocMod_add_right', add_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp a (b - p) = toIcoMod hp a b
[PROOFSTEP]
simpa only [one_zsmul] using toIcoMod_sub_zsmul hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp (a - p) b = toIcoMod hp a b - p
[PROOFSTEP]
simpa only [one_zsmul] using toIcoMod_sub_zsmul' hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp a (b - p) = toIocMod hp a b
[PROOFSTEP]
simpa only [one_zsmul] using toIocMod_sub_zsmul hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp (a - p) b = toIocMod hp a b - p
[PROOFSTEP]
simpa only [one_zsmul] using toIocMod_sub_zsmul' hp a b 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ toIcoMod hp a (b - c) = toIcoMod hp (a + c) b - c
[PROOFSTEP]
simp_rw [toIcoMod, toIcoDiv_sub_eq_toIcoDiv_add, sub_right_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ toIocMod hp a (b - c) = toIocMod hp (a + c) b - c
[PROOFSTEP]
simp_rw [toIocMod, toIocDiv_sub_eq_toIocDiv_add, sub_right_comm]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ toIcoMod hp a (b + c) = toIcoMod hp (a - c) b + c
[PROOFSTEP]
simp_rw [toIcoMod, toIcoDiv_sub_eq_toIcoDiv_add', sub_add_eq_add_sub]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ toIocMod hp a (b + c) = toIocMod hp (a - c) b + c
[PROOFSTEP]
simp_rw [toIocMod, toIocDiv_sub_eq_toIocDiv_add', sub_add_eq_add_sub]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp a (-b) = p - toIocMod hp (-a) b
[PROOFSTEP]
simp_rw [toIcoMod, toIocMod, toIcoDiv_neg, neg_smul, add_smul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ -b - -(toIocDiv hp (-a) b • p + 1 • p) = p - (b - toIocDiv hp (-a) b • p)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ -b - -(toIocDiv hp (-a) b • p + 1 • p) = p - (b - toIocDiv hp (-a) b • p)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp (-a) b = p - toIocMod hp a (-b)
[PROOFSTEP]
simpa only [neg_neg] using toIcoMod_neg hp (-a) (-b)
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp a (-b) = p - toIcoMod hp (-a) b
[PROOFSTEP]
simp_rw [toIocMod, toIcoMod, toIocDiv_neg, neg_smul, add_smul]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ -b - -(toIcoDiv hp (-a) b • p + 1 • p) = p - (b - toIcoDiv hp (-a) b • p)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ -b - -(toIcoDiv hp (-a) b • p + 1 • p) = p - (b - toIcoDiv hp (-a) b • p)
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp (-a) b = p - toIcoMod hp a (-b)
[PROOFSTEP]
simpa only [neg_neg] using toIocMod_neg hp (-a) (-b)
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ toIcoMod hp a b = toIcoMod hp a c ↔ ∃ n, c - b = n • p
[PROOFSTEP]
refine' ⟨fun h => ⟨toIcoDiv hp a c - toIcoDiv hp a b, _⟩, fun h => _⟩
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIcoMod hp a b = toIcoMod hp a c
⊢ c - b = (toIcoDiv hp a c - toIcoDiv hp a b) • p
[PROOFSTEP]
conv_lhs => rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, ← toIcoMod_add_toIcoDiv_zsmul hp a c]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIcoMod hp a b = toIcoMod hp a c
| c - b
[PROOFSTEP]
rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, ← toIcoMod_add_toIcoDiv_zsmul hp a c]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIcoMod hp a b = toIcoMod hp a c
| c - b
[PROOFSTEP]
rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, ← toIcoMod_add_toIcoDiv_zsmul hp a c]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIcoMod hp a b = toIcoMod hp a c
| c - b
[PROOFSTEP]
rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, ← toIcoMod_add_toIcoDiv_zsmul hp a c]
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIcoMod hp a b = toIcoMod hp a c
⊢ toIcoMod hp a c + toIcoDiv hp a c • p - (toIcoMod hp a b + toIcoDiv hp a b • p) =
(toIcoDiv hp a c - toIcoDiv hp a b) • p
[PROOFSTEP]
rw [h, sub_smul]
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIcoMod hp a b = toIcoMod hp a c
⊢ toIcoMod hp a c + toIcoDiv hp a c • p - (toIcoMod hp a c + toIcoDiv hp a b • p) =
toIcoDiv hp a c • p - toIcoDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIcoMod hp a b = toIcoMod hp a c
⊢ toIcoMod hp a c + toIcoDiv hp a c • p - (toIcoMod hp a c + toIcoDiv hp a b • p) =
toIcoDiv hp a c • p - toIcoDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
case refine'_2
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : ∃ n, c - b = n • p
⊢ toIcoMod hp a b = toIcoMod hp a c
[PROOFSTEP]
rcases h with ⟨z, hz⟩
[GOAL]
case refine'_2.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n z : ℤ
hz : c - b = z • p
⊢ toIcoMod hp a b = toIcoMod hp a c
[PROOFSTEP]
rw [sub_eq_iff_eq_add] at hz
[GOAL]
case refine'_2.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n z : ℤ
hz : c = z • p + b
⊢ toIcoMod hp a b = toIcoMod hp a c
[PROOFSTEP]
rw [hz, toIcoMod_zsmul_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ toIocMod hp a b = toIocMod hp a c ↔ ∃ n, c - b = n • p
[PROOFSTEP]
refine' ⟨fun h => ⟨toIocDiv hp a c - toIocDiv hp a b, _⟩, fun h => _⟩
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIocMod hp a b = toIocMod hp a c
⊢ c - b = (toIocDiv hp a c - toIocDiv hp a b) • p
[PROOFSTEP]
conv_lhs => rw [← toIocMod_add_toIocDiv_zsmul hp a b, ← toIocMod_add_toIocDiv_zsmul hp a c]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIocMod hp a b = toIocMod hp a c
| c - b
[PROOFSTEP]
rw [← toIocMod_add_toIocDiv_zsmul hp a b, ← toIocMod_add_toIocDiv_zsmul hp a c]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIocMod hp a b = toIocMod hp a c
| c - b
[PROOFSTEP]
rw [← toIocMod_add_toIocDiv_zsmul hp a b, ← toIocMod_add_toIocDiv_zsmul hp a c]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIocMod hp a b = toIocMod hp a c
| c - b
[PROOFSTEP]
rw [← toIocMod_add_toIocDiv_zsmul hp a b, ← toIocMod_add_toIocDiv_zsmul hp a c]
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIocMod hp a b = toIocMod hp a c
⊢ toIocMod hp a c + toIocDiv hp a c • p - (toIocMod hp a b + toIocDiv hp a b • p) =
(toIocDiv hp a c - toIocDiv hp a b) • p
[PROOFSTEP]
rw [h, sub_smul]
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIocMod hp a b = toIocMod hp a c
⊢ toIocMod hp a c + toIocDiv hp a c • p - (toIocMod hp a c + toIocDiv hp a b • p) =
toIocDiv hp a c • p - toIocDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIocMod hp a b = toIocMod hp a c
⊢ toIocMod hp a c + toIocDiv hp a c • p - (toIocMod hp a c + toIocDiv hp a b • p) =
toIocDiv hp a c • p - toIocDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
case refine'_2
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : ∃ n, c - b = n • p
⊢ toIocMod hp a b = toIocMod hp a c
[PROOFSTEP]
rcases h with ⟨z, hz⟩
[GOAL]
case refine'_2.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n z : ℤ
hz : c - b = z • p
⊢ toIocMod hp a b = toIocMod hp a c
[PROOFSTEP]
rw [sub_eq_iff_eq_add] at hz
[GOAL]
case refine'_2.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n z : ℤ
hz : c = z • p + b
⊢ toIocMod hp a b = toIocMod hp a c
[PROOFSTEP]
rw [hz, toIocMod_zsmul_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ (∃ z, b = a + z • p) → toIcoMod hp a b = a
[PROOFSTEP]
rintro ⟨n, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a c : α
n✝ n : ℤ
⊢ toIcoMod hp a (a + n • p) = a
[PROOFSTEP]
rw [toIcoMod_add_zsmul, toIcoMod_apply_left]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ a ≡ b [PMOD p] ↔ toIocMod hp a b = a + p
[PROOFSTEP]
refine' modEq_iff_eq_add_zsmul.trans ⟨_, fun h => ⟨toIocDiv hp a b + 1, _⟩⟩
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ (∃ z, b = a + z • p) → toIocMod hp a b = a + p
[PROOFSTEP]
rintro ⟨z, rfl⟩
[GOAL]
case refine'_1.intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a c : α
n z : ℤ
⊢ toIocMod hp a (a + z • p) = a + p
[PROOFSTEP]
rw [toIocMod_add_zsmul, toIocMod_apply_left]
[GOAL]
case refine'_2
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h : toIocMod hp a b = a + p
⊢ b = a + (toIocDiv hp a b + 1) • p
[PROOFSTEP]
rwa [add_one_zsmul, add_left_comm, ← sub_eq_iff_eq_add']
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ TFAE
[a ≡ b [PMOD p], ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b,
toIcoMod hp a b + p = toIocMod hp a b]
[PROOFSTEP]
rw [modEq_iff_toIcoMod_eq_left hp]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ TFAE
[toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b,
toIcoMod hp a b + p = toIocMod hp a b]
[PROOFSTEP]
tfae_have 3 → 2
[GOAL]
case tfae_3_to_2
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
[PROOFSTEP]
rw [← not_exists, not_imp_not]
[GOAL]
case tfae_3_to_2
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ (∃ x, b - x • p ∈ Set.Ioo a (a + p)) → toIcoMod hp a b = toIocMod hp a b
[PROOFSTEP]
exact fun ⟨i, hi⟩ =>
((toIcoMod_eq_iff hp).2 ⟨Set.Ioo_subset_Ico_self hi, i, (sub_add_cancel b _).symm⟩).trans
((toIocMod_eq_iff hp).2 ⟨Set.Ioo_subset_Ioc_self hi, i, (sub_add_cancel b _).symm⟩).symm
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
⊢ TFAE
[toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b,
toIcoMod hp a b + p = toIocMod hp a b]
[PROOFSTEP]
tfae_have 4 → 3
[GOAL]
case tfae_4_to_3
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
⊢ toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
[PROOFSTEP]
intro h
[GOAL]
case tfae_4_to_3
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
h : toIcoMod hp a b + p = toIocMod hp a b
⊢ toIcoMod hp a b ≠ toIocMod hp a b
[PROOFSTEP]
rw [← h, Ne, eq_comm, add_right_eq_self]
[GOAL]
case tfae_4_to_3
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
h : toIcoMod hp a b + p = toIocMod hp a b
⊢ ¬p = 0
[PROOFSTEP]
exact hp.ne'
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
⊢ TFAE
[toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b,
toIcoMod hp a b + p = toIocMod hp a b]
[PROOFSTEP]
tfae_have 1 → 4
[GOAL]
case tfae_1_to_4
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
⊢ toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b
[PROOFSTEP]
intro h
[GOAL]
case tfae_1_to_4
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
h : toIcoMod hp a b = a
⊢ toIcoMod hp a b + p = toIocMod hp a b
[PROOFSTEP]
rw [h, eq_comm, toIocMod_eq_iff, Set.right_mem_Ioc]
[GOAL]
case tfae_1_to_4
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
h : toIcoMod hp a b = a
⊢ a < a + p ∧ ∃ z, b = a + p + z • p
[PROOFSTEP]
refine' ⟨lt_add_of_pos_right a hp, toIcoDiv hp a b - 1, _⟩
[GOAL]
case tfae_1_to_4
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
h : toIcoMod hp a b = a
⊢ b = a + p + (toIcoDiv hp a b - 1) • p
[PROOFSTEP]
rw [sub_one_zsmul, add_add_add_comm, add_right_neg, add_zero]
[GOAL]
case tfae_1_to_4
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
h : toIcoMod hp a b = a
⊢ b = a + toIcoDiv hp a b • p
[PROOFSTEP]
conv_lhs => rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, h]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
h : toIcoMod hp a b = a
| b
[PROOFSTEP]
rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, h]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
h : toIcoMod hp a b = a
| b
[PROOFSTEP]
rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, h]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
h : toIcoMod hp a b = a
| b
[PROOFSTEP]
rw [← toIcoMod_add_toIcoDiv_zsmul hp a b, h]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b
⊢ TFAE
[toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b,
toIcoMod hp a b + p = toIocMod hp a b]
[PROOFSTEP]
tfae_have 2 → 1
[GOAL]
case tfae_2_to_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b
⊢ (∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)) → toIcoMod hp a b = a
[PROOFSTEP]
rw [← not_exists, not_imp_comm]
[GOAL]
case tfae_2_to_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b
⊢ ¬toIcoMod hp a b = a → ∃ x, b - x • p ∈ Set.Ioo a (a + p)
[PROOFSTEP]
have h' := toIcoMod_mem_Ico hp a b
[GOAL]
case tfae_2_to_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b
h' : toIcoMod hp a b ∈ Set.Ico a (a + p)
⊢ ¬toIcoMod hp a b = a → ∃ x, b - x • p ∈ Set.Ioo a (a + p)
[PROOFSTEP]
exact fun h => ⟨_, h'.1.lt_of_ne' h, h'.2⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
tfae_3_to_2 : toIcoMod hp a b ≠ toIocMod hp a b → ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)
tfae_4_to_3 : toIcoMod hp a b + p = toIocMod hp a b → toIcoMod hp a b ≠ toIocMod hp a b
tfae_1_to_4 : toIcoMod hp a b = a → toIcoMod hp a b + p = toIocMod hp a b
tfae_2_to_1 : (∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p)) → toIcoMod hp a b = a
⊢ TFAE
[toIcoMod hp a b = a, ∀ (z : ℤ), ¬b - z • p ∈ Set.Ioo a (a + p), toIcoMod hp a b ≠ toIocMod hp a b,
toIcoMod hp a b + p = toIocMod hp a b]
[PROOFSTEP]
tfae_finish
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ ¬a ≡ b [PMOD p] ↔ toIcoDiv hp a b = toIocDiv hp a b
[PROOFSTEP]
rw [not_modEq_iff_toIcoMod_eq_toIocMod hp, toIcoMod, toIocMod, sub_right_inj,
(zsmul_strictMono_left hp).injective.eq_iff]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ a ≡ b [PMOD p] ↔ toIcoDiv hp a b = toIocDiv hp a b + 1
[PROOFSTEP]
rw [modEq_iff_toIcoMod_add_period_eq_toIocMod hp, toIcoMod, toIocMod, ← eq_sub_iff_add_eq, sub_sub, sub_right_inj, ←
add_one_zsmul, (zsmul_strictMono_left hp).injective.eq_iff]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c✝ : α
n : ℤ
c : α
⊢ toIcoMod hp c a = toIcoMod hp c b ↔ a ≡ b [PMOD p]
[PROOFSTEP]
simp_rw [toIcoMod_eq_toIcoMod, modEq_iff_eq_add_zsmul, sub_eq_iff_eq_add']
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ {b | toIcoMod hp a b = toIocMod hp a b} = ⋃ (z : ℤ), Set.Ioo (a + z • p) (a + p + z • p)
[PROOFSTEP]
ext1
[GOAL]
case h
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x✝ : α
⊢ x✝ ∈ {b | toIcoMod hp a b = toIocMod hp a b} ↔ x✝ ∈ ⋃ (z : ℤ), Set.Ioo (a + z • p) (a + p + z • p)
[PROOFSTEP]
simp_rw [Set.mem_setOf, Set.mem_iUnion, ← Set.sub_mem_Ioo_iff_left, ← not_modEq_iff_toIcoMod_eq_toIocMod,
modEq_iff_not_forall_mem_Ioo_mod hp, not_forall, Classical.not_not]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a b ⩿ toIcoDiv hp a b
[PROOFSTEP]
suffices toIocDiv hp a b = toIcoDiv hp a b ∨ toIocDiv hp a b + 1 = toIcoDiv hp a b by
rwa [wcovby_iff_eq_or_covby, ← Order.succ_eq_iff_covby]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
this : toIocDiv hp a b = toIcoDiv hp a b ∨ toIocDiv hp a b + 1 = toIcoDiv hp a b
⊢ toIocDiv hp a b ⩿ toIcoDiv hp a b
[PROOFSTEP]
rwa [wcovby_iff_eq_or_covby, ← Order.succ_eq_iff_covby]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a b = toIcoDiv hp a b ∨ toIocDiv hp a b + 1 = toIcoDiv hp a b
[PROOFSTEP]
rw [eq_comm, ← not_modEq_iff_toIcoDiv_eq_toIocDiv, eq_comm, ← modEq_iff_toIcoDiv_eq_toIocDiv_add_one]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ ¬a ≡ b [PMOD p] ∨ a ≡ b [PMOD p]
[PROOFSTEP]
exact em' _
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp a b ≤ toIocMod hp a b
[PROOFSTEP]
rw [toIcoMod, toIocMod, sub_le_sub_iff_left]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a b • p ≤ toIcoDiv hp a b • p
[PROOFSTEP]
exact zsmul_mono_left hp.le (toIocDiv_wcovby_toIcoDiv _ _ _).le
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp a b ≤ toIcoMod hp a b + p
[PROOFSTEP]
rw [toIcoMod, toIocMod, sub_add, sub_le_sub_iff_left, sub_le_iff_le_add, ← add_one_zsmul,
(zsmul_strictMono_left hp).le_iff_le]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp a b ≤ toIocDiv hp a b + 1
[PROOFSTEP]
apply (toIocDiv_wcovby_toIcoDiv _ _ _).le_succ
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ toIcoMod hp a b = b ↔ b ∈ Set.Ico a (a + p)
[PROOFSTEP]
rw [toIcoMod_eq_iff, and_iff_left]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ ∃ z, b = b + z • p
[PROOFSTEP]
exact ⟨0, by simp⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ b = b + 0 • p
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ toIocMod hp a b = b ↔ b ∈ Set.Ioc a (a + p)
[PROOFSTEP]
rw [toIocMod_eq_iff, and_iff_left]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ ∃ z, b = b + z • p
[PROOFSTEP]
exact ⟨0, by simp⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
⊢ b = b + 0 • p
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp 0 (a - b) = p - toIocMod hp 0 (b - a)
[PROOFSTEP]
rw [← neg_sub, toIcoMod_neg, neg_zero]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp 0 (a - b) = p - toIcoMod hp 0 (b - a)
[PROOFSTEP]
rw [← neg_sub, toIocMod_neg, neg_zero]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoDiv hp a b = toIcoDiv hp 0 (b - a)
[PROOFSTEP]
rw [toIcoDiv_sub_eq_toIcoDiv_add, zero_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocDiv hp a b = toIocDiv hp 0 (b - a)
[PROOFSTEP]
rw [toIocDiv_sub_eq_toIocDiv_add, zero_add]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp a b = toIcoMod hp 0 (b - a) + a
[PROOFSTEP]
rw [toIcoMod_sub_eq_sub, zero_add, sub_add_cancel]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp a b = toIocMod hp 0 (b - a) + a
[PROOFSTEP]
rw [toIocMod_sub_eq_sub, zero_add, sub_add_cancel]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - a) = p
[PROOFSTEP]
rw [toIcoMod_zero_sub_comm, sub_add_cancel]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a b : α
⊢ toIocMod hp 0 (a - b) + toIcoMod hp 0 (b - a) = p
[PROOFSTEP]
rw [_root_.add_comm, toIcoMod_add_toIocMod_zero]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a : α
b : α ⧸ AddSubgroup.zmultiples p
⊢ (fun x => ↑↑x)
((fun b =>
{ val := Function.Periodic.lift (_ : Function.Periodic (toIcoMod hp a) p) b,
property := (_ : Function.Periodic.lift (_ : Function.Periodic (toIcoMod hp a) p) b ∈ Set.Ico a (a + p)) })
b) =
b
[PROOFSTEP]
induction b using QuotientAddGroup.induction_on'
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a z✝ : α
⊢ (fun x => ↑↑x)
((fun b =>
{ val := Function.Periodic.lift (_ : Function.Periodic (toIcoMod hp a) p) b,
property := (_ : Function.Periodic.lift (_ : Function.Periodic (toIcoMod hp a) p) b ∈ Set.Ico a (a + p)) })
↑z✝) =
↑z✝
[PROOFSTEP]
dsimp
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a z✝ : α
⊢ ↑(toIcoMod hp a z✝) = ↑z✝
[PROOFSTEP]
rw [QuotientAddGroup.eq_iff_sub_mem, toIcoMod_sub_self]
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a z✝ : α
⊢ -toIcoDiv hp a z✝ • p ∈ AddSubgroup.zmultiples p
[PROOFSTEP]
apply AddSubgroup.zsmul_mem_zmultiples
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c : α
n : ℤ
a : α
b : α ⧸ AddSubgroup.zmultiples p
⊢ (fun x => ↑↑x)
((fun b =>
{ val := Function.Periodic.lift (_ : Function.Periodic (toIocMod hp a) p) b,
property := (_ : Function.Periodic.lift (_ : Function.Periodic (toIocMod hp a) p) b ∈ Set.Ioc a (a + p)) })
b) =
b
[PROOFSTEP]
induction b using QuotientAddGroup.induction_on'
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a z✝ : α
⊢ (fun x => ↑↑x)
((fun b =>
{ val := Function.Periodic.lift (_ : Function.Periodic (toIocMod hp a) p) b,
property := (_ : Function.Periodic.lift (_ : Function.Periodic (toIocMod hp a) p) b ∈ Set.Ioc a (a + p)) })
↑z✝) =
↑z✝
[PROOFSTEP]
dsimp
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a z✝ : α
⊢ ↑(toIocMod hp a z✝) = ↑z✝
[PROOFSTEP]
rw [QuotientAddGroup.eq_iff_sub_mem, toIocMod_sub_self]
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b c : α
n : ℤ
a z✝ : α
⊢ -toIocDiv hp a z✝ • p ∈ AddSubgroup.zmultiples p
[PROOFSTEP]
apply AddSubgroup.zsmul_mem_zmultiples
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
⊢ toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ↔ toIcoMod hp 0 (x₂ - x₁) + toIcoMod hp 0 (x₁ - x₃) ≤ p
[PROOFSTEP]
rw [toIcoMod_eq_sub, toIocMod_eq_sub _ x₁, add_le_add_iff_right, ← neg_sub x₁ x₃, toIocMod_neg, neg_zero,
le_sub_iff_add_le]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁
[PROOFSTEP]
let x₂' := toIcoMod hp x₁ x₂
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁
[PROOFSTEP]
let x₃' := toIcoMod hp x₂' x₃
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁
[PROOFSTEP]
have h : x₂' ≤ toIocMod hp x₁ x₃' := by simpa
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
⊢ x₂' ≤ toIocMod hp x₁ x₃'
[PROOFSTEP]
simpa
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁
[PROOFSTEP]
have h₂₁ : x₂' < x₁ + p := toIcoMod_lt_right _ _ _
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁
[PROOFSTEP]
have h₃₂ : x₃' - p < x₂' := sub_lt_iff_lt_add.2 (toIcoMod_lt_right _ _ _)
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁
[PROOFSTEP]
suffices hequiv : x₃' ≤ toIocMod hp x₂' x₁
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
hequiv : x₃' ≤ toIocMod hp x₂' x₁
⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁
[PROOFSTEP]
obtain ⟨z, hd⟩ : ∃ z : ℤ, x₂ = x₂' + z • p := ((toIcoMod_eq_iff hp).1 rfl).2
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
hequiv : x₃' ≤ toIocMod hp x₂' x₁
z : ℤ
hd : x₂ = x₂' + z • p
⊢ toIcoMod hp x₂ x₃ ≤ toIocMod hp x₂ x₁
[PROOFSTEP]
rw [hd, toIocMod_add_zsmul', toIcoMod_add_zsmul', add_le_add_iff_right]
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
hequiv : x₃' ≤ toIocMod hp x₂' x₁
z : ℤ
hd : x₂ = x₂' + z • p
⊢ toIcoMod hp x₂' x₃ ≤ toIocMod hp x₂' x₁
[PROOFSTEP]
assumption
-- Porting note: was `simpa`
[GOAL]
case hequiv
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
⊢ x₃' ≤ toIocMod hp x₂' x₁
[PROOFSTEP]
cases' le_or_lt x₃' (x₁ + p) with h₃₁ h₁₃
[GOAL]
case hequiv.inl
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₃₁ : x₃' ≤ x₁ + p
⊢ x₃' ≤ toIocMod hp x₂' x₁
[PROOFSTEP]
suffices hIoc₂₁ : toIocMod hp x₂' x₁ = x₁ + p
[GOAL]
case hequiv.inl
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₃₁ : x₃' ≤ x₁ + p
hIoc₂₁ : toIocMod hp x₂' x₁ = x₁ + p
⊢ x₃' ≤ toIocMod hp x₂' x₁
[PROOFSTEP]
exact hIoc₂₁.symm.trans_ge h₃₁
[GOAL]
case hIoc₂₁
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₃₁ : x₃' ≤ x₁ + p
⊢ toIocMod hp x₂' x₁ = x₁ + p
[PROOFSTEP]
apply (toIocMod_eq_iff hp).2
[GOAL]
case hIoc₂₁
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₃₁ : x₃' ≤ x₁ + p
⊢ x₁ + p ∈ Set.Ioc x₂' (x₂' + p) ∧ ∃ z, x₁ = x₁ + p + z • p
[PROOFSTEP]
exact ⟨⟨h₂₁, by simp [left_le_toIcoMod]⟩, -1, by simp⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₃₁ : x₃' ≤ x₁ + p
⊢ x₁ + p ≤ x₂' + p
[PROOFSTEP]
simp [left_le_toIcoMod]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₃₁ : x₃' ≤ x₁ + p
⊢ x₁ = x₁ + p + -1 • p
[PROOFSTEP]
simp
[GOAL]
case hequiv.inr
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₁₃ : x₁ + p < x₃'
⊢ x₃' ≤ toIocMod hp x₂' x₁
[PROOFSTEP]
have hIoc₁₃ : toIocMod hp x₁ x₃' = x₃' - p :=
by
apply (toIocMod_eq_iff hp).2
exact ⟨⟨lt_sub_iff_add_lt.2 h₁₃, le_of_lt (h₃₂.trans h₂₁)⟩, 1, by simp⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₁₃ : x₁ + p < x₃'
⊢ toIocMod hp x₁ x₃' = x₃' - p
[PROOFSTEP]
apply (toIocMod_eq_iff hp).2
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₁₃ : x₁ + p < x₃'
⊢ x₃' - p ∈ Set.Ioc x₁ (x₁ + p) ∧ ∃ z, x₃' = x₃' - p + z • p
[PROOFSTEP]
exact ⟨⟨lt_sub_iff_add_lt.2 h₁₃, le_of_lt (h₃₂.trans h₂₁)⟩, 1, by simp⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₁₃ : x₁ + p < x₃'
⊢ x₃' = x₃' - p + 1 • p
[PROOFSTEP]
simp
[GOAL]
case hequiv.inr
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₁₃ : x₁ + p < x₃'
hIoc₁₃ : toIocMod hp x₁ x₃' = x₃' - p
⊢ x₃' ≤ toIocMod hp x₂' x₁
[PROOFSTEP]
have not_h₃₂ := (h.trans hIoc₁₃.le).not_lt
[GOAL]
case hequiv.inr
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ : α
h✝ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃
x₂' : α := toIcoMod hp x₁ x₂
x₃' : α := toIcoMod hp x₂' x₃
h : x₂' ≤ toIocMod hp x₁ x₃'
h₂₁ : x₂' < x₁ + p
h₃₂ : x₃' - p < x₂'
h₁₃ : x₁ + p < x₃'
hIoc₁₃ : toIocMod hp x₁ x₃' = x₃' - p
not_h₃₂ : ¬x₃' - p < x₂'
⊢ x₃' ≤ toIocMod hp x₂' x₁
[PROOFSTEP]
contradiction
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h₁₂₃ : toIcoMod hp a b ≤ toIocMod hp a c
h₁₃₂ : toIcoMod hp a c ≤ toIocMod hp a b
⊢ b ≡ a [PMOD p] ∨ c ≡ b [PMOD p] ∨ a ≡ c [PMOD p]
[PROOFSTEP]
by_contra' h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h₁₂₃ : toIcoMod hp a b ≤ toIocMod hp a c
h₁₃₂ : toIcoMod hp a c ≤ toIocMod hp a b
h : ¬b ≡ a [PMOD p] ∧ ¬c ≡ b [PMOD p] ∧ ¬a ≡ c [PMOD p]
⊢ False
[PROOFSTEP]
rw [modEq_comm] at h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h₁₂₃ : toIcoMod hp a b ≤ toIocMod hp a c
h₁₃₂ : toIcoMod hp a c ≤ toIocMod hp a b
h : ¬a ≡ b [PMOD p] ∧ ¬c ≡ b [PMOD p] ∧ ¬a ≡ c [PMOD p]
⊢ False
[PROOFSTEP]
rw [← (not_modEq_iff_toIcoMod_eq_toIocMod hp).mp h.2.2] at h₁₂₃
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h₁₂₃ : toIcoMod hp a b ≤ toIcoMod hp a c
h₁₃₂ : toIcoMod hp a c ≤ toIocMod hp a b
h : ¬a ≡ b [PMOD p] ∧ ¬c ≡ b [PMOD p] ∧ ¬a ≡ c [PMOD p]
⊢ False
[PROOFSTEP]
rw [← (not_modEq_iff_toIcoMod_eq_toIocMod hp).mp h.1] at h₁₃₂
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
h₁₂₃ : toIcoMod hp a b ≤ toIcoMod hp a c
h₁₃₂ : toIcoMod hp a c ≤ toIcoMod hp a b
h : ¬a ≡ b [PMOD p] ∧ ¬c ≡ b [PMOD p] ∧ ¬a ≡ c [PMOD p]
⊢ False
[PROOFSTEP]
exact h.2.1 ((toIcoMod_inj _).1 <| h₁₃₂.antisymm h₁₂₃)
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a
[PROOFSTEP]
have := congr_arg₂ (· + ·) (toIcoMod_add_toIocMod_zero hp a b) (toIcoMod_add_toIocMod_zero hp c b)
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
this :
(fun x x_1 => x + x_1) (toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - a))
(toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - c)) =
(fun x x_1 => x + x_1) p p
⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a
[PROOFSTEP]
simp only [add_add_add_comm] at this
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
this : toIcoMod hp 0 (a - b) + toIcoMod hp 0 (c - b) + (toIocMod hp 0 (b - a) + toIocMod hp 0 (b - c)) = p + p
⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a
[PROOFSTEP]
rw [_root_.add_comm (toIocMod _ _ _), add_add_add_comm, ← two_nsmul] at this
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) + (toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a)) = 2 • p
⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a
[PROOFSTEP]
replace := min_le_of_add_le_two_nsmul this.le
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
this : min (toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c)) (toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a)) ≤ p
⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a
[PROOFSTEP]
rw [min_le_iff] at this
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a) ≤ p
⊢ toIcoMod hp b a ≤ toIocMod hp b c ∨ toIcoMod hp b c ≤ toIocMod hp b a
[PROOFSTEP]
rw [toIxxMod_iff, toIxxMod_iff]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a) ≤ p
⊢ toIcoMod hp 0 (a - b) + toIcoMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIcoMod hp 0 (b - a) ≤ p
[PROOFSTEP]
refine' this.imp (le_trans <| add_le_add_left _ _) (le_trans <| add_le_add_left _ _)
[GOAL]
case refine'_1
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a) ≤ p
⊢ toIcoMod hp 0 (b - c) ≤ toIocMod hp 0 (b - c)
[PROOFSTEP]
apply toIcoMod_le_toIocMod
[GOAL]
case refine'_2
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a✝ b✝ c✝ : α
n : ℤ
a b c : α
this : toIcoMod hp 0 (a - b) + toIocMod hp 0 (b - c) ≤ p ∨ toIcoMod hp 0 (c - b) + toIocMod hp 0 (b - a) ≤ p
⊢ toIcoMod hp 0 (b - a) ≤ toIocMod hp 0 (b - a)
[PROOFSTEP]
apply toIcoMod_le_toIocMod
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₁
[PROOFSTEP]
constructor
[GOAL]
case left
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃
[PROOFSTEP]
suffices h : ¬x₃ ≡ x₂ [PMOD p]
[GOAL]
case left
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
h : ¬x₃ ≡ x₂ [PMOD p]
⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃
[PROOFSTEP]
have h₁₂₃' := toIxxMod_cyclic_left _ (toIxxMod_cyclic_left _ h₁₂₃.1)
[GOAL]
case left
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
h : ¬x₃ ≡ x₂ [PMOD p]
h₁₂₃' : toIcoMod hp x₃ x₁ ≤ toIocMod hp x₃ x₂
⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃
[PROOFSTEP]
have h₂₃₄' := toIxxMod_cyclic_left _ (toIxxMod_cyclic_left _ h₂₃₄.1)
[GOAL]
case left
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
h : ¬x₃ ≡ x₂ [PMOD p]
h₁₂₃' : toIcoMod hp x₃ x₁ ≤ toIocMod hp x₃ x₂
h₂₃₄' : toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₄
⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃
[PROOFSTEP]
rw [(not_modEq_iff_toIcoMod_eq_toIocMod hp).1 h] at h₂₃₄'
[GOAL]
case left
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
h : ¬x₃ ≡ x₂ [PMOD p]
h₁₂₃' : toIcoMod hp x₃ x₁ ≤ toIocMod hp x₃ x₂
h₂₃₄' : toIocMod hp x₃ x₂ ≤ toIocMod hp x₃ x₄
⊢ toIcoMod hp x₁ x₄ ≤ toIocMod hp x₁ x₃
[PROOFSTEP]
exact toIxxMod_cyclic_left _ (h₁₂₃'.trans h₂₃₄')
[GOAL]
case h
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
⊢ ¬x₃ ≡ x₂ [PMOD p]
[PROOFSTEP]
by_contra h
[GOAL]
case h
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
h : x₃ ≡ x₂ [PMOD p]
⊢ False
[PROOFSTEP]
rw [(modEq_iff_toIcoMod_eq_left hp).1 h] at h₁₂₃
[GOAL]
case h
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬x₃ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
h : x₃ ≡ x₂ [PMOD p]
⊢ False
[PROOFSTEP]
exact h₁₂₃.2 (left_lt_toIocMod _ _ _).le
[GOAL]
case right
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ ¬toIcoMod hp x₃ x₂ ≤ toIocMod hp x₃ x₁
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₂
⊢ ¬toIcoMod hp x₃ x₄ ≤ toIocMod hp x₃ x₁
[PROOFSTEP]
rw [not_le] at h₁₂₃ h₂₃₄ ⊢
[GOAL]
case right
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
x₁ x₂ x₃ x₄ : α
h₁₂₃ : toIcoMod hp x₁ x₂ ≤ toIocMod hp x₁ x₃ ∧ toIocMod hp x₃ x₁ < toIcoMod hp x₃ x₂
h₂₃₄ : toIcoMod hp x₂ x₄ ≤ toIocMod hp x₂ x₃ ∧ toIocMod hp x₃ x₂ < toIcoMod hp x₃ x₄
⊢ toIocMod hp x₃ x₁ < toIcoMod hp x₃ x₄
[PROOFSTEP]
exact (h₁₂₃.2.trans_le (toIcoMod_le_toIocMod _ x₃ x₂)).trans h₂₃₄.2
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
x₁ x₂ x₃ : α
⊢ btw ↑x₁ ↑x₂ ↑x₃ ↔ toIcoMod (_ : 0 < p) x₁ x₂ ≤ toIocMod (_ : 0 < p) x₁ x₃
[PROOFSTEP]
rw [btw_coe_iff', toIocMod_sub_eq_sub, toIcoMod_sub_eq_sub, zero_add, sub_le_sub_iff_right]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
x : α ⧸ AddSubgroup.zmultiples p
⊢ ↑(↑(equivIcoMod (_ : 0 < p) 0) (x - x)) ≤ ↑(↑(equivIocMod (_ : 0 < p) 0) (x - x))
[PROOFSTEP]
simp [sub_self, hp'.out.le]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
x₁ x₂ x₃ : α ⧸ AddSubgroup.zmultiples p
h : btw x₁ x₂ x₃
⊢ btw x₂ x₃ x₁
[PROOFSTEP]
induction x₁ using QuotientAddGroup.induction_on'
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
x₂ x₃ : α ⧸ AddSubgroup.zmultiples p
z✝ : α
h : btw (↑z✝) x₂ x₃
⊢ btw x₂ x₃ ↑z✝
[PROOFSTEP]
induction x₂ using QuotientAddGroup.induction_on'
[GOAL]
case H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
x₃ : α ⧸ AddSubgroup.zmultiples p
z✝¹ z✝ : α
h : btw (↑z✝¹) (↑z✝) x₃
⊢ btw (↑z✝) x₃ ↑z✝¹
[PROOFSTEP]
induction x₃ using QuotientAddGroup.induction_on'
[GOAL]
case H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
z✝² z✝¹ z✝ : α
h : btw ↑z✝² ↑z✝¹ ↑z✝
⊢ btw ↑z✝¹ ↑z✝ ↑z✝²
[PROOFSTEP]
simp_rw [btw_coe_iff] at h ⊢
[GOAL]
case H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
z✝² z✝¹ z✝ : α
h : toIcoMod (_ : 0 < p) z✝² z✝¹ ≤ toIocMod (_ : 0 < p) z✝² z✝
⊢ toIcoMod (_ : 0 < p) z✝¹ z✝ ≤ toIocMod (_ : 0 < p) z✝¹ z✝²
[PROOFSTEP]
apply toIxxMod_cyclic_left _ h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
x₁ x₂ x₃ x₄ : α ⧸ AddSubgroup.zmultiples p
h₁₂₃ : btw x₁ x₂ x₃ ∧ ¬btw x₃ x₂ x₁
h₂₃₄ : btw x₂ x₄ x₃ ∧ ¬btw x₃ x₄ x₂
⊢ btw x₁ x₄ x₃ ∧ ¬btw x₃ x₄ x₁
[PROOFSTEP]
induction x₁ using QuotientAddGroup.induction_on'
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
x₂ x₃ x₄ : α ⧸ AddSubgroup.zmultiples p
h₂₃₄ : btw x₂ x₄ x₃ ∧ ¬btw x₃ x₄ x₂
z✝ : α
h₁₂₃ : btw (↑z✝) x₂ x₃ ∧ ¬btw x₃ x₂ ↑z✝
⊢ btw (↑z✝) x₄ x₃ ∧ ¬btw x₃ x₄ ↑z✝
[PROOFSTEP]
induction x₂ using QuotientAddGroup.induction_on'
[GOAL]
case H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
x₃ x₄ : α ⧸ AddSubgroup.zmultiples p
z✝¹ z✝ : α
h₂₃₄ : btw (↑z✝) x₄ x₃ ∧ ¬btw x₃ x₄ ↑z✝
h₁₂₃ : btw (↑z✝¹) (↑z✝) x₃ ∧ ¬btw x₃ ↑z✝ ↑z✝¹
⊢ btw (↑z✝¹) x₄ x₃ ∧ ¬btw x₃ x₄ ↑z✝¹
[PROOFSTEP]
induction x₃ using QuotientAddGroup.induction_on'
[GOAL]
case H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
x₄ : α ⧸ AddSubgroup.zmultiples p
z✝² z✝¹ z✝ : α
h₂₃₄ : btw (↑z✝¹) x₄ ↑z✝ ∧ ¬btw (↑z✝) x₄ ↑z✝¹
h₁₂₃ : btw ↑z✝² ↑z✝¹ ↑z✝ ∧ ¬btw ↑z✝ ↑z✝¹ ↑z✝²
⊢ btw (↑z✝²) x₄ ↑z✝ ∧ ¬btw (↑z✝) x₄ ↑z✝²
[PROOFSTEP]
induction x₄ using QuotientAddGroup.induction_on'
[GOAL]
case H.H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
z✝³ z✝² z✝¹ : α
h₁₂₃ : btw ↑z✝³ ↑z✝² ↑z✝¹ ∧ ¬btw ↑z✝¹ ↑z✝² ↑z✝³
z✝ : α
h₂₃₄ : btw ↑z✝² ↑z✝ ↑z✝¹ ∧ ¬btw ↑z✝¹ ↑z✝ ↑z✝²
⊢ btw ↑z✝³ ↑z✝ ↑z✝¹ ∧ ¬btw ↑z✝¹ ↑z✝ ↑z✝³
[PROOFSTEP]
simp_rw [btw_coe_iff] at h₁₂₃ h₂₃₄ ⊢
[GOAL]
case H.H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
z✝³ z✝² z✝¹ z✝ : α
h₁₂₃ :
toIcoMod (_ : 0 < p) z✝³ z✝² ≤ toIocMod (_ : 0 < p) z✝³ z✝¹ ∧
¬toIcoMod (_ : 0 < p) z✝¹ z✝² ≤ toIocMod (_ : 0 < p) z✝¹ z✝³
h₂₃₄ :
toIcoMod (_ : 0 < p) z✝² z✝ ≤ toIocMod (_ : 0 < p) z✝² z✝¹ ∧
¬toIcoMod (_ : 0 < p) z✝¹ z✝ ≤ toIocMod (_ : 0 < p) z✝¹ z✝²
⊢ toIcoMod (_ : 0 < p) z✝³ z✝ ≤ toIocMod (_ : 0 < p) z✝³ z✝¹ ∧
¬toIcoMod (_ : 0 < p) z✝¹ z✝ ≤ toIocMod (_ : 0 < p) z✝¹ z✝³
[PROOFSTEP]
apply toIxxMod_trans _ h₁₂₃ h₂₃₄
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
x₁ x₂ x₃ : α ⧸ AddSubgroup.zmultiples p
h₁₂₃ : btw x₁ x₂ x₃
h₃₂₁ : btw x₃ x₂ x₁
⊢ x₁ = x₂ ∨ x₂ = x₃ ∨ x₃ = x₁
[PROOFSTEP]
induction x₁ using QuotientAddGroup.induction_on'
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
x₂ x₃ : α ⧸ AddSubgroup.zmultiples p
z✝ : α
h₁₂₃ : btw (↑z✝) x₂ x₃
h₃₂₁ : btw x₃ x₂ ↑z✝
⊢ ↑z✝ = x₂ ∨ x₂ = x₃ ∨ x₃ = ↑z✝
[PROOFSTEP]
induction x₂ using QuotientAddGroup.induction_on'
[GOAL]
case H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
x₃ : α ⧸ AddSubgroup.zmultiples p
z✝¹ z✝ : α
h₁₂₃ : btw (↑z✝¹) (↑z✝) x₃
h₃₂₁ : btw x₃ ↑z✝ ↑z✝¹
⊢ ↑z✝¹ = ↑z✝ ∨ ↑z✝ = x₃ ∨ x₃ = ↑z✝¹
[PROOFSTEP]
induction x₃ using QuotientAddGroup.induction_on'
[GOAL]
case H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
z✝² z✝¹ z✝ : α
h₁₂₃ : btw ↑z✝² ↑z✝¹ ↑z✝
h₃₂₁ : btw ↑z✝ ↑z✝¹ ↑z✝²
⊢ ↑z✝² = ↑z✝¹ ∨ ↑z✝¹ = ↑z✝ ∨ ↑z✝ = ↑z✝²
[PROOFSTEP]
rw [btw_cyclic] at h₃₂₁
[GOAL]
case H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
z✝² z✝¹ z✝ : α
h₁₂₃ : btw ↑z✝² ↑z✝¹ ↑z✝
h₃₂₁ : btw ↑z✝² ↑z✝ ↑z✝¹
⊢ ↑z✝² = ↑z✝¹ ∨ ↑z✝¹ = ↑z✝ ∨ ↑z✝ = ↑z✝²
[PROOFSTEP]
simp_rw [btw_coe_iff] at h₁₂₃ h₃₂₁
[GOAL]
case H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
z✝² z✝¹ z✝ : α
h₁₂₃ : toIcoMod (_ : 0 < p) z✝² z✝¹ ≤ toIocMod (_ : 0 < p) z✝² z✝
h₃₂₁ : toIcoMod (_ : 0 < p) z✝² z✝ ≤ toIocMod (_ : 0 < p) z✝² z✝¹
⊢ ↑z✝² = ↑z✝¹ ∨ ↑z✝¹ = ↑z✝ ∨ ↑z✝ = ↑z✝²
[PROOFSTEP]
simp_rw [← modEq_iff_eq_mod_zmultiples]
[GOAL]
case H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
z✝² z✝¹ z✝ : α
h₁₂₃ : toIcoMod (_ : 0 < p) z✝² z✝¹ ≤ toIocMod (_ : 0 < p) z✝² z✝
h₃₂₁ : toIcoMod (_ : 0 < p) z✝² z✝ ≤ toIocMod (_ : 0 < p) z✝² z✝¹
⊢ z✝¹ ≡ z✝² [PMOD p] ∨ z✝ ≡ z✝¹ [PMOD p] ∨ z✝² ≡ z✝ [PMOD p]
[PROOFSTEP]
exact toIxxMod_antisymm _ h₁₂₃ h₃₂₁
[GOAL]
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
x₁ x₂ x₃ : α ⧸ AddSubgroup.zmultiples p
⊢ btw x₁ x₂ x₃ ∨ btw x₃ x₂ x₁
[PROOFSTEP]
induction x₁ using QuotientAddGroup.induction_on'
[GOAL]
case H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
x₂ x₃ : α ⧸ AddSubgroup.zmultiples p
z✝ : α
⊢ btw (↑z✝) x₂ x₃ ∨ btw x₃ x₂ ↑z✝
[PROOFSTEP]
induction x₂ using QuotientAddGroup.induction_on'
[GOAL]
case H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
x₃ : α ⧸ AddSubgroup.zmultiples p
z✝¹ z✝ : α
⊢ btw (↑z✝¹) (↑z✝) x₃ ∨ btw x₃ ↑z✝ ↑z✝¹
[PROOFSTEP]
induction x₃ using QuotientAddGroup.induction_on'
[GOAL]
case H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
z✝² z✝¹ z✝ : α
⊢ btw ↑z✝² ↑z✝¹ ↑z✝ ∨ btw ↑z✝ ↑z✝¹ ↑z✝²
[PROOFSTEP]
simp_rw [btw_coe_iff]
[GOAL]
case H.H.H
α : Type u_1
inst✝ : LinearOrderedAddCommGroup α
hα : Archimedean α
p : α
hp : 0 < p
a b c : α
n : ℤ
hp' : Fact (0 < p)
src✝ : CircularPreorder (α ⧸ AddSubgroup.zmultiples p) := circularPreorder
z✝² z✝¹ z✝ : α
⊢ toIcoMod (_ : 0 < p) z✝² z✝¹ ≤ toIocMod (_ : 0 < p) z✝² z✝ ∨ toIcoMod (_ : 0 < p) z✝ z✝¹ ≤ toIocMod (_ : 0 < p) z✝ z✝²
[PROOFSTEP]
apply toIxxMod_total
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ toIcoDiv hp a b = ⌊(b - a) / p⌋
[PROOFSTEP]
refine' toIcoDiv_eq_of_sub_zsmul_mem_Ico hp _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ b - ⌊(b - a) / p⌋ • p ∈ Set.Ico a (a + p)
[PROOFSTEP]
rw [Set.mem_Ico, zsmul_eq_mul, ← sub_nonneg, add_comm, sub_right_comm, ← sub_lt_iff_lt_add, sub_right_comm _ _ a]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ 0 ≤ b - a - ↑⌊(b - a) / p⌋ * p ∧ b - a - ↑⌊(b - a) / p⌋ * p < p
[PROOFSTEP]
exact ⟨Int.sub_floor_div_mul_nonneg _ hp, Int.sub_floor_div_mul_lt _ hp⟩
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ toIocDiv hp a b = -⌊(a + p - b) / p⌋
[PROOFSTEP]
refine' toIocDiv_eq_of_sub_zsmul_mem_Ioc hp _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ b - -⌊(a + p - b) / p⌋ • p ∈ Set.Ioc a (a + p)
[PROOFSTEP]
rw [Set.mem_Ioc, zsmul_eq_mul, Int.cast_neg, neg_mul, sub_neg_eq_add, ← sub_nonneg, sub_add_eq_sub_sub]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ a < b + ↑⌊(a + p - b) / p⌋ * p ∧ 0 ≤ a + p - b - ↑⌊(a + p - b) / p⌋ * p
[PROOFSTEP]
refine' ⟨_, Int.sub_floor_div_mul_nonneg _ hp⟩
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ a < b + ↑⌊(a + p - b) / p⌋ * p
[PROOFSTEP]
rw [← add_lt_add_iff_right p, add_assoc, add_comm b, ← sub_lt_iff_lt_add, add_comm (_ * _), ← sub_lt_iff_lt_add]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ a + p - b - ↑⌊(a + p - b) / p⌋ * p < p
[PROOFSTEP]
exact Int.sub_floor_div_mul_lt _ hp
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
b : α
⊢ toIcoDiv (_ : 0 < 1) 0 b = ⌊b⌋
[PROOFSTEP]
simp [toIcoDiv_eq_floor]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ toIcoMod hp a b = a + Int.fract ((b - a) / p) * p
[PROOFSTEP]
rw [toIcoMod, toIcoDiv_eq_floor, Int.fract]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ b - ⌊(b - a) / p⌋ • p = a + ((b - a) / p - ↑⌊(b - a) / p⌋) * p
[PROOFSTEP]
field_simp [hp.ne.symm]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ b - ↑⌊(b - a) / p⌋ * p = a + (b - a - p * ↑⌊(b - a) / p⌋)
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
b : α
⊢ toIcoMod hp 0 b = Int.fract (b / p) * p
[PROOFSTEP]
simp [toIcoMod_eq_add_fract_mul]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ toIocMod hp a b = a + p - Int.fract ((a + p - b) / p) * p
[PROOFSTEP]
rw [toIocMod, toIocDiv_eq_neg_floor, Int.fract]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ b - -⌊(a + p - b) / p⌋ • p = a + p - ((a + p - b) / p - ↑⌊(a + p - b) / p⌋) * p
[PROOFSTEP]
field_simp [hp.ne.symm]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
a b : α
⊢ b + ↑⌊(a + p - b) / p⌋ * p = a + p - (a + p - b - p * ↑⌊(a + p - b) / p⌋)
[PROOFSTEP]
ring
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
p : α
hp : 0 < p
b : α
⊢ toIcoMod (_ : 0 < 1) 0 b = Int.fract b
[PROOFSTEP]
simp [toIcoMod_eq_add_fract_mul]
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a : α
⊢ ⋃ (n : ℤ), Ioc (a + n • p) (a + (n + 1) • p) = univ
[PROOFSTEP]
refine' eq_univ_iff_forall.mpr fun b => mem_iUnion.mpr _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
⊢ ∃ i, b ∈ Ioc (a + i • p) (a + (i + 1) • p)
[PROOFSTEP]
rcases sub_toIocDiv_zsmul_mem_Ioc hp a b with ⟨hl, hr⟩
[GOAL]
case intro
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a < b - toIocDiv hp a b • p
hr : b - toIocDiv hp a b • p ≤ a + p
⊢ ∃ i, b ∈ Ioc (a + i • p) (a + (i + 1) • p)
[PROOFSTEP]
refine' ⟨toIocDiv hp a b, ⟨lt_sub_iff_add_lt.mp hl, _⟩⟩
[GOAL]
case intro
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a < b - toIocDiv hp a b • p
hr : b - toIocDiv hp a b • p ≤ a + p
⊢ b ≤ a + (toIocDiv hp a b + 1) • p
[PROOFSTEP]
rw [add_smul, one_smul, ← add_assoc]
[GOAL]
case intro
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a < b - toIocDiv hp a b • p
hr : b - toIocDiv hp a b • p ≤ a + p
⊢ b ≤ a + toIocDiv hp a b • p + p
[PROOFSTEP]
convert sub_le_iff_le_add.mp hr using 1
[GOAL]
case h.e'_4
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a < b - toIocDiv hp a b • p
hr : b - toIocDiv hp a b • p ≤ a + p
⊢ a + toIocDiv hp a b • p + p = a + p + toIocDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a < b - toIocDiv hp a b • p
hr : b - toIocDiv hp a b • p ≤ a + p
⊢ a + toIocDiv hp a b • p + p = a + p + toIocDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a : α
⊢ ⋃ (n : ℤ), Ico (a + n • p) (a + (n + 1) • p) = univ
[PROOFSTEP]
refine' eq_univ_iff_forall.mpr fun b => mem_iUnion.mpr _
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
⊢ ∃ i, b ∈ Ico (a + i • p) (a + (i + 1) • p)
[PROOFSTEP]
rcases sub_toIcoDiv_zsmul_mem_Ico hp a b with ⟨hl, hr⟩
[GOAL]
case intro
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a ≤ b - toIcoDiv hp a b • p
hr : b - toIcoDiv hp a b • p < a + p
⊢ ∃ i, b ∈ Ico (a + i • p) (a + (i + 1) • p)
[PROOFSTEP]
refine' ⟨toIcoDiv hp a b, ⟨le_sub_iff_add_le.mp hl, _⟩⟩
[GOAL]
case intro
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a ≤ b - toIcoDiv hp a b • p
hr : b - toIcoDiv hp a b • p < a + p
⊢ b < a + (toIcoDiv hp a b + 1) • p
[PROOFSTEP]
rw [add_smul, one_smul, ← add_assoc]
[GOAL]
case intro
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a ≤ b - toIcoDiv hp a b • p
hr : b - toIcoDiv hp a b • p < a + p
⊢ b < a + toIcoDiv hp a b • p + p
[PROOFSTEP]
convert sub_lt_iff_lt_add.mp hr using 1
[GOAL]
case h.e'_4
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a ≤ b - toIcoDiv hp a b • p
hr : b - toIcoDiv hp a b • p < a + p
⊢ a + toIcoDiv hp a b • p + p = a + p + toIcoDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
case h.e'_4
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a b : α
hl : a ≤ b - toIcoDiv hp a b • p
hr : b - toIcoDiv hp a b • p < a + p
⊢ a + toIcoDiv hp a b • p + p = a + p + toIcoDiv hp a b • p
[PROOFSTEP]
abel
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a : α
⊢ ⋃ (n : ℤ), Icc (a + n • p) (a + (n + 1) • p) = univ
[PROOFSTEP]
simpa only [iUnion_Ioc_add_zsmul hp a, univ_subset_iff] using
iUnion_mono fun n : ℤ => (Ioc_subset_Icc_self : Ioc (a + n • p) (a + (n + 1) • p) ⊆ Icc _ _)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a : α
⊢ ⋃ (n : ℤ), Ioc (n • p) ((n + 1) • p) = univ
[PROOFSTEP]
simpa only [zero_add] using iUnion_Ioc_add_zsmul hp 0
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a : α
⊢ ⋃ (n : ℤ), Ico (n • p) ((n + 1) • p) = univ
[PROOFSTEP]
simpa only [zero_add] using iUnion_Ico_add_zsmul hp 0
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedAddCommGroup α
inst✝ : Archimedean α
p : α
hp : 0 < p
a : α
⊢ ⋃ (n : ℤ), Icc (n • p) ((n + 1) • p) = univ
[PROOFSTEP]
simpa only [zero_add] using iUnion_Icc_add_zsmul hp 0
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Archimedean α
a : α
⊢ ⋃ (n : ℤ), Ioc (a + ↑n) (a + ↑n + 1) = univ
[PROOFSTEP]
simpa only [zsmul_one, Int.cast_add, Int.cast_one, ← add_assoc] using iUnion_Ioc_add_zsmul zero_lt_one a
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Archimedean α
a : α
⊢ ⋃ (n : ℤ), Ico (a + ↑n) (a + ↑n + 1) = univ
[PROOFSTEP]
simpa only [zsmul_one, Int.cast_add, Int.cast_one, ← add_assoc] using iUnion_Ico_add_zsmul zero_lt_one a
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Archimedean α
a : α
⊢ ⋃ (n : ℤ), Icc (a + ↑n) (a + ↑n + 1) = univ
[PROOFSTEP]
simpa only [zsmul_one, Int.cast_add, Int.cast_one, ← add_assoc] using iUnion_Icc_add_zsmul zero_lt_one a
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Archimedean α
a : α
⊢ ⋃ (n : ℤ), Ioc (↑n) (↑n + 1) = univ
[PROOFSTEP]
simpa only [zero_add] using iUnion_Ioc_add_int_cast (0 : α)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Archimedean α
a : α
⊢ ⋃ (n : ℤ), Ico (↑n) (↑n + 1) = univ
[PROOFSTEP]
simpa only [zero_add] using iUnion_Ico_add_int_cast (0 : α)
[GOAL]
α : Type u_1
inst✝¹ : LinearOrderedRing α
inst✝ : Archimedean α
a : α
⊢ ⋃ (n : ℤ), Icc (↑n) (↑n + 1) = univ
[PROOFSTEP]
simpa only [zero_add] using iUnion_Icc_add_int_cast (0 : α)
| {"mathlib_filename": "Mathlib.Algebra.Order.ToIntervalMod", "llama_tokens": 50855} |
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.TypeTags", "llama_tokens": 0} |
|
[GOAL]
α✝ α : Type u
inst✝ : OrderedCommGroup α
a b c : α
bc : a * b ≤ a * c
⊢ b ≤ c
[PROOFSTEP]
simpa using mul_le_mul_left' bc a⁻¹
[GOAL]
α✝ α : Type u
inst✝ : OrderedCommGroup α
a b c : α
bc : swap (fun x x_1 => x * x_1) a b ≤ swap (fun x x_1 => x * x_1) a c
⊢ b ≤ c
[PROOFSTEP]
simpa using mul_le_mul_right' bc a⁻¹
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a⁻¹ ≤ 1 ↔ 1 ≤ a
[PROOFSTEP]
rw [← mul_le_mul_iff_left a]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a * a⁻¹ ≤ a * 1 ↔ 1 ≤ a
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ 1 ≤ a⁻¹ ↔ a ≤ 1
[PROOFSTEP]
rw [← mul_le_mul_iff_left a]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a * 1 ≤ a * a⁻¹ ↔ a ≤ 1
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ b ≤ a⁻¹ * c ↔ a * b ≤ c
[PROOFSTEP]
rw [← mul_le_mul_iff_left a]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a * b ≤ a * (a⁻¹ * c) ↔ a * b ≤ c
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ b⁻¹ * a ≤ c ↔ a ≤ b * c
[PROOFSTEP]
rw [← mul_le_mul_iff_left b, mul_inv_cancel_left]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a * a⁻¹ ≤ a * b ↔ 1 ≤ a * b
[PROOFSTEP]
rw [mul_inv_self]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ b * a ≤ b * b⁻¹ ↔ b * a ≤ 1
[PROOFSTEP]
rw [mul_inv_self]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ 1 ≤ b⁻¹ * a ↔ b ≤ a
[PROOFSTEP]
rw [← mul_le_mul_iff_left b, mul_one, mul_inv_cancel_left]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ b ≤ a * 1 ↔ b ≤ a
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ 1 < a⁻¹ ↔ a < 1
[PROOFSTEP]
rw [← mul_lt_mul_iff_left a, mul_inv_self, mul_one]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ a⁻¹ < 1 ↔ 1 < a
[PROOFSTEP]
rw [← mul_lt_mul_iff_left a, mul_inv_self, mul_one]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ b < a⁻¹ * c ↔ a * b < c
[PROOFSTEP]
rw [← mul_lt_mul_iff_left a]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ a * b < a * (a⁻¹ * c) ↔ a * b < c
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ b⁻¹ * a < c ↔ a < b * c
[PROOFSTEP]
rw [← mul_lt_mul_iff_left b, mul_inv_cancel_left]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ a * a⁻¹ < a * b ↔ 1 < a * b
[PROOFSTEP]
rw [mul_inv_self]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ b * a < b * b⁻¹ ↔ b * a < 1
[PROOFSTEP]
rw [mul_inv_self]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ 1 < b⁻¹ * a ↔ b < a
[PROOFSTEP]
rw [← mul_lt_mul_iff_left b, mul_one, mul_inv_cancel_left]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ b < a * 1 ↔ b < a
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ a⁻¹ ≤ 1 ↔ 1 ≤ a
[PROOFSTEP]
rw [← mul_le_mul_iff_right a]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ a⁻¹ * a ≤ 1 * a ↔ 1 ≤ a
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ 1 ≤ a⁻¹ ↔ a ≤ 1
[PROOFSTEP]
rw [← mul_le_mul_iff_right a]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ 1 * a ≤ a⁻¹ * a ↔ a ≤ 1
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ a⁻¹ * a ≤ b * a ↔ 1 ≤ b * a
[PROOFSTEP]
rw [inv_mul_self]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ a * b ≤ b⁻¹ * b ↔ a * b ≤ 1
[PROOFSTEP]
rw [inv_mul_self]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ a * b⁻¹ * b ≤ c * b ↔ a ≤ c * b
[PROOFSTEP]
rw [inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ c * b ≤ a * b⁻¹ * b ↔ c * b ≤ a
[PROOFSTEP]
rw [inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ a ≤ 1 * b ↔ a ≤ b
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ 1 ≤ a * b⁻¹ ↔ b ≤ a
[PROOFSTEP]
rw [← mul_le_mul_iff_right b, one_mul, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
⊢ b ≤ 1 * a ↔ b ≤ a
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ a⁻¹ < 1 ↔ 1 < a
[PROOFSTEP]
rw [← mul_lt_mul_iff_right a, inv_mul_self, one_mul]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ 1 < a⁻¹ ↔ a < 1
[PROOFSTEP]
rw [← mul_lt_mul_iff_right a, inv_mul_self, one_mul]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ a⁻¹ * a < b * a ↔ 1 < b * a
[PROOFSTEP]
rw [inv_mul_self]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ a * b < b⁻¹ * b ↔ a * b < 1
[PROOFSTEP]
rw [inv_mul_self]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ a * b⁻¹ < c ↔ a < c * b
[PROOFSTEP]
rw [← mul_lt_mul_iff_right b, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ c * b < a * b⁻¹ * b ↔ c * b < a
[PROOFSTEP]
rw [inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ a * b⁻¹ < 1 ↔ a < b
[PROOFSTEP]
rw [← mul_lt_mul_iff_right b, inv_mul_cancel_right, one_mul]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ 1 < a * b⁻¹ ↔ b < a
[PROOFSTEP]
rw [← mul_lt_mul_iff_right b, one_mul, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ b < 1 * a ↔ b < a
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a⁻¹ ≤ b⁻¹ ↔ b ≤ a
[PROOFSTEP]
rw [← mul_le_mul_iff_left a, ← mul_le_mul_iff_right b]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a * a⁻¹ * b ≤ a * b⁻¹ * b ↔ b ≤ a
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a * b⁻¹ ≤ d⁻¹ * c ↔ d * a ≤ c * b
[PROOFSTEP]
rw [← mul_le_mul_iff_left d, ← mul_le_mul_iff_right b, mul_inv_cancel_left, mul_assoc, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a✝ b✝ c d a b : α
⊢ a / b ≤ a ↔ 1 ≤ b
[PROOFSTEP]
simp [div_eq_mul_inv]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a✝ b✝ c d a b : α
⊢ a ≤ a / b ↔ b ≤ 1
[PROOFSTEP]
simp [div_eq_mul_inv]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a⁻¹ < b⁻¹ ↔ b < a
[PROOFSTEP]
rw [← mul_lt_mul_iff_left a, ← mul_lt_mul_iff_right b]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a * a⁻¹ * b < a * b⁻¹ * b ↔ b < a
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a⁻¹ < b ↔ b⁻¹ < a
[PROOFSTEP]
rw [← inv_lt_inv_iff, inv_inv]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a < b⁻¹ ↔ b < a⁻¹
[PROOFSTEP]
rw [← inv_lt_inv_iff, inv_inv]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a * b⁻¹ < d⁻¹ * c ↔ d * a < c * b
[PROOFSTEP]
rw [← mul_lt_mul_iff_left d, ← mul_lt_mul_iff_right b, mul_inv_cancel_left, mul_assoc, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a✝ b✝ c d a b : α
⊢ a / b < a ↔ 1 < b
[PROOFSTEP]
simp [div_eq_mul_inv]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ c⁻¹ * a ≤ b ↔ a ≤ b * c
[PROOFSTEP]
rw [inv_mul_le_iff_le_mul, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a * b⁻¹ ≤ c ↔ a ≤ b * c
[PROOFSTEP]
rw [← inv_mul_le_iff_le_mul, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a * b⁻¹ ≤ c * d⁻¹ ↔ a * d ≤ c * b
[PROOFSTEP]
rw [mul_comm c, mul_inv_le_inv_mul_iff, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ c⁻¹ * a < b ↔ a < b * c
[PROOFSTEP]
rw [inv_mul_lt_iff_lt_mul, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a * b⁻¹ < c ↔ a < b * c
[PROOFSTEP]
rw [← inv_mul_lt_iff_lt_mul, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a * b⁻¹ < c * d⁻¹ ↔ a * d < c * b
[PROOFSTEP]
rw [mul_comm c, mul_inv_lt_inv_mul_iff, mul_comm]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c✝ d c : α
⊢ a / c ≤ b / c ↔ a ≤ b
[PROOFSTEP]
simpa only [div_eq_mul_inv] using mul_le_mul_iff_right _
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ 1 ≤ a / b ↔ b ≤ a
[PROOFSTEP]
rw [← mul_le_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a / b ≤ 1 ↔ a ≤ b
[PROOFSTEP]
rw [← mul_le_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a ≤ c / b ↔ a * b ≤ c
[PROOFSTEP]
rw [← mul_le_mul_iff_right b, div_eq_mul_inv, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a / c ≤ b ↔ a ≤ b * c
[PROOFSTEP]
rw [← mul_le_mul_iff_right c, div_eq_mul_inv, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a✝ b c a : α
⊢ a / b ≤ a / c ↔ c ≤ b
[PROOFSTEP]
rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_le_mul_iff_left a⁻¹, inv_mul_cancel_left, inv_mul_cancel_left, inv_le_inv_iff]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a / b ≤ c / d ↔ a * d ≤ c * b
[PROOFSTEP]
simpa only [div_eq_mul_inv] using mul_inv_le_mul_inv_iff'
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ b ≤ c / a ↔ a * b ≤ c
[PROOFSTEP]
rw [le_div_iff_mul_le, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a / b ≤ c ↔ a ≤ b * c
[PROOFSTEP]
rw [div_le_iff_le_mul, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
⊢ a⁻¹ ≤ b / c ↔ c ≤ a * b
[PROOFSTEP]
rw [inv_le_div_iff_le_mul, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hab : a ≤ b
hcd : c ≤ d
⊢ a / d ≤ b / c
[PROOFSTEP]
rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_le_inv_mul_iff, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hab : a ≤ b
hcd : c ≤ d
⊢ a * c ≤ b * d
[PROOFSTEP]
exact mul_le_mul' hab hcd
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c✝ d c : α
⊢ a / c < b / c ↔ a < b
[PROOFSTEP]
simpa only [div_eq_mul_inv] using mul_lt_mul_iff_right _
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ 1 < a / b ↔ b < a
[PROOFSTEP]
rw [← mul_lt_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a / b < 1 ↔ a < b
[PROOFSTEP]
rw [← mul_lt_mul_iff_right b, one_mul, div_eq_mul_inv, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a < c / b ↔ a * b < c
[PROOFSTEP]
rw [← mul_lt_mul_iff_right b, div_eq_mul_inv, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a / c < b ↔ a < b * c
[PROOFSTEP]
rw [← mul_lt_mul_iff_right c, div_eq_mul_inv, inv_mul_cancel_right]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a✝ b c a : α
⊢ a / b < a / c ↔ c < b
[PROOFSTEP]
rw [div_eq_mul_inv, div_eq_mul_inv, ← mul_lt_mul_iff_left a⁻¹, inv_mul_cancel_left, inv_mul_cancel_left, inv_lt_inv_iff]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : α
⊢ a⁻¹ < b / c ↔ c < a * b
[PROOFSTEP]
rw [div_eq_mul_inv, lt_mul_inv_iff_mul_lt, inv_mul_lt_iff_lt_mul]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a / b < c / d ↔ a * d < c * b
[PROOFSTEP]
simpa only [div_eq_mul_inv] using mul_inv_lt_mul_inv_iff'
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ b < c / a ↔ a * b < c
[PROOFSTEP]
rw [lt_div_iff_mul_lt, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
⊢ a / b < c ↔ a < b * c
[PROOFSTEP]
rw [div_lt_iff_lt_mul, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
hab : a < b
hcd : c < d
⊢ a / d < b / c
[PROOFSTEP]
rw [div_eq_mul_inv, div_eq_mul_inv, mul_comm b, mul_inv_lt_inv_mul_iff, mul_comm]
[GOAL]
α : Type u
inst✝² : CommGroup α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c d : α
hab : a < b
hcd : c < d
⊢ a * c < b * d
[PROOFSTEP]
exact mul_lt_mul_of_lt_of_lt hab hcd
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
⊢ cmp (a / b) 1 = cmp a b
[PROOFSTEP]
rw [← cmp_mul_right' _ _ b, one_mul, div_mul_cancel']
[GOAL]
α : Type u
inst✝² : Group α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
h : ∀ (ε : α), 1 < ε → a < b * ε
h₁ : b < a
⊢ a < a
[PROOFSTEP]
simpa using h _ (lt_inv_mul_iff_lt.mpr h₁)
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LinearOrder α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
⊢ a / b ≤ a⁻¹ * b ↔ a ≤ b
[PROOFSTEP]
rw [div_eq_mul_inv, mul_inv_le_inv_mul_iff]
[GOAL]
α : Type u
inst✝³ : Group α
inst✝² : LinearOrder α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
⊢ a * a ≤ b * b ↔ a ≤ b
[PROOFSTEP]
exact ⟨fun h => not_lt.mp fun k => not_lt.mpr h (mul_lt_mul_of_lt_of_lt k k), fun h => mul_le_mul' h h⟩
[GOAL]
α✝ : Type u
inst✝⁵ : Group α✝
inst✝⁴ : LinearOrder α✝
inst✝³ : CovariantClass α✝ α✝ (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a✝ b✝ c : α✝
α : Type u_1
inst✝² : CommGroup α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
⊢ a / b ≤ b / a ↔ a ≤ b
[PROOFSTEP]
rw [div_eq_mul_inv b, mul_comm]
[GOAL]
α✝ : Type u
inst✝⁵ : Group α✝
inst✝⁴ : LinearOrder α✝
inst✝³ : CovariantClass α✝ α✝ (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a✝ b✝ c : α✝
α : Type u_1
inst✝² : CommGroup α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
⊢ a / b ≤ a⁻¹ * b ↔ a ≤ b
[PROOFSTEP]
exact div_le_inv_mul_iff
[GOAL]
α : Type u
inst✝¹ : LinearOrderedCommGroup α
a b c : α
inst✝ : Nontrivial α
⊢ ∃ a, 1 < a
[PROOFSTEP]
obtain ⟨y, hy⟩ := Decidable.exists_ne (1 : α)
[GOAL]
case intro
α : Type u
inst✝¹ : LinearOrderedCommGroup α
a b c : α
inst✝ : Nontrivial α
y : α
hy : y ≠ 1
⊢ ∃ a, 1 < a
[PROOFSTEP]
obtain h | h := hy.lt_or_lt
[GOAL]
case intro.inl
α : Type u
inst✝¹ : LinearOrderedCommGroup α
a b c : α
inst✝ : Nontrivial α
y : α
hy : y ≠ 1
h : y < 1
⊢ ∃ a, 1 < a
[PROOFSTEP]
exact ⟨y⁻¹, one_lt_inv'.mpr h⟩
[GOAL]
case intro.inr
α : Type u
inst✝¹ : LinearOrderedCommGroup α
a b c : α
inst✝ : Nontrivial α
y : α
hy : y ≠ 1
h : 1 < y
⊢ ∃ a, 1 < a
[PROOFSTEP]
exact ⟨y, h⟩
[GOAL]
α : Type u
inst✝¹ : LinearOrderedCommGroup α
a b c : α
inst✝ : Nontrivial α
⊢ ∀ (a : α), ∃ b, a < b
[PROOFSTEP]
obtain ⟨y, hy⟩ : ∃ a : α, 1 < a := exists_one_lt'
[GOAL]
case intro
α : Type u
inst✝¹ : LinearOrderedCommGroup α
a b c : α
inst✝ : Nontrivial α
y : α
hy : 1 < y
⊢ ∀ (a : α), ∃ b, a < b
[PROOFSTEP]
exact fun a => ⟨a * y, lt_mul_of_one_lt_right' a hy⟩
[GOAL]
α : Type u
inst✝¹ : LinearOrderedCommGroup α
a b c : α
inst✝ : Nontrivial α
⊢ ∀ (a : α), ∃ b, b < a
[PROOFSTEP]
obtain ⟨y, hy⟩ : ∃ a : α, 1 < a := exists_one_lt'
[GOAL]
case intro
α : Type u
inst✝¹ : LinearOrderedCommGroup α
a b c : α
inst✝ : Nontrivial α
y : α
hy : 1 < y
⊢ ∀ (a : α), ∃ b, b < a
[PROOFSTEP]
exact fun a => ⟨a / y, (div_lt_self_iff a).mpr hy⟩
[GOAL]
α✝ : Type u
α : Type u_1
inst✝ : AddCommGroup α
C : PositiveCone α
src✝ : AddCommGroup α := inst✝
a : α
⊢ a ≤ a
[PROOFSTEP]
simp [C.zero_nonneg]
[GOAL]
α✝ : Type u
α : Type u_1
inst✝ : AddCommGroup α
C : PositiveCone α
src✝ : AddCommGroup α := inst✝
a b c : α
nab : a ≤ b
nbc : b ≤ c
⊢ a ≤ c
[PROOFSTEP]
simpa [← sub_add_sub_cancel] using C.add_nonneg nbc nab
[GOAL]
α✝ : Type u
α : Type u_1
inst✝ : AddCommGroup α
C : PositiveCone α
src✝ : AddCommGroup α := inst✝
a b : α
⊢ a < b ↔ a ≤ b ∧ ¬b ≤ a
[PROOFSTEP]
simp [C.pos_iff]
[GOAL]
α✝ : Type u
α : Type u_1
inst✝ : AddCommGroup α
C : PositiveCone α
src✝ : AddCommGroup α := inst✝
a b : α
nab : a ≤ b
nba : b ≤ a
⊢ PositiveCone.nonneg C (-(a - b))
[PROOFSTEP]
rwa [neg_sub]
[GOAL]
α✝ : Type u
α : Type u_1
inst✝ : AddCommGroup α
C : PositiveCone α
src✝ : AddCommGroup α := inst✝
a b : α
nab : a ≤ b
c : α
⊢ c + a ≤ c + b
[PROOFSTEP]
simpa using nab
[GOAL]
α✝ : Type u
α : Type u_1
inst✝ : AddCommGroup α
C : TotalPositiveCone α
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
a b : α
⊢ a ≤ b ∨ b ≤ a
[PROOFSTEP]
simpa [neg_sub] using C.nonneg_total (b - a)
| {"mathlib_filename": "Mathlib.Algebra.Order.Group.Defs", "llama_tokens": 12526} |
[GOAL]
α : Type u_1
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 1 ≤ a
h : m ≤ n
⊢ a ^ m ≤ a ^ n
[PROOFSTEP]
have ha₀ : 0 < a := one_pos.trans_le ha
[GOAL]
α : Type u_1
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 1 ≤ a
h : m ≤ n
ha₀ : 0 < a
⊢ a ^ m ≤ a ^ n
[PROOFSTEP]
lift n - m to ℕ using sub_nonneg.2 h with k hk
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 1 ≤ a
h : m ≤ n
ha₀ : 0 < a
k : ℕ
hk : ↑k = n - m
⊢ a ^ m ≤ a ^ n
[PROOFSTEP]
calc
a ^ m = a ^ m * 1 := (mul_one _).symm
_ ≤ a ^ m * a ^ k := (mul_le_mul_of_nonneg_left (one_le_pow_of_one_le ha _) (zpow_nonneg ha₀.le _))
_ = a ^ n := by rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 1 ≤ a
h : m ≤ n
ha₀ : 0 < a
k : ℕ
hk : ↑k = n - m
⊢ a ^ m * a ^ k = a ^ n
[PROOFSTEP]
rw [← zpow_ofNat, ← zpow_add₀ ha₀.ne', hk, add_sub_cancel'_right]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedSemifield α
a✝ b c d e : α
m n✝ : ℤ
a : ℕ
h : 0 < a
n : ℤ
⊢ 0 < ↑a ^ n
[PROOFSTEP]
apply zpow_pos_of_pos
[GOAL]
case ha
α : Type u_1
inst✝ : LinearOrderedSemifield α
a✝ b c d e : α
m n✝ : ℤ
a : ℕ
h : 0 < a
n : ℤ
⊢ 0 < ↑a
[PROOFSTEP]
exact_mod_cast h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h₀ : 0 < a
h₁ : a ≠ 1
⊢ Injective ((fun x x_1 => x ^ x_1) a)
[PROOFSTEP]
rcases h₁.lt_or_lt with (H | H)
[GOAL]
case inl
α : Type u_1
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h₀ : 0 < a
h₁ : a ≠ 1
H : a < 1
⊢ Injective ((fun x x_1 => x ^ x_1) a)
[PROOFSTEP]
exact (zpow_strictAnti h₀ H).injective
[GOAL]
case inr
α : Type u_1
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h₀ : 0 < a
h₁ : a ≠ 1
H : 1 < a
⊢ Injective ((fun x x_1 => x ^ x_1) a)
[PROOFSTEP]
exact (zpow_strictMono H).injective
[GOAL]
α : Type u_1
inst✝ : LinearOrderedSemifield α
a✝ b✝ c✝ d e : α
m n : ℤ
x : α
hx : 1 < x
a b c : ℤ
⊢ x ^ (-c) ≤ max (x ^ (-a)) (x ^ (-b)) ↔ min a b ≤ c
[PROOFSTEP]
simp_rw [le_max_iff, min_le_iff, zpow_le_iff_le hx, neg_le_neg_iff]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a✝ b c d : α
n : ℤ
a : α
⊢ 0 ≤ a ^ 2
[PROOFSTEP]
convert zpow_bit0_nonneg a 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
h : a ≠ 0
⊢ 0 < a ^ 2
[PROOFSTEP]
convert zpow_bit0_pos h 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hn : n ≠ 0
⊢ 0 < a ^ bit0 n → a ≠ 0
[PROOFSTEP]
rintro h rfl
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
hn : n ≠ 0
h : 0 < 0 ^ bit0 n
⊢ False
[PROOFSTEP]
refine' (zero_zpow _ _).not_gt h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
hn : n ≠ 0
h : 0 < 0 ^ bit0 n
⊢ bit0 n ≠ 0
[PROOFSTEP]
rwa [bit0_ne_zero]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
h : a < 0
⊢ a ^ bit1 n < 0
[PROOFSTEP]
rw [bit1, zpow_add_one₀ h.ne]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
h : a < 0
⊢ a ^ bit0 n * a < 0
[PROOFSTEP]
exact mul_neg_of_pos_of_neg (zpow_bit0_pos h.ne _) h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
⊢ a ^ bit1 n ≤ 0 ↔ a ≤ 0
[PROOFSTEP]
rw [le_iff_lt_or_eq, le_iff_lt_or_eq, zpow_bit1_neg_iff, zpow_eq_zero_iff (Int.bit1_ne_zero n)]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a✝ b c d : α
n : ℤ
hn : Even n
a : α
⊢ 0 ≤ a ^ n
[PROOFSTEP]
obtain ⟨k, rfl⟩ := hn
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedField α
a✝ b c d a : α
k : ℤ
⊢ 0 ≤ a ^ (k + k)
[PROOFSTEP]
exact zpow_bit0_nonneg _ _
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hn : Even n
h : n ≠ 0
⊢ 0 < a ^ n ↔ a ≠ 0
[PROOFSTEP]
obtain ⟨k, rfl⟩ := hn
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
k : ℤ
h : k + k ≠ 0
⊢ 0 < a ^ (k + k) ↔ a ≠ 0
[PROOFSTEP]
exact zpow_bit0_pos_iff (by rintro rfl; simp at h )
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
k : ℤ
h : k + k ≠ 0
⊢ k ≠ 0
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
h : 0 + 0 ≠ 0
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hn : Odd n
⊢ a ^ n < 0 ↔ a < 0
[PROOFSTEP]
cases' hn with k hk
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n k : ℤ
hk : n = 2 * k + 1
⊢ a ^ n < 0 ↔ a < 0
[PROOFSTEP]
simpa only [hk, two_mul] using zpow_bit1_neg_iff
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hn : Odd n
⊢ 0 ≤ a ^ n ↔ 0 ≤ a
[PROOFSTEP]
cases' hn with k hk
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n k : ℤ
hk : n = 2 * k + 1
⊢ 0 ≤ a ^ n ↔ 0 ≤ a
[PROOFSTEP]
simpa only [hk, two_mul] using zpow_bit1_nonneg_iff
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hn : Odd n
⊢ a ^ n ≤ 0 ↔ a ≤ 0
[PROOFSTEP]
cases' hn with k hk
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n k : ℤ
hk : n = 2 * k + 1
⊢ a ^ n ≤ 0 ↔ a ≤ 0
[PROOFSTEP]
simpa only [hk, two_mul] using zpow_bit1_nonpos_iff
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hn : Odd n
⊢ 0 < a ^ n ↔ 0 < a
[PROOFSTEP]
cases' hn with k hk
[GOAL]
case intro
α : Type u_1
inst✝ : LinearOrderedField α
a b c d : α
n k : ℤ
hk : n = 2 * k + 1
⊢ 0 < a ^ n ↔ 0 < a
[PROOFSTEP]
simpa only [hk, two_mul] using zpow_bit1_pos_iff
[GOAL]
α : Type u_1
inst✝ : LinearOrderedField α
a✝ b c d : α
n p : ℤ
hp : Even p
a : α
⊢ |a| ^ p = a ^ p
[PROOFSTEP]
cases' abs_choice a with h h
[GOAL]
case inl
α : Type u_1
inst✝ : LinearOrderedField α
a✝ b c d : α
n p : ℤ
hp : Even p
a : α
h : |a| = a
⊢ |a| ^ p = a ^ p
[PROOFSTEP]
simp only [h, hp.neg_zpow _]
[GOAL]
case inr
α : Type u_1
inst✝ : LinearOrderedField α
a✝ b c d : α
n p : ℤ
hp : Even p
a : α
h : |a| = -a
⊢ |a| ^ p = a ^ p
[PROOFSTEP]
simp only [h, hp.neg_zpow _]
| {"mathlib_filename": "Mathlib.Algebra.Order.Field.Power", "llama_tokens": 3218} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : CommSemigroup β
f : α → β
n m : α
⊢ f (min n m) * f (max n m) = f n * f m
[PROOFSTEP]
cases' le_total n m with h h
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : CommSemigroup β
f : α → β
n m : α
h : n ≤ m
⊢ f (min n m) * f (max n m) = f n * f m
[PROOFSTEP]
simp [h, mul_comm]
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝¹ : LinearOrder α
inst✝ : CommSemigroup β
f : α → β
n m : α
h : m ≤ n
⊢ f (min n m) * f (max n m) = f n * f m
[PROOFSTEP]
simp [h, mul_comm]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : Mul α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a₁ a₂ b₁ b₂ : α
⊢ a₁ * b₁ < a₂ * b₂ → a₁ < a₂ ∨ b₁ < b₂
[PROOFSTEP]
contrapose!
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : Mul α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a₁ a₂ b₁ b₂ : α
⊢ a₂ ≤ a₁ ∧ b₂ ≤ b₁ → a₂ * b₂ ≤ a₁ * b₁
[PROOFSTEP]
exact fun h => mul_le_mul' h.1 h.2
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : Mul α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
⊢ a₁ * b₁ ≤ a₂ * b₂ → a₁ ≤ a₂ ∨ b₁ < b₂
[PROOFSTEP]
contrapose!
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : Mul α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
⊢ a₂ < a₁ ∧ b₂ ≤ b₁ → a₂ * b₂ < a₁ * b₁
[PROOFSTEP]
exact fun h => mul_lt_mul_of_lt_of_le h.1 h.2
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : Mul α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a₁ a₂ b₁ b₂ : α
⊢ a₁ * b₁ ≤ a₂ * b₂ → a₁ < a₂ ∨ b₁ ≤ b₂
[PROOFSTEP]
contrapose!
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : Mul α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a₁ a₂ b₁ b₂ : α
⊢ a₂ ≤ a₁ ∧ b₂ < b₁ → a₂ * b₂ < a₁ * b₁
[PROOFSTEP]
exact fun h => mul_lt_mul_of_le_of_lt h.1 h.2
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : Mul α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
⊢ a₁ * b₁ ≤ a₂ * b₂ → a₁ ≤ a₂ ∨ b₁ ≤ b₂
[PROOFSTEP]
contrapose!
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : LinearOrder α
inst✝² : Mul α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
⊢ a₂ < a₁ ∧ b₂ < b₁ → a₂ * b₂ < a₁ * b₁
[PROOFSTEP]
exact fun h => mul_lt_mul_of_lt_of_lt h.1 h.2
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : Mul α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb : b₁ ≤ b₂
⊢ a₁ * b₁ < a₂ * b₂ ↔ a₁ < a₂ ∨ b₁ < b₂
[PROOFSTEP]
refine' ⟨lt_or_lt_of_mul_lt_mul, fun h => _⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : Mul α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb : b₁ ≤ b₂
h : a₁ < a₂ ∨ b₁ < b₂
⊢ a₁ * b₁ < a₂ * b₂
[PROOFSTEP]
cases' h with ha' hb'
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : Mul α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb : b₁ ≤ b₂
ha' : a₁ < a₂
⊢ a₁ * b₁ < a₂ * b₂
[PROOFSTEP]
exact mul_lt_mul_of_lt_of_le ha' hb
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝⁵ : LinearOrder α
inst✝⁴ : Mul α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb : b₁ ≤ b₂
hb' : b₁ < b₂
⊢ a₁ * b₁ < a₂ * b₂
[PROOFSTEP]
exact mul_lt_mul_of_le_of_lt ha hb'
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.MinMax", "llama_tokens": 2762} |
[GOAL]
α : Type u
β✝ : Type u_1
inst✝³ : OrderedCommMonoid α
β : Type u_2
inst✝² : One β
inst✝¹ : Mul β
inst✝ : Pow β ℕ
f : β → α
hf : Injective f
one : f 1 = 1
mul : ∀ (x y : β), f (x * y) = f x * f y
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
src✝¹ : PartialOrder β := PartialOrder.lift f hf
src✝ : CommMonoid β := Injective.commMonoid f hf one mul npow
a b : β
ab : a ≤ b
c : β
⊢ f (c * a) ≤ f (c * b)
[PROOFSTEP]
rw [mul, mul]
[GOAL]
α : Type u
β✝ : Type u_1
inst✝³ : OrderedCommMonoid α
β : Type u_2
inst✝² : One β
inst✝¹ : Mul β
inst✝ : Pow β ℕ
f : β → α
hf : Injective f
one : f 1 = 1
mul : ∀ (x y : β), f (x * y) = f x * f y
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
src✝¹ : PartialOrder β := PartialOrder.lift f hf
src✝ : CommMonoid β := Injective.commMonoid f hf one mul npow
a b : β
ab : a ≤ b
c : β
⊢ f c * f a ≤ f c * f b
[PROOFSTEP]
apply mul_le_mul_left'
[GOAL]
case bc
α : Type u
β✝ : Type u_1
inst✝³ : OrderedCommMonoid α
β : Type u_2
inst✝² : One β
inst✝¹ : Mul β
inst✝ : Pow β ℕ
f : β → α
hf : Injective f
one : f 1 = 1
mul : ∀ (x y : β), f (x * y) = f x * f y
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
src✝¹ : PartialOrder β := PartialOrder.lift f hf
src✝ : CommMonoid β := Injective.commMonoid f hf one mul npow
a b : β
ab : a ≤ b
c : β
⊢ f a ≤ f b
[PROOFSTEP]
exact ab
[GOAL]
α : Type u
β : Type u_1
inst✝⁴ : Mul α
inst✝³ : LinearOrder α
inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b a0 b0 : α
ha : a0 ≤ a
hb : b0 ≤ b
ab : a * b ≤ a0 * b0
⊢ a = a0 ∧ b = b0
[PROOFSTEP]
haveI := Mul.to_covariantClass_right α
[GOAL]
α : Type u
β : Type u_1
inst✝⁴ : Mul α
inst✝³ : LinearOrder α
inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b a0 b0 : α
ha : a0 ≤ a
hb : b0 ≤ b
ab : a * b ≤ a0 * b0
this : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
⊢ a = a0 ∧ b = b0
[PROOFSTEP]
have ha' : ¬a0 * b0 < a * b → ¬a0 < a := mt (mul_lt_mul_of_lt_of_le · hb)
[GOAL]
α : Type u
β : Type u_1
inst✝⁴ : Mul α
inst✝³ : LinearOrder α
inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b a0 b0 : α
ha : a0 ≤ a
hb : b0 ≤ b
ab : a * b ≤ a0 * b0
this : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
ha' : ¬a0 * b0 < a * b → ¬a0 < a
⊢ a = a0 ∧ b = b0
[PROOFSTEP]
have hb' : ¬a0 * b0 < a * b → ¬b0 < b := mt (mul_lt_mul_of_le_of_lt ha ·)
[GOAL]
α : Type u
β : Type u_1
inst✝⁴ : Mul α
inst✝³ : LinearOrder α
inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b a0 b0 : α
ha : a0 ≤ a
hb : b0 ≤ b
ab : a * b ≤ a0 * b0
this : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
ha' : ¬a0 * b0 < a * b → ¬a0 < a
hb' : ¬a0 * b0 < a * b → ¬b0 < b
⊢ a = a0 ∧ b = b0
[PROOFSTEP]
push_neg at ha' hb'
[GOAL]
α : Type u
β : Type u_1
inst✝⁴ : Mul α
inst✝³ : LinearOrder α
inst✝² : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b a0 b0 : α
ha : a0 ≤ a
hb : b0 ≤ b
ab : a * b ≤ a0 * b0
this : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
ha' : a * b ≤ a0 * b0 → a ≤ a0
hb' : a * b ≤ a0 * b0 → b ≤ b0
⊢ a = a0 ∧ b = b0
[PROOFSTEP]
exact ⟨ha.antisymm' (ha' ab), hb.antisymm' (hb' ab)⟩
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Basic", "llama_tokens": 2163} |
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
a✝ n✝ : ℕ
x✝ : 0 ≤ a✝
⊢ n✝ ≤ id a✝ ↔ ↑n✝ ≤ a✝
[PROOFSTEP]
rw [Nat.cast_id]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
a✝ n✝ : ℕ
x✝ : 0 ≤ a✝
⊢ n✝ ≤ id a✝ ↔ n✝ ≤ a✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
n a : ℕ
⊢ id n ≤ a ↔ n ≤ ↑a
[PROOFSTEP]
rw [Nat.cast_id]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
n a : ℕ
⊢ id n ≤ a ↔ n ≤ a
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
⊢ a < ↑1 ↔ a < 1
[PROOFSTEP]
rw [Nat.cast_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
h : ⌊a⌋₊ < 1
⊢ a < 1
[PROOFSTEP]
exact_mod_cast lt_of_floor_lt h
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
⊢ a < ↑⌊a⌋₊ + 1
[PROOFSTEP]
simpa using lt_succ_floor a
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n✝ n a : ℕ
⊢ a ≤ ⌊↑n⌋₊ ↔ a ≤ n
[PROOFSTEP]
rw [le_floor_iff, Nat.cast_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n✝ n a : ℕ
⊢ 0 ≤ ↑n
[PROOFSTEP]
exact n.cast_nonneg
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ ⌊0⌋₊ = 0
[PROOFSTEP]
rw [← Nat.cast_zero, floor_coe]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ ⌊1⌋₊ = 1
[PROOFSTEP]
rw [← Nat.cast_one, floor_coe]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : a ≤ 0
⊢ a = 0 → ⌊a⌋₊ = 0
[PROOFSTEP]
rintro rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
n : ℕ
ha : 0 ≤ 0
⊢ ⌊0⌋₊ = 0
[PROOFSTEP]
exact floor_zero
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
h : a ≤ b
⊢ ⌊a⌋₊ ≤ ⌊b⌋₊
[PROOFSTEP]
obtain ha | ha := le_total a 0
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
h : a ≤ b
ha : a ≤ 0
⊢ ⌊a⌋₊ ≤ ⌊b⌋₊
[PROOFSTEP]
rw [floor_of_nonpos ha]
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
h : a ≤ b
ha : a ≤ 0
⊢ 0 ≤ ⌊b⌋₊
[PROOFSTEP]
exact Nat.zero_le _
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
h : a ≤ b
ha : 0 ≤ a
⊢ ⌊a⌋₊ ≤ ⌊b⌋₊
[PROOFSTEP]
exact le_floor ((floor_le ha).trans h)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
hn : n ≠ 0
⊢ n ≤ ⌊a⌋₊ ↔ ↑n ≤ a
[PROOFSTEP]
obtain ha | ha := le_total a 0
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
hn : n ≠ 0
ha : a ≤ 0
⊢ n ≤ ⌊a⌋₊ ↔ ↑n ≤ a
[PROOFSTEP]
rw [floor_of_nonpos ha]
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
hn : n ≠ 0
ha : a ≤ 0
⊢ n ≤ 0 ↔ ↑n ≤ a
[PROOFSTEP]
exact iff_of_false (Nat.pos_of_ne_zero hn).not_le (not_le_of_lt <| ha.trans_lt <| cast_pos.2 <| Nat.pos_of_ne_zero hn)
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
hn : n ≠ 0
ha : 0 ≤ a
⊢ n ≤ ⌊a⌋₊ ↔ ↑n ≤ a
[PROOFSTEP]
exact le_floor_iff ha
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
x : α
⊢ 1 ≤ ⌊x⌋₊ ↔ 1 ≤ x
[PROOFSTEP]
exact_mod_cast @le_floor_iff' α _ _ x 1 one_ne_zero
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ 0 < ⌊a⌋₊ ↔ 1 ≤ a
[PROOFSTEP]
rw [Nat.lt_iff_add_one_le, zero_add, le_floor_iff' Nat.one_ne_zero, cast_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
h : 0 < ⌊a⌋₊
ha : a ≤ 0
⊢ 0 < 0
[PROOFSTEP]
rwa [floor_of_nonpos ha] at h
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ ⌊a⌋₊ = 0 ↔ a < 1
[PROOFSTEP]
rw [← lt_one_iff, ← @cast_one α]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ ⌊a⌋₊ < 1 ↔ a < ↑1
[PROOFSTEP]
exact floor_lt' Nat.one_ne_zero
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
⊢ ⌊a⌋₊ = n ↔ ↑n ≤ a ∧ a < ↑n + 1
[PROOFSTEP]
rw [← le_floor_iff ha, ← Nat.cast_one, ← Nat.cast_add, ← floor_lt ha, Nat.lt_add_one_iff, le_antisymm_iff, and_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
hn : n ≠ 0
⊢ ⌊a⌋₊ = n ↔ ↑n ≤ a ∧ a < ↑n + 1
[PROOFSTEP]
rw [← le_floor_iff' hn, ← Nat.cast_one, ← Nat.cast_add, ← floor_lt' (Nat.add_one_ne_zero n), Nat.lt_add_one_iff,
le_antisymm_iff, and_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ n : ℕ
x : α
hx : x ∈ Ico (↑n) (↑n + 1)
⊢ ↑⌊x⌋₊ = ↑n
[PROOFSTEP]
exact_mod_cast floor_eq_on_Ico n x hx
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ n + 1 ≤ ⌈a⌉₊ ↔ ↑n < a
[PROOFSTEP]
rw [← Nat.lt_ceil, Nat.add_one_le_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ 1 ≤ ⌈a⌉₊ ↔ 0 < a
[PROOFSTEP]
rw [← zero_add 1, Nat.add_one_le_ceil_iff, Nat.cast_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
⊢ ⌈a⌉₊ ≤ ⌊a⌋₊ + 1
[PROOFSTEP]
rw [ceil_le, Nat.cast_add, Nat.cast_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
⊢ a ≤ ↑⌊a⌋₊ + 1
[PROOFSTEP]
exact (lt_floor_add_one a).le
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedSemiring α✝
inst✝² : FloorSemiring α✝
a✝ : α✝
n : ℕ
α : Type u_4
inst✝¹ : LinearOrderedRing α
inst✝ : FloorSemiring α
z : ℤ
a : ℕ
⊢ ⌈↑z⌉₊ ≤ a ↔ Int.toNat z ≤ a
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedSemiring α✝
inst✝² : FloorSemiring α✝
a✝ : α✝
n : ℕ
α : Type u_4
inst✝¹ : LinearOrderedRing α
inst✝ : FloorSemiring α
z : ℤ
a : ℕ
⊢ ↑z ≤ ↑a ↔ z ≤ ↑a
[PROOFSTEP]
norm_cast
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n✝ n a : ℕ
⊢ ⌈↑n⌉₊ ≤ a ↔ n ≤ a
[PROOFSTEP]
rw [ceil_le, cast_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ ⌈0⌉₊ = 0
[PROOFSTEP]
rw [← Nat.cast_zero, ceil_natCast]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ ⌈1⌉₊ = 1
[PROOFSTEP]
rw [← Nat.cast_one, ceil_natCast]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ ⌈a⌉₊ = 0 ↔ a ≤ 0
[PROOFSTEP]
rw [← le_zero_iff, ceil_le, Nat.cast_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ 0 < ⌈a⌉₊ ↔ 0 < a
[PROOFSTEP]
rw [lt_ceil, cast_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
⊢ ⌊a⌋₊ ≤ ⌈a⌉₊
[PROOFSTEP]
obtain ha | ha := le_total a 0
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
ha : a ≤ 0
⊢ ⌊a⌋₊ ≤ ⌈a⌉₊
[PROOFSTEP]
rw [floor_of_nonpos ha]
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
ha : a ≤ 0
⊢ 0 ≤ ⌈a⌉₊
[PROOFSTEP]
exact Nat.zero_le _
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
ha : 0 ≤ a
⊢ ⌊a⌋₊ ≤ ⌈a⌉₊
[PROOFSTEP]
exact cast_le.1 ((floor_le ha).trans <| le_ceil _)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
h : a < b
h' : 0 < b
⊢ ⌊a⌋₊ < ⌈b⌉₊
[PROOFSTEP]
rcases le_or_lt 0 a with (ha | ha)
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
h : a < b
h' : 0 < b
ha : 0 ≤ a
⊢ ⌊a⌋₊ < ⌈b⌉₊
[PROOFSTEP]
rw [floor_lt ha]
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
h : a < b
h' : 0 < b
ha : 0 ≤ a
⊢ a < ↑⌈b⌉₊
[PROOFSTEP]
exact h.trans_le (le_ceil _)
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
h : a < b
h' : 0 < b
ha : a < 0
⊢ ⌊a⌋₊ < ⌈b⌉₊
[PROOFSTEP]
rwa [floor_of_nonpos ha.le, lt_ceil, Nat.cast_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
hn : n ≠ 0
⊢ ⌈a⌉₊ = n ↔ ↑(n - 1) < a ∧ a ≤ ↑n
[PROOFSTEP]
rw [← ceil_le, ← not_le, ← ceil_le, not_le, tsub_lt_iff_right (Nat.add_one_le_iff.2 (pos_iff_ne_zero.2 hn)),
Nat.lt_add_one_iff, le_antisymm_iff, and_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
ha : 0 ≤ a
⊢ Nat.cast ⁻¹' Ioo a b = Ioo ⌊a⌋₊ ⌈b⌉₊
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
ha : 0 ≤ a
x✝ : ℕ
⊢ x✝ ∈ Nat.cast ⁻¹' Ioo a b ↔ x✝ ∈ Ioo ⌊a⌋₊ ⌈b⌉₊
[PROOFSTEP]
simp [floor_lt, lt_ceil, ha]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
⊢ Nat.cast ⁻¹' Ico a b = Ico ⌈a⌉₊ ⌈b⌉₊
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
x✝ : ℕ
⊢ x✝ ∈ Nat.cast ⁻¹' Ico a b ↔ x✝ ∈ Ico ⌈a⌉₊ ⌈b⌉₊
[PROOFSTEP]
simp [ceil_le, lt_ceil]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
ha : 0 ≤ a
hb : 0 ≤ b
⊢ Nat.cast ⁻¹' Ioc a b = Ioc ⌊a⌋₊ ⌊b⌋₊
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
ha : 0 ≤ a
hb : 0 ≤ b
x✝ : ℕ
⊢ x✝ ∈ Nat.cast ⁻¹' Ioc a b ↔ x✝ ∈ Ioc ⌊a⌋₊ ⌊b⌋₊
[PROOFSTEP]
simp [floor_lt, le_floor_iff, hb, ha]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
hb : 0 ≤ b
⊢ Nat.cast ⁻¹' Icc a b = Icc ⌈a⌉₊ ⌊b⌋₊
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
hb : 0 ≤ b
x✝ : ℕ
⊢ x✝ ∈ Nat.cast ⁻¹' Icc a b ↔ x✝ ∈ Icc ⌈a⌉₊ ⌊b⌋₊
[PROOFSTEP]
simp [ceil_le, hb, le_floor_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
ha : 0 ≤ a
⊢ Nat.cast ⁻¹' Ioi a = Ioi ⌊a⌋₊
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
ha : 0 ≤ a
x✝ : ℕ
⊢ x✝ ∈ Nat.cast ⁻¹' Ioi a ↔ x✝ ∈ Ioi ⌊a⌋₊
[PROOFSTEP]
simp [floor_lt, ha]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
⊢ Nat.cast ⁻¹' Ici a = Ici ⌈a⌉₊
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
x✝ : ℕ
⊢ x✝ ∈ Nat.cast ⁻¹' Ici a ↔ x✝ ∈ Ici ⌈a⌉₊
[PROOFSTEP]
simp [ceil_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
⊢ Nat.cast ⁻¹' Iio a = Iio ⌈a⌉₊
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
x✝ : ℕ
⊢ x✝ ∈ Nat.cast ⁻¹' Iio a ↔ x✝ ∈ Iio ⌈a⌉₊
[PROOFSTEP]
simp [lt_ceil]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
ha : 0 ≤ a
⊢ Nat.cast ⁻¹' Iic a = Iic ⌊a⌋₊
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a : α
ha : 0 ≤ a
x✝ : ℕ
⊢ x✝ ∈ Nat.cast ⁻¹' Iic a ↔ x✝ ∈ Iic ⌊a⌋₊
[PROOFSTEP]
simp [le_floor_iff, ha]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n b : ℕ
⊢ b ≤ ⌊a + ↑n⌋₊ ↔ b ≤ ⌊a⌋₊ + n
[PROOFSTEP]
rw [le_floor_iff (add_nonneg ha n.cast_nonneg)]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n b : ℕ
⊢ ↑b ≤ a + ↑n ↔ b ≤ ⌊a⌋₊ + n
[PROOFSTEP]
obtain hb | hb := le_total n b
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n b : ℕ
hb : n ≤ b
⊢ ↑b ≤ a + ↑n ↔ b ≤ ⌊a⌋₊ + n
[PROOFSTEP]
obtain ⟨d, rfl⟩ := exists_add_of_le hb
[GOAL]
case inl.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n d : ℕ
hb : n ≤ n + d
⊢ ↑(n + d) ≤ a + ↑n ↔ n + d ≤ ⌊a⌋₊ + n
[PROOFSTEP]
rw [Nat.cast_add, add_comm n, add_comm (n : α), add_le_add_iff_right, add_le_add_iff_right, le_floor_iff ha]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n b : ℕ
hb : b ≤ n
⊢ ↑b ≤ a + ↑n ↔ b ≤ ⌊a⌋₊ + n
[PROOFSTEP]
obtain ⟨d, rfl⟩ := exists_add_of_le hb
[GOAL]
case inr.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
b d : ℕ
hb : b ≤ b + d
⊢ ↑b ≤ a + ↑(b + d) ↔ b ≤ ⌊a⌋₊ + (b + d)
[PROOFSTEP]
rw [Nat.cast_add, add_left_comm _ b, add_left_comm _ (b : α)]
[GOAL]
case inr.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
b d : ℕ
hb : b ≤ b + d
⊢ ↑b ≤ ↑b + (a + ↑d) ↔ b ≤ b + (⌊a⌋₊ + d)
[PROOFSTEP]
refine' iff_of_true _ le_self_add
[GOAL]
case inr.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
b d : ℕ
hb : b ≤ b + d
⊢ ↑b ≤ ↑b + (a + ↑d)
[PROOFSTEP]
exact le_add_of_nonneg_right <| ha.trans <| le_add_of_nonneg_right d.cast_nonneg
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
⊢ ⌊a + 1⌋₊ = ⌊a⌋₊ + 1
[PROOFSTEP]
rw [← cast_one, floor_add_nat ha 1]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : FloorSemiring α
a✝ : α
n✝ : ℕ
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ExistsAddOfLE α
a : α
n : ℕ
⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n
[PROOFSTEP]
obtain ha | ha := le_total a 0
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : FloorSemiring α
a✝ : α
n✝ : ℕ
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ExistsAddOfLE α
a : α
n : ℕ
ha : a ≤ 0
⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n
[PROOFSTEP]
rw [floor_of_nonpos ha, floor_of_nonpos (tsub_nonpos_of_le (ha.trans n.cast_nonneg)), zero_tsub]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : FloorSemiring α
a✝ : α
n✝ : ℕ
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ExistsAddOfLE α
a : α
n : ℕ
ha : 0 ≤ a
⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n
[PROOFSTEP]
cases' le_total a n with h h
[GOAL]
case inr.inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : FloorSemiring α
a✝ : α
n✝ : ℕ
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ExistsAddOfLE α
a : α
n : ℕ
ha : 0 ≤ a
h : a ≤ ↑n
⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n
[PROOFSTEP]
rw [floor_of_nonpos (tsub_nonpos_of_le h), eq_comm, tsub_eq_zero_iff_le]
[GOAL]
case inr.inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : FloorSemiring α
a✝ : α
n✝ : ℕ
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ExistsAddOfLE α
a : α
n : ℕ
ha : 0 ≤ a
h : a ≤ ↑n
⊢ ⌊a⌋₊ ≤ n
[PROOFSTEP]
exact Nat.cast_le.1 ((Nat.floor_le ha).trans h)
[GOAL]
case inr.inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : FloorSemiring α
a✝ : α
n✝ : ℕ
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ExistsAddOfLE α
a : α
n : ℕ
ha : 0 ≤ a
h : ↑n ≤ a
⊢ ⌊a - ↑n⌋₊ = ⌊a⌋₊ - n
[PROOFSTEP]
rw [eq_tsub_iff_add_eq_of_le (le_floor h), ← floor_add_nat _, tsub_add_cancel_of_le h]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : FloorSemiring α
a✝ : α
n✝ : ℕ
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ExistsAddOfLE α
a : α
n : ℕ
ha : 0 ≤ a
h : ↑n ≤ a
⊢ 0 ≤ a - ↑n
[PROOFSTEP]
exact le_tsub_of_add_le_left ((add_zero _).trans_le h)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : FloorSemiring α
a✝ : α
n : ℕ
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ExistsAddOfLE α
a : α
⊢ ⌊a - 1⌋₊ = ⌊a⌋₊ - 1
[PROOFSTEP]
exact_mod_cast floor_sub_nat a 1
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n b : ℕ
⊢ ⌈a + ↑n⌉₊ ≤ b ↔ ⌈a⌉₊ + n ≤ b
[PROOFSTEP]
rw [← not_lt, ← not_lt, not_iff_not, lt_ceil]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n b : ℕ
⊢ ↑b < a + ↑n ↔ b < ⌈a⌉₊ + n
[PROOFSTEP]
obtain hb | hb := le_or_lt n b
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n b : ℕ
hb : n ≤ b
⊢ ↑b < a + ↑n ↔ b < ⌈a⌉₊ + n
[PROOFSTEP]
obtain ⟨d, rfl⟩ := exists_add_of_le hb
[GOAL]
case inl.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n d : ℕ
hb : n ≤ n + d
⊢ ↑(n + d) < a + ↑n ↔ n + d < ⌈a⌉₊ + n
[PROOFSTEP]
rw [Nat.cast_add, add_comm n, add_comm (n : α), add_lt_add_iff_right, add_lt_add_iff_right, lt_ceil]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n✝ : ℕ
ha : 0 ≤ a
n b : ℕ
hb : b < n
⊢ ↑b < a + ↑n ↔ b < ⌈a⌉₊ + n
[PROOFSTEP]
exact iff_of_true (lt_add_of_nonneg_of_lt ha <| cast_lt.2 hb) (lt_add_left _ _ _ hb)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
⊢ ⌈a + 1⌉₊ = ⌈a⌉₊ + 1
[PROOFSTEP]
rw [cast_one.symm, ceil_add_nat ha 1]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
⊢ ⌈a + b⌉₊ ≤ ⌈a⌉₊ + ⌈b⌉₊
[PROOFSTEP]
rw [ceil_le, Nat.cast_add]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemiring α
inst✝ : FloorSemiring α
a✝ : α
n : ℕ
a b : α
⊢ a + b ≤ ↑⌈a⌉₊ + ↑⌈b⌉₊
[PROOFSTEP]
exact _root_.add_le_add (le_ceil _) (le_ceil _)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n
[PROOFSTEP]
cases' le_total a 0 with ha ha
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : a ≤ 0
⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n
[PROOFSTEP]
rw [floor_of_nonpos, floor_of_nonpos ha]
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : a ≤ 0
⊢ 0 = 0 / n
[PROOFSTEP]
simp
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : a ≤ 0
⊢ a / ↑n ≤ 0
[PROOFSTEP]
apply div_nonpos_of_nonpos_of_nonneg ha n.cast_nonneg
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n
[PROOFSTEP]
obtain rfl | hn := n.eq_zero_or_pos
[GOAL]
case inr.inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
ha : 0 ≤ a
⊢ ⌊a / ↑0⌋₊ = ⌊a⌋₊ / 0
[PROOFSTEP]
rw [cast_zero, div_zero, Nat.div_zero, floor_zero]
[GOAL]
case inr.inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
hn : n > 0
⊢ ⌊a / ↑n⌋₊ = ⌊a⌋₊ / n
[PROOFSTEP]
refine' (floor_eq_iff _).2 _
[GOAL]
case inr.inr.refine'_1
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
hn : n > 0
⊢ 0 ≤ a / ↑n
[PROOFSTEP]
exact div_nonneg ha n.cast_nonneg
[GOAL]
case inr.inr.refine'_2
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
hn : n > 0
⊢ ↑(⌊a⌋₊ / n) ≤ a / ↑n ∧ a / ↑n < ↑(⌊a⌋₊ / n) + 1
[PROOFSTEP]
constructor
[GOAL]
case inr.inr.refine'_2.left
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
hn : n > 0
⊢ ↑(⌊a⌋₊ / n) ≤ a / ↑n
[PROOFSTEP]
exact cast_div_le.trans (div_le_div_of_le_of_nonneg (floor_le ha) n.cast_nonneg)
[GOAL]
case inr.inr.refine'_2.right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
hn : n > 0
⊢ a / ↑n < ↑(⌊a⌋₊ / n) + 1
[PROOFSTEP]
rw [div_lt_iff, add_mul, one_mul, ← cast_mul, ← cast_add, ← floor_lt ha]
[GOAL]
case inr.inr.refine'_2.right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
hn : n > 0
⊢ ⌊a⌋₊ < ⌊a⌋₊ / n * n + n
[PROOFSTEP]
exact lt_div_mul_add hn
[GOAL]
case inr.inr.refine'_2.right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
a : α
n : ℕ
ha : 0 ≤ a
hn : n > 0
⊢ 0 < ↑n
[PROOFSTEP]
exact cast_pos.2 hn
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
m n : ℕ
⊢ ⌊↑m / ↑n⌋₊ = m / n
[PROOFSTEP]
convert floor_div_nat (m : α) n
[GOAL]
case h.e'_3.h.e'_5
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedSemifield α
inst✝ : FloorSemiring α
m n : ℕ
⊢ m = ⌊↑m⌋₊
[PROOFSTEP]
rw [m.floor_coe]
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
⊢ Subsingleton (FloorSemiring α)
[PROOFSTEP]
refine' ⟨fun H₁ H₂ => _⟩
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
⊢ H₁ = H₂
[PROOFSTEP]
have : H₁.ceil = H₂.ceil := funext fun a => (H₁.gc_ceil.l_unique H₂.gc_ceil) fun n => rfl
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
⊢ H₁ = H₂
[PROOFSTEP]
have : H₁.floor = H₂.floor := by
ext a
cases' lt_or_le a 0 with h h
· rw [H₁.floor_of_neg, H₂.floor_of_neg] <;> exact h
· refine' eq_of_forall_le_iff fun n => _
rw [H₁.gc_floor, H₂.gc_floor] <;> exact h
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
⊢ FloorSemiring.floor = FloorSemiring.floor
[PROOFSTEP]
ext a
[GOAL]
case h
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
a : α
⊢ FloorSemiring.floor a = FloorSemiring.floor a
[PROOFSTEP]
cases' lt_or_le a 0 with h h
[GOAL]
case h.inl
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
a : α
h : a < 0
⊢ FloorSemiring.floor a = FloorSemiring.floor a
[PROOFSTEP]
rw [H₁.floor_of_neg, H₂.floor_of_neg]
[GOAL]
case h.inl
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
a : α
h : a < 0
⊢ a < 0
[PROOFSTEP]
exact h
[GOAL]
case h.inl
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
a : α
h : a < 0
⊢ a < 0
[PROOFSTEP]
exact h
[GOAL]
case h.inr
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
a : α
h : 0 ≤ a
⊢ FloorSemiring.floor a = FloorSemiring.floor a
[PROOFSTEP]
refine' eq_of_forall_le_iff fun n => _
[GOAL]
case h.inr
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
a : α
h : 0 ≤ a
n : ℕ
⊢ n ≤ FloorSemiring.floor a ↔ n ≤ FloorSemiring.floor a
[PROOFSTEP]
rw [H₁.gc_floor, H₂.gc_floor]
[GOAL]
case h.inr
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
a : α
h : 0 ≤ a
n : ℕ
⊢ 0 ≤ a
[PROOFSTEP]
exact h
[GOAL]
case h.inr
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this : FloorSemiring.ceil = FloorSemiring.ceil
a : α
h : 0 ≤ a
n : ℕ
⊢ 0 ≤ a
[PROOFSTEP]
exact h
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₁ H₂ : FloorSemiring α
this✝ : FloorSemiring.ceil = FloorSemiring.ceil
this : FloorSemiring.floor = FloorSemiring.floor
⊢ H₁ = H₂
[PROOFSTEP]
cases H₁
[GOAL]
case mk
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
H₂ : FloorSemiring α
floor✝ ceil✝ : α → ℕ
floor_of_neg✝ : ∀ {a : α}, a < 0 → floor✝ a = 0
gc_floor✝ : ∀ {a : α} {n : ℕ}, 0 ≤ a → (n ≤ floor✝ a ↔ ↑n ≤ a)
gc_ceil✝ : GaloisConnection ceil✝ Nat.cast
this✝ : FloorSemiring.ceil = FloorSemiring.ceil
this : FloorSemiring.floor = FloorSemiring.floor
⊢ { floor := floor✝, ceil := ceil✝, floor_of_neg := floor_of_neg✝, gc_floor := gc_floor✝, gc_ceil := gc_ceil✝ } = H₂
[PROOFSTEP]
cases H₂
[GOAL]
case mk.mk
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedSemiring α
floor✝¹ ceil✝¹ : α → ℕ
floor_of_neg✝¹ : ∀ {a : α}, a < 0 → floor✝¹ a = 0
gc_floor✝¹ : ∀ {a : α} {n : ℕ}, 0 ≤ a → (n ≤ floor✝¹ a ↔ ↑n ≤ a)
gc_ceil✝¹ : GaloisConnection ceil✝¹ Nat.cast
floor✝ ceil✝ : α → ℕ
floor_of_neg✝ : ∀ {a : α}, a < 0 → floor✝ a = 0
gc_floor✝ : ∀ {a : α} {n : ℕ}, 0 ≤ a → (n ≤ floor✝ a ↔ ↑n ≤ a)
gc_ceil✝ : GaloisConnection ceil✝ Nat.cast
this✝ : FloorSemiring.ceil = FloorSemiring.ceil
this : FloorSemiring.floor = FloorSemiring.floor
⊢ { floor := floor✝¹, ceil := ceil✝¹, floor_of_neg := floor_of_neg✝¹, gc_floor := gc_floor✝¹, gc_ceil := gc_ceil✝¹ } =
{ floor := floor✝, ceil := ceil✝, floor_of_neg := floor_of_neg✝, gc_floor := gc_floor✝, gc_ceil := gc_ceil✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
a b : ℤ
⊢ ↑a ≤ b ↔ a ≤ id b
[PROOFSTEP]
rw [Int.cast_id]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
a b : ℤ
⊢ a ≤ b ↔ a ≤ id b
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
a b : ℤ
⊢ id a ≤ b ↔ a ≤ ↑b
[PROOFSTEP]
rw [Int.cast_id]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
a b : ℤ
⊢ id a ≤ b ↔ a ≤ b
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type ?u.109134
inst✝ : LinearOrderedRing α
floor : α → ℤ
gc_coe_floor : GaloisConnection Int.cast floor
a : α
z : ℤ
⊢ (fun a => -floor (-a)) a ≤ z ↔ a ≤ ↑z
[PROOFSTEP]
rw [neg_le, ← gc_coe_floor, Int.cast_neg, neg_le_neg_iff]
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type ?u.110495
inst✝ : LinearOrderedRing α
ceil : α → ℤ
gc_ceil_coe : GaloisConnection ceil Int.cast
a : ℤ
z : α
⊢ ↑a ≤ z ↔ a ≤ (fun a => -ceil (-a)) z
[PROOFSTEP]
rw [le_neg, gc_ceil_coe, Int.cast_neg, neg_le_neg_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
x : ℤ
⊢ fract x = OfNat.ofNat 0 x
[PROOFSTEP]
simp [fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ 0 ≤ ⌊a⌋ ↔ 0 ≤ a
[PROOFSTEP]
rw [le_floor, Int.cast_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌊a⌋ ≤ z - 1 ↔ a < ↑z
[PROOFSTEP]
rw [← floor_lt, le_sub_one_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌊a⌋ ≤ -1 ↔ a < 0
[PROOFSTEP]
rw [← zero_sub (1 : ℤ), floor_le_sub_one_iff, cast_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
ha : a ≤ 0
⊢ ⌊a⌋ ≤ 0
[PROOFSTEP]
rw [← @cast_le α, Int.cast_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
ha : a ≤ 0
⊢ ↑⌊a⌋ ≤ 0
[PROOFSTEP]
exact (floor_le a).trans ha
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ a < ↑⌊a⌋ + 1
[PROOFSTEP]
simpa only [Int.succ, Int.cast_add, Int.cast_one] using lt_succ_floor a
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ : α
z a : ℤ
⊢ a ≤ ⌊↑z⌋ ↔ a ≤ z
[PROOFSTEP]
rw [le_floor, Int.cast_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ : α
n : ℕ
a : ℤ
⊢ a ≤ ⌊↑n⌋ ↔ a ≤ ↑n
[PROOFSTEP]
rw [le_floor, ← cast_ofNat, cast_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌊0⌋ = 0
[PROOFSTEP]
rw [← cast_zero, floor_intCast]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌊1⌋ = 1
[PROOFSTEP]
rw [← cast_one, floor_intCast]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ 0 < ⌊a⌋ ↔ 1 ≤ a
[PROOFSTEP]
rw [Int.lt_iff_add_one_le, zero_add, le_floor, cast_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝¹ a✝ : α
z a : ℤ
⊢ a ≤ ⌊a✝ + ↑z⌋ ↔ a ≤ ⌊a✝⌋ + z
[PROOFSTEP]
rw [le_floor, ← sub_le_iff_le_add, ← sub_le_iff_le_add, le_floor, Int.cast_sub]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ ⌊a + 1⌋ = ⌊a⌋ + 1
[PROOFSTEP]
rw [← cast_one, floor_add_int]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ⌊a⌋ + ⌊b⌋ ≤ ⌊a + b⌋
[PROOFSTEP]
rw [le_floor, Int.cast_add]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ↑⌊a⌋ + ↑⌊b⌋ ≤ a + b
[PROOFSTEP]
exact add_le_add (floor_le _) (floor_le _)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ⌊a + b⌋ - 1 ≤ ⌊a⌋ + ⌊b⌋
[PROOFSTEP]
rw [← sub_le_iff_le_add, le_floor, Int.cast_sub, sub_le_comm, Int.cast_sub, Int.cast_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ↑⌊a + b⌋ - 1 - a ≤ ↑⌊b⌋
[PROOFSTEP]
refine' le_trans _ (sub_one_lt_floor _).le
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ↑⌊a + b⌋ - 1 - a ≤ b - 1
[PROOFSTEP]
rw [sub_le_iff_le_add', ← add_sub_assoc, sub_le_sub_iff_right]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ↑⌊a + b⌋ ≤ a + b
[PROOFSTEP]
exact floor_le _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ : α
z : ℤ
a : α
⊢ ⌊↑z + a⌋ = z + ⌊a⌋
[PROOFSTEP]
simpa only [add_comm] using floor_add_int a z
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
n : ℕ
⊢ ⌊a + ↑n⌋ = ⌊a⌋ + ↑n
[PROOFSTEP]
rw [← Int.cast_ofNat, floor_add_int]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ : α
n : ℕ
a : α
⊢ ⌊↑n + a⌋ = ↑n + ⌊a⌋
[PROOFSTEP]
rw [← Int.cast_ofNat, floor_int_add]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a : α
z : ℤ
⊢ ⌊a - ↑z⌋ = ⌊a + ↑(-z)⌋
[PROOFSTEP]
rw [Int.cast_neg, sub_eq_add_neg]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
n : ℕ
⊢ ⌊a - ↑n⌋ = ⌊a⌋ - ↑n
[PROOFSTEP]
rw [← Int.cast_ofNat, floor_sub_int]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ ⌊a - 1⌋ = ⌊a⌋ - 1
[PROOFSTEP]
exact_mod_cast floor_sub_nat a 1
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α✝
inst✝² : FloorRing α✝
z : ℤ
a✝ : α✝
α : Type u_4
inst✝¹ : LinearOrderedCommRing α
inst✝ : FloorRing α
a b : α
h : ⌊a⌋ = ⌊b⌋
⊢ |a - b| < 1
[PROOFSTEP]
have : a < ⌊a⌋ + 1 := lt_floor_add_one a
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α✝
inst✝² : FloorRing α✝
z : ℤ
a✝ : α✝
α : Type u_4
inst✝¹ : LinearOrderedCommRing α
inst✝ : FloorRing α
a b : α
h : ⌊a⌋ = ⌊b⌋
this : a < ↑⌊a⌋ + 1
⊢ |a - b| < 1
[PROOFSTEP]
have : b < ⌊b⌋ + 1 := lt_floor_add_one b
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α✝
inst✝² : FloorRing α✝
z : ℤ
a✝ : α✝
α : Type u_4
inst✝¹ : LinearOrderedCommRing α
inst✝ : FloorRing α
a b : α
h : ⌊a⌋ = ⌊b⌋
this✝ : a < ↑⌊a⌋ + 1
this : b < ↑⌊b⌋ + 1
⊢ |a - b| < 1
[PROOFSTEP]
have : (⌊a⌋ : α) = ⌊b⌋ := Int.cast_inj.2 h
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α✝
inst✝² : FloorRing α✝
z : ℤ
a✝ : α✝
α : Type u_4
inst✝¹ : LinearOrderedCommRing α
inst✝ : FloorRing α
a b : α
h : ⌊a⌋ = ⌊b⌋
this✝¹ : a < ↑⌊a⌋ + 1
this✝ : b < ↑⌊b⌋ + 1
this : ↑⌊a⌋ = ↑⌊b⌋
⊢ |a - b| < 1
[PROOFSTEP]
have : (⌊a⌋ : α) ≤ a := floor_le a
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α✝
inst✝² : FloorRing α✝
z : ℤ
a✝ : α✝
α : Type u_4
inst✝¹ : LinearOrderedCommRing α
inst✝ : FloorRing α
a b : α
h : ⌊a⌋ = ⌊b⌋
this✝² : a < ↑⌊a⌋ + 1
this✝¹ : b < ↑⌊b⌋ + 1
this✝ : ↑⌊a⌋ = ↑⌊b⌋
this : ↑⌊a⌋ ≤ a
⊢ |a - b| < 1
[PROOFSTEP]
have : (⌊b⌋ : α) ≤ b := floor_le b
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α✝
inst✝² : FloorRing α✝
z : ℤ
a✝ : α✝
α : Type u_4
inst✝¹ : LinearOrderedCommRing α
inst✝ : FloorRing α
a b : α
h : ⌊a⌋ = ⌊b⌋
this✝³ : a < ↑⌊a⌋ + 1
this✝² : b < ↑⌊b⌋ + 1
this✝¹ : ↑⌊a⌋ = ↑⌊b⌋
this✝ : ↑⌊a⌋ ≤ a
this : ↑⌊b⌋ ≤ b
⊢ |a - b| < 1
[PROOFSTEP]
exact abs_sub_lt_iff.2 ⟨by linarith, by linarith⟩
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α✝
inst✝² : FloorRing α✝
z : ℤ
a✝ : α✝
α : Type u_4
inst✝¹ : LinearOrderedCommRing α
inst✝ : FloorRing α
a b : α
h : ⌊a⌋ = ⌊b⌋
this✝³ : a < ↑⌊a⌋ + 1
this✝² : b < ↑⌊b⌋ + 1
this✝¹ : ↑⌊a⌋ = ↑⌊b⌋
this✝ : ↑⌊a⌋ ≤ a
this : ↑⌊b⌋ ≤ b
⊢ a - b < 1
[PROOFSTEP]
linarith
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α✝
inst✝² : FloorRing α✝
z : ℤ
a✝ : α✝
α : Type u_4
inst✝¹ : LinearOrderedCommRing α
inst✝ : FloorRing α
a b : α
h : ⌊a⌋ = ⌊b⌋
this✝³ : a < ↑⌊a⌋ + 1
this✝² : b < ↑⌊b⌋ + 1
this✝¹ : ↑⌊a⌋ = ↑⌊b⌋
this✝ : ↑⌊a⌋ ≤ a
this : ↑⌊b⌋ ≤ b
⊢ b - a < 1
[PROOFSTEP]
linarith
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌊a⌋ = z ↔ ↑z ≤ a ∧ a < ↑z + 1
[PROOFSTEP]
rw [le_antisymm_iff, le_floor, ← Int.lt_add_one_iff, floor_lt, Int.cast_add, Int.cast_one, and_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌊a⌋ = 0 ↔ a ∈ Ico 0 1
[PROOFSTEP]
simp [floor_eq_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
m : ℤ
⊢ fract (a + ↑m) = fract a
[PROOFSTEP]
rw [fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
m : ℤ
⊢ a + ↑m - ↑⌊a + ↑m⌋ = fract a
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
m : ℕ
⊢ fract (a + ↑m) = fract a
[PROOFSTEP]
rw [fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
m : ℕ
⊢ a + ↑m - ↑⌊a + ↑m⌋ = fract a
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ fract (a + 1) = fract a
[PROOFSTEP]
exact_mod_cast fract_add_nat a 1
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ : α
m : ℤ
a : α
⊢ fract (↑m + a) = fract a
[PROOFSTEP]
rw [add_comm, fract_add_int]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ : α
n : ℕ
a : α
⊢ fract (↑n + a) = fract a
[PROOFSTEP]
rw [add_comm, fract_add_nat]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ fract (1 + a) = fract a
[PROOFSTEP]
exact_mod_cast fract_nat_add 1 a
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
m : ℤ
⊢ fract (a - ↑m) = fract a
[PROOFSTEP]
rw [fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
m : ℤ
⊢ a - ↑m - ↑⌊a - ↑m⌋ = fract a
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
n : ℕ
⊢ fract (a - ↑n) = fract a
[PROOFSTEP]
rw [fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
n : ℕ
⊢ a - ↑n - ↑⌊a - ↑n⌋ = fract a
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ fract (a - 1) = fract a
[PROOFSTEP]
exact_mod_cast fract_sub_nat a 1
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ fract (a + b) ≤ fract a + fract b
[PROOFSTEP]
rw [fract, fract, fract, sub_add_sub_comm, sub_le_sub_iff_left, ← Int.cast_add, Int.cast_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ⌊a⌋ + ⌊b⌋ ≤ ⌊a + b⌋
[PROOFSTEP]
exact le_floor_add _ _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ fract a + fract b ≤ fract (a + b) + 1
[PROOFSTEP]
rw [fract, fract, fract, sub_add_sub_comm, sub_add, sub_le_sub_iff_left]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ↑⌊a + b⌋ - 1 ≤ ↑⌊a⌋ + ↑⌊b⌋
[PROOFSTEP]
exact_mod_cast le_floor_add_floor a b
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ fract 0 = 0
[PROOFSTEP]
rw [fract, floor_zero, cast_zero, sub_self]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ fract 1 = 0
[PROOFSTEP]
simp [fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a : α
z : ℤ
⊢ fract ↑z = 0
[PROOFSTEP]
unfold fract
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a : α
z : ℤ
⊢ ↑z - ↑⌊↑z⌋ = 0
[PROOFSTEP]
rw [floor_intCast]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a : α
z : ℤ
⊢ ↑z - ↑z = 0
[PROOFSTEP]
exact sub_self _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
n : ℕ
⊢ fract ↑n = 0
[PROOFSTEP]
simp [fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ ⌊fract a⌋ = 0
[PROOFSTEP]
rw [floor_eq_iff, Int.cast_zero, zero_add]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ 0 ≤ fract a ∧ fract a < 1
[PROOFSTEP]
exact ⟨fract_nonneg _, fract_lt_one _⟩
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
h : fract a = b
⊢ 0 ≤ b ∧ b < 1 ∧ ∃ z, a - b = ↑z
[PROOFSTEP]
rw [← h]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
h : fract a = b
⊢ 0 ≤ fract a ∧ fract a < 1 ∧ ∃ z, a - fract a = ↑z
[PROOFSTEP]
exact ⟨fract_nonneg _, fract_lt_one _, ⟨⌊a⌋, sub_sub_cancel _ _⟩⟩
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ (0 ≤ b ∧ b < 1 ∧ ∃ z, a - b = ↑z) → fract a = b
[PROOFSTEP]
rintro ⟨h₀, h₁, z, hz⟩
[GOAL]
case intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a b : α
h₀ : 0 ≤ b
h₁ : b < 1
z : ℤ
hz : a - b = ↑z
⊢ fract a = b
[PROOFSTEP]
rw [← self_sub_floor, eq_comm, eq_sub_iff_add_eq, add_comm, ← eq_sub_iff_add_eq, hz, Int.cast_inj, floor_eq_iff, ← hz]
[GOAL]
case intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a b : α
h₀ : 0 ≤ b
h₁ : b < 1
z : ℤ
hz : a - b = ↑z
⊢ a - b ≤ a ∧ a < a - b + 1
[PROOFSTEP]
constructor
[GOAL]
case intro.intro.intro.left
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a b : α
h₀ : 0 ≤ b
h₁ : b < 1
z : ℤ
hz : a - b = ↑z
⊢ a - b ≤ a
[PROOFSTEP]
simpa [sub_eq_add_neg, add_assoc]
[GOAL]
case intro.intro.intro.right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a b : α
h₀ : 0 ≤ b
h₁ : b < 1
z : ℤ
hz : a - b = ↑z
⊢ a < a - b + 1
[PROOFSTEP]
simpa [sub_eq_add_neg, add_assoc]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
h : fract a = fract b
⊢ a - b = ↑(⌊a⌋ - ⌊b⌋)
[PROOFSTEP]
unfold fract at h
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
h : a - ↑⌊a⌋ = b - ↑⌊b⌋
⊢ a - b = ↑(⌊a⌋ - ⌊b⌋)
[PROOFSTEP]
rw [Int.cast_sub, sub_eq_sub_iff_sub_eq_sub.1 h]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ (∃ z, a - b = ↑z) → fract a = fract b
[PROOFSTEP]
rintro ⟨z, hz⟩
[GOAL]
case intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a b : α
z : ℤ
hz : a - b = ↑z
⊢ fract a = fract b
[PROOFSTEP]
refine' fract_eq_iff.2 ⟨fract_nonneg _, fract_lt_one _, z + ⌊b⌋, _⟩
[GOAL]
case intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a b : α
z : ℤ
hz : a - b = ↑z
⊢ a - fract b = ↑(z + ⌊b⌋)
[PROOFSTEP]
rw [eq_add_of_sub_eq hz, add_comm, Int.cast_add]
[GOAL]
case intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a b : α
z : ℤ
hz : a - b = ↑z
⊢ b + ↑z - fract b = ↑z + ↑⌊b⌋
[PROOFSTEP]
exact add_sub_sub_cancel _ _ _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ a - a = ↑0
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ fract (a + b) - fract a - fract b = ↑(⌊a⌋ + ⌊b⌋ - ⌊a + b⌋)
[PROOFSTEP]
unfold fract
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ a + b - ↑⌊a + b⌋ - (a - ↑⌊a⌋) - (b - ↑⌊b⌋) = ↑(⌊a⌋ + ⌊b⌋ - ⌊a + b⌋)
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ a + b + -↑⌊a + b⌋ + (↑⌊a⌋ + -a) + (↑⌊b⌋ + -b) = ↑⌊a⌋ + ↑⌊b⌋ + -↑⌊a + b⌋
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ a + b + -↑⌊a + b⌋ + (↑⌊a⌋ + -a) + (↑⌊b⌋ + -b) = ↑⌊a⌋ + ↑⌊b⌋ + -↑⌊a + b⌋
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
⊢ fract (-x) = 1 - fract x
[PROOFSTEP]
rw [fract_eq_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
⊢ 0 ≤ 1 - fract x ∧ 1 - fract x < 1 ∧ ∃ z, -x - (1 - fract x) = ↑z
[PROOFSTEP]
constructor
[GOAL]
case left
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
⊢ 0 ≤ 1 - fract x
[PROOFSTEP]
rw [le_sub_iff_add_le, zero_add]
[GOAL]
case left
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
⊢ fract x ≤ 1
[PROOFSTEP]
exact (fract_lt_one x).le
[GOAL]
case right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
⊢ 1 - fract x < 1 ∧ ∃ z, -x - (1 - fract x) = ↑z
[PROOFSTEP]
refine' ⟨sub_lt_self _ (lt_of_le_of_ne' (fract_nonneg x) hx), -⌊x⌋ - 1, _⟩
[GOAL]
case right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
⊢ -x - (1 - fract x) = ↑(-⌊x⌋ - 1)
[PROOFSTEP]
simp only [sub_sub_eq_add_sub, cast_sub, cast_neg, cast_one, sub_left_inj]
[GOAL]
case right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
⊢ -x + fract x = -↑⌊x⌋
[PROOFSTEP]
conv in -x => rw [← floor_add_fract x]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
| -x
[PROOFSTEP]
rw [← floor_add_fract x]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
| -x
[PROOFSTEP]
rw [← floor_add_fract x]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
| -x
[PROOFSTEP]
rw [← floor_add_fract x]
[GOAL]
case right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
hx : fract x ≠ 0
⊢ -(↑⌊x⌋ + fract x) + fract x = -↑⌊x⌋
[PROOFSTEP]
simp [-floor_add_fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
⊢ fract (-x) = 0 ↔ fract x = 0
[PROOFSTEP]
simp only [fract_eq_iff, le_refl, zero_lt_one, tsub_zero, true_and_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
⊢ (∃ z, -x = ↑z) ↔ ∃ z, x = ↑z
[PROOFSTEP]
constructor
[GOAL]
case mp
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
⊢ (∃ z, -x = ↑z) → ∃ z, x = ↑z
[PROOFSTEP]
rintro ⟨z, hz⟩
[GOAL]
case mpr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a x : α
⊢ (∃ z, x = ↑z) → ∃ z, -x = ↑z
[PROOFSTEP]
rintro ⟨z, hz⟩
[GOAL]
case mp.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a x : α
z : ℤ
hz : -x = ↑z
⊢ ∃ z, x = ↑z
[PROOFSTEP]
use-z
[GOAL]
case mpr.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a x : α
z : ℤ
hz : x = ↑z
⊢ ∃ z, -x = ↑z
[PROOFSTEP]
use-z
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a x : α
z : ℤ
hz : -x = ↑z
⊢ x = ↑(-z)
[PROOFSTEP]
simp [← hz]
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a x : α
z : ℤ
hz : x = ↑z
⊢ -x = ↑(-z)
[PROOFSTEP]
simp [← hz]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
b : ℕ
⊢ ∃ z, fract a * ↑b - fract (a * ↑b) = ↑z
[PROOFSTEP]
induction' b with c hc
[GOAL]
case zero
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ ∃ z, fract a * ↑Nat.zero - fract (a * ↑Nat.zero) = ↑z
[PROOFSTEP]
use 0
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ fract a * ↑Nat.zero - fract (a * ↑Nat.zero) = ↑0
[PROOFSTEP]
simp
[GOAL]
case succ
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
c : ℕ
hc : ∃ z, fract a * ↑c - fract (a * ↑c) = ↑z
⊢ ∃ z, fract a * ↑(Nat.succ c) - fract (a * ↑(Nat.succ c)) = ↑z
[PROOFSTEP]
rcases hc with ⟨z, hz⟩
[GOAL]
case succ.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a : α
c : ℕ
z : ℤ
hz : fract a * ↑c - fract (a * ↑c) = ↑z
⊢ ∃ z, fract a * ↑(Nat.succ c) - fract (a * ↑(Nat.succ c)) = ↑z
[PROOFSTEP]
rw [Nat.succ_eq_add_one, Nat.cast_add, mul_add, mul_add, Nat.cast_one, mul_one, mul_one]
[GOAL]
case succ.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a : α
c : ℕ
z : ℤ
hz : fract a * ↑c - fract (a * ↑c) = ↑z
⊢ ∃ z, fract a * ↑c + fract a - fract (a * ↑c + a) = ↑z
[PROOFSTEP]
rcases fract_add (a * c) a with ⟨y, hy⟩
[GOAL]
case succ.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a : α
c : ℕ
z : ℤ
hz : fract a * ↑c - fract (a * ↑c) = ↑z
y : ℤ
hy : fract (a * ↑c + a) - fract (a * ↑c) - fract a = ↑y
⊢ ∃ z, fract a * ↑c + fract a - fract (a * ↑c + a) = ↑z
[PROOFSTEP]
use z - y
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a : α
c : ℕ
z : ℤ
hz : fract a * ↑c - fract (a * ↑c) = ↑z
y : ℤ
hy : fract (a * ↑c + a) - fract (a * ↑c) - fract a = ↑y
⊢ fract a * ↑c + fract a - fract (a * ↑c + a) = ↑(z - y)
[PROOFSTEP]
rw [Int.cast_sub, ← hz, ← hy]
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a : α
c : ℕ
z : ℤ
hz : fract a * ↑c - fract (a * ↑c) = ↑z
y : ℤ
hy : fract (a * ↑c + a) - fract (a * ↑c) - fract a = ↑y
⊢ fract a * ↑c + fract a - fract (a * ↑c + a) =
fract a * ↑c - fract (a * ↑c) - (fract (a * ↑c + a) - fract (a * ↑c) - fract a)
[PROOFSTEP]
abel
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a : α
c : ℕ
z : ℤ
hz : fract a * ↑c - fract (a * ↑c) = ↑z
y : ℤ
hy : fract (a * ↑c + a) - fract (a * ↑c) - fract a = ↑y
⊢ fract a * ↑c + fract a - fract (a * ↑c + a) =
fract a * ↑c - fract (a * ↑c) - (fract (a * ↑c + a) - fract (a * ↑c) - fract a)
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
⊢ fract ⁻¹' s = ⋃ (m : ℤ), (fun x => x - ↑m) ⁻¹' (s ∩ Ico 0 1)
[PROOFSTEP]
ext x
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
x : α
⊢ x ∈ fract ⁻¹' s ↔ x ∈ ⋃ (m : ℤ), (fun x => x - ↑m) ⁻¹' (s ∩ Ico 0 1)
[PROOFSTEP]
simp only [mem_preimage, mem_iUnion, mem_inter_iff]
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
x : α
⊢ fract x ∈ s ↔ ∃ i, x - ↑i ∈ s ∧ x - ↑i ∈ Ico 0 1
[PROOFSTEP]
refine' ⟨fun h => ⟨⌊x⌋, h, fract_nonneg x, fract_lt_one x⟩, _⟩
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
x : α
⊢ (∃ i, x - ↑i ∈ s ∧ x - ↑i ∈ Ico 0 1) → fract x ∈ s
[PROOFSTEP]
rintro ⟨m, hms, hm0, hm1⟩
[GOAL]
case h.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
x : α
m : ℤ
hms : x - ↑m ∈ s
hm0 : 0 ≤ x - ↑m
hm1 : x - ↑m < 1
⊢ fract x ∈ s
[PROOFSTEP]
obtain rfl : ⌊x⌋ = m := floor_eq_iff.2 ⟨sub_nonneg.1 hm0, sub_lt_iff_lt_add'.1 hm1⟩
[GOAL]
case h.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
x : α
hms : x - ↑⌊x⌋ ∈ s
hm0 : 0 ≤ x - ↑⌊x⌋
hm1 : x - ↑⌊x⌋ < 1
⊢ fract x ∈ s
[PROOFSTEP]
exact hms
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
⊢ fract '' s = ⋃ (m : ℤ), (fun x => x - ↑m) '' s ∩ Ico 0 1
[PROOFSTEP]
ext x
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
x : α
⊢ x ∈ fract '' s ↔ x ∈ ⋃ (m : ℤ), (fun x => x - ↑m) '' s ∩ Ico 0 1
[PROOFSTEP]
simp only [mem_image, mem_inter_iff, mem_iUnion]
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
x : α
⊢ (∃ x_1, x_1 ∈ s ∧ fract x_1 = x) ↔ ∃ i, (∃ x_1, x_1 ∈ s ∧ x_1 - ↑i = x) ∧ x ∈ Ico 0 1
[PROOFSTEP]
constructor
[GOAL]
case h.mp
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
x : α
⊢ (∃ x_1, x_1 ∈ s ∧ fract x_1 = x) → ∃ i, (∃ x_1, x_1 ∈ s ∧ x_1 - ↑i = x) ∧ x ∈ Ico 0 1
[PROOFSTEP]
rintro ⟨y, hy, rfl⟩
[GOAL]
case h.mp.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
y : α
hy : y ∈ s
⊢ ∃ i, (∃ x, x ∈ s ∧ x - ↑i = fract y) ∧ fract y ∈ Ico 0 1
[PROOFSTEP]
exact ⟨⌊y⌋, ⟨y, hy, rfl⟩, fract_nonneg y, fract_lt_one y⟩
[GOAL]
case h.mpr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
x : α
⊢ (∃ i, (∃ x_1, x_1 ∈ s ∧ x_1 - ↑i = x) ∧ x ∈ Ico 0 1) → ∃ x_1, x_1 ∈ s ∧ fract x_1 = x
[PROOFSTEP]
rintro ⟨m, ⟨y, hys, rfl⟩, h0, h1⟩
[GOAL]
case h.mpr.intro.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
m : ℤ
y : α
hys : y ∈ s
h0 : 0 ≤ y - ↑m
h1 : y - ↑m < 1
⊢ ∃ x, x ∈ s ∧ fract x = y - ↑m
[PROOFSTEP]
obtain rfl : ⌊y⌋ = m := floor_eq_iff.2 ⟨sub_nonneg.1 h0, sub_lt_iff_lt_add'.1 h1⟩
[GOAL]
case h.mpr.intro.intro.intro.intro.intro
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
s : Set α
y : α
hys : y ∈ s
h0 : 0 ≤ y - ↑⌊y⌋
h1 : y - ↑⌊y⌋ < 1
⊢ ∃ x, x ∈ s ∧ fract x = y - ↑⌊y⌋
[PROOFSTEP]
exact ⟨y, hys, rfl⟩
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a✝ : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b✝ a b : k
ha : a ≠ 0
⊢ fract (b / a) * a + ⌊b / a⌋ • a = b
[PROOFSTEP]
rw [zsmul_eq_mul, ← add_mul, fract_add_floor, div_mul_cancel b ha]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a✝ : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b a : k
hb : 0 < b
⊢ a < b + ↑⌊a / b⌋ * b
[PROOFSTEP]
rw [← one_add_mul _ b, ← div_lt_iff hb, add_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a✝ : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b a : k
hb : 0 < b
⊢ a / b < ↑⌊a / b⌋ + 1
[PROOFSTEP]
exact lt_floor_add_one _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m n : ℕ
⊢ fract (↑m / ↑n) = ↑(m % n) / ↑n
[PROOFSTEP]
rcases n.eq_zero_or_pos with (rfl | hn)
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℕ
⊢ fract (↑m / ↑0) = ↑(m % 0) / ↑0
[PROOFSTEP]
simp
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m n : ℕ
hn : n > 0
⊢ fract (↑m / ↑n) = ↑(m % n) / ↑n
[PROOFSTEP]
have hn' : 0 < (n : k) := by norm_cast
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m n : ℕ
hn : n > 0
⊢ 0 < ↑n
[PROOFSTEP]
norm_cast
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m n : ℕ
hn : n > 0
hn' : 0 < ↑n
⊢ fract (↑m / ↑n) = ↑(m % n) / ↑n
[PROOFSTEP]
refine fract_eq_iff.mpr ⟨?_, ?_, m / n, ?_⟩
[GOAL]
case inr.refine_1
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m n : ℕ
hn : n > 0
hn' : 0 < ↑n
⊢ 0 ≤ ↑(m % n) / ↑n
[PROOFSTEP]
positivity
[GOAL]
case inr.refine_2
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m n : ℕ
hn : n > 0
hn' : 0 < ↑n
⊢ ↑(m % n) / ↑n < 1
[PROOFSTEP]
simpa only [div_lt_one hn', Nat.cast_lt] using m.mod_lt hn
[GOAL]
case inr.refine_3
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m n : ℕ
hn : n > 0
hn' : 0 < ↑n
⊢ ↑m / ↑n - ↑(m % n) / ↑n = ↑(↑m / ↑n)
[PROOFSTEP]
rw [sub_eq_iff_eq_add', ← mul_right_inj' hn'.ne', mul_div_cancel' _ hn'.ne', mul_add, mul_div_cancel' _ hn'.ne']
[GOAL]
case inr.refine_3
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m n : ℕ
hn : n > 0
hn' : 0 < ↑n
⊢ ↑m = ↑(m % n) + ↑n * ↑(↑m / ↑n)
[PROOFSTEP]
norm_cast
[GOAL]
case inr.refine_3
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m n : ℕ
hn : n > 0
hn' : 0 < ↑n
⊢ ↑m = ↑(m % n) + ↑(n * (m / n))
[PROOFSTEP]
rw [← Nat.cast_add, Nat.mod_add_div m n]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
⊢ fract (↑m / ↑n) = ↑(m % ↑n) / ↑n
[PROOFSTEP]
rcases n.eq_zero_or_pos with (rfl | hn)
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
⊢ fract (↑m / ↑0) = ↑(m % ↑0) / ↑0
[PROOFSTEP]
simp
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
hn : n > 0
⊢ fract (↑m / ↑n) = ↑(m % ↑n) / ↑n
[PROOFSTEP]
replace hn : 0 < (n : k)
[GOAL]
case hn
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
hn : n > 0
⊢ 0 < ↑n
[PROOFSTEP]
norm_cast
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
hn : 0 < ↑n
⊢ fract (↑m / ↑n) = ↑(m % ↑n) / ↑n
[PROOFSTEP]
have : ∀ {l : ℤ}, 0 ≤ l → fract ((l : k) / n) = ↑(l % n) / n :=
by
intros l hl
obtain ⟨l₀, rfl | rfl⟩ := l.eq_nat_or_neg
· rw [cast_ofNat, ← coe_nat_mod, cast_ofNat, fract_div_natCast_eq_div_natCast_mod]
· rw [Right.nonneg_neg_iff, coe_nat_nonpos_iff] at hl
simp [hl, zero_mod]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
hn : 0 < ↑n
⊢ ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
[PROOFSTEP]
intros l hl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
hn : 0 < ↑n
l : ℤ
hl : 0 ≤ l
⊢ fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
[PROOFSTEP]
obtain ⟨l₀, rfl | rfl⟩ := l.eq_nat_or_neg
[GOAL]
case intro.inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
hn : 0 < ↑n
l₀ : ℕ
hl : 0 ≤ ↑l₀
⊢ fract (↑↑l₀ / ↑n) = ↑(↑l₀ % ↑n) / ↑n
[PROOFSTEP]
rw [cast_ofNat, ← coe_nat_mod, cast_ofNat, fract_div_natCast_eq_div_natCast_mod]
[GOAL]
case intro.inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
hn : 0 < ↑n
l₀ : ℕ
hl : 0 ≤ -↑l₀
⊢ fract (↑(-↑l₀) / ↑n) = ↑(-↑l₀ % ↑n) / ↑n
[PROOFSTEP]
rw [Right.nonneg_neg_iff, coe_nat_nonpos_iff] at hl
[GOAL]
case intro.inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
hn : 0 < ↑n
l₀ : ℕ
hl : l₀ = 0
⊢ fract (↑(-↑l₀) / ↑n) = ↑(-↑l₀ % ↑n) / ↑n
[PROOFSTEP]
simp [hl, zero_mod]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
m : ℤ
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
⊢ fract (↑m / ↑n) = ↑(m % ↑n) / ↑n
[PROOFSTEP]
obtain ⟨m₀, rfl | rfl⟩ := m.eq_nat_or_neg
[GOAL]
case inr.intro.inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
⊢ fract (↑↑m₀ / ↑n) = ↑(↑m₀ % ↑n) / ↑n
[PROOFSTEP]
exact this (ofNat_nonneg m₀)
[GOAL]
case inr.intro.inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
⊢ fract (↑(-↑m₀) / ↑n) = ↑(-↑m₀ % ↑n) / ↑n
[PROOFSTEP]
let q := ⌈↑m₀ / (n : k)⌉
[GOAL]
case inr.intro.inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
⊢ fract (↑(-↑m₀) / ↑n) = ↑(-↑m₀ % ↑n) / ↑n
[PROOFSTEP]
let m₁ := q * ↑n - (↑m₀ : ℤ)
[GOAL]
case inr.intro.inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
m₁ : ℤ := q * ↑n - ↑m₀
⊢ fract (↑(-↑m₀) / ↑n) = ↑(-↑m₀ % ↑n) / ↑n
[PROOFSTEP]
have hm₁ : 0 ≤ m₁ := by simpa [← @cast_le k, ← div_le_iff hn] using FloorRing.gc_ceil_coe.le_u_l _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
m₁ : ℤ := q * ↑n - ↑m₀
⊢ 0 ≤ m₁
[PROOFSTEP]
simpa [← @cast_le k, ← div_le_iff hn] using FloorRing.gc_ceil_coe.le_u_l _
[GOAL]
case inr.intro.inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
m₁ : ℤ := q * ↑n - ↑m₀
hm₁ : 0 ≤ m₁
⊢ fract (↑(-↑m₀) / ↑n) = ↑(-↑m₀ % ↑n) / ↑n
[PROOFSTEP]
calc
fract
((Int.cast (-(m₀ : ℤ)) : k) / (n : k))
-- Porting note: the `rw [cast_neg, cast_ofNat]` was `push_cast` =
fract (-(m₀ : k) / n) :=
by rw [cast_neg, cast_ofNat]
_ = fract ((m₁ : k) / n) := ?_
_ = Int.cast (m₁ % (n : ℤ)) / Nat.cast n := (this hm₁)
_ = Int.cast (-(↑m₀ : ℤ) % ↑n) / Nat.cast n := ?_
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
m₁ : ℤ := q * ↑n - ↑m₀
hm₁ : 0 ≤ m₁
⊢ fract (↑(-↑m₀) / ↑n) = fract (-↑m₀ / ↑n)
[PROOFSTEP]
rw [cast_neg, cast_ofNat]
[GOAL]
case inr.intro.inr.calc_1
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
m₁ : ℤ := q * ↑n - ↑m₀
hm₁ : 0 ≤ m₁
⊢ fract (-↑m₀ / ↑n) = fract (↑m₁ / ↑n)
[PROOFSTEP]
rw [← fract_int_add q, ← mul_div_cancel (q : k) (ne_of_gt hn), ← add_div, ← sub_eq_add_neg]
-- Porting note: the `simp` was `push_cast`
[GOAL]
case inr.intro.inr.calc_1
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
m₁ : ℤ := q * ↑n - ↑m₀
hm₁ : 0 ≤ m₁
⊢ fract ((↑q * ↑n - ↑m₀) / ↑n) = fract (↑m₁ / ↑n)
[PROOFSTEP]
simp
[GOAL]
case inr.intro.inr.calc_2
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
m₁ : ℤ := q * ↑n - ↑m₀
hm₁ : 0 ≤ m₁
⊢ ↑(m₁ % ↑n) / ↑n = ↑(-↑m₀ % ↑n) / ↑n
[PROOFSTEP]
congr 2
[GOAL]
case inr.intro.inr.calc_2.e_a.e_a
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
m₁ : ℤ := q * ↑n - ↑m₀
hm₁ : 0 ≤ m₁
⊢ m₁ % ↑n = -↑m₀ % ↑n
[PROOFSTEP]
change (q * ↑n - (↑m₀ : ℤ)) % ↑n = _
[GOAL]
case inr.intro.inr.calc_2.e_a.e_a
F : Type u_1
α : Type u_2
β : Type u_3
inst✝³ : LinearOrderedRing α
inst✝² : FloorRing α
z : ℤ
a : α
k : Type u_4
inst✝¹ : LinearOrderedField k
inst✝ : FloorRing k
b : k
n : ℕ
hn : 0 < ↑n
this : ∀ {l : ℤ}, 0 ≤ l → fract (↑l / ↑n) = ↑(l % ↑n) / ↑n
m₀ : ℕ
q : ℤ := ⌈↑m₀ / ↑n⌉
m₁ : ℤ := q * ↑n - ↑m₀
hm₁ : 0 ≤ m₁
⊢ (q * ↑n - ↑m₀) % ↑n = -↑m₀ % ↑n
[PROOFSTEP]
rw [sub_eq_add_neg, add_comm (q * ↑n), add_mul_emod_self]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a : α
z : ℤ
⊢ z ≤ ⌊-a⌋ ↔ z ≤ -⌈a⌉
[PROOFSTEP]
rw [le_neg, ceil_le, le_floor, Int.cast_neg, le_neg]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a : α
z : ℤ
⊢ ⌈-a⌉ ≤ z ↔ -⌊a⌋ ≤ z
[PROOFSTEP]
rw [neg_le, ceil_le, le_floor, Int.cast_neg, neg_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ z + 1 ≤ ⌈a⌉ ↔ ↑z < a
[PROOFSTEP]
rw [← lt_ceil, add_one_le_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ 1 ≤ ⌈a⌉ ↔ 0 < a
[PROOFSTEP]
rw [← zero_add (1 : ℤ), add_one_le_ceil_iff, cast_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ ⌈a⌉ ≤ ⌊a⌋ + 1
[PROOFSTEP]
rw [ceil_le, Int.cast_add, Int.cast_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ a ≤ ↑⌊a⌋ + 1
[PROOFSTEP]
exact (lt_floor_add_one a).le
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ : α
z a : ℤ
⊢ ⌈↑z⌉ ≤ a ↔ z ≤ a
[PROOFSTEP]
rw [ceil_le, Int.cast_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ : α
n : ℕ
a : ℤ
⊢ ⌈↑n⌉ ≤ a ↔ ↑n ≤ a
[PROOFSTEP]
rw [ceil_le, ← cast_ofNat, cast_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a : α
z : ℤ
⊢ ⌈a + ↑z⌉ = ⌈a⌉ + z
[PROOFSTEP]
rw [← neg_inj, neg_add', ← floor_neg, ← floor_neg, neg_add', floor_sub_int]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
n : ℕ
⊢ ⌈a + ↑n⌉ = ⌈a⌉ + ↑n
[PROOFSTEP]
rw [← Int.cast_ofNat, ceil_add_int]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ ⌈a + 1⌉ = ⌈a⌉ + 1
[PROOFSTEP]
rw [← ceil_add_int a (1 : ℤ), cast_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ a : α
z : ℤ
⊢ ⌈a - ↑z⌉ = ⌈a + ↑(-z)⌉
[PROOFSTEP]
rw [Int.cast_neg, sub_eq_add_neg]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
n : ℕ
⊢ ⌈a - ↑n⌉ = ⌈a⌉ - ↑n
[PROOFSTEP]
convert ceil_sub_int a n using 1
[GOAL]
case h.e'_2
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
n : ℕ
⊢ ⌈a - ↑n⌉ = ⌈a - ↑↑n⌉
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ ⌈a - 1⌉ = ⌈a⌉ - 1
[PROOFSTEP]
rw [eq_sub_iff_add_eq, ← ceil_add_one, sub_add_cancel]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ ↑⌈a⌉ < a + 1
[PROOFSTEP]
rw [← lt_ceil, ← Int.cast_one, ceil_add_int]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ ⌈a⌉ < ⌈a⌉ + 1
[PROOFSTEP]
apply lt_add_one
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ⌈a + b⌉ ≤ ⌈a⌉ + ⌈b⌉
[PROOFSTEP]
rw [ceil_le, Int.cast_add]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ a + b ≤ ↑⌈a⌉ + ↑⌈b⌉
[PROOFSTEP]
exact add_le_add (le_ceil _) (le_ceil _)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ⌈a⌉ + ⌈b⌉ ≤ ⌈a + b⌉ + 1
[PROOFSTEP]
rw [← le_sub_iff_add_le, ceil_le, Int.cast_sub, Int.cast_add, Int.cast_one, le_sub_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ ↑⌈b⌉ ≤ ↑⌈a + b⌉ + 1 - a
[PROOFSTEP]
refine' (ceil_lt_add_one _).le.trans _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ b + 1 ≤ ↑⌈a + b⌉ + 1 - a
[PROOFSTEP]
rw [le_sub_iff_add_le', ← add_assoc, add_le_add_iff_right]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ a + b ≤ ↑⌈a + b⌉
[PROOFSTEP]
exact le_ceil _
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ 0 < ⌈a⌉ ↔ 0 < a
[PROOFSTEP]
rw [lt_ceil, cast_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌈0⌉ = 0
[PROOFSTEP]
rw [← cast_zero, ceil_intCast]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌈1⌉ = 1
[PROOFSTEP]
rw [← cast_one, ceil_intCast]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
ha : 0 ≤ a
⊢ 0 ≤ ⌈a⌉
[PROOFSTEP]
exact_mod_cast ha.trans (le_ceil a)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌈a⌉ = z ↔ ↑z - 1 < a ∧ a ≤ ↑z
[PROOFSTEP]
rw [← ceil_le, ← Int.cast_one, ← Int.cast_sub, ← lt_ceil, Int.sub_one_lt_iff, le_antisymm_iff, and_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ ⌈a⌉ = 0 ↔ a ∈ Ioc (-1) 0
[PROOFSTEP]
simp [ceil_eq_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z✝ : ℤ
a✝ : α
z : ℤ
a : α
ha : a ∈ Ioc (↑z - 1) ↑z
⊢ ↑⌈a⌉ = ↑z
[PROOFSTEP]
exact_mod_cast ceil_eq_on_Ioc z a ha
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
⊢ fract a = 0 ∨ fract a = a + 1 - ↑⌈a⌉
[PROOFSTEP]
cases' eq_or_ne (fract a) 0 with ha ha
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a = 0
⊢ fract a = 0 ∨ fract a = a + 1 - ↑⌈a⌉
[PROOFSTEP]
exact Or.inl ha
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
⊢ fract a = 0 ∨ fract a = a + 1 - ↑⌈a⌉
[PROOFSTEP]
right
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
⊢ fract a = a + 1 - ↑⌈a⌉
[PROOFSTEP]
suffices (⌈a⌉ : α) = ⌊a⌋ + 1 by
rw [this, ← self_sub_fract]
abel
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
this : ↑⌈a⌉ = ↑⌊a⌋ + 1
⊢ fract a = a + 1 - ↑⌈a⌉
[PROOFSTEP]
rw [this, ← self_sub_fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
this : ↑⌈a⌉ = ↑⌊a⌋ + 1
⊢ fract a = a + 1 - (a - fract a + 1)
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
this : ↑⌈a⌉ = ↑⌊a⌋ + 1
⊢ fract a = a + 1 - (a - fract a + 1)
[PROOFSTEP]
abel
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
⊢ ↑⌈a⌉ = ↑⌊a⌋ + 1
[PROOFSTEP]
norm_cast
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
⊢ ⌈a⌉ = ⌊a⌋ + 1
[PROOFSTEP]
rw [ceil_eq_iff]
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
⊢ ↑(⌊a⌋ + 1) - 1 < a ∧ a ≤ ↑(⌊a⌋ + 1)
[PROOFSTEP]
refine' ⟨_, _root_.le_of_lt <| by simp⟩
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
⊢ a < ↑(⌊a⌋ + 1)
[PROOFSTEP]
simp
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
⊢ ↑(⌊a⌋ + 1) - 1 < a
[PROOFSTEP]
rw [cast_add, cast_one, add_tsub_cancel_right, ← self_sub_fract a, sub_lt_self_iff]
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a : α
ha : fract a ≠ 0
⊢ 0 < fract a
[PROOFSTEP]
exact ha.symm.lt_of_le (fract_nonneg a)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
ha : fract a ≠ 0
⊢ ↑⌈a⌉ = a + 1 - fract a
[PROOFSTEP]
rw [(or_iff_right ha).mp (fract_eq_zero_or_add_one_sub_ceil a)]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
ha : fract a ≠ 0
⊢ ↑⌈a⌉ = a + 1 - (a + 1 - ↑⌈a⌉)
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
ha : fract a ≠ 0
⊢ ↑⌈a⌉ = a + 1 - (a + 1 - ↑⌈a⌉)
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
ha : fract a ≠ 0
⊢ ↑⌈a⌉ - a = 1 - fract a
[PROOFSTEP]
rw [(or_iff_right ha).mp (fract_eq_zero_or_add_one_sub_ceil a)]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
ha : fract a ≠ 0
⊢ ↑⌈a⌉ - a = 1 - (a + 1 - ↑⌈a⌉)
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
ha : fract a ≠ 0
⊢ ↑⌈a⌉ - a = 1 - (a + 1 - ↑⌈a⌉)
[PROOFSTEP]
abel
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ Int.cast ⁻¹' Ioo a b = Ioo ⌊a⌋ ⌈b⌉
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
x✝ : ℤ
⊢ x✝ ∈ Int.cast ⁻¹' Ioo a b ↔ x✝ ∈ Ioo ⌊a⌋ ⌈b⌉
[PROOFSTEP]
simp [floor_lt, lt_ceil]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ Int.cast ⁻¹' Ico a b = Ico ⌈a⌉ ⌈b⌉
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
x✝ : ℤ
⊢ x✝ ∈ Int.cast ⁻¹' Ico a b ↔ x✝ ∈ Ico ⌈a⌉ ⌈b⌉
[PROOFSTEP]
simp [ceil_le, lt_ceil]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ Int.cast ⁻¹' Ioc a b = Ioc ⌊a⌋ ⌊b⌋
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
x✝ : ℤ
⊢ x✝ ∈ Int.cast ⁻¹' Ioc a b ↔ x✝ ∈ Ioc ⌊a⌋ ⌊b⌋
[PROOFSTEP]
simp [floor_lt, le_floor]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
⊢ Int.cast ⁻¹' Icc a b = Icc ⌈a⌉ ⌊b⌋
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a✝ a b : α
x✝ : ℤ
⊢ x✝ ∈ Int.cast ⁻¹' Icc a b ↔ x✝ ∈ Icc ⌈a⌉ ⌊b⌋
[PROOFSTEP]
simp [ceil_le, le_floor]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ Int.cast ⁻¹' Ioi a = Ioi ⌊a⌋
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
x✝ : ℤ
⊢ x✝ ∈ Int.cast ⁻¹' Ioi a ↔ x✝ ∈ Ioi ⌊a⌋
[PROOFSTEP]
simp [floor_lt]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ Int.cast ⁻¹' Ici a = Ici ⌈a⌉
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
x✝ : ℤ
⊢ x✝ ∈ Int.cast ⁻¹' Ici a ↔ x✝ ∈ Ici ⌈a⌉
[PROOFSTEP]
simp [ceil_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ Int.cast ⁻¹' Iio a = Iio ⌈a⌉
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
x✝ : ℤ
⊢ x✝ ∈ Int.cast ⁻¹' Iio a ↔ x✝ ∈ Iio ⌈a⌉
[PROOFSTEP]
simp [lt_ceil]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
⊢ Int.cast ⁻¹' Iic a = Iic ⌊a⌋
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
z : ℤ
a : α
x✝ : ℤ
⊢ x✝ ∈ Int.cast ⁻¹' Iic a ↔ x✝ ∈ Iic ⌊a⌋
[PROOFSTEP]
simp [le_floor]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
⊢ round 0 = 0
[PROOFSTEP]
simp [round]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
⊢ round 1 = 1
[PROOFSTEP]
simp [round]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
n : ℕ
⊢ round ↑n = ↑n
[PROOFSTEP]
simp [round]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
n : ℤ
⊢ round ↑n = n
[PROOFSTEP]
simp [round]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
y : ℤ
⊢ round (x + ↑y) = round x + y
[PROOFSTEP]
rw [round, round, Int.fract_add_int, Int.floor_add_int, Int.ceil_add_int, ← apply_ite₂, ite_self]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
a : α
⊢ round (a + 1) = round a + 1
[PROOFSTEP]
rw [← round_add_int a 1, cast_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
y : ℤ
⊢ round (x - ↑y) = round x - y
[PROOFSTEP]
rw [sub_eq_add_neg]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
y : ℤ
⊢ round (x + -↑y) = round x - y
[PROOFSTEP]
norm_cast
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
y : ℤ
⊢ round (x + ↑(-y)) = round x - y
[PROOFSTEP]
rw [round_add_int, sub_eq_add_neg]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
a : α
⊢ round (a - 1) = round a - 1
[PROOFSTEP]
rw [← round_sub_int a 1, cast_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
y : ℕ
⊢ round (x + ↑y) = round x + ↑y
[PROOFSTEP]
exact_mod_cast round_add_int x y
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
y : ℕ
⊢ round (x - ↑y) = round x - ↑y
[PROOFSTEP]
exact_mod_cast round_sub_int x y
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
y : ℤ
⊢ round (↑y + x) = y + round x
[PROOFSTEP]
rw [add_comm, round_add_int, add_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
y : ℕ
⊢ round (↑y + x) = ↑y + round x
[PROOFSTEP]
rw [add_comm, round_add_nat, add_comm]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
⊢ |x - ↑(round x)| = min (fract x) (1 - fract x)
[PROOFSTEP]
simp_rw [round, min_def_lt, two_mul, ← lt_tsub_iff_left]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
⊢ |x - ↑(if fract x < 1 - fract x then ⌊x⌋ else ⌈x⌉)| = if fract x < 1 - fract x then fract x else 1 - fract x
[PROOFSTEP]
cases' lt_or_ge (fract x) (1 - fract x) with hx hx
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
hx : fract x < 1 - fract x
⊢ |x - ↑(if fract x < 1 - fract x then ⌊x⌋ else ⌈x⌉)| = if fract x < 1 - fract x then fract x else 1 - fract x
[PROOFSTEP]
rw [if_pos hx, if_pos hx, self_sub_floor, abs_fract]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
hx : fract x ≥ 1 - fract x
⊢ |x - ↑(if fract x < 1 - fract x then ⌊x⌋ else ⌈x⌉)| = if fract x < 1 - fract x then fract x else 1 - fract x
[PROOFSTEP]
have : 0 < fract x :=
by
replace hx : 0 < fract x + fract x := lt_of_lt_of_le zero_lt_one (tsub_le_iff_left.mp hx)
simpa only [← two_mul, zero_lt_mul_left, zero_lt_two] using hx
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
hx : fract x ≥ 1 - fract x
⊢ 0 < fract x
[PROOFSTEP]
replace hx : 0 < fract x + fract x := lt_of_lt_of_le zero_lt_one (tsub_le_iff_left.mp hx)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
hx : 0 < fract x + fract x
⊢ 0 < fract x
[PROOFSTEP]
simpa only [← two_mul, zero_lt_mul_left, zero_lt_two] using hx
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
hx : fract x ≥ 1 - fract x
this : 0 < fract x
⊢ |x - ↑(if fract x < 1 - fract x then ⌊x⌋ else ⌈x⌉)| = if fract x < 1 - fract x then fract x else 1 - fract x
[PROOFSTEP]
rw [if_neg (not_lt.mpr hx), if_neg (not_lt.mpr hx), abs_sub_comm, ceil_sub_self_eq this.ne.symm, abs_one_sub_fract]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
⊢ |x - ↑(round x)| ≤ |x - ↑z|
[PROOFSTEP]
rw [abs_sub_round_eq_min, min_le_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
⊢ fract x ≤ |x - ↑z| ∨ 1 - fract x ≤ |x - ↑z|
[PROOFSTEP]
rcases le_or_lt (z : α) x with (hx | hx) <;> [left; right]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
⊢ fract x ≤ |x - ↑z| ∨ 1 - fract x ≤ |x - ↑z|
[PROOFSTEP]
rcases le_or_lt (z : α) x with (hx | hx)
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : ↑z ≤ x
⊢ fract x ≤ |x - ↑z| ∨ 1 - fract x ≤ |x - ↑z|
[PROOFSTEP]
left
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : x < ↑z
⊢ fract x ≤ |x - ↑z| ∨ 1 - fract x ≤ |x - ↑z|
[PROOFSTEP]
right
[GOAL]
case inl.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : ↑z ≤ x
⊢ fract x ≤ |x - ↑z|
[PROOFSTEP]
conv_rhs => rw [abs_eq_self.mpr (sub_nonneg.mpr hx), ← fract_add_floor x, add_sub_assoc]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : ↑z ≤ x
| |x - ↑z|
[PROOFSTEP]
rw [abs_eq_self.mpr (sub_nonneg.mpr hx), ← fract_add_floor x, add_sub_assoc]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : ↑z ≤ x
| |x - ↑z|
[PROOFSTEP]
rw [abs_eq_self.mpr (sub_nonneg.mpr hx), ← fract_add_floor x, add_sub_assoc]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : ↑z ≤ x
| |x - ↑z|
[PROOFSTEP]
rw [abs_eq_self.mpr (sub_nonneg.mpr hx), ← fract_add_floor x, add_sub_assoc]
[GOAL]
case inl.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : ↑z ≤ x
⊢ fract x ≤ fract x + (↑⌊x⌋ - ↑z)
[PROOFSTEP]
simpa only [le_add_iff_nonneg_right, sub_nonneg, cast_le] using le_floor.mpr hx
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : x < ↑z
⊢ 1 - fract x ≤ |x - ↑z|
[PROOFSTEP]
rw [abs_eq_neg_self.mpr (sub_neg.mpr hx).le]
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : x < ↑z
⊢ 1 - fract x ≤ -(x - ↑z)
[PROOFSTEP]
conv_rhs => rw [← fract_add_floor x]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : x < ↑z
| -(x - ↑z)
[PROOFSTEP]
rw [← fract_add_floor x]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : x < ↑z
| -(x - ↑z)
[PROOFSTEP]
rw [← fract_add_floor x]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : x < ↑z
| -(x - ↑z)
[PROOFSTEP]
rw [← fract_add_floor x]
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : x < ↑z
⊢ 1 - fract x ≤ -(fract x + ↑⌊x⌋ - ↑z)
[PROOFSTEP]
rw [add_sub_assoc, add_comm, neg_add, neg_sub, le_add_neg_iff_add_le, sub_add_cancel, le_sub_comm]
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : x < ↑z
⊢ ↑⌊x⌋ ≤ ↑z - 1
[PROOFSTEP]
norm_cast
[GOAL]
case inr.h
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
x : α
z : ℤ
hx : x < ↑z
⊢ ⌊x⌋ ≤ z - 1
[PROOFSTEP]
exact floor_le_sub_one_iff.mpr hx
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
⊢ round x = ⌊x + 1 / 2⌋
[PROOFSTEP]
simp_rw [round, (by simp only [lt_div_iff', two_pos] : 2 * fract x < 1 ↔ fract x < 1 / 2)]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
⊢ 2 * fract x < 1 ↔ fract x < 1 / 2
[PROOFSTEP]
simp only [lt_div_iff', two_pos]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x + 1 / 2⌋
[PROOFSTEP]
cases' lt_or_le (fract x) (1 / 2) with hx hx
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : fract x < 1 / 2
⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x + 1 / 2⌋
[PROOFSTEP]
conv_rhs => rw [← fract_add_floor x, add_assoc, add_left_comm, floor_int_add]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : fract x < 1 / 2
| ⌊x + 1 / 2⌋
[PROOFSTEP]
rw [← fract_add_floor x, add_assoc, add_left_comm, floor_int_add]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : fract x < 1 / 2
| ⌊x + 1 / 2⌋
[PROOFSTEP]
rw [← fract_add_floor x, add_assoc, add_left_comm, floor_int_add]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : fract x < 1 / 2
| ⌊x + 1 / 2⌋
[PROOFSTEP]
rw [← fract_add_floor x, add_assoc, add_left_comm, floor_int_add]
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : fract x < 1 / 2
⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x⌋ + ⌊fract x + 1 / 2⌋
[PROOFSTEP]
rw [if_pos hx, self_eq_add_right, floor_eq_iff, cast_zero, zero_add]
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : fract x < 1 / 2
⊢ 0 ≤ fract x + 1 / 2 ∧ fract x + 1 / 2 < 1
[PROOFSTEP]
constructor
[GOAL]
case inl.left
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : fract x < 1 / 2
⊢ 0 ≤ fract x + 1 / 2
[PROOFSTEP]
linarith [fract_nonneg x]
[GOAL]
case inl.right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : fract x < 1 / 2
⊢ fract x + 1 / 2 < 1
[PROOFSTEP]
linarith
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x + 1 / 2⌋
[PROOFSTEP]
have : ⌊fract x + 1 / 2⌋ = 1 := by
rw [floor_eq_iff]
constructor
· norm_num
linarith
· norm_num
linarith [fract_lt_one x]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
⊢ ⌊fract x + 1 / 2⌋ = 1
[PROOFSTEP]
rw [floor_eq_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
⊢ ↑1 ≤ fract x + 1 / 2 ∧ fract x + 1 / 2 < ↑1 + 1
[PROOFSTEP]
constructor
[GOAL]
case left
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
⊢ ↑1 ≤ fract x + 1 / 2
[PROOFSTEP]
norm_num
[GOAL]
case left
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
⊢ 1 ≤ fract x + 1 / 2
[PROOFSTEP]
linarith
[GOAL]
case right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
⊢ fract x + 1 / 2 < ↑1 + 1
[PROOFSTEP]
norm_num
[GOAL]
case right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
⊢ fract x + 1 / 2 < 2
[PROOFSTEP]
linarith [fract_lt_one x]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
this : ⌊fract x + 1 / 2⌋ = 1
⊢ (if fract x < 1 / 2 then ⌊x⌋ else ⌈x⌉) = ⌊x + 1 / 2⌋
[PROOFSTEP]
rw [if_neg (not_lt.mpr hx), ← fract_add_floor x, add_assoc, add_left_comm, floor_int_add, ceil_add_int, add_comm _ ⌊x⌋,
add_right_inj, ceil_eq_iff, this, cast_one, sub_self]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
this : ⌊fract x + 1 / 2⌋ = 1
⊢ 0 < fract x ∧ fract x ≤ 1
[PROOFSTEP]
constructor
[GOAL]
case inr.left
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
this : ⌊fract x + 1 / 2⌋ = 1
⊢ 0 < fract x
[PROOFSTEP]
linarith
[GOAL]
case inr.right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
hx : 1 / 2 ≤ fract x
this : ⌊fract x + 1 / 2⌋ = 1
⊢ fract x ≤ 1
[PROOFSTEP]
linarith [fract_lt_one x]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
⊢ round 2⁻¹ = 1
[PROOFSTEP]
simp only [round_eq, ← one_div, add_halves', floor_one]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
⊢ round (-2⁻¹) = 0
[PROOFSTEP]
simp only [round_eq, ← one_div, add_left_neg, floor_zero]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
⊢ round x = 0 ↔ x ∈ Ico (-(1 / 2)) (1 / 2)
[PROOFSTEP]
rw [round_eq, floor_eq_zero_iff, add_mem_Ico_iff_left]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
⊢ x ∈ Ico (0 - 1 / 2) (1 - 1 / 2) ↔ x ∈ Ico (-(1 / 2)) (1 / 2)
[PROOFSTEP]
norm_num
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
⊢ |x - ↑(round x)| ≤ 1 / 2
[PROOFSTEP]
rw [round_eq, abs_sub_le_iff]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
⊢ x - ↑⌊x + 1 / 2⌋ ≤ 1 / 2 ∧ ↑⌊x + 1 / 2⌋ - x ≤ 1 / 2
[PROOFSTEP]
have := floor_le (x + 1 / 2)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
this : ↑⌊x + 1 / 2⌋ ≤ x + 1 / 2
⊢ x - ↑⌊x + 1 / 2⌋ ≤ 1 / 2 ∧ ↑⌊x + 1 / 2⌋ - x ≤ 1 / 2
[PROOFSTEP]
have := lt_floor_add_one (x + 1 / 2)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
this✝ : ↑⌊x + 1 / 2⌋ ≤ x + 1 / 2
this : x + 1 / 2 < ↑⌊x + 1 / 2⌋ + 1
⊢ x - ↑⌊x + 1 / 2⌋ ≤ 1 / 2 ∧ ↑⌊x + 1 / 2⌋ - x ≤ 1 / 2
[PROOFSTEP]
constructor
[GOAL]
case left
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
this✝ : ↑⌊x + 1 / 2⌋ ≤ x + 1 / 2
this : x + 1 / 2 < ↑⌊x + 1 / 2⌋ + 1
⊢ x - ↑⌊x + 1 / 2⌋ ≤ 1 / 2
[PROOFSTEP]
linarith
[GOAL]
case right
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
x : α
this✝ : ↑⌊x + 1 / 2⌋ ≤ x + 1 / 2
this : x + 1 / 2 < ↑⌊x + 1 / 2⌋ + 1
⊢ ↑⌊x + 1 / 2⌋ - x ≤ 1 / 2
[PROOFSTEP]
linarith
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
m n : ℕ
⊢ |↑m / ↑n - ↑(round (↑m / ↑n))| = ↑(min (m % n) (n - m % n)) / ↑n
[PROOFSTEP]
rcases n.eq_zero_or_pos with (rfl | hn)
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
m : ℕ
⊢ |↑m / ↑0 - ↑(round (↑m / ↑0))| = ↑(min (m % 0) (0 - m % 0)) / ↑0
[PROOFSTEP]
simp
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
m n : ℕ
hn : n > 0
⊢ |↑m / ↑n - ↑(round (↑m / ↑n))| = ↑(min (m % n) (n - m % n)) / ↑n
[PROOFSTEP]
have hn' : 0 < (n : α) := by norm_cast
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
m n : ℕ
hn : n > 0
⊢ 0 < ↑n
[PROOFSTEP]
norm_cast
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedField α
inst✝ : FloorRing α
m n : ℕ
hn : n > 0
hn' : 0 < ↑n
⊢ |↑m / ↑n - ↑(round (↑m / ↑n))| = ↑(min (m % n) (n - m % n)) / ↑n
[PROOFSTEP]
rw [abs_sub_round_eq_min, Nat.cast_min, ← min_div_div_right hn'.le, fract_div_natCast_eq_div_natCast_mod,
Nat.cast_sub (m.mod_lt hn).le, sub_div, div_self hn'.ne']
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : LinearOrderedSemiring β
inst✝² : FloorSemiring α
inst✝¹ : FloorSemiring β
inst✝ : RingHomClass F α β
a : α
b : β
h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b
⊢ ⌊a⌋₊ = ⌊b⌋₊
[PROOFSTEP]
have h₀ : 0 ≤ a ↔ 0 ≤ b := by simpa only [cast_zero] using h 0
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : LinearOrderedSemiring β
inst✝² : FloorSemiring α
inst✝¹ : FloorSemiring β
inst✝ : RingHomClass F α β
a : α
b : β
h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b
⊢ 0 ≤ a ↔ 0 ≤ b
[PROOFSTEP]
simpa only [cast_zero] using h 0
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : LinearOrderedSemiring β
inst✝² : FloorSemiring α
inst✝¹ : FloorSemiring β
inst✝ : RingHomClass F α β
a : α
b : β
h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b
h₀ : 0 ≤ a ↔ 0 ≤ b
⊢ ⌊a⌋₊ = ⌊b⌋₊
[PROOFSTEP]
obtain ha | ha := lt_or_le a 0
[GOAL]
case inl
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : LinearOrderedSemiring β
inst✝² : FloorSemiring α
inst✝¹ : FloorSemiring β
inst✝ : RingHomClass F α β
a : α
b : β
h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b
h₀ : 0 ≤ a ↔ 0 ≤ b
ha : a < 0
⊢ ⌊a⌋₊ = ⌊b⌋₊
[PROOFSTEP]
rw [floor_of_nonpos ha.le, floor_of_nonpos (le_of_not_le <| h₀.not.mp ha.not_le)]
[GOAL]
case inr
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : LinearOrderedSemiring β
inst✝² : FloorSemiring α
inst✝¹ : FloorSemiring β
inst✝ : RingHomClass F α β
a : α
b : β
h : ∀ (n : ℕ), ↑n ≤ a ↔ ↑n ≤ b
h₀ : 0 ≤ a ↔ 0 ≤ b
ha : 0 ≤ a
⊢ ⌊a⌋₊ = ⌊b⌋₊
[PROOFSTEP]
exact (le_floor <| (h _).1 <| floor_le ha).antisymm (le_floor <| (h _).2 <| floor_le <| h₀.1 ha)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : LinearOrderedSemiring β
inst✝² : FloorSemiring α
inst✝¹ : FloorSemiring β
inst✝ : RingHomClass F α β
a✝ : α
b : β
f : F
hf : StrictMono ↑f
a : α
n : ℕ
⊢ ↑n ≤ ↑f a ↔ ↑n ≤ a
[PROOFSTEP]
rw [← map_natCast f, hf.le_iff_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedSemiring α
inst✝³ : LinearOrderedSemiring β
inst✝² : FloorSemiring α
inst✝¹ : FloorSemiring β
inst✝ : RingHomClass F α β
a✝ : α
b : β
f : F
hf : StrictMono ↑f
a : α
n : ℕ
⊢ ↑f a ≤ ↑n ↔ a ≤ ↑n
[PROOFSTEP]
rw [← map_natCast f, hf.le_iff_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedRing α
inst✝³ : LinearOrderedRing β
inst✝² : FloorRing α
inst✝¹ : FloorRing β
inst✝ : RingHomClass F α β
a✝ : α
b : β
f : F
hf : StrictMono ↑f
a : α
n : ℤ
⊢ ↑n ≤ ↑f a ↔ ↑n ≤ a
[PROOFSTEP]
rw [← map_intCast f, hf.le_iff_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedRing α
inst✝³ : LinearOrderedRing β
inst✝² : FloorRing α
inst✝¹ : FloorRing β
inst✝ : RingHomClass F α β
a✝ : α
b : β
f : F
hf : StrictMono ↑f
a : α
n : ℤ
⊢ ↑f a ≤ ↑n ↔ a ≤ ↑n
[PROOFSTEP]
rw [← map_intCast f, hf.le_iff_le]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedRing α
inst✝³ : LinearOrderedRing β
inst✝² : FloorRing α
inst✝¹ : FloorRing β
inst✝ : RingHomClass F α β
a✝ : α
b : β
f : F
hf : StrictMono ↑f
a : α
⊢ fract (↑f a) = ↑f (fract a)
[PROOFSTEP]
simp_rw [fract, map_sub, map_intCast, map_floor _ hf]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedField α
inst✝³ : LinearOrderedField β
inst✝² : FloorRing α
inst✝¹ : FloorRing β
inst✝ : RingHomClass F α β
a✝ : α
b : β
f : F
hf : StrictMono ↑f
a : α
⊢ round (↑f a) = round a
[PROOFSTEP]
have H : f 2 = 2 := map_natCast f 2
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝⁴ : LinearOrderedField α
inst✝³ : LinearOrderedField β
inst✝² : FloorRing α
inst✝¹ : FloorRing β
inst✝ : RingHomClass F α β
a✝ : α
b : β
f : F
hf : StrictMono ↑f
a : α
H : ↑f 2 = 2
⊢ round (↑f a) = round a
[PROOFSTEP]
simp_rw [round_eq, ← map_floor _ hf, map_add, one_div, map_inv₀, H]
-- Porting note: was
-- simp_rw [round_eq, ← map_floor _ hf, map_add, one_div, map_inv₀, map_bit0, map_one]
-- Would have thought that `map_natCast` would replace `map_bit0, map_one` but seems not
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
a : α
n : ℕ
ha : 0 ≤ a
⊢ n ≤ (fun a => toNat ⌊a⌋) a ↔ ↑n ≤ a
[PROOFSTEP]
rw [Int.le_toNat (Int.floor_nonneg.2 ha), Int.le_floor, Int.cast_ofNat]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
a : α
n : ℕ
⊢ (fun a => toNat ⌈a⌉) a ≤ n ↔ a ≤ ↑n
[PROOFSTEP]
rw [Int.toNat_le, Int.ceil_le, Int.cast_ofNat]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
a : α
ha : 0 ≤ a
⊢ ↑⌊a⌋₊ = ⌊a⌋
[PROOFSTEP]
rw [← Int.floor_toNat, Int.toNat_of_nonneg (Int.floor_nonneg.2 ha)]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
a : α
ha : 0 ≤ a
⊢ ↑⌊a⌋₊ = ↑⌊a⌋
[PROOFSTEP]
rw [← Nat.cast_floor_eq_int_floor ha, Int.cast_ofNat]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
a : α
ha : 0 ≤ a
⊢ ↑⌈a⌉₊ = ⌈a⌉
[PROOFSTEP]
rw [← Int.ceil_toNat, Int.toNat_of_nonneg (Int.ceil_nonneg ha)]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
inst✝¹ : LinearOrderedRing α
inst✝ : FloorRing α
a : α
ha : 0 ≤ a
⊢ ↑⌈a⌉₊ = ↑⌈a⌉
[PROOFSTEP]
rw [← Nat.cast_ceil_eq_int_ceil ha, Int.cast_ofNat]
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedRing α
⊢ Subsingleton (FloorRing α)
[PROOFSTEP]
refine' ⟨fun H₁ H₂ => _⟩
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedRing α
H₁ H₂ : FloorRing α
⊢ H₁ = H₂
[PROOFSTEP]
have : H₁.floor = H₂.floor := funext fun a => (H₁.gc_coe_floor.u_unique H₂.gc_coe_floor) fun _ => rfl
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedRing α
H₁ H₂ : FloorRing α
this : FloorRing.floor = FloorRing.floor
⊢ H₁ = H₂
[PROOFSTEP]
have : H₁.ceil = H₂.ceil := funext fun a => (H₁.gc_ceil_coe.l_unique H₂.gc_ceil_coe) fun _ => rfl
[GOAL]
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedRing α
H₁ H₂ : FloorRing α
this✝ : FloorRing.floor = FloorRing.floor
this : FloorRing.ceil = FloorRing.ceil
⊢ H₁ = H₂
[PROOFSTEP]
cases H₁
[GOAL]
case mk
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedRing α
H₂ : FloorRing α
floor✝ ceil✝ : α → ℤ
gc_coe_floor✝ : GaloisConnection Int.cast floor✝
gc_ceil_coe✝ : GaloisConnection ceil✝ Int.cast
this✝ : FloorRing.floor = FloorRing.floor
this : FloorRing.ceil = FloorRing.ceil
⊢ { floor := floor✝, ceil := ceil✝, gc_coe_floor := gc_coe_floor✝, gc_ceil_coe := gc_ceil_coe✝ } = H₂
[PROOFSTEP]
cases H₂
[GOAL]
case mk.mk
F : Type u_1
α✝ : Type u_2
β : Type u_3
α : Type u_4
inst✝ : LinearOrderedRing α
floor✝¹ ceil✝¹ : α → ℤ
gc_coe_floor✝¹ : GaloisConnection Int.cast floor✝¹
gc_ceil_coe✝¹ : GaloisConnection ceil✝¹ Int.cast
floor✝ ceil✝ : α → ℤ
gc_coe_floor✝ : GaloisConnection Int.cast floor✝
gc_ceil_coe✝ : GaloisConnection ceil✝ Int.cast
this✝ : FloorRing.floor = FloorRing.floor
this : FloorRing.ceil = FloorRing.ceil
⊢ { floor := floor✝¹, ceil := ceil✝¹, gc_coe_floor := gc_coe_floor✝¹, gc_ceil_coe := gc_ceil_coe✝¹ } =
{ floor := floor✝, ceil := ceil✝, gc_coe_floor := gc_coe_floor✝, gc_ceil_coe := gc_ceil_coe✝ }
[PROOFSTEP]
congr
| {"mathlib_filename": "Mathlib.Algebra.Order.Floor", "llama_tokens": 60693} |
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Units", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Algebra.Order.Group.TypeTags", "llama_tokens": 0} |
|
[GOAL]
R : Type u_1
c₁ c₂ : R
f : Fin 4 → R
⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f) = f
[PROOFSTEP]
ext ⟨_, _ | _ | _ | _ | _ | ⟨⟩⟩
[GOAL]
case h.mk.refl
R : Type u_1
c₁ c₂ : R
f : Fin 4 → R
⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f)
{ val := 3, isLt := (_ : Nat.le (Nat.succ 3) (Nat.succ 3)) } =
f { val := 3, isLt := (_ : Nat.le (Nat.succ 3) (Nat.succ 3)) }
[PROOFSTEP]
rfl
[GOAL]
case h.mk.step.refl
R : Type u_1
c₁ c₂ : R
f : Fin 4 → R
⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f)
{ val := 2, isLt := (_ : Nat.le (Nat.succ 2) (Nat.succ 3)) } =
f { val := 2, isLt := (_ : Nat.le (Nat.succ 2) (Nat.succ 3)) }
[PROOFSTEP]
rfl
[GOAL]
case h.mk.step.step.refl
R : Type u_1
c₁ c₂ : R
f : Fin 4 → R
⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f)
{ val := 1, isLt := (_ : Nat.le (Nat.succ 1) (Nat.succ 3)) } =
f { val := 1, isLt := (_ : Nat.le (Nat.succ 1) (Nat.succ 3)) }
[PROOFSTEP]
rfl
[GOAL]
case h.mk.step.step.step.refl
R : Type u_1
c₁ c₂ : R
f : Fin 4 → R
⊢ (fun a => ![a.re, a.imI, a.imJ, a.imK]) ((fun a => { re := a 0, imI := a 1, imJ := a 2, imK := a 3 }) f)
{ val := 0, isLt := (_ : Nat.le (Nat.succ 0) (Nat.succ 3)) } =
f { val := 0, isLt := (_ : Nat.le (Nat.succ 0) (Nat.succ 3)) }
[PROOFSTEP]
rfl
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ ↑(x + y) = ↑x + ↑y
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(x + y)).re = (↑x + ↑y).re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(x + y)).imI = (↑x + ↑y).imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(x + y)).imJ = (↑x + ↑y).imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(x + y)).imK = (↑x + ↑y).imK
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ ↑(-x) = -↑x
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(-x)).re = (-↑x).re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(-x)).imI = (-↑x).imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(-x)).imJ = (-↑x).imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(-x)).imK = (-↑x).imK
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝⁴ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝³ : SMul S R
inst✝² : SMul T R
s✝ : S
inst✝¹ : SMul S T
inst✝ : IsScalarTower S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ (s • t) • x = s • t • x
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝⁴ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝³ : SMul S R
inst✝² : SMul T R
s✝ : S
inst✝¹ : SMul S T
inst✝ : IsScalarTower S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ ((s • t) • x).re = (s • t • x).re
[PROOFSTEP]
exact smul_assoc _ _ _
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝⁴ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝³ : SMul S R
inst✝² : SMul T R
s✝ : S
inst✝¹ : SMul S T
inst✝ : IsScalarTower S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ ((s • t) • x).imI = (s • t • x).imI
[PROOFSTEP]
exact smul_assoc _ _ _
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝⁴ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝³ : SMul S R
inst✝² : SMul T R
s✝ : S
inst✝¹ : SMul S T
inst✝ : IsScalarTower S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ ((s • t) • x).imJ = (s • t • x).imJ
[PROOFSTEP]
exact smul_assoc _ _ _
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝⁴ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝³ : SMul S R
inst✝² : SMul T R
s✝ : S
inst✝¹ : SMul S T
inst✝ : IsScalarTower S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ ((s • t) • x).imK = (s • t • x).imK
[PROOFSTEP]
exact smul_assoc _ _ _
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝³ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝² : SMul S R
inst✝¹ : SMul T R
s✝ : S
inst✝ : SMulCommClass S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ s • t • x = t • s • x
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝³ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝² : SMul S R
inst✝¹ : SMul T R
s✝ : S
inst✝ : SMulCommClass S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ (s • t • x).re = (t • s • x).re
[PROOFSTEP]
exact smul_comm _ _ _
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝³ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝² : SMul S R
inst✝¹ : SMul T R
s✝ : S
inst✝ : SMulCommClass S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ (s • t • x).imI = (t • s • x).imI
[PROOFSTEP]
exact smul_comm _ _ _
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝³ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝² : SMul S R
inst✝¹ : SMul T R
s✝ : S
inst✝ : SMulCommClass S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ (s • t • x).imJ = (t • s • x).imJ
[PROOFSTEP]
exact smul_comm _ _ _
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝³ : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝² : SMul S R
inst✝¹ : SMul T R
s✝ : S
inst✝ : SMulCommClass S T R
s : S
t : T
x : ℍ[R,c₁,c₂]
⊢ (s • t • x).imK = (t • s • x).imK
[PROOFSTEP]
exact smul_comm _ _ _
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ NatCast.natCast 0 = 0
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
n : ℕ
⊢ IntCast.intCast (Int.negSucc n) = -↑(n + 1)
[PROOFSTEP]
change coe _ = -coe _
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
n : ℕ
⊢ ↑↑(Int.negSucc n) = -↑↑(n + 1)
[PROOFSTEP]
rw [Int.cast_negSucc, coe_neg]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ x✝² * (x✝¹ + x✝) = x✝² * x✝¹ + x✝² * x✝
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝² * (x✝¹ + x✝)).re = (x✝² * x✝¹ + x✝² * x✝).re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝² * (x✝¹ + x✝)).imI = (x✝² * x✝¹ + x✝² * x✝).imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝² * (x✝¹ + x✝)).imJ = (x✝² * x✝¹ + x✝² * x✝).imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝² * (x✝¹ + x✝)).imK = (x✝² * x✝¹ + x✝² * x✝).imK
[PROOFSTEP]
simp
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ x✝².re * (x✝¹.re + x✝.re) + c₁ * x✝².imI * (x✝¹.imI + x✝.imI) + c₂ * x✝².imJ * (x✝¹.imJ + x✝.imJ) -
c₁ * c₂ * x✝².imK * (x✝¹.imK + x✝.imK) =
x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK +
(x✝².re * x✝.re + c₁ * x✝².imI * x✝.imI + c₂ * x✝².imJ * x✝.imJ - c₁ * c₂ * x✝².imK * x✝.imK)
[PROOFSTEP]
ring
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ x✝².re * (x✝¹.imI + x✝.imI) + x✝².imI * (x✝¹.re + x✝.re) - c₂ * x✝².imJ * (x✝¹.imK + x✝.imK) +
c₂ * x✝².imK * (x✝¹.imJ + x✝.imJ) =
x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ +
(x✝².re * x✝.imI + x✝².imI * x✝.re - c₂ * x✝².imJ * x✝.imK + c₂ * x✝².imK * x✝.imJ)
[PROOFSTEP]
ring
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ x✝².re * (x✝¹.imJ + x✝.imJ) + c₁ * x✝².imI * (x✝¹.imK + x✝.imK) + x✝².imJ * (x✝¹.re + x✝.re) -
c₁ * x✝².imK * (x✝¹.imI + x✝.imI) =
x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI +
(x✝².re * x✝.imJ + c₁ * x✝².imI * x✝.imK + x✝².imJ * x✝.re - c₁ * x✝².imK * x✝.imI)
[PROOFSTEP]
ring
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ x✝².re * (x✝¹.imK + x✝.imK) + x✝².imI * (x✝¹.imJ + x✝.imJ) - x✝².imJ * (x✝¹.imI + x✝.imI) +
x✝².imK * (x✝¹.re + x✝.re) =
x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re +
(x✝².re * x✝.imK + x✝².imI * x✝.imJ - x✝².imJ * x✝.imI + x✝².imK * x✝.re)
[PROOFSTEP]
ring
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝² + x✝¹) * x✝ = x✝² * x✝ + x✝¹ * x✝
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ ((x✝² + x✝¹) * x✝).re = (x✝² * x✝ + x✝¹ * x✝).re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ ((x✝² + x✝¹) * x✝).imI = (x✝² * x✝ + x✝¹ * x✝).imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ ((x✝² + x✝¹) * x✝).imJ = (x✝² * x✝ + x✝¹ * x✝).imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ ((x✝² + x✝¹) * x✝).imK = (x✝² * x✝ + x✝¹ * x✝).imK
[PROOFSTEP]
simp
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝².re + x✝¹.re) * x✝.re + c₁ * (x✝².imI + x✝¹.imI) * x✝.imI + c₂ * (x✝².imJ + x✝¹.imJ) * x✝.imJ -
c₁ * c₂ * (x✝².imK + x✝¹.imK) * x✝.imK =
x✝².re * x✝.re + c₁ * x✝².imI * x✝.imI + c₂ * x✝².imJ * x✝.imJ - c₁ * c₂ * x✝².imK * x✝.imK +
(x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK)
[PROOFSTEP]
ring
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝².re + x✝¹.re) * x✝.imI + (x✝².imI + x✝¹.imI) * x✝.re - c₂ * (x✝².imJ + x✝¹.imJ) * x✝.imK +
c₂ * (x✝².imK + x✝¹.imK) * x✝.imJ =
x✝².re * x✝.imI + x✝².imI * x✝.re - c₂ * x✝².imJ * x✝.imK + c₂ * x✝².imK * x✝.imJ +
(x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ)
[PROOFSTEP]
ring
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝².re + x✝¹.re) * x✝.imJ + c₁ * (x✝².imI + x✝¹.imI) * x✝.imK + (x✝².imJ + x✝¹.imJ) * x✝.re -
c₁ * (x✝².imK + x✝¹.imK) * x✝.imI =
x✝².re * x✝.imJ + c₁ * x✝².imI * x✝.imK + x✝².imJ * x✝.re - c₁ * x✝².imK * x✝.imI +
(x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI)
[PROOFSTEP]
ring
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝².re + x✝¹.re) * x✝.imK + (x✝².imI + x✝¹.imI) * x✝.imJ - (x✝².imJ + x✝¹.imJ) * x✝.imI +
(x✝².imK + x✝¹.imK) * x✝.re =
x✝².re * x✝.imK + x✝².imI * x✝.imJ - x✝².imJ * x✝.imI + x✝².imK * x✝.re +
(x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re)
[PROOFSTEP]
ring
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ 0 * x✝ = 0
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (0 * x✝).re = 0.re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (0 * x✝).imI = 0.imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (0 * x✝).imJ = 0.imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (0 * x✝).imK = 0.imK
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ x✝ * 0 = 0
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (x✝ * 0).re = 0.re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (x✝ * 0).imI = 0.imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (x✝ * 0).imJ = 0.imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (x✝ * 0).imK = 0.imK
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ x✝² * x✝¹ * x✝ = x✝² * (x✝¹ * x✝)
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝² * x✝¹ * x✝).re = (x✝² * (x✝¹ * x✝)).re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝² * x✝¹ * x✝).imI = (x✝² * (x✝¹ * x✝)).imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝² * x✝¹ * x✝).imJ = (x✝² * (x✝¹ * x✝)).imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝² * x✝¹ * x✝).imK = (x✝² * (x✝¹ * x✝)).imK
[PROOFSTEP]
simp
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK) * x✝.re +
c₁ * (x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ) * x✝.imI +
c₂ * (x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI) * x✝.imJ -
c₁ * c₂ * (x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re) * x✝.imK =
x✝².re * (x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK) +
c₁ * x✝².imI * (x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ) +
c₂ * x✝².imJ * (x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI) -
c₁ * c₂ * x✝².imK * (x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re)
[PROOFSTEP]
ring
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK) * x✝.imI +
(x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ) * x✝.re -
c₂ * (x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI) * x✝.imK +
c₂ * (x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re) * x✝.imJ =
x✝².re * (x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ) +
x✝².imI * (x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK) -
c₂ * x✝².imJ * (x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re) +
c₂ * x✝².imK * (x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI)
[PROOFSTEP]
ring
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK) * x✝.imJ +
c₁ * (x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ) * x✝.imK +
(x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI) * x✝.re -
c₁ * (x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re) * x✝.imI =
x✝².re * (x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI) +
c₁ * x✝².imI * (x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re) +
x✝².imJ * (x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK) -
c₁ * x✝².imK * (x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ)
[PROOFSTEP]
ring
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝² x✝¹ x✝ : ℍ[R,c₁,c₂]
⊢ (x✝².re * x✝¹.re + c₁ * x✝².imI * x✝¹.imI + c₂ * x✝².imJ * x✝¹.imJ - c₁ * c₂ * x✝².imK * x✝¹.imK) * x✝.imK +
(x✝².re * x✝¹.imI + x✝².imI * x✝¹.re - c₂ * x✝².imJ * x✝¹.imK + c₂ * x✝².imK * x✝¹.imJ) * x✝.imJ -
(x✝².re * x✝¹.imJ + c₁ * x✝².imI * x✝¹.imK + x✝².imJ * x✝¹.re - c₁ * x✝².imK * x✝¹.imI) * x✝.imI +
(x✝².re * x✝¹.imK + x✝².imI * x✝¹.imJ - x✝².imJ * x✝¹.imI + x✝².imK * x✝¹.re) * x✝.re =
x✝².re * (x✝¹.re * x✝.imK + x✝¹.imI * x✝.imJ - x✝¹.imJ * x✝.imI + x✝¹.imK * x✝.re) +
x✝².imI * (x✝¹.re * x✝.imJ + c₁ * x✝¹.imI * x✝.imK + x✝¹.imJ * x✝.re - c₁ * x✝¹.imK * x✝.imI) -
x✝².imJ * (x✝¹.re * x✝.imI + x✝¹.imI * x✝.re - c₂ * x✝¹.imJ * x✝.imK + c₂ * x✝¹.imK * x✝.imJ) +
x✝².imK * (x✝¹.re * x✝.re + c₁ * x✝¹.imI * x✝.imI + c₂ * x✝¹.imJ * x✝.imJ - c₁ * c₂ * x✝¹.imK * x✝.imK)
[PROOFSTEP]
ring
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ 1 * x✝ = x✝
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (1 * x✝).re = x✝.re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (1 * x✝).imI = x✝.imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (1 * x✝).imJ = x✝.imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (1 * x✝).imK = x✝.imK
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ x✝ * 1 = x✝
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (x✝ * 1).re = x✝.re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (x✝ * 1).imI = x✝.imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (x✝ * 1).imJ = x✝.imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : AddCommGroupWithOne ℍ[R,c₁,c₂] := inferInstanceAs (AddCommGroupWithOne ℍ[R,c₁,c₂])
x✝ : ℍ[R,c₁,c₂]
⊢ (x✝ * 1).imK = x✝.imK
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ ↑(x * y) = ↑x * ↑y
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(x * y)).re = (↑x * ↑y).re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(x * y)).imI = (↑x * ↑y).imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(x * y)).imJ = (↑x * ↑y).imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (↑(x * y)).imK = (↑x * ↑y).imK
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
⊢ (fun s => ↑(↑(algebraMap S R) s)) 1 = 1
[PROOFSTEP]
simp only [map_one, coe_one]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y✝ z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
x y : S
⊢ OneHom.toFun { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) } (x * y) =
OneHom.toFun { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) } x *
OneHom.toFun { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) } y
[PROOFSTEP]
simp only [map_mul, coe_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) })
0 =
0
[PROOFSTEP]
simp only [map_zero, coe_zero]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y✝ z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
x y : S
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) })
y
[PROOFSTEP]
simp only [map_add, coe_add]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ ↑{
toMonoidHom :=
{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x =
x *
↑{
toMonoidHom :=
{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ (↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x).re =
(x *
↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s).re
[PROOFSTEP]
simp [Algebra.commutes]
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ (↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x).imI =
(x *
↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s).imI
[PROOFSTEP]
simp [Algebra.commutes]
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ (↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x).imJ =
(x *
↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s).imJ
[PROOFSTEP]
simp [Algebra.commutes]
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ (↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x).imK =
(x *
↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s).imK
[PROOFSTEP]
simp [Algebra.commutes]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ s • x =
↑{
toMonoidHom :=
{ toOneHom := { toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ (s • x).re =
(↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x).re
[PROOFSTEP]
simp [Algebra.smul_def]
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ (s • x).imI =
(↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x).imI
[PROOFSTEP]
simp [Algebra.smul_def]
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ (s • x).imJ =
(↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x).imJ
[PROOFSTEP]
simp [Algebra.smul_def]
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁ c₂ r x✝ y z : R
a b c : ℍ[R,c₁,c₂]
inst✝¹ : CommSemiring S
inst✝ : Algebra S R
s : S
x : (fun x => ℍ[R,c₁,c₂]) s
⊢ (s • x).imK =
(↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := fun s => ↑(↑(algebraMap S R) s), map_one' := (_ : ↑(↑(algebraMap S R) 1) = 1) },
map_mul' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x * y)) = ↑(↑(algebraMap S R) x) * ↑(↑(algebraMap S R) y)) },
map_zero' := (_ : ↑(↑(algebraMap S R) 0) = 0),
map_add' :=
(_ : ∀ (x y : S), ↑(↑(algebraMap S R) (x + y)) = ↑(↑(algebraMap S R) x) + ↑(↑(algebraMap S R) y)) }
s *
x).imK
[PROOFSTEP]
simp [Algebra.smul_def]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝¹ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
inst✝ : StrongRankCondition R
⊢ Module.rank R ℍ[R,c₁,c₂] = 4
[PROOFSTEP]
rw [rank_eq_card_basis (basisOneIJK c₁ c₂), Fintype.card_fin]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝¹ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
inst✝ : StrongRankCondition R
⊢ ↑4 = 4
[PROOFSTEP]
norm_num
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝¹ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
inst✝ : StrongRankCondition R
⊢ FiniteDimensional.finrank R ℍ[R,c₁,c₂] = 4
[PROOFSTEP]
rw [FiniteDimensional.finrank, rank_eq_four, Cardinal.toNat_ofNat]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ a * ↑r = r • a
[PROOFSTEP]
rw [← coe_commutes, coe_mul_eq_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ x • ↑y = ↑(x * y)
[PROOFSTEP]
rw [coe_mul, coe_mul_eq_smul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x✝ y z : R
a b c x : ℍ[R,c₁,c₂]
⊢ star (star x) = x
[PROOFSTEP]
simp [Star.star]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ star (a * b) = star b * star a
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ (star (a * b)).re = (star b * star a).re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ (star (a * b)).imI = (star b * star a).imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ (star (a * b)).imJ = (star b * star a).imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ (star (a * b)).imK = (star b * star a).imK
[PROOFSTEP]
simp
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ a.re * b.re + c₁ * a.imI * b.imI + c₂ * a.imJ * b.imJ - c₁ * c₂ * a.imK * b.imK =
b.re * a.re + c₁ * b.imI * a.imI + c₂ * b.imJ * a.imJ - c₁ * c₂ * b.imK * a.imK
[PROOFSTEP]
ring
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ -(c₂ * a.imK * b.imJ) + (c₂ * a.imJ * b.imK - (a.re * b.imI + a.imI * b.re)) =
-(b.re * a.imI) + -(b.imI * a.re) - c₂ * b.imJ * a.imK + c₂ * b.imK * a.imJ
[PROOFSTEP]
ring
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ c₁ * a.imK * b.imI - (a.re * b.imJ + c₁ * a.imI * b.imK + a.imJ * b.re) =
-(b.re * a.imJ) + c₁ * b.imI * a.imK + -(b.imJ * a.re) - c₁ * b.imK * a.imI
[PROOFSTEP]
ring
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ -(a.imK * b.re) + (a.imJ * b.imI - (a.re * b.imK + a.imI * b.imJ)) =
-(b.re * a.imK) + b.imI * a.imJ - b.imJ * a.imI + -(b.imK * a.re)
[PROOFSTEP]
ring
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ star (a + b) = star a + star b
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ (star (a + b)).re = (star a + star b).re
[PROOFSTEP]
simp [add_comm]
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ (star (a + b)).imI = (star a + star b).imI
[PROOFSTEP]
simp [add_comm]
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ (star (a + b)).imJ = (star a + star b).imJ
[PROOFSTEP]
simp [add_comm]
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a✝ b✝ c a b : ℍ[R,c₁,c₂]
⊢ (star (a + b)).imK = (star a + star b).imK
[PROOFSTEP]
simp [add_comm]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ a + star a = ↑(2 * a.re)
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (a + star a).re = (↑(2 * a.re)).re
[PROOFSTEP]
simp [two_mul]
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (a + star a).imI = (↑(2 * a.re)).imI
[PROOFSTEP]
simp [two_mul]
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (a + star a).imJ = (↑(2 * a.re)).imJ
[PROOFSTEP]
simp [two_mul]
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (a + star a).imK = (↑(2 * a.re)).imK
[PROOFSTEP]
simp [two_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ a + star a = 2 * ↑a.re
[PROOFSTEP]
simp only [self_add_star', two_mul, coe_add]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ star a + a = ↑(2 * a.re)
[PROOFSTEP]
rw [add_comm, self_add_star']
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ star a + a = 2 * ↑a.re
[PROOFSTEP]
rw [add_comm, self_add_star]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ Commute (star a) a
[PROOFSTEP]
rw [a.star_eq_two_re_sub]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ Commute (↑(2 * a.re) - a) a
[PROOFSTEP]
exact (coe_commute (2 * a.re) a).sub_left (Commute.refl a)
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ star ↑x = ↑x
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (star ↑x).re = (↑x).re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (star ↑x).imI = (↑x).imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (star ↑x).imJ = (↑x).imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (star ↑x).imK = (↑x).imK
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x✝ y z : R
a✝ b c a : ℍ[R,c₁,c₂]
x : R
h : a = ↑x
⊢ a = ↑a.re
[PROOFSTEP]
rw [h, coe_re]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁✝ c₂✝ r x y z : R
a✝ b c : ℍ[R,c₁✝,c₂✝]
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
c₁ c₂ : R
a : ℍ[R,c₁,c₂]
⊢ star a = a ↔ a = ↑a.re
[PROOFSTEP]
simp [QuaternionAlgebra.ext_iff, neg_eq_iff_add_eq_zero, add_self_eq_zero]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝² : CommRing R
c₁✝ c₂✝ r x y z : R
a✝ b c : ℍ[R,c₁✝,c₂✝]
inst✝¹ : NoZeroDivisors R
inst✝ : CharZero R
c₁ c₂ : R
a : ℍ[R,c₁,c₂]
⊢ star a = -a ↔ a.re = 0
[PROOFSTEP]
simp [QuaternionAlgebra.ext_iff, eq_neg_iff_add_eq_zero]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ star a * a = ↑(star a * a).re
[PROOFSTEP]
ext
[GOAL]
case re
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (star a * a).re = (↑(star a * a).re).re
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (star a * a).imI = (↑(star a * a).re).imI
[PROOFSTEP]
simp
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (star a * a).imJ = (↑(star a * a).re).imJ
[PROOFSTEP]
simp
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ (star a * a).imK = (↑(star a * a).re).imK
[PROOFSTEP]
simp
[GOAL]
case imI
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ a.re * a.imI + -(a.imI * a.re) + c₂ * a.imJ * a.imK + -(c₂ * a.imK * a.imJ) = 0
[PROOFSTEP]
ring
[GOAL]
case imJ
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ a.re * a.imJ + -(c₁ * a.imI * a.imK) + -(a.imJ * a.re) + c₁ * a.imK * a.imI = 0
[PROOFSTEP]
ring
[GOAL]
case imK
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ a.re * a.imK + -(a.imI * a.imJ) + a.imJ * a.imI + -(a.imK * a.re) = 0
[PROOFSTEP]
ring
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ a * star a = ↑(a * star a).re
[PROOFSTEP]
rw [← star_comm_self']
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x y z : R
a b c : ℍ[R,c₁,c₂]
⊢ star a * a = ↑(star a * a).re
[PROOFSTEP]
exact a.star_mul_eq_coe
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r x✝ y✝ z : R
a b c : ℍ[R,c₁,c₂]
src✝ : ℍ[R,c₁,c₂] ≃+ ℍ[R,c₁,c₂]ᵐᵒᵖ := AddEquiv.trans starAddEquiv opAddEquiv
x y : ℍ[R,c₁,c₂]
⊢ Equiv.toFun
{ toFun := op ∘ star, invFun := star ∘ unop, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(x * y) =
Equiv.toFun
{ toFun := op ∘ star, invFun := star ∘ unop, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
x *
Equiv.toFun
{ toFun := op ∘ star, invFun := star ∘ unop, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
y
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
c₁ c₂ r✝ x y z : R
a b c : ℍ[R,c₁,c₂]
src✝ : ℍ[R,c₁,c₂] ≃+ ℍ[R,c₁,c₂]ᵐᵒᵖ := AddEquiv.trans starAddEquiv opAddEquiv
r : R
⊢ Equiv.toFun
{ toFun := op ∘ star, invFun := star ∘ unop, left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(↑(algebraMap R ℍ[R,c₁,c₂]) r) =
↑(algebraMap R ℍ[R,c₁,c₂]ᵐᵒᵖ) r
[PROOFSTEP]
simp
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ a.re * b.re + -1 * a.imI * b.imI + -1 * a.imJ * b.imJ - -1 * -1 * a.imK * b.imK =
a.re * b.re - a.imI * b.imI - a.imJ * b.imJ - a.imK * b.imK
[PROOFSTEP]
simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ a.re * b.imI + a.imI * b.re - -1 * a.imJ * b.imK + -1 * a.imK * b.imJ =
a.re * b.imI + a.imI * b.re + a.imJ * b.imK - a.imK * b.imJ
[PROOFSTEP]
simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ a.re * b.imJ + -1 * a.imI * b.imK + a.imJ * b.re - -1 * a.imK * b.imI =
a.re * b.imJ - a.imI * b.imK + a.imJ * b.re + a.imK * b.imI
[PROOFSTEP]
simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ a.re * b.imK + a.imI * b.imJ - a.imJ * b.imI + a.imK * b.re =
a.re * b.imK + a.imI * b.imJ - a.imJ * b.imI + a.imK * b.re
[PROOFSTEP]
simp only [one_mul, neg_mul, sub_eq_add_neg, neg_neg]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ (fun a => (a * star a).re) 0 = 0
[PROOFSTEP]
simp only [star_zero, zero_mul, zero_re]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } 1 = 1
[PROOFSTEP]
simp only [star_one, one_mul, one_re]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x✝ y✝ z : R
a b c x y : ℍ[R]
⊢ ↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } (x * y)) =
↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } x *
ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } y)
[PROOFSTEP]
conv_lhs =>
rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe, coe_commutes, ← mul_assoc,
x.mul_star_eq_coe, ← coe_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x✝ y✝ z : R
a b c x y : ℍ[R]
| ↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } (x * y))
[PROOFSTEP]
rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe, coe_commutes, ← mul_assoc,
x.mul_star_eq_coe, ← coe_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x✝ y✝ z : R
a b c x y : ℍ[R]
| ↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } (x * y))
[PROOFSTEP]
rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe, coe_commutes, ← mul_assoc,
x.mul_star_eq_coe, ← coe_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x✝ y✝ z : R
a b c x y : ℍ[R]
| ↑(ZeroHom.toFun { toFun := fun a => (a * star a).re, map_zero' := (_ : (0 * star 0).re = 0) } (x * y))
[PROOFSTEP]
rw [← mul_star_eq_coe, star_mul, mul_assoc, ← mul_assoc y, y.mul_star_eq_coe, coe_commutes, ← mul_assoc,
x.mul_star_eq_coe, ← coe_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ ↑normSq a = a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2
[PROOFSTEP]
simp only [normSq_def, sq, mul_neg, sub_neg_eq_add, mul_re, star_re, star_imI, star_imJ, star_imK]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ ↑normSq ↑x = x ^ 2
[PROOFSTEP]
rw [normSq_def, star_coe, ← coe_mul, coe_re, sq]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ ↑normSq (star a) = ↑normSq a
[PROOFSTEP]
simp [normSq_def']
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
n : ℕ
⊢ ↑normSq ↑n = ↑n ^ 2
[PROOFSTEP]
rw [← coe_nat_cast, normSq_coe]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z✝ : R
a b c : ℍ[R]
z : ℤ
⊢ ↑normSq ↑z = ↑z ^ 2
[PROOFSTEP]
rw [← coe_int_cast, normSq_coe]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ ↑normSq (-a) = ↑normSq a
[PROOFSTEP]
simp only [normSq_def, star_neg, neg_mul_neg]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ a * star a = ↑(↑normSq a)
[PROOFSTEP]
rw [mul_star_eq_coe, normSq_def]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ star a * a = ↑(↑normSq a)
[PROOFSTEP]
rw [star_comm_self, self_mul_star]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ im a ^ 2 = -↑(↑normSq (im a))
[PROOFSTEP]
simp_rw [sq, ← star_mul_self, im_star, neg_mul, neg_neg]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a b c : ℍ[R]
⊢ ↑(↑normSq (a + b)) = ↑(↑normSq a) + a * star b + b * star a + ↑(↑normSq b)
[PROOFSTEP]
simp only [star_add, ← self_mul_star, mul_add, add_mul, add_assoc, add_left_comm]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r✝ x y z : R
a b c : ℍ[R]
r : R
q : ℍ[R]
⊢ ↑normSq (r • q) = r ^ 2 * ↑normSq q
[PROOFSTEP]
simp only [normSq_def', smul_re, smul_imI, smul_imJ, smul_imK, mul_pow, mul_add, smul_eq_mul]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a✝ b✝ c a b : ℍ[R]
⊢ ↑normSq (a + b) = ↑normSq a + (a * star b).re + ((b * star a).re + ↑normSq b)
[PROOFSTEP]
simp_rw [normSq_def, star_add, add_mul, mul_add, add_re]
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a✝ b✝ c a b : ℍ[R]
⊢ ↑normSq a + (a * star b).re + ((b * star a).re + ↑normSq b) =
↑normSq a + ↑normSq b + ((a * star b).re + (b * star a).re)
[PROOFSTEP]
abel
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a✝ b✝ c a b : ℍ[R]
⊢ ↑normSq a + (a * star b).re + ((b * star a).re + ↑normSq b) =
↑normSq a + ↑normSq b + ((a * star b).re + (b * star a).re)
[PROOFSTEP]
abel
[GOAL]
S : Type u_1
T : Type u_2
R : Type u_3
inst✝ : CommRing R
r x y z : R
a✝ b✝ c a b : ℍ[R]
⊢ ↑normSq a + ↑normSq b + ((a * star b).re + (b * star a).re) = ↑normSq a + ↑normSq b + 2 * (a * star b).re
[PROOFSTEP]
rw [← add_re, ← star_mul_star a b, self_add_star', coe_re]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
⊢ ↑normSq a = 0 ↔ a = 0
[PROOFSTEP]
refine' ⟨fun h => _, fun h => h.symm ▸ normSq.map_zero⟩
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : ↑normSq a = 0
⊢ a = 0
[PROOFSTEP]
rw [normSq_def', add_eq_zero_iff', add_eq_zero_iff', add_eq_zero_iff'] at h
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : ((a.re ^ 2 = 0 ∧ a.imI ^ 2 = 0) ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0
⊢ a = 0
case ha
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.re ^ 2
case hb
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.imI ^ 2
case ha
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2
case hb
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.imJ ^ 2
case ha
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0
⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2
case hb
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0
⊢ 0 ≤ a.imK ^ 2
[PROOFSTEP]
exact ext a 0 (pow_eq_zero h.1.1.1) (pow_eq_zero h.1.1.2) (pow_eq_zero h.1.2) (pow_eq_zero h.2)
[GOAL]
case ha
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.re ^ 2
case hb
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.imI ^ 2
case ha
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2
case hb
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.imJ ^ 2
case ha
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0
⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2
case hb
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0
⊢ 0 ≤ a.imK ^ 2
[PROOFSTEP]
all_goals apply_rules [sq_nonneg, add_nonneg]
[GOAL]
case ha
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.re ^ 2
[PROOFSTEP]
apply_rules [sq_nonneg, add_nonneg]
[GOAL]
case hb
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : (a.re ^ 2 + a.imI ^ 2 = 0 ∧ a.imJ ^ 2 = 0) ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.imI ^ 2
[PROOFSTEP]
apply_rules [sq_nonneg, add_nonneg]
[GOAL]
case ha
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2
[PROOFSTEP]
apply_rules [sq_nonneg, add_nonneg]
[GOAL]
case hb
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 = 0 ∧ a.imK ^ 2 = 0
⊢ 0 ≤ a.imJ ^ 2
[PROOFSTEP]
apply_rules [sq_nonneg, add_nonneg]
[GOAL]
case ha
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0
⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2
[PROOFSTEP]
apply_rules [sq_nonneg, add_nonneg]
[GOAL]
case hb
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
h : a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2 = 0
⊢ 0 ≤ a.imK ^ 2
[PROOFSTEP]
apply_rules [sq_nonneg, add_nonneg]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
⊢ 0 ≤ ↑normSq a
[PROOFSTEP]
rw [normSq_def']
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
⊢ 0 ≤ a.re ^ 2 + a.imI ^ 2 + a.imJ ^ 2 + a.imK ^ 2
[PROOFSTEP]
apply_rules [sq_nonneg, add_nonneg]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a✝ a b : ℍ[R]
hab : a * b = 0
⊢ ↑normSq a * ↑normSq b = 0
[PROOFSTEP]
rwa [← map_mul, normSq_eq_zero]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
⊢ a ^ 2 = ↑(↑normSq a) ↔ a = ↑a.re
[PROOFSTEP]
rw [← star_eq_self, ← star_mul_self, sq, mul_eq_mul_right_iff, eq_comm]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
⊢ star a = a ∨ a = 0 ↔ star a = a
[PROOFSTEP]
exact or_iff_left_of_imp fun ha ↦ ha.symm ▸ star_zero _
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
⊢ a ^ 2 = -↑(↑normSq a) ↔ a.re = 0
[PROOFSTEP]
simp_rw [← star_eq_neg]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
⊢ a ^ 2 = -↑(↑normSq a) ↔ star a = -a
[PROOFSTEP]
obtain rfl | hq0 := eq_or_ne a 0
[GOAL]
case inl
R : Type u_1
inst✝ : LinearOrderedCommRing R
⊢ 0 ^ 2 = -↑(↑normSq 0) ↔ star 0 = -0
[PROOFSTEP]
simp
[GOAL]
case inr
R : Type u_1
inst✝ : LinearOrderedCommRing R
a : ℍ[R]
hq0 : a ≠ 0
⊢ a ^ 2 = -↑(↑normSq a) ↔ star a = -a
[PROOFSTEP]
rw [← star_mul_self, ← mul_neg, ← neg_sq, sq, mul_left_inj' (neg_ne_zero.mpr hq0), eq_comm]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
src✝ : Nontrivial ℍ[R] := instNontrivial
⊢ MonoidWithZero ℍ[R]
[PROOFSTEP]
infer_instance
[GOAL]
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
src✝¹ : Nontrivial ℍ[R] := instNontrivial
src✝ : MonoidWithZero ℍ[R] := inferInstance
⊢ 0⁻¹ = 0
[PROOFSTEP]
rw [instInv_inv, star_zero, smul_zero]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedField R
a✝ b : ℍ[R]
src✝¹ : Nontrivial ℍ[R] := instNontrivial
src✝ : MonoidWithZero ℍ[R] := inferInstance
a : ℍ[R]
ha : a ≠ 0
⊢ a * a⁻¹ = 1
[PROOFSTEP]
letI : Semiring ℍ[R] := inferInstanceAs (Semiring ℍ[R,-1,-1])
[GOAL]
R : Type u_1
inst✝ : LinearOrderedField R
a✝ b : ℍ[R]
src✝¹ : Nontrivial ℍ[R] := instNontrivial
src✝ : MonoidWithZero ℍ[R] := inferInstance
a : ℍ[R]
ha : a ≠ 0
this : Semiring ℍ[R] := inferInstanceAs (Semiring ℍ[R,-1,-1])
⊢ a * a⁻¹ = 1
[PROOFSTEP]
rw [instInv_inv, Algebra.mul_smul_comm (normSq a)⁻¹ a (star a), self_mul_star, smul_coe,
inv_mul_cancel (normSq_ne_zero.2 ha), coe_one]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero
src✝ : Ring ℍ[R] := instRing
n : ℤ
d : ℕ
hd : d ≠ 0
h : Nat.coprime (Int.natAbs n) d
⊢ ↑(Rat.mk' n d) = ↑n * (↑d)⁻¹
[PROOFSTEP]
rw [← coe_rat_cast, Rat.cast_mk', coe_mul, coe_int_cast, coe_inv, coe_nat_cast]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero
src✝ : Ring ℍ[R] := instRing
q : ℚ
x : ℍ[R]
⊢ (fun x x_1 => x • x_1) q x = ↑q * x
[PROOFSTEP]
rw [← coe_rat_cast, coe_mul_eq_smul]
[GOAL]
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero
src✝ : Ring ℍ[R] := instRing
q : ℚ
x : ℍ[R]
⊢ (fun x x_1 => x • x_1) q x = ↑q • x
[PROOFSTEP]
ext
[GOAL]
case a
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero
src✝ : Ring ℍ[R] := instRing
q : ℚ
x : ℍ[R]
⊢ ((fun x x_1 => x • x_1) q x).re = (↑q • x).re
[PROOFSTEP]
exact DivisionRing.qsmul_eq_mul' _ _
[GOAL]
case a
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero
src✝ : Ring ℍ[R] := instRing
q : ℚ
x : ℍ[R]
⊢ ((fun x x_1 => x • x_1) q x).imI = (↑q • x).imI
[PROOFSTEP]
exact DivisionRing.qsmul_eq_mul' _ _
[GOAL]
case a
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero
src✝ : Ring ℍ[R] := instRing
q : ℚ
x : ℍ[R]
⊢ ((fun x x_1 => x • x_1) q x).imJ = (↑q • x).imJ
[PROOFSTEP]
exact DivisionRing.qsmul_eq_mul' _ _
[GOAL]
case a
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
src✝¹ : GroupWithZero ℍ[R] := instGroupWithZero
src✝ : Ring ℍ[R] := instRing
q : ℚ
x : ℍ[R]
⊢ ((fun x x_1 => x • x_1) q x).imK = (↑q • x).imK
[PROOFSTEP]
exact DivisionRing.qsmul_eq_mul' _ _
[GOAL]
R : Type u_1
inst✝ : LinearOrderedField R
a b : ℍ[R]
q : ℚ
⊢ ↑(↑normSq ↑q) = ↑q ^ 2
[PROOFSTEP]
rw [← coe_rat_cast, normSq_coe, coe_pow]
[GOAL]
R : Type u_1
c₁ c₂ : R
inst✝ : Infinite R
⊢ 1 ≤ 4
[PROOFSTEP]
simp
[GOAL]
R : Type u_1
c₁ c₂ : R
⊢ #ℍ[R,c₁,c₂] = #R ^ 4
[PROOFSTEP]
rw [mk_congr (QuaternionAlgebra.equivProd c₁ c₂)]
[GOAL]
R : Type u_1
c₁ c₂ : R
⊢ #(R × R × R × R) = #R ^ 4
[PROOFSTEP]
simp only [mk_prod, lift_id]
[GOAL]
R : Type u_1
c₁ c₂ : R
⊢ #R * (#R * (#R * #R)) = #R ^ 4
[PROOFSTEP]
ring
[GOAL]
R : Type u_1
c₁ c₂ : R
inst✝ : Infinite R
⊢ #ℍ[R,c₁,c₂] = #R
[PROOFSTEP]
rw [mk_quaternionAlgebra, pow_four]
[GOAL]
R : Type u_1
c₁ c₂ : R
⊢ #↑Set.univ = #R ^ 4
[PROOFSTEP]
rw [mk_univ, mk_quaternionAlgebra]
[GOAL]
R : Type u_1
c₁ c₂ : R
inst✝ : Infinite R
⊢ #↑Set.univ = #R
[PROOFSTEP]
rw [mk_univ_quaternionAlgebra, pow_four]
| {"mathlib_filename": "Mathlib.Algebra.Quaternion", "llama_tokens": 38064} |
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.ToMulBot", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
N : Type u_4
inst✝² : OrderedCommMonoid α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : OrderedCommMonoid β
x y : Lex (α × β)
hxy✝ : x ≤ y
z : Lex (α × β)
hxy : x.fst = y.fst ∧ x.snd ≤ y.snd
⊢ (z.fst * x.fst, z.snd * x.snd).fst = (z.fst * y.fst, z.snd * y.snd).fst
[PROOFSTEP]
rw [hxy.1]
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Prod", "llama_tokens": 219} |
[GOAL]
α : Type u_1
inst✝¹ : PartialOrder α
inst✝ : NoMaxOrder α
a : α
⊢ NoMaxOrder ↑(Ici a)
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
inst✝ : ConditionallyCompleteLinearOrder α
a : α
h : sSup ∅ ≤ a
src✝¹ : OrderBot { x // a ≤ x } := orderBot
src✝ : ConditionallyCompleteLinearOrder { x // a ≤ x } := Nonneg.conditionallyCompleteLinearOrder
⊢ ↑(if ht : sSup (Subtype.val '' ∅) ∈ Ici a then { val := sSup (Subtype.val '' ∅), property := ht } else default) = ↑⊥
[PROOFSTEP]
rw [bot_eq]
[GOAL]
α : Type u_1
inst✝ : ConditionallyCompleteLinearOrder α
a : α
h : sSup ∅ ≤ a
src✝¹ : OrderBot { x // a ≤ x } := orderBot
src✝ : ConditionallyCompleteLinearOrder { x // a ≤ x } := Nonneg.conditionallyCompleteLinearOrder
⊢ ↑(if ht : sSup (Subtype.val '' ∅) ∈ Ici a then { val := sSup (Subtype.val '' ∅), property := ht } else default) =
↑{ val := a, property := (_ : a ≤ a) }
[PROOFSTEP]
cases' h.lt_or_eq with h2 h2
[GOAL]
case inl
α : Type u_1
inst✝ : ConditionallyCompleteLinearOrder α
a : α
h : sSup ∅ ≤ a
src✝¹ : OrderBot { x // a ≤ x } := orderBot
src✝ : ConditionallyCompleteLinearOrder { x // a ≤ x } := Nonneg.conditionallyCompleteLinearOrder
h2 : sSup ∅ < a
⊢ ↑(if ht : sSup (Subtype.val '' ∅) ∈ Ici a then { val := sSup (Subtype.val '' ∅), property := ht } else default) =
↑{ val := a, property := (_ : a ≤ a) }
[PROOFSTEP]
simp [h2.not_le]
[GOAL]
case inr
α : Type u_1
inst✝ : ConditionallyCompleteLinearOrder α
a : α
h : sSup ∅ ≤ a
src✝¹ : OrderBot { x // a ≤ x } := orderBot
src✝ : ConditionallyCompleteLinearOrder { x // a ≤ x } := Nonneg.conditionallyCompleteLinearOrder
h2 : sSup ∅ = a
⊢ ↑(if ht : sSup (Subtype.val '' ∅) ∈ Ici a then { val := sSup (Subtype.val '' ∅), property := ht } else default) =
↑{ val := a, property := (_ : a ≤ a) }
[PROOFSTEP]
simp [h2]
[GOAL]
α : Type u_1
inst✝ : OrderedSemiring α
src✝¹ : One { x // 0 ≤ x } := one
src✝ : OrderedAddCommMonoid { x // 0 ≤ x } := orderedAddCommMonoid
⊢ NatCast.natCast 0 = 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : OrderedSemiring α
src✝¹ : One { x // 0 ≤ x } := one
src✝ : OrderedAddCommMonoid { x // 0 ≤ x } := orderedAddCommMonoid
x✝ : ℕ
⊢ NatCast.natCast (x✝ + 1) = NatCast.natCast x✝ + 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : OrderedSemiring α
src✝¹ : One { x // 0 ≤ x } := one
src✝ : OrderedAddCommMonoid { x // 0 ≤ x } := orderedAddCommMonoid
x✝ : ℕ
⊢ { val := ↑x✝ + 1, property := (_ : (fun x => 0 ≤ x) (↑x✝ + 1)) } = { val := ↑x✝, property := (_ : 0 ≤ ↑x✝) } + 1
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝ : OrderedSemiring α
⊢ MonoidWithZero { x // 0 ≤ x }
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
inst✝ : OrderedCommSemiring α
⊢ CommMonoidWithZero { x // 0 ≤ x }
[PROOFSTEP]
infer_instance
[GOAL]
α : Type u_1
inst✝¹ : OrderedCommRing α
inst✝ : NoZeroDivisors α
src✝¹ : CanonicallyOrderedAddMonoid { x // 0 ≤ x } := canonicallyOrderedAddMonoid
src✝ : OrderedCommSemiring { x // 0 ≤ x } := orderedCommSemiring
⊢ ∀ {a b : { x // 0 ≤ x }}, a * b = 0 → a = 0 ∨ b = 0
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩
[GOAL]
case mk.mk
α : Type u_1
inst✝¹ : OrderedCommRing α
inst✝ : NoZeroDivisors α
src✝¹ : CanonicallyOrderedAddMonoid { x // 0 ≤ x } := canonicallyOrderedAddMonoid
src✝ : OrderedCommSemiring { x // 0 ≤ x } := orderedCommSemiring
a : α
ha : 0 ≤ a
b : α
hb : 0 ≤ b
⊢ { val := a, property := ha } * { val := b, property := hb } = 0 →
{ val := a, property := ha } = 0 ∨ { val := b, property := hb } = 0
[PROOFSTEP]
simp only [mk_mul_mk, mk_eq_zero, mul_eq_zero, imp_self]
[GOAL]
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
h : 0 ≤ a
⊢ toNonneg a = { val := a, property := h }
[PROOFSTEP]
simp [toNonneg, h]
[GOAL]
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : α
b : { x // 0 ≤ x }
⊢ toNonneg a ≤ b ↔ a ≤ ↑b
[PROOFSTEP]
cases' b with b hb
[GOAL]
case mk
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a b : α
hb : 0 ≤ b
⊢ toNonneg a ≤ { val := b, property := hb } ↔ a ≤ ↑{ val := b, property := hb }
[PROOFSTEP]
simp [toNonneg, hb]
[GOAL]
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
a : { x // 0 ≤ x }
b : α
⊢ a < toNonneg b ↔ ↑a < b
[PROOFSTEP]
cases' a with a ha
[GOAL]
case mk
α : Type u_1
inst✝¹ : Zero α
inst✝ : LinearOrder α
b a : α
ha : 0 ≤ a
⊢ { val := a, property := ha } < toNonneg b ↔ ↑{ val := a, property := ha } < b
[PROOFSTEP]
simp [toNonneg, ha.not_lt]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
⊢ ∀ (a b c : { x // 0 ≤ x }), a - b ≤ c ↔ a ≤ c + b
[PROOFSTEP]
rintro ⟨a, ha⟩ ⟨b, hb⟩ ⟨c, hc⟩
[GOAL]
case mk.mk.mk
α : Type u_1
inst✝ : LinearOrderedRing α
a : α
ha : 0 ≤ a
b : α
hb : 0 ≤ b
c : α
hc : 0 ≤ c
⊢ { val := a, property := ha } - { val := b, property := hb } ≤ { val := c, property := hc } ↔
{ val := a, property := ha } ≤ { val := c, property := hc } + { val := b, property := hb }
[PROOFSTEP]
simp only [sub_le_iff_le_add, Subtype.mk_le_mk, mk_sub_mk, mk_add_mk, toNonneg_le, Subtype.coe_mk]
| {"mathlib_filename": "Mathlib.Algebra.Order.Nonneg.Ring", "llama_tokens": 2331} |
[GOAL]
α : Type u
inst✝³ : OrderedCancelCommMonoid α
β : Type u_1
inst✝² : One β
inst✝¹ : Mul β
inst✝ : Pow β ℕ
f : β → α
hf : Injective f
one : f 1 = 1
mul : ∀ (x y : β), f (x * y) = f x * f y
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
src✝ : OrderedCommMonoid β := orderedCommMonoid f hf one mul npow
a b c : β
bc : f (a * b) ≤ f (a * c)
⊢ f a * f b ≤ f a * f c
[PROOFSTEP]
rwa [← mul, ← mul]
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Cancel.Basic", "llama_tokens": 222} |
[GOAL]
α : Type u
inst✝³ : MulOneClass α
inst✝² : Preorder α
inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ExistsMulOfLE α
a b : α
h : a < b
⊢ ∃ c, 1 < c ∧ a * c = b
[PROOFSTEP]
obtain ⟨c, rfl⟩ := exists_mul_of_le h.le
[GOAL]
case intro
α : Type u
inst✝³ : MulOneClass α
inst✝² : Preorder α
inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ExistsMulOfLE α
a c : α
h : a < a * c
⊢ ∃ c_1, 1 < c_1 ∧ a * c_1 = a * c
[PROOFSTEP]
exact ⟨c, one_lt_of_lt_mul_right h, rfl⟩
[GOAL]
α : Type u
inst✝⁵ : LinearOrder α
inst✝⁴ : DenselyOrdered α
inst✝³ : Monoid α
inst✝² : ExistsMulOfLE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
h : ∀ (ε : α), 1 < ε → a ≤ b * ε
x : α
hxb : b < x
⊢ a ≤ x
[PROOFSTEP]
obtain ⟨ε, rfl⟩ := exists_mul_of_le hxb.le
[GOAL]
case intro
α : Type u
inst✝⁵ : LinearOrder α
inst✝⁴ : DenselyOrdered α
inst✝³ : Monoid α
inst✝² : ExistsMulOfLE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
h : ∀ (ε : α), 1 < ε → a ≤ b * ε
ε : α
hxb : b < b * ε
⊢ a ≤ b * ε
[PROOFSTEP]
exact h _ ((lt_mul_iff_one_lt_right' b).1 hxb)
[GOAL]
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c d : α
⊢ a ≤ b * a
[PROOFSTEP]
rw [mul_comm]
[GOAL]
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c d : α
⊢ a ≤ a * b
[PROOFSTEP]
exact le_self_mul
[GOAL]
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c d : α
⊢ (∃ c, b = a * c) → a ≤ b
[PROOFSTEP]
rintro ⟨c, rfl⟩
[GOAL]
case intro
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a c✝ d c : α
⊢ a ≤ a * c
[PROOFSTEP]
exact le_self_mul
[GOAL]
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c d : α
⊢ a ≤ b ↔ ∃ c, b = c * a
[PROOFSTEP]
simp only [mul_comm _ a, le_iff_exists_mul]
[GOAL]
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c d : α
⊢ 1 < a * b ↔ 1 < a ∨ 1 < b
[PROOFSTEP]
simp only [one_lt_iff_ne_one, Ne.def, mul_eq_one_iff, not_and_or]
[GOAL]
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c d : α
h : a < b
⊢ ∃ c x, a * c = b
[PROOFSTEP]
obtain ⟨c, hc⟩ := le_iff_exists_mul.1 h.le
[GOAL]
case intro
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c✝ d : α
h : a < b
c : α
hc : b = a * c
⊢ ∃ c x, a * c = b
[PROOFSTEP]
refine' ⟨c, one_lt_iff_ne_one.2 _, hc.symm⟩
[GOAL]
case intro
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c✝ d : α
h : a < b
c : α
hc : b = a * c
⊢ c ≠ 1
[PROOFSTEP]
rintro rfl
[GOAL]
case intro
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c d : α
h : a < b
hc : b = a * 1
⊢ False
[PROOFSTEP]
simp [hc, lt_irrefl] at h
[GOAL]
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c d : α
h : a ≤ c
⊢ a = 1 * a
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝ : CanonicallyOrderedMonoid α
a b c d : α
h : a ≤ b
⊢ a = a * 1
[PROOFSTEP]
simp
[GOAL]
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a b c d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
⊢ a < b ↔ ∃ c, c > 1 ∧ b = a * c
[PROOFSTEP]
rw [lt_iff_le_and_ne, le_iff_exists_mul, ← exists_and_right]
[GOAL]
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a b c d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
⊢ (∃ x, b = a * x ∧ a ≠ b) ↔ ∃ c, c > 1 ∧ b = a * c
[PROOFSTEP]
apply exists_congr
[GOAL]
case h
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a b c d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
⊢ ∀ (a_1 : α), b = a * a_1 ∧ a ≠ b ↔ a_1 > 1 ∧ b = a * a_1
[PROOFSTEP]
intro c
[GOAL]
case h
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a b c✝ d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
c : α
⊢ b = a * c ∧ a ≠ b ↔ c > 1 ∧ b = a * c
[PROOFSTEP]
rw [and_comm, and_congr_left_iff, gt_iff_lt]
[GOAL]
case h
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a b c✝ d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
c : α
⊢ b = a * c → (a ≠ b ↔ 1 < c)
[PROOFSTEP]
rintro rfl
[GOAL]
case h
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a c✝ d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
c : α
⊢ a ≠ a * c ↔ 1 < c
[PROOFSTEP]
constructor
[GOAL]
case h.mp
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a c✝ d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
c : α
⊢ a ≠ a * c → 1 < c
[PROOFSTEP]
rw [one_lt_iff_ne_one]
[GOAL]
case h.mp
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a c✝ d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
c : α
⊢ a ≠ a * c → c ≠ 1
[PROOFSTEP]
apply mt
[GOAL]
case h.mp.h₁
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a c✝ d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
c : α
⊢ c = 1 → a = a * c
[PROOFSTEP]
rintro rfl
[GOAL]
case h.mp.h₁
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a c d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
⊢ a = a * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
case h.mpr
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a c✝ d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
c : α
⊢ 1 < c → a ≠ a * c
[PROOFSTEP]
rw [← (self_le_mul_right a c).lt_iff_ne]
[GOAL]
case h.mpr
α : Type u
inst✝¹ : CanonicallyOrderedMonoid α
a c✝ d : α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
c : α
⊢ 1 < c → a < a * c
[PROOFSTEP]
apply lt_mul_of_one_lt_right'
[GOAL]
α : Type u
inst✝ : CanonicallyLinearOrderedMonoid α
a b c : α
⊢ min a (b * c) = min a (min a b * min a c)
[PROOFSTEP]
cases' le_total a b with hb hb
[GOAL]
case inl
α : Type u
inst✝ : CanonicallyLinearOrderedMonoid α
a b c : α
hb : a ≤ b
⊢ min a (b * c) = min a (min a b * min a c)
[PROOFSTEP]
simp [hb, le_mul_right]
[GOAL]
case inr
α : Type u
inst✝ : CanonicallyLinearOrderedMonoid α
a b c : α
hb : b ≤ a
⊢ min a (b * c) = min a (min a b * min a c)
[PROOFSTEP]
cases' le_total a c with hc hc
[GOAL]
case inr.inl
α : Type u
inst✝ : CanonicallyLinearOrderedMonoid α
a b c : α
hb : b ≤ a
hc : a ≤ c
⊢ min a (b * c) = min a (min a b * min a c)
[PROOFSTEP]
simp [hc, le_mul_left]
[GOAL]
case inr.inr
α : Type u
inst✝ : CanonicallyLinearOrderedMonoid α
a b c : α
hb : b ≤ a
hc : c ≤ a
⊢ min a (b * c) = min a (min a b * min a c)
[PROOFSTEP]
simp [hb, hc]
[GOAL]
α : Type u
inst✝ : CanonicallyLinearOrderedMonoid α
a b c : α
⊢ min (a * b) c = min (min a c * min b c) c
[PROOFSTEP]
simpa [min_comm _ c] using min_mul_distrib c a b
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Canonical.Defs", "llama_tokens": 3447} |
[GOAL]
α : Type u
β : Type v
inst✝ : Add α
a✝ b c d : WithTop α
x y : α
a : WithTop α
⊢ a + ⊤ = ⊤
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithTop α
x y : α
⊢ none + ⊤ = ⊤
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithTop α
x y val✝ : α
⊢ Option.some val✝ + ⊤ = ⊤
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithTop α
x y : α
⊢ a + b = ⊤ ↔ a = ⊤ ∨ b = ⊤
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u
β : Type v
inst✝ : Add α
b c d : WithTop α
x y : α
⊢ none + b = ⊤ ↔ none = ⊤ ∨ b = ⊤
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u
β : Type v
inst✝ : Add α
b c d : WithTop α
x y val✝ : α
⊢ Option.some val✝ + b = ⊤ ↔ Option.some val✝ = ⊤ ∨ b = ⊤
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u
β : Type v
inst✝ : Add α
c d : WithTop α
x y : α
⊢ none + none = ⊤ ↔ none = ⊤ ∨ none = ⊤
[PROOFSTEP]
simp [none_eq_top, some_eq_coe, ← WithTop.coe_add]
[GOAL]
case none.some
α : Type u
β : Type v
inst✝ : Add α
c d : WithTop α
x y val✝ : α
⊢ none + Option.some val✝ = ⊤ ↔ none = ⊤ ∨ Option.some val✝ = ⊤
[PROOFSTEP]
simp [none_eq_top, some_eq_coe, ← WithTop.coe_add]
[GOAL]
case some.none
α : Type u
β : Type v
inst✝ : Add α
c d : WithTop α
x y val✝ : α
⊢ Option.some val✝ + none = ⊤ ↔ Option.some val✝ = ⊤ ∨ none = ⊤
[PROOFSTEP]
simp [none_eq_top, some_eq_coe, ← WithTop.coe_add]
[GOAL]
case some.some
α : Type u
β : Type v
inst✝ : Add α
c d : WithTop α
x y val✝¹ val✝ : α
⊢ Option.some val✝¹ + Option.some val✝ = ⊤ ↔ Option.some val✝¹ = ⊤ ∨ Option.some val✝ = ⊤
[PROOFSTEP]
simp [none_eq_top, some_eq_coe, ← WithTop.coe_add]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Add α
a✝ b✝ c d : WithTop α
x y : α
inst✝ : LT α
a b : WithTop α
⊢ a + b < ⊤ ↔ a < ⊤ ∧ b < ⊤
[PROOFSTEP]
simp_rw [WithTop.lt_top_iff_ne_top, add_ne_top]
[GOAL]
α : Type u
β : Type v
inst✝ : Add α
a b✝ c✝ d : WithTop α
x y : α
b : WithTop α
c : α
⊢ none + b = ↑c ↔ ∃ a' b', ↑a' = none ∧ ↑b' = b ∧ a' + b' = c
[PROOFSTEP]
simp [none_eq_top]
[GOAL]
α : Type u
β : Type v
inst✝ : Add α
a✝ b c✝ d : WithTop α
x y a c : α
⊢ Option.some a + none = ↑c ↔ ∃ a' b', ↑a' = Option.some a ∧ ↑b' = none ∧ a' + b' = c
[PROOFSTEP]
simp [none_eq_top]
[GOAL]
α : Type u
β : Type v
inst✝ : Add α
a✝ b✝ c✝ d : WithTop α
x y a b c : α
⊢ Option.some a + Option.some b = ↑c ↔ ∃ a' b', ↑a' = Option.some a ∧ ↑b' = Option.some b ∧ a' + b' = c
[PROOFSTEP]
simp only [some_eq_coe, ← coe_add, coe_eq_coe, exists_and_left, exists_eq_left]
[GOAL]
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithTop α
x✝ y✝ : α
x : WithTop α
y : α
⊢ x + ↑y = ⊤ ↔ x = ⊤
[PROOFSTEP]
induction x using WithTop.recTopCoe
[GOAL]
case top
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithTop α
x y✝ y : α
⊢ ⊤ + ↑y = ⊤ ↔ ⊤ = ⊤
[PROOFSTEP]
simp [← coe_add]
[GOAL]
case coe
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithTop α
x y✝ y a✝ : α
⊢ ↑a✝ + ↑y = ⊤ ↔ ↑a✝ = ⊤
[PROOFSTEP]
simp [← coe_add]
[GOAL]
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithTop α
x y✝ : α
y : WithTop α
⊢ ↑x + y = ⊤ ↔ y = ⊤
[PROOFSTEP]
induction y using WithTop.recTopCoe
[GOAL]
case top
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithTop α
x y : α
⊢ ↑x + ⊤ = ⊤ ↔ ⊤ = ⊤
[PROOFSTEP]
simp [← coe_add]
[GOAL]
case coe
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithTop α
x y a✝ : α
⊢ ↑x + ↑a✝ = ⊤ ↔ ↑a✝ = ⊤
[PROOFSTEP]
simp [← coe_add]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Add α
a b c d : WithTop α
x y : α
inst✝ : IsRightCancelAdd α
ha : a ≠ ⊤
⊢ b + a = c + a ↔ b = c
[PROOFSTEP]
lift a to α using ha
[GOAL]
case intro
α : Type u
β : Type v
inst✝¹ : Add α
b c d : WithTop α
x y : α
inst✝ : IsRightCancelAdd α
a : α
⊢ b + ↑a = c + ↑a ↔ b = c
[PROOFSTEP]
obtain rfl | hb := (eq_or_ne b ⊤)
[GOAL]
case intro.inl
α : Type u
β : Type v
inst✝¹ : Add α
c d : WithTop α
x y : α
inst✝ : IsRightCancelAdd α
a : α
⊢ ⊤ + ↑a = c + ↑a ↔ ⊤ = c
[PROOFSTEP]
rw [top_add, eq_comm, WithTop.add_coe_eq_top_iff, eq_comm]
[GOAL]
case intro.inr
α : Type u
β : Type v
inst✝¹ : Add α
b c d : WithTop α
x y : α
inst✝ : IsRightCancelAdd α
a : α
hb : b ≠ ⊤
⊢ b + ↑a = c + ↑a ↔ b = c
[PROOFSTEP]
lift b to α using hb
[GOAL]
case intro.inr.intro
α : Type u
β : Type v
inst✝¹ : Add α
c d : WithTop α
x y : α
inst✝ : IsRightCancelAdd α
a b : α
⊢ ↑b + ↑a = c + ↑a ↔ ↑b = c
[PROOFSTEP]
simp_rw [← WithTop.coe_add, eq_comm, WithTop.add_eq_coe, coe_eq_coe, exists_and_left, exists_eq_left, add_left_inj,
exists_eq_right, eq_comm]
[GOAL]
α : Type u
β : Type v
inst✝¹ : Add α
a b c d : WithTop α
x y : α
inst✝ : IsLeftCancelAdd α
ha : a ≠ ⊤
⊢ a + b = a + c ↔ b = c
[PROOFSTEP]
lift a to α using ha
[GOAL]
case intro
α : Type u
β : Type v
inst✝¹ : Add α
b c d : WithTop α
x y : α
inst✝ : IsLeftCancelAdd α
a : α
⊢ ↑a + b = ↑a + c ↔ b = c
[PROOFSTEP]
obtain rfl | hb := (eq_or_ne b ⊤)
[GOAL]
case intro.inl
α : Type u
β : Type v
inst✝¹ : Add α
c d : WithTop α
x y : α
inst✝ : IsLeftCancelAdd α
a : α
⊢ ↑a + ⊤ = ↑a + c ↔ ⊤ = c
[PROOFSTEP]
rw [add_top, eq_comm, WithTop.coe_add_eq_top_iff, eq_comm]
[GOAL]
case intro.inr
α : Type u
β : Type v
inst✝¹ : Add α
b c d : WithTop α
x y : α
inst✝ : IsLeftCancelAdd α
a : α
hb : b ≠ ⊤
⊢ ↑a + b = ↑a + c ↔ b = c
[PROOFSTEP]
lift b to α using hb
[GOAL]
case intro.inr.intro
α : Type u
β : Type v
inst✝¹ : Add α
c d : WithTop α
x y : α
inst✝ : IsLeftCancelAdd α
a b : α
⊢ ↑a + ↑b = ↑a + c ↔ ↑b = c
[PROOFSTEP]
simp_rw [← WithTop.coe_add, eq_comm, WithTop.add_eq_coe, eq_comm, coe_eq_coe, exists_and_left, exists_eq_left',
add_right_inj, exists_eq_right']
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a✝ b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a b c : WithTop α
h : b ≤ c
⊢ a + b ≤ a + c
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b c : WithTop α
h : b ≤ c
⊢ none + b ≤ none + c
[PROOFSTEP]
cases c
[GOAL]
case some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b c : WithTop α
h : b ≤ c
val✝ : α
⊢ Option.some val✝ + b ≤ Option.some val✝ + c
[PROOFSTEP]
cases c
[GOAL]
case none.none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
h : b ≤ none
⊢ none + b ≤ none + none
[PROOFSTEP]
try exact le_top
[GOAL]
case none.none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
h : b ≤ none
⊢ none + b ≤ none + none
[PROOFSTEP]
exact le_top
[GOAL]
case none.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝ : α
h : b ≤ Option.some val✝
⊢ none + b ≤ none + Option.some val✝
[PROOFSTEP]
try exact le_top
[GOAL]
case none.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝ : α
h : b ≤ Option.some val✝
⊢ none + b ≤ none + Option.some val✝
[PROOFSTEP]
exact le_top
[GOAL]
case some.none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝ : α
h : b ≤ none
⊢ Option.some val✝ + b ≤ Option.some val✝ + none
[PROOFSTEP]
try exact le_top
[GOAL]
case some.none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝ : α
h : b ≤ none
⊢ Option.some val✝ + b ≤ Option.some val✝ + none
[PROOFSTEP]
exact le_top
[GOAL]
case some.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝¹ val✝ : α
h : b ≤ Option.some val✝
⊢ Option.some val✝¹ + b ≤ Option.some val✝¹ + Option.some val✝
[PROOFSTEP]
try exact le_top
[GOAL]
case some.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝¹ val✝ : α
h : b ≤ Option.some val✝
⊢ Option.some val✝¹ + b ≤ Option.some val✝¹ + Option.some val✝
[PROOFSTEP]
exact le_top
[GOAL]
case some.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝¹ val✝ : α
h : b ≤ Option.some val✝
⊢ Option.some val✝¹ + b ≤ Option.some val✝¹ + Option.some val✝
[PROOFSTEP]
rcases le_coe_iff.1 h with ⟨b, rfl, _⟩
[GOAL]
case some.some.intro.intro
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
val✝¹ val✝ b : α
right✝ : b ≤ val✝
h : ↑b ≤ Option.some val✝
⊢ Option.some val✝¹ + ↑b ≤ Option.some val✝¹ + Option.some val✝
[PROOFSTEP]
exact coe_le_coe.2 (add_le_add_left (coe_le_coe.1 h) _)
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a✝ b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a b c : WithTop α
h : b ≤ c
⊢ swap (fun x x_1 => x + x_1) a b ≤ swap (fun x x_1 => x + x_1) a c
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b c : WithTop α
h : b ≤ c
⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none c
[PROOFSTEP]
cases c
[GOAL]
case some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b c : WithTop α
h : b ≤ c
val✝ : α
⊢ swap (fun x x_1 => x + x_1) (Option.some val✝) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝) c
[PROOFSTEP]
cases c
[GOAL]
case none.none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
h : b ≤ none
⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none none
[PROOFSTEP]
try exact le_top
[GOAL]
case none.none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
h : b ≤ none
⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none none
[PROOFSTEP]
exact le_top
[GOAL]
case none.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝ : α
h : b ≤ Option.some val✝
⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none (Option.some val✝)
[PROOFSTEP]
try exact le_top
[GOAL]
case none.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝ : α
h : b ≤ Option.some val✝
⊢ swap (fun x x_1 => x + x_1) none b ≤ swap (fun x x_1 => x + x_1) none (Option.some val✝)
[PROOFSTEP]
exact le_top
[GOAL]
case some.none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝ : α
h : b ≤ none
⊢ swap (fun x x_1 => x + x_1) (Option.some val✝) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝) none
[PROOFSTEP]
try exact le_top
[GOAL]
case some.none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝ : α
h : b ≤ none
⊢ swap (fun x x_1 => x + x_1) (Option.some val✝) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝) none
[PROOFSTEP]
exact le_top
[GOAL]
case some.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝¹ val✝ : α
h : b ≤ Option.some val✝
⊢ swap (fun x x_1 => x + x_1) (Option.some val✝¹) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝)
[PROOFSTEP]
try exact le_top
[GOAL]
case some.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝¹ val✝ : α
h : b ≤ Option.some val✝
⊢ swap (fun x x_1 => x + x_1) (Option.some val✝¹) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝)
[PROOFSTEP]
exact le_top
[GOAL]
case some.some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
b : WithTop α
val✝¹ val✝ : α
h : b ≤ Option.some val✝
⊢ swap (fun x x_1 => x + x_1) (Option.some val✝¹) b ≤ swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝)
[PROOFSTEP]
rcases le_coe_iff.1 h with ⟨b, rfl, _⟩
[GOAL]
case some.some.intro.intro
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
val✝¹ val✝ b : α
right✝ : b ≤ val✝
h : ↑b ≤ Option.some val✝
⊢ swap (fun x x_1 => x + x_1) (Option.some val✝¹) ↑b ≤
swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝)
[PROOFSTEP]
exact coe_le_coe.2 (add_le_add_right (coe_le_coe.1 h) _)
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a✝ b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a b c : WithTop α
h : a + b < a + c
⊢ b < c
[PROOFSTEP]
induction a using WithTop.recTopCoe
[GOAL]
case top
α : Type u
β : Type v
inst✝² : Add α
a b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
b c : WithTop α
h : ⊤ + b < ⊤ + c
⊢ b < c
[PROOFSTEP]
exact (not_none_lt _ h).elim
[GOAL]
case coe
α : Type u
β : Type v
inst✝² : Add α
a b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
b c : WithTop α
a✝ : α
h : ↑a✝ + b < ↑a✝ + c
⊢ b < c
[PROOFSTEP]
induction b using WithTop.recTopCoe
[GOAL]
case coe.top
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
a✝ : α
h : ↑a✝ + ⊤ < ↑a✝ + c
⊢ ⊤ < c
[PROOFSTEP]
exact (not_none_lt _ h).elim
[GOAL]
case coe.coe
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
a✝¹ a✝ : α
h : ↑a✝¹ + ↑a✝ < ↑a✝¹ + c
⊢ ↑a✝ < c
[PROOFSTEP]
induction c using WithTop.recTopCoe
[GOAL]
case coe.coe.top
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a✝¹ a✝ : α
h : ↑a✝¹ + ↑a✝ < ↑a✝¹ + ⊤
⊢ ↑a✝ < ⊤
[PROOFSTEP]
exact coe_lt_top _
[GOAL]
case coe.coe.coe
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a✝² a✝¹ a✝ : α
h : ↑a✝² + ↑a✝¹ < ↑a✝² + ↑a✝
⊢ ↑a✝¹ < ↑a✝
[PROOFSTEP]
exact coe_lt_coe.2 (lt_of_add_lt_add_left <| coe_lt_coe.1 h)
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a✝ b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a b c : WithTop α
h : swap (fun x x_1 => x + x_1) a b < swap (fun x x_1 => x + x_1) a c
⊢ b < c
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u
β : Type v
inst✝² : Add α
a b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
b c : WithTop α
h : swap (fun x x_1 => x + x_1) none b < swap (fun x x_1 => x + x_1) none c
⊢ b < c
[PROOFSTEP]
cases b
[GOAL]
case some
α : Type u
β : Type v
inst✝² : Add α
a b✝ c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
b c : WithTop α
val✝ : α
h : swap (fun x x_1 => x + x_1) (Option.some val✝) b < swap (fun x x_1 => x + x_1) (Option.some val✝) c
⊢ b < c
[PROOFSTEP]
cases b
[GOAL]
case none.none
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
h : swap (fun x x_1 => x + x_1) none none < swap (fun x x_1 => x + x_1) none c
⊢ none < c
[PROOFSTEP]
try exact (not_none_lt _ h).elim
[GOAL]
case none.none
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
h : swap (fun x x_1 => x + x_1) none none < swap (fun x x_1 => x + x_1) none c
⊢ none < c
[PROOFSTEP]
exact (not_none_lt _ h).elim
[GOAL]
case none.some
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
val✝ : α
h : swap (fun x x_1 => x + x_1) none (Option.some val✝) < swap (fun x x_1 => x + x_1) none c
⊢ Option.some val✝ < c
[PROOFSTEP]
try exact (not_none_lt _ h).elim
[GOAL]
case none.some
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
val✝ : α
h : swap (fun x x_1 => x + x_1) none (Option.some val✝) < swap (fun x x_1 => x + x_1) none c
⊢ Option.some val✝ < c
[PROOFSTEP]
exact (not_none_lt _ h).elim
[GOAL]
case some.none
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
val✝ : α
h : swap (fun x x_1 => x + x_1) (Option.some val✝) none < swap (fun x x_1 => x + x_1) (Option.some val✝) c
⊢ none < c
[PROOFSTEP]
try exact (not_none_lt _ h).elim
[GOAL]
case some.none
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
val✝ : α
h : swap (fun x x_1 => x + x_1) (Option.some val✝) none < swap (fun x x_1 => x + x_1) (Option.some val✝) c
⊢ none < c
[PROOFSTEP]
exact (not_none_lt _ h).elim
[GOAL]
case some.some
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
val✝¹ val✝ : α
h :
swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) < swap (fun x x_1 => x + x_1) (Option.some val✝¹) c
⊢ Option.some val✝ < c
[PROOFSTEP]
try exact (not_none_lt _ h).elim
[GOAL]
case some.some
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
val✝¹ val✝ : α
h :
swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) < swap (fun x x_1 => x + x_1) (Option.some val✝¹) c
⊢ Option.some val✝ < c
[PROOFSTEP]
exact (not_none_lt _ h).elim
[GOAL]
case some.some
α : Type u
β : Type v
inst✝² : Add α
a b c✝ d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
c : WithTop α
val✝¹ val✝ : α
h :
swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) < swap (fun x x_1 => x + x_1) (Option.some val✝¹) c
⊢ Option.some val✝ < c
[PROOFSTEP]
cases c
[GOAL]
case some.some.none
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
val✝¹ val✝ : α
h :
swap (fun x x_1 => x + x_1) (Option.some val✝¹) (Option.some val✝) <
swap (fun x x_1 => x + x_1) (Option.some val✝¹) none
⊢ Option.some val✝ < none
[PROOFSTEP]
exact coe_lt_top _
[GOAL]
case some.some.some
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
val✝² val✝¹ val✝ : α
h :
swap (fun x x_1 => x + x_1) (Option.some val✝²) (Option.some val✝¹) <
swap (fun x x_1 => x + x_1) (Option.some val✝²) (Option.some val✝)
⊢ Option.some val✝¹ < Option.some val✝
[PROOFSTEP]
exact coe_lt_coe.2 (lt_of_add_lt_add_right <| coe_lt_coe.1 h)
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
ha : a ≠ ⊤
h : a + b ≤ a + c
⊢ b ≤ c
[PROOFSTEP]
lift a to α using ha
[GOAL]
case intro
α : Type u
β : Type v
inst✝² : Add α
b c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a : α
h : ↑a + b ≤ ↑a + c
⊢ b ≤ c
[PROOFSTEP]
induction c using WithTop.recTopCoe
[GOAL]
case intro.top
α : Type u
β : Type v
inst✝² : Add α
b d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a : α
h : ↑a + b ≤ ↑a + ⊤
⊢ b ≤ ⊤
[PROOFSTEP]
exact le_top
[GOAL]
case intro.coe
α : Type u
β : Type v
inst✝² : Add α
b d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a a✝ : α
h : ↑a + b ≤ ↑a + ↑a✝
⊢ b ≤ ↑a✝
[PROOFSTEP]
induction b using WithTop.recTopCoe
[GOAL]
case intro.coe.top
α : Type u
β : Type v
inst✝² : Add α
d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a a✝ : α
h : ↑a + ⊤ ≤ ↑a + ↑a✝
⊢ ⊤ ≤ ↑a✝
[PROOFSTEP]
exact (not_top_le_coe _ h).elim
[GOAL]
case intro.coe.coe
α : Type u
β : Type v
inst✝² : Add α
d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a a✝¹ a✝ : α
h : ↑a + ↑a✝ ≤ ↑a + ↑a✝¹
⊢ ↑a✝ ≤ ↑a✝¹
[PROOFSTEP]
simp only [← coe_add, coe_le_coe] at h ⊢
[GOAL]
case intro.coe.coe
α : Type u
β : Type v
inst✝² : Add α
d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a a✝¹ a✝ : α
h : a + a✝ ≤ a + a✝¹
⊢ a✝ ≤ a✝¹
[PROOFSTEP]
exact le_of_add_le_add_left h
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
ha : a ≠ ⊤
h : b + a ≤ c + a
⊢ b ≤ c
[PROOFSTEP]
lift a to α using ha
[GOAL]
case intro
α : Type u
β : Type v
inst✝² : Add α
b c d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a : α
h : b + ↑a ≤ c + ↑a
⊢ b ≤ c
[PROOFSTEP]
cases c
[GOAL]
case intro.none
α : Type u
β : Type v
inst✝² : Add α
b d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a : α
h : b + ↑a ≤ none + ↑a
⊢ b ≤ none
[PROOFSTEP]
exact le_top
[GOAL]
case intro.some
α : Type u
β : Type v
inst✝² : Add α
b d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a val✝ : α
h : b + ↑a ≤ Option.some val✝ + ↑a
⊢ b ≤ Option.some val✝
[PROOFSTEP]
cases b
[GOAL]
case intro.some.none
α : Type u
β : Type v
inst✝² : Add α
d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a val✝ : α
h : none + ↑a ≤ Option.some val✝ + ↑a
⊢ none ≤ Option.some val✝
[PROOFSTEP]
exact (not_top_le_coe _ h).elim
[GOAL]
case intro.some.some
α : Type u
β : Type v
inst✝² : Add α
d : WithTop α
x y : α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
a val✝¹ val✝ : α
h : Option.some val✝ + ↑a ≤ Option.some val✝¹ + ↑a
⊢ Option.some val✝ ≤ Option.some val✝¹
[PROOFSTEP]
exact coe_le_coe.2 (le_of_add_le_add_right <| coe_le_coe.1 h)
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
ha : a ≠ ⊤
h : b < c
⊢ a + b < a + c
[PROOFSTEP]
lift a to α using ha
[GOAL]
case intro
α : Type u
β : Type v
inst✝² : Add α
b c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
h : b < c
a : α
⊢ ↑a + b < ↑a + c
[PROOFSTEP]
rcases lt_iff_exists_coe.1 h with ⟨b, rfl, h'⟩
[GOAL]
case intro.intro.intro
α : Type u
β : Type v
inst✝² : Add α
c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a b : α
h' h : ↑b < c
⊢ ↑a + ↑b < ↑a + c
[PROOFSTEP]
cases c
[GOAL]
case intro.intro.intro.none
α : Type u
β : Type v
inst✝² : Add α
d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a b : α
h' h : ↑b < none
⊢ ↑a + ↑b < ↑a + none
[PROOFSTEP]
exact coe_lt_top _
[GOAL]
case intro.intro.intro.some
α : Type u
β : Type v
inst✝² : Add α
d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
a b val✝ : α
h' h : ↑b < Option.some val✝
⊢ ↑a + ↑b < ↑a + Option.some val✝
[PROOFSTEP]
exact coe_lt_coe.2 (add_lt_add_left (coe_lt_coe.1 h) _)
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
ha : a ≠ ⊤
h : b < c
⊢ b + a < c + a
[PROOFSTEP]
lift a to α using ha
[GOAL]
case intro
α : Type u
β : Type v
inst✝² : Add α
b c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
h : b < c
a : α
⊢ b + ↑a < c + ↑a
[PROOFSTEP]
rcases lt_iff_exists_coe.1 h with ⟨b, rfl, h'⟩
[GOAL]
case intro.intro.intro
α : Type u
β : Type v
inst✝² : Add α
c d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a b : α
h' h : ↑b < c
⊢ ↑b + ↑a < c + ↑a
[PROOFSTEP]
cases c
[GOAL]
case intro.intro.intro.none
α : Type u
β : Type v
inst✝² : Add α
d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a b : α
h' h : ↑b < none
⊢ ↑b + ↑a < none + ↑a
[PROOFSTEP]
exact coe_lt_top _
[GOAL]
case intro.intro.intro.some
α : Type u
β : Type v
inst✝² : Add α
d : WithTop α
x y : α
inst✝¹ : LT α
inst✝ : CovariantClass α α (swap fun x x_1 => x + x_1) fun x x_1 => x < x_1
a b val✝ : α
h' h : ↑b < Option.some val✝
⊢ ↑b + ↑a < Option.some val✝ + ↑a
[PROOFSTEP]
exact coe_lt_coe.2 (add_lt_add_right (coe_lt_coe.1 h) _)
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a✝ b✝ c d : WithTop α
x y : α
F : Type u_1
inst✝¹ : Add β
inst✝ : AddHomClass F α β
f : F
a b : WithTop α
⊢ map (↑f) (a + b) = map (↑f) a + map (↑f) b
[PROOFSTEP]
induction a using WithTop.recTopCoe
[GOAL]
case top
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
F : Type u_1
inst✝¹ : Add β
inst✝ : AddHomClass F α β
f : F
b : WithTop α
⊢ map (↑f) (⊤ + b) = map ↑f ⊤ + map (↑f) b
[PROOFSTEP]
exact (top_add _).symm
[GOAL]
case coe
α : Type u
β : Type v
inst✝² : Add α
a b✝ c d : WithTop α
x y : α
F : Type u_1
inst✝¹ : Add β
inst✝ : AddHomClass F α β
f : F
b : WithTop α
a✝ : α
⊢ map (↑f) (↑a✝ + b) = map ↑f ↑a✝ + map (↑f) b
[PROOFSTEP]
induction b using WithTop.recTopCoe
[GOAL]
case coe.top
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
F : Type u_1
inst✝¹ : Add β
inst✝ : AddHomClass F α β
f : F
a✝ : α
⊢ map (↑f) (↑a✝ + ⊤) = map ↑f ↑a✝ + map ↑f ⊤
[PROOFSTEP]
exact (add_top _).symm
[GOAL]
case coe.coe
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
F : Type u_1
inst✝¹ : Add β
inst✝ : AddHomClass F α β
f : F
a✝¹ a✝ : α
⊢ map (↑f) (↑a✝¹ + ↑a✝) = map ↑f ↑a✝¹ + map ↑f ↑a✝
[PROOFSTEP]
rw [map_coe, map_coe, ← coe_add, ← coe_add, ← map_add]
[GOAL]
case coe.coe
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithTop α
x y : α
F : Type u_1
inst✝¹ : Add β
inst✝ : AddHomClass F α β
f : F
a✝¹ a✝ : α
⊢ map ↑f ↑(a✝¹ + a✝) = ↑(↑f (a✝¹ + a✝))
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
inst✝ : AddMonoidWithOne α
src✝¹ : One (WithTop α) := one
src✝ : AddMonoid (WithTop α) := addMonoid
⊢ NatCast.natCast 0 = 0
[PROOFSTEP]
simp only
-- Porting note: Had to add this...?
[GOAL]
α : Type u
β : Type v
inst✝ : AddMonoidWithOne α
src✝¹ : One (WithTop α) := one
src✝ : AddMonoid (WithTop α) := addMonoid
⊢ ↑↑0 = 0
[PROOFSTEP]
rw [Nat.cast_zero, WithTop.coe_zero]
[GOAL]
α : Type u
β : Type v
inst✝ : AddMonoidWithOne α
src✝¹ : One (WithTop α) := one
src✝ : AddMonoid (WithTop α) := addMonoid
n : ℕ
⊢ NatCast.natCast (n + 1) = NatCast.natCast n + 1
[PROOFSTEP]
simp only
-- Porting note: Had to add this...?
[GOAL]
α : Type u
β : Type v
inst✝ : AddMonoidWithOne α
src✝¹ : One (WithTop α) := one
src✝ : AddMonoid (WithTop α) := addMonoid
n : ℕ
⊢ ↑↑(n + 1) = ↑↑n + 1
[PROOFSTEP]
rw [Nat.cast_add_one, WithTop.coe_add, WithTop.coe_one]
[GOAL]
α : Type u
β : Type v
inst✝ : OrderedAddCommMonoid α
src✝¹ : PartialOrder (WithTop α) := partialOrder
src✝ : AddCommMonoid (WithTop α) := addCommMonoid
⊢ ∀ (a b : WithTop α), a ≤ b → ∀ (c : WithTop α), c + a ≤ c + b
[PROOFSTEP]
rintro a b h (_ | c)
[GOAL]
case none
α : Type u
β : Type v
inst✝ : OrderedAddCommMonoid α
src✝¹ : PartialOrder (WithTop α) := partialOrder
src✝ : AddCommMonoid (WithTop α) := addCommMonoid
a b : WithTop α
h : a ≤ b
⊢ none + a ≤ none + b
[PROOFSTEP]
simp [none_eq_top]
[GOAL]
case some
α : Type u
β : Type v
inst✝ : OrderedAddCommMonoid α
src✝¹ : PartialOrder (WithTop α) := partialOrder
src✝ : AddCommMonoid (WithTop α) := addCommMonoid
a b : WithTop α
h : a ≤ b
c : α
⊢ Option.some c + a ≤ Option.some c + b
[PROOFSTEP]
rcases b with (_ | b)
[GOAL]
case some.none
α : Type u
β : Type v
inst✝ : OrderedAddCommMonoid α
src✝¹ : PartialOrder (WithTop α) := partialOrder
src✝ : AddCommMonoid (WithTop α) := addCommMonoid
a : WithTop α
c : α
h : a ≤ none
⊢ Option.some c + a ≤ Option.some c + none
[PROOFSTEP]
simp [none_eq_top]
[GOAL]
case some.some
α : Type u
β : Type v
inst✝ : OrderedAddCommMonoid α
src✝¹ : PartialOrder (WithTop α) := partialOrder
src✝ : AddCommMonoid (WithTop α) := addCommMonoid
a : WithTop α
c b : α
h : a ≤ Option.some b
⊢ Option.some c + a ≤ Option.some c + Option.some b
[PROOFSTEP]
rcases le_coe_iff.1 h with ⟨a, rfl, _⟩
[GOAL]
case some.some.intro.intro
α : Type u
β : Type v
inst✝ : OrderedAddCommMonoid α
src✝¹ : PartialOrder (WithTop α) := partialOrder
src✝ : AddCommMonoid (WithTop α) := addCommMonoid
c b a : α
right✝ : a ≤ b
h : ↑a ≤ Option.some b
⊢ Option.some c + ↑a ≤ Option.some c + Option.some b
[PROOFSTEP]
simp only [some_eq_coe, ← coe_add, coe_le_coe] at h ⊢
[GOAL]
case some.some.intro.intro
α : Type u
β : Type v
inst✝ : OrderedAddCommMonoid α
src✝¹ : PartialOrder (WithTop α) := partialOrder
src✝ : AddCommMonoid (WithTop α) := addCommMonoid
c b a : α
right✝ h : a ≤ b
⊢ c + a ≤ c + b
[PROOFSTEP]
exact add_le_add_left h c
[GOAL]
α : Type u
β : Type v
inst✝² : LE α
inst✝¹ : Add α
inst✝ : ExistsAddOfLE α
a b : WithTop α
⊢ ⊤ ≤ ⊤ → ∃ c, ⊤ = ⊤ + c
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
inst✝² : LE α
inst✝¹ : Add α
inst✝ : ExistsAddOfLE α
a✝ b✝ : WithTop α
a b : α
h : ↑a ≤ ↑b
⊢ ∃ c, ↑b = ↑a + c
[PROOFSTEP]
obtain ⟨c, rfl⟩ := exists_add_of_le (WithTop.coe_le_coe.1 h)
[GOAL]
case intro
α : Type u
β : Type v
inst✝² : LE α
inst✝¹ : Add α
inst✝ : ExistsAddOfLE α
a✝ b : WithTop α
a c : α
h : ↑a ≤ ↑(a + c)
⊢ ∃ c_1, ↑(a + c) = ↑a + c_1
[PROOFSTEP]
exact ⟨c, rfl⟩
[GOAL]
α : Type u
β : Type v
M : Type u_1
N : Type u_2
inst✝¹ : One M
inst✝ : One N
f : OneHom M N
⊢ map (↑f) 1 = 1
[PROOFSTEP]
rw [WithTop.map_one, map_one, coe_one]
[GOAL]
α : Type u
β : Type v
inst✝ : Add α
a✝ b c d : WithBot α
x y : α
a : WithBot α
⊢ a + ⊥ = ⊥
[PROOFSTEP]
cases a
[GOAL]
case none
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithBot α
x y : α
⊢ none + ⊥ = ⊥
[PROOFSTEP]
rfl
[GOAL]
case some
α : Type u
β : Type v
inst✝ : Add α
a b c d : WithBot α
x y val✝ : α
⊢ Option.some val✝ + ⊥ = ⊥
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
inst✝² : Add α
a b c d : WithBot α
x y : α
M : Type u_1
N : Type u_2
inst✝¹ : One M
inst✝ : One N
f : OneHom M N
⊢ map (↑f) 1 = 1
[PROOFSTEP]
rw [WithBot.map_one, map_one, coe_one]
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.WithTop", "llama_tokens": 17213} |
[GOAL]
α : Type u
inst✝² : Mul α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
⊢ CovariantClass (WithZero α) (WithZero α) (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
[PROOFSTEP]
refine ⟨fun a b c hbc => ?_⟩
[GOAL]
α : Type u
inst✝² : Mul α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : WithZero α
hbc : b ≤ c
⊢ a * b ≤ a * c
[PROOFSTEP]
induction a using WithZero.recZeroCoe
[GOAL]
case h₁
α : Type u
inst✝² : Mul α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
b c : WithZero α
hbc : b ≤ c
⊢ 0 * b ≤ 0 * c
[PROOFSTEP]
exact zero_le _
[GOAL]
case h₂
α : Type u
inst✝² : Mul α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
b c : WithZero α
hbc : b ≤ c
a✝ : α
⊢ ↑a✝ * b ≤ ↑a✝ * c
[PROOFSTEP]
induction b using WithZero.recZeroCoe
[GOAL]
case h₂.h₁
α : Type u
inst✝² : Mul α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
c : WithZero α
a✝ : α
hbc : 0 ≤ c
⊢ ↑a✝ * 0 ≤ ↑a✝ * c
[PROOFSTEP]
exact zero_le _
[GOAL]
case h₂.h₂
α : Type u
inst✝² : Mul α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
c : WithZero α
a✝¹ a✝ : α
hbc : ↑a✝ ≤ c
⊢ ↑a✝¹ * ↑a✝ ≤ ↑a✝¹ * c
[PROOFSTEP]
rcases WithBot.coe_le_iff.1 hbc with ⟨c, rfl, hbc'⟩
[GOAL]
case h₂.h₂.intro.intro
α : Type u
inst✝² : Mul α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a✝¹ a✝ c : α
hbc' : a✝ ≤ c
hbc : ↑a✝ ≤ ↑c
⊢ ↑a✝¹ * ↑a✝ ≤ ↑a✝¹ * ↑c
[PROOFSTEP]
refine
le_trans ?_
(le_of_eq <| coe_mul)
-- rw [← coe_mul, ← coe_mul, coe_le_coe]
-- Porting note: rewriting `coe_mul` here doesn't work because of some difference between
-- `coe` and `WithBot.some`, even though they're definitionally equal as shown by the `refine'`
[GOAL]
case h₂.h₂.intro.intro
α : Type u
inst✝² : Mul α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a✝¹ a✝ c : α
hbc' : a✝ ≤ c
hbc : ↑a✝ ≤ ↑c
⊢ ↑a✝¹ * ↑a✝ ≤ ↑(a✝¹ * c)
[PROOFSTEP]
rw [← coe_mul, coe_le_coe]
[GOAL]
case h₂.h₂.intro.intro
α : Type u
inst✝² : Mul α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a✝¹ a✝ c : α
hbc' : a✝ ≤ c
hbc : ↑a✝ ≤ ↑c
⊢ a✝¹ * a✝ ≤ a✝¹ * c
[PROOFSTEP]
exact mul_le_mul_left' hbc' _
[GOAL]
α : Type u
inst✝ : LinearOrder α
a b c : α
⊢ ↑a ≤ max ↑b ↑c ↔ a ≤ max b c
[PROOFSTEP]
simp only [WithZero.coe_le_coe, le_max_iff]
[GOAL]
α : Type u
inst✝ : LinearOrder α
a b c : α
⊢ min ↑a ↑b ≤ ↑c ↔ min a b ≤ c
[PROOFSTEP]
simp only [WithZero.coe_le_coe, min_le_iff]
[GOAL]
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
⊢ CovariantClass (WithZero α) (WithZero α) (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
[PROOFSTEP]
refine ⟨fun a b c hbc => ?_⟩
[GOAL]
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
a b c : WithZero α
hbc : b ≤ c
⊢ a + b ≤ a + c
[PROOFSTEP]
induction a using WithZero.recZeroCoe
[GOAL]
case h₁
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
b c : WithZero α
hbc : b ≤ c
⊢ 0 + b ≤ 0 + c
[PROOFSTEP]
rwa [zero_add, zero_add]
[GOAL]
case h₂
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
b c : WithZero α
hbc : b ≤ c
a✝ : α
⊢ ↑a✝ + b ≤ ↑a✝ + c
[PROOFSTEP]
induction b using WithZero.recZeroCoe
[GOAL]
case h₂.h₁
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
c : WithZero α
a✝ : α
hbc : 0 ≤ c
⊢ ↑a✝ + 0 ≤ ↑a✝ + c
[PROOFSTEP]
rw [add_zero]
[GOAL]
case h₂.h₁
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
c : WithZero α
a✝ : α
hbc : 0 ≤ c
⊢ ↑a✝ ≤ ↑a✝ + c
[PROOFSTEP]
induction c using WithZero.recZeroCoe
[GOAL]
case h₂.h₁.h₁
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
a✝ : α
hbc : 0 ≤ 0
⊢ ↑a✝ ≤ ↑a✝ + 0
[PROOFSTEP]
rw [add_zero]
[GOAL]
case h₂.h₁.h₂
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
a✝¹ a✝ : α
hbc : 0 ≤ ↑a✝
⊢ ↑a✝¹ ≤ ↑a✝¹ + ↑a✝
[PROOFSTEP]
rw [← coe_add, coe_le_coe]
[GOAL]
case h₂.h₁.h₂
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
a✝¹ a✝ : α
hbc : 0 ≤ ↑a✝
⊢ a✝¹ ≤ a✝¹ + a✝
[PROOFSTEP]
exact le_add_of_nonneg_right (h _)
[GOAL]
case h₂.h₂
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
c : WithZero α
a✝¹ a✝ : α
hbc : ↑a✝ ≤ c
⊢ ↑a✝¹ + ↑a✝ ≤ ↑a✝¹ + c
[PROOFSTEP]
rcases WithBot.coe_le_iff.1 hbc with ⟨c, rfl, hbc'⟩
[GOAL]
case h₂.h₂.intro.intro
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
a✝¹ a✝ c : α
hbc' : a✝ ≤ c
hbc : ↑a✝ ≤ ↑c
⊢ ↑a✝¹ + ↑a✝ ≤ ↑a✝¹ + ↑c
[PROOFSTEP]
refine le_trans ?_ (le_of_eq <| coe_add _ _)
[GOAL]
case h₂.h₂.intro.intro
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
a✝¹ a✝ c : α
hbc' : a✝ ≤ c
hbc : ↑a✝ ≤ ↑c
⊢ ↑a✝¹ + ↑a✝ ≤ ↑(a✝¹ + c)
[PROOFSTEP]
rw [← coe_add, coe_le_coe]
[GOAL]
case h₂.h₂.intro.intro
α : Type u
inst✝² : AddZeroClass α
inst✝¹ : Preorder α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
h : ∀ (a : α), 0 ≤ a
a✝¹ a✝ c : α
hbc' : a✝ ≤ c
hbc : ↑a✝ ≤ ↑c
⊢ a✝¹ + a✝ ≤ a✝¹ + c
[PROOFSTEP]
exact add_le_add_left hbc' _
[GOAL]
α : Type u
inst✝² : Add α
inst✝¹ : Preorder α
inst✝ : ExistsAddOfLE α
a b : WithZero α
⊢ a ≤ b → ∃ c, b = a + c
[PROOFSTEP]
induction a using WithZero.cases_on
[GOAL]
case a
α : Type u
inst✝² : Add α
inst✝¹ : Preorder α
inst✝ : ExistsAddOfLE α
b : WithZero α
⊢ 0 ≤ b → ∃ c, b = 0 + c
[PROOFSTEP]
exact fun _ => ⟨b, (zero_add b).symm⟩
[GOAL]
case a
α : Type u
inst✝² : Add α
inst✝¹ : Preorder α
inst✝ : ExistsAddOfLE α
b : WithZero α
a✝ : α
⊢ ↑a✝ ≤ b → ∃ c, b = ↑a✝ + c
[PROOFSTEP]
induction b using WithZero.cases_on
[GOAL]
case a.a
α : Type u
inst✝² : Add α
inst✝¹ : Preorder α
inst✝ : ExistsAddOfLE α
a✝ : α
⊢ ↑a✝ ≤ 0 → ∃ c, 0 = ↑a✝ + c
[PROOFSTEP]
exact fun h => (WithBot.not_coe_le_bot _ h).elim
[GOAL]
case a.a
α : Type u
inst✝² : Add α
inst✝¹ : Preorder α
inst✝ : ExistsAddOfLE α
a✝¹ a✝ : α
⊢ ↑a✝¹ ≤ ↑a✝ → ∃ c, ↑a✝ = ↑a✝¹ + c
[PROOFSTEP]
intro h
[GOAL]
case a.a
α : Type u
inst✝² : Add α
inst✝¹ : Preorder α
inst✝ : ExistsAddOfLE α
a✝¹ a✝ : α
h : ↑a✝¹ ≤ ↑a✝
⊢ ∃ c, ↑a✝ = ↑a✝¹ + c
[PROOFSTEP]
obtain ⟨c, rfl⟩ := exists_add_of_le (WithZero.coe_le_coe.1 h)
[GOAL]
case a.a.intro
α : Type u
inst✝² : Add α
inst✝¹ : Preorder α
inst✝ : ExistsAddOfLE α
a✝ c : α
h : ↑a✝ ≤ ↑(a✝ + c)
⊢ ∃ c_1, ↑(a✝ + c) = ↑a✝ + c_1
[PROOFSTEP]
exact ⟨c, rfl⟩
[GOAL]
α : Type u
inst✝ : CanonicallyOrderedAddMonoid α
src✝² : OrderBot (WithZero α) := orderBot
src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a)
src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE
a b : WithZero α
⊢ a ≤ a + b
[PROOFSTEP]
induction a using WithZero.cases_on
[GOAL]
case a
α : Type u
inst✝ : CanonicallyOrderedAddMonoid α
src✝² : OrderBot (WithZero α) := orderBot
src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a)
src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE
b : WithZero α
⊢ 0 ≤ 0 + b
[PROOFSTEP]
exact bot_le
[GOAL]
case a
α : Type u
inst✝ : CanonicallyOrderedAddMonoid α
src✝² : OrderBot (WithZero α) := orderBot
src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a)
src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE
b : WithZero α
a✝ : α
⊢ ↑a✝ ≤ ↑a✝ + b
[PROOFSTEP]
induction b using WithZero.cases_on
[GOAL]
case a.a
α : Type u
inst✝ : CanonicallyOrderedAddMonoid α
src✝² : OrderBot (WithZero α) := orderBot
src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a)
src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE
a✝ : α
⊢ ↑a✝ ≤ ↑a✝ + 0
[PROOFSTEP]
exact le_rfl
[GOAL]
case a.a
α : Type u
inst✝ : CanonicallyOrderedAddMonoid α
src✝² : OrderBot (WithZero α) := orderBot
src✝¹ : OrderedAddCommMonoid (WithZero α) := WithZero.orderedAddCommMonoid (_ : ∀ (a : α), 0 ≤ a)
src✝ : ExistsAddOfLE (WithZero α) := existsAddOfLE
a✝¹ a✝ : α
⊢ ↑a✝¹ ≤ ↑a✝¹ + ↑a✝
[PROOFSTEP]
exact WithZero.coe_le_coe.2 le_self_add
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.WithZero.Defs", "llama_tokens": 5120} |
[GOAL]
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
⊢ ContravariantClass (WithZero α) (WithZero α) (fun x x_1 => x * x_1) fun x x_1 => x < x_1
[PROOFSTEP]
refine ⟨fun a b c h => ?_⟩
[GOAL]
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : WithZero α
h : a * b < a * c
⊢ b < c
[PROOFSTEP]
have := ((zero_le _).trans_lt h).ne'
[GOAL]
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b c : WithZero α
h : a * b < a * c
this : a * c ≠ 0
⊢ b < c
[PROOFSTEP]
induction a using WithZero.recZeroCoe
[GOAL]
case h₁
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
b c : WithZero α
h : 0 * b < 0 * c
this : 0 * c ≠ 0
⊢ b < c
[PROOFSTEP]
exfalso
[GOAL]
case h₁.h
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
b c : WithZero α
h : 0 * b < 0 * c
this : 0 * c ≠ 0
⊢ False
[PROOFSTEP]
exact left_ne_zero_of_mul this rfl
[GOAL]
case h₂
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
b c : WithZero α
a✝ : α
h : ↑a✝ * b < ↑a✝ * c
this : ↑a✝ * c ≠ 0
⊢ b < c
[PROOFSTEP]
induction c using WithZero.recZeroCoe
[GOAL]
case h₂.h₁
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
b : WithZero α
a✝ : α
h : ↑a✝ * b < ↑a✝ * 0
this : ↑a✝ * 0 ≠ 0
⊢ b < 0
[PROOFSTEP]
exfalso
[GOAL]
case h₂.h₁.h
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
b : WithZero α
a✝ : α
h : ↑a✝ * b < ↑a✝ * 0
this : ↑a✝ * 0 ≠ 0
⊢ False
[PROOFSTEP]
exact right_ne_zero_of_mul this rfl
[GOAL]
case h₂.h₂
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
b : WithZero α
a✝¹ a✝ : α
h : ↑a✝¹ * b < ↑a✝¹ * ↑a✝
this : ↑a✝¹ * ↑a✝ ≠ 0
⊢ b < ↑a✝
[PROOFSTEP]
induction b using WithZero.recZeroCoe
[GOAL]
case h₂.h₂.h₁
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a✝¹ a✝ : α
this : ↑a✝¹ * ↑a✝ ≠ 0
h : ↑a✝¹ * 0 < ↑a✝¹ * ↑a✝
⊢ 0 < ↑a✝
case h₂.h₂.h₂
α : Type u
inst✝² : Mul α
inst✝¹ : PartialOrder α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a✝² a✝¹ : α
this : ↑a✝² * ↑a✝¹ ≠ 0
a✝ : α
h : ↑a✝² * ↑a✝ < ↑a✝² * ↑a✝¹
⊢ ↑a✝ < ↑a✝¹
[PROOFSTEP]
exacts [zero_lt_coe _, coe_lt_coe.mpr (lt_of_mul_lt_mul_left' <| coe_lt_coe.mp h)]
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.WithZero.Basic", "llama_tokens": 1578} |
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
D : Type u_5
inst✝¹² : Monoid R
inst✝¹¹ : NonUnitalNonAssocSemiring A
inst✝¹⁰ : DistribMulAction R A
inst✝⁹ : Star A
inst✝⁸ : NonUnitalNonAssocSemiring B
inst✝⁷ : DistribMulAction R B
inst✝⁶ : Star B
inst✝⁵ : NonUnitalNonAssocSemiring C
inst✝⁴ : DistribMulAction R C
inst✝³ : Star C
inst✝² : NonUnitalNonAssocSemiring D
inst✝¹ : DistribMulAction R D
inst✝ : Star D
⊢ Function.Injective fun f => f.toFun
[PROOFSTEP]
rintro ⟨⟨⟨⟨f, _⟩, _⟩, _⟩, _⟩ ⟨⟨⟨⟨g, _⟩, _⟩, _⟩, _⟩ h
[GOAL]
case mk.mk.mk.mk.mk.mk.mk.mk
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
D : Type u_5
inst✝¹² : Monoid R
inst✝¹¹ : NonUnitalNonAssocSemiring A
inst✝¹⁰ : DistribMulAction R A
inst✝⁹ : Star A
inst✝⁸ : NonUnitalNonAssocSemiring B
inst✝⁷ : DistribMulAction R B
inst✝⁶ : Star B
inst✝⁵ : NonUnitalNonAssocSemiring C
inst✝⁴ : DistribMulAction R C
inst✝³ : Star C
inst✝² : NonUnitalNonAssocSemiring D
inst✝¹ : DistribMulAction R D
inst✝ : Star D
f : A → B
map_smul'✝¹ : ∀ (m : R) (x : A), f (m • x) = m • f x
map_zero'✝¹ : MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } 0 = 0
map_add'✝¹ :
∀ (x y : A),
MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } (x + y) =
MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } x +
MulActionHom.toFun { toFun := f, map_smul' := map_smul'✝¹ } y
map_mul'✝¹ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ }.toMulActionHom
y
map_star'✝¹ :
∀ (a : A),
MulActionHom.toFun
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_mul' := map_mul'✝¹ }.toDistribMulActionHom.toMulActionHom
(star a) =
star
(MulActionHom.toFun
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_mul' := map_mul'✝¹ }.toDistribMulActionHom.toMulActionHom
a)
g : A → B
map_smul'✝ : ∀ (m : R) (x : A), g (m • x) = m • g x
map_zero'✝ : MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } 0 = 0
map_add'✝ :
∀ (x y : A),
MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } (x + y) =
MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } x +
MulActionHom.toFun { toFun := g, map_smul' := map_smul'✝ } y
map_mul'✝ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
(x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
x *
MulActionHom.toFun
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ }.toMulActionHom
y
map_star'✝ :
∀ (a : A),
MulActionHom.toFun
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ },
map_mul' := map_mul'✝ }.toDistribMulActionHom.toMulActionHom
(star a) =
star
(MulActionHom.toFun
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ },
map_mul' := map_mul'✝ }.toDistribMulActionHom.toMulActionHom
a)
h :
(fun f => f.toFun)
{
toNonUnitalAlgHom :=
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_mul' := map_mul'✝¹ },
map_star' := map_star'✝¹ } =
(fun f => f.toFun)
{
toNonUnitalAlgHom :=
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ },
map_mul' := map_mul'✝ },
map_star' := map_star'✝ }
⊢ {
toNonUnitalAlgHom :=
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := f, map_smul' := map_smul'✝¹ }, map_zero' := map_zero'✝¹,
map_add' := map_add'✝¹ },
map_mul' := map_mul'✝¹ },
map_star' := map_star'✝¹ } =
{
toNonUnitalAlgHom :=
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := g, map_smul' := map_smul'✝ }, map_zero' := map_zero'✝,
map_add' := map_add'✝ },
map_mul' := map_mul'✝ },
map_star' := map_star'✝ }
[PROOFSTEP]
congr
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
D : Type u_5
inst✝¹² : Monoid R
inst✝¹¹ : NonUnitalNonAssocSemiring A
inst✝¹⁰ : DistribMulAction R A
inst✝⁹ : Star A
inst✝⁸ : NonUnitalNonAssocSemiring B
inst✝⁷ : DistribMulAction R B
inst✝⁶ : Star B
inst✝⁵ : NonUnitalNonAssocSemiring C
inst✝⁴ : DistribMulAction R C
inst✝³ : Star C
inst✝² : NonUnitalNonAssocSemiring D
inst✝¹ : DistribMulAction R D
inst✝ : Star D
f : A →⋆ₙₐ[R] B
h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x
h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0
h₃ :
∀ (x y : A),
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) =
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y
h₄ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x *
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y
h₅ :
∀ (a : A),
MulActionHom.toFun
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ },
map_mul' := h₄ }.toDistribMulActionHom.toMulActionHom
(star a) =
star
(MulActionHom.toFun
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ },
map_mul' := h₄ }.toDistribMulActionHom.toMulActionHom
a)
⊢ {
toNonUnitalAlgHom :=
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ },
map_mul' := h₄ },
map_star' := h₅ } =
f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
D : Type u_5
inst✝¹² : Monoid R
inst✝¹¹ : NonUnitalNonAssocSemiring A
inst✝¹⁰ : DistribMulAction R A
inst✝⁹ : Star A
inst✝⁸ : NonUnitalNonAssocSemiring B
inst✝⁷ : DistribMulAction R B
inst✝⁶ : Star B
inst✝⁵ : NonUnitalNonAssocSemiring C
inst✝⁴ : DistribMulAction R C
inst✝³ : Star C
inst✝² : NonUnitalNonAssocSemiring D
inst✝¹ : DistribMulAction R D
inst✝ : Star D
f : A →⋆ₙₐ[R] B
h₁ : ∀ (m : R) (x : A), ↑f (m • x) = m • ↑f x
h₂ : MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } 0 = 0
h₃ :
∀ (x y : A),
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } (x + y) =
MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } x + MulActionHom.toFun { toFun := ↑f, map_smul' := h₁ } y
h₄ :
∀ (x y : A),
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom (x * y) =
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom x *
MulActionHom.toFun
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ }.toMulActionHom y
h₅ :
∀ (a : A),
MulActionHom.toFun
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ },
map_mul' := h₄ }.toDistribMulActionHom.toMulActionHom
(star a) =
star
(MulActionHom.toFun
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ },
map_mul' := h₄ }.toDistribMulActionHom.toMulActionHom
a)
x✝ : A
⊢ ↑{
toNonUnitalAlgHom :=
{
toDistribMulActionHom :=
{ toMulActionHom := { toFun := ↑f, map_smul' := h₁ }, map_zero' := h₂, map_add' := h₃ },
map_mul' := h₄ },
map_star' := h₅ }
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
D : Type u_5
inst✝¹² : Monoid R
inst✝¹¹ : NonUnitalNonAssocSemiring A
inst✝¹⁰ : DistribMulAction R A
inst✝⁹ : Star A
inst✝⁸ : NonUnitalNonAssocSemiring B
inst✝⁷ : DistribMulAction R B
inst✝⁶ : Star B
inst✝⁵ : NonUnitalNonAssocSemiring C
inst✝⁴ : DistribMulAction R C
inst✝³ : Star C
inst✝² : NonUnitalNonAssocSemiring D
inst✝¹ : DistribMulAction R D
inst✝ : Star D
f : B →⋆ₙₐ[R] C
g : A →⋆ₙₐ[R] B
src✝ : A →ₙₐ[R] C := NonUnitalAlgHom.comp f.toNonUnitalAlgHom g.toNonUnitalAlgHom
⊢ ∀ (a : A),
MulActionHom.toFun
{ toDistribMulActionHom := src✝.toDistribMulActionHom,
map_mul' :=
(_ :
∀ (x y : A),
MulActionHom.toFun src✝.toMulActionHom (x * y) =
MulActionHom.toFun src✝.toMulActionHom x *
MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom
(star a) =
star
(MulActionHom.toFun
{ toDistribMulActionHom := src✝.toDistribMulActionHom,
map_mul' :=
(_ :
∀ (x y : A),
MulActionHom.toFun src✝.toMulActionHom (x * y) =
MulActionHom.toFun src✝.toMulActionHom x *
MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom
a)
[PROOFSTEP]
simp only [map_star, NonUnitalAlgHom.toFun_eq_coe, eq_self_iff_true, NonUnitalAlgHom.coe_comp, coe_toNonUnitalAlgHom,
Function.comp_apply, forall_const]
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
D : Type u_5
inst✝⁶ : Monoid R
inst✝⁵ : NonUnitalNonAssocSemiring A
inst✝⁴ : DistribMulAction R A
inst✝³ : StarAddMonoid A
inst✝² : NonUnitalNonAssocSemiring B
inst✝¹ : DistribMulAction R B
inst✝ : StarAddMonoid B
src✝ : A →ₙₐ[R] B := 0
⊢ ∀ (a : A),
MulActionHom.toFun
{ toDistribMulActionHom := src✝.toDistribMulActionHom,
map_mul' :=
(_ :
∀ (x y : A),
MulActionHom.toFun src✝.toMulActionHom (x * y) =
MulActionHom.toFun src✝.toMulActionHom x *
MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom
(star a) =
star
(MulActionHom.toFun
{ toDistribMulActionHom := src✝.toDistribMulActionHom,
map_mul' :=
(_ :
∀ (x y : A),
MulActionHom.toFun src✝.toMulActionHom (x * y) =
MulActionHom.toFun src✝.toMulActionHom x *
MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom
a)
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
D : Type u_6
inst✝¹² : CommSemiring R
inst✝¹¹ : Semiring A
inst✝¹⁰ : Algebra R A
inst✝⁹ : Star A
inst✝⁸ : Semiring B
inst✝⁷ : Algebra R B
inst✝⁶ : Star B
inst✝⁵ : Semiring C
inst✝⁴ : Algebra R C
inst✝³ : Star C
inst✝² : Semiring D
inst✝¹ : Algebra R D
inst✝ : Star D
⊢ Function.Injective fun f => f.toFun
[PROOFSTEP]
rintro ⟨⟨⟨⟨⟨f, _⟩, _⟩, _⟩, _⟩, _⟩ ⟨⟨⟨⟨⟨g, _⟩, _⟩, _⟩, _⟩, _⟩ h
[GOAL]
case mk.mk.mk.mk.mk.mk.mk.mk.mk.mk
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
D : Type u_6
inst✝¹² : CommSemiring R
inst✝¹¹ : Semiring A
inst✝¹⁰ : Algebra R A
inst✝⁹ : Star A
inst✝⁸ : Semiring B
inst✝⁷ : Algebra R B
inst✝⁶ : Star B
inst✝⁵ : Semiring C
inst✝⁴ : Algebra R C
inst✝³ : Star C
inst✝² : Semiring D
inst✝¹ : Algebra R D
inst✝ : Star D
f : A → B
map_one'✝¹ : f 1 = 1
map_mul'✝¹ :
∀ (x y : A),
OneHom.toFun { toFun := f, map_one' := map_one'✝¹ } (x * y) =
OneHom.toFun { toFun := f, map_one' := map_one'✝¹ } x * OneHom.toFun { toFun := f, map_one' := map_one'✝¹ } y
map_zero'✝¹ : OneHom.toFun (↑{ toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }) 0 = 0
map_add'✝¹ :
∀ (x y : A),
OneHom.toFun (↑{ toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }) (x + y) =
OneHom.toFun (↑{ toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }) x +
OneHom.toFun (↑{ toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }) y
commutes'✝¹ :
∀ (r : R),
OneHom.toFun
(↑↑{ toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ },
map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ })
(↑(algebraMap R A) r) =
↑(algebraMap R B) r
map_star'✝¹ :
∀ (x : A),
OneHom.toFun
(↑↑↑{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ },
map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
commutes' := commutes'✝¹ })
(star x) =
star
(OneHom.toFun
(↑↑↑{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ },
map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
commutes' := commutes'✝¹ })
x)
g : A → B
map_one'✝ : g 1 = 1
map_mul'✝ :
∀ (x y : A),
OneHom.toFun { toFun := g, map_one' := map_one'✝ } (x * y) =
OneHom.toFun { toFun := g, map_one' := map_one'✝ } x * OneHom.toFun { toFun := g, map_one' := map_one'✝ } y
map_zero'✝ : OneHom.toFun (↑{ toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }) 0 = 0
map_add'✝ :
∀ (x y : A),
OneHom.toFun (↑{ toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }) (x + y) =
OneHom.toFun (↑{ toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }) x +
OneHom.toFun (↑{ toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }) y
commutes'✝ :
∀ (r : R),
OneHom.toFun
(↑↑{ toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ },
map_zero' := map_zero'✝, map_add' := map_add'✝ })
(↑(algebraMap R A) r) =
↑(algebraMap R B) r
map_star'✝ :
∀ (x : A),
OneHom.toFun
(↑↑↑{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ },
map_zero' := map_zero'✝, map_add' := map_add'✝ },
commutes' := commutes'✝ })
(star x) =
star
(OneHom.toFun
(↑↑↑{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ },
map_zero' := map_zero'✝, map_add' := map_add'✝ },
commutes' := commutes'✝ })
x)
h :
(fun f => f.toFun)
{
toAlgHom :=
{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ },
map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
commutes' := commutes'✝¹ },
map_star' := map_star'✝¹ } =
(fun f => f.toFun)
{
toAlgHom :=
{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ },
map_zero' := map_zero'✝, map_add' := map_add'✝ },
commutes' := commutes'✝ },
map_star' := map_star'✝ }
⊢ {
toAlgHom :=
{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := f, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ },
map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
commutes' := commutes'✝¹ },
map_star' := map_star'✝¹ } =
{
toAlgHom :=
{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := g, map_one' := map_one'✝ }, map_mul' := map_mul'✝ },
map_zero' := map_zero'✝, map_add' := map_add'✝ },
commutes' := commutes'✝ },
map_star' := map_star'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
D : Type u_6
inst✝¹² : CommSemiring R
inst✝¹¹ : Semiring A
inst✝¹⁰ : Algebra R A
inst✝⁹ : Star A
inst✝⁸ : Semiring B
inst✝⁷ : Algebra R B
inst✝⁶ : Star B
inst✝⁵ : Semiring C
inst✝⁴ : Algebra R C
inst✝³ : Star C
inst✝² : Semiring D
inst✝¹ : Algebra R D
inst✝ : Star D
f : A →⋆ₐ[R] B
h₁ : ↑f 1 = 1
h₂ :
∀ (x y : A),
OneHom.toFun { toFun := ↑f, map_one' := h₁ } (x * y) =
OneHom.toFun { toFun := ↑f, map_one' := h₁ } x * OneHom.toFun { toFun := ↑f, map_one' := h₁ } y
h₃ : OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) 0 = 0
h₄ :
∀ (x y : A),
OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) (x + y) =
OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) x +
OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) y
h₅ :
∀ (r : R),
OneHom.toFun
(↑↑{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃,
map_add' := h₄ })
(↑(algebraMap R A) r) =
↑(algebraMap R B) r
h₆ :
∀ (x : A),
OneHom.toFun
(↑↑↑{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃,
map_add' := h₄ },
commutes' := h₅ })
(star x) =
star
(OneHom.toFun
(↑↑↑{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃,
map_add' := h₄ },
commutes' := h₅ })
x)
⊢ {
toAlgHom :=
{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃,
map_add' := h₄ },
commutes' := h₅ },
map_star' := h₆ } =
f
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
D : Type u_6
inst✝¹² : CommSemiring R
inst✝¹¹ : Semiring A
inst✝¹⁰ : Algebra R A
inst✝⁹ : Star A
inst✝⁸ : Semiring B
inst✝⁷ : Algebra R B
inst✝⁶ : Star B
inst✝⁵ : Semiring C
inst✝⁴ : Algebra R C
inst✝³ : Star C
inst✝² : Semiring D
inst✝¹ : Algebra R D
inst✝ : Star D
f : A →⋆ₐ[R] B
h₁ : ↑f 1 = 1
h₂ :
∀ (x y : A),
OneHom.toFun { toFun := ↑f, map_one' := h₁ } (x * y) =
OneHom.toFun { toFun := ↑f, map_one' := h₁ } x * OneHom.toFun { toFun := ↑f, map_one' := h₁ } y
h₃ : OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) 0 = 0
h₄ :
∀ (x y : A),
OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) (x + y) =
OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) x +
OneHom.toFun (↑{ toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }) y
h₅ :
∀ (r : R),
OneHom.toFun
(↑↑{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃,
map_add' := h₄ })
(↑(algebraMap R A) r) =
↑(algebraMap R B) r
h₆ :
∀ (x : A),
OneHom.toFun
(↑↑↑{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃,
map_add' := h₄ },
commutes' := h₅ })
(star x) =
star
(OneHom.toFun
(↑↑↑{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃,
map_add' := h₄ },
commutes' := h₅ })
x)
x✝ : A
⊢ ↑{
toAlgHom :=
{
toRingHom :=
{ toMonoidHom := { toOneHom := { toFun := ↑f, map_one' := h₁ }, map_mul' := h₂ }, map_zero' := h₃,
map_add' := h₄ },
commutes' := h₅ },
map_star' := h₆ }
x✝ =
↑f x✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
D : Type u_6
inst✝¹² : CommSemiring R
inst✝¹¹ : Semiring A
inst✝¹⁰ : Algebra R A
inst✝⁹ : Star A
inst✝⁸ : Semiring B
inst✝⁷ : Algebra R B
inst✝⁶ : Star B
inst✝⁵ : Semiring C
inst✝⁴ : Algebra R C
inst✝³ : Star C
inst✝² : Semiring D
inst✝¹ : Algebra R D
inst✝ : Star D
f : B →⋆ₐ[R] C
g : A →⋆ₐ[R] B
src✝ : A →ₐ[R] C := AlgHom.comp f.toAlgHom g.toAlgHom
⊢ ∀ (x : A),
OneHom.toFun
(↑↑↑{ toRingHom := ↑src✝,
commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑↑src✝) (↑(algebraMap R A) r) = ↑(algebraMap R C) r) })
(star x) =
star
(OneHom.toFun
(↑↑↑{ toRingHom := ↑src✝,
commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑↑src✝) (↑(algebraMap R A) r) = ↑(algebraMap R C) r) })
x)
[PROOFSTEP]
simp only [map_star, AlgHom.toFun_eq_coe, AlgHom.coe_comp, coe_toAlgHom, Function.comp_apply, eq_self_iff_true,
forall_const]
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : A →⋆ₙₐ[R] B
g : A →⋆ₙₐ[R] C
src✝ : A →ₙₐ[R] B × C := NonUnitalAlgHom.prod f.toNonUnitalAlgHom g.toNonUnitalAlgHom
x : A
⊢ MulActionHom.toFun
{ toDistribMulActionHom := src✝.toDistribMulActionHom,
map_mul' :=
(_ :
∀ (x y : A),
MulActionHom.toFun src✝.toMulActionHom (x * y) =
MulActionHom.toFun src✝.toMulActionHom x *
MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom
(star x) =
star
(MulActionHom.toFun
{ toDistribMulActionHom := src✝.toDistribMulActionHom,
map_mul' :=
(_ :
∀ (x y : A),
MulActionHom.toFun src✝.toMulActionHom (x * y) =
MulActionHom.toFun src✝.toMulActionHom x *
MulActionHom.toFun src✝.toMulActionHom y) }.toDistribMulActionHom.toMulActionHom
x)
[PROOFSTEP]
simp [map_star, Prod.star_def]
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : A →⋆ₙₐ[R] B
g : A →⋆ₙₐ[R] C
⊢ comp (fst R B C) (prod f g) = f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : A →⋆ₙₐ[R] B
g : A →⋆ₙₐ[R] C
x✝ : A
⊢ ↑(comp (fst R B C) (prod f g)) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : A →⋆ₙₐ[R] B
g : A →⋆ₙₐ[R] C
⊢ comp (snd R B C) (prod f g) = g
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : A →⋆ₙₐ[R] B
g : A →⋆ₙₐ[R] C
x✝ : A
⊢ ↑(comp (snd R B C) (prod f g)) x✝ = ↑g x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : (A →⋆ₙₐ[R] B) × (A →⋆ₙₐ[R] C)
⊢ (fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f) = f
[PROOFSTEP]
ext
[GOAL]
case h₁.h
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : (A →⋆ₙₐ[R] B) × (A →⋆ₙₐ[R] C)
x✝ : A
⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).fst x✝ = ↑f.fst x✝
[PROOFSTEP]
rfl
[GOAL]
case h₂.h
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : (A →⋆ₙₐ[R] B) × (A →⋆ₙₐ[R] C)
x✝ : A
⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).snd x✝ = ↑f.snd x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : A →⋆ₙₐ[R] B × C
⊢ (fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f) = f
[PROOFSTEP]
ext
[GOAL]
case h.h₁
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : A →⋆ₙₐ[R] B × C
x✝ : A
⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).fst = (↑f x✝).fst
[PROOFSTEP]
rfl
[GOAL]
case h.h₂
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : Monoid R
inst✝⁸ : NonUnitalNonAssocSemiring A
inst✝⁷ : DistribMulAction R A
inst✝⁶ : Star A
inst✝⁵ : NonUnitalNonAssocSemiring B
inst✝⁴ : DistribMulAction R B
inst✝³ : Star B
inst✝² : NonUnitalNonAssocSemiring C
inst✝¹ : DistribMulAction R C
inst✝ : Star C
f : A →⋆ₙₐ[R] B × C
x✝ : A
⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).snd = (↑f x✝).snd
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : A →⋆ₐ[R] B
g : A →⋆ₐ[R] C
src✝ : A →ₐ[R] B × C := AlgHom.prod f.toAlgHom g.toAlgHom
x : A
⊢ OneHom.toFun
(↑↑↑{ toRingHom := ↑src✝,
commutes' := (_ : ∀ (r : R), OneHom.toFun (↑↑↑src✝) (↑(algebraMap R A) r) = ↑(algebraMap R (B × C)) r) })
(star x) =
star
(OneHom.toFun
(↑↑↑{ toRingHom := ↑src✝,
commutes' :=
(_ : ∀ (r : R), OneHom.toFun (↑↑↑src✝) (↑(algebraMap R A) r) = ↑(algebraMap R (B × C)) r) })
x)
[PROOFSTEP]
simp [Prod.star_def, map_star]
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : A →⋆ₐ[R] B
g : A →⋆ₐ[R] C
⊢ comp (fst R B C) (prod f g) = f
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : A →⋆ₐ[R] B
g : A →⋆ₐ[R] C
x✝ : A
⊢ ↑(comp (fst R B C) (prod f g)) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : A →⋆ₐ[R] B
g : A →⋆ₐ[R] C
⊢ comp (snd R B C) (prod f g) = g
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : A →⋆ₐ[R] B
g : A →⋆ₐ[R] C
x✝ : A
⊢ ↑(comp (snd R B C) (prod f g)) x✝ = ↑g x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : (A →⋆ₐ[R] B) × (A →⋆ₐ[R] C)
⊢ (fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f) = f
[PROOFSTEP]
ext
[GOAL]
case h₁.h
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : (A →⋆ₐ[R] B) × (A →⋆ₐ[R] C)
x✝ : A
⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).fst x✝ = ↑f.fst x✝
[PROOFSTEP]
rfl
[GOAL]
case h₂.h
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : (A →⋆ₐ[R] B) × (A →⋆ₐ[R] C)
x✝ : A
⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).snd x✝ = ↑f.snd x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : A →⋆ₐ[R] B × C
⊢ (fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f) = f
[PROOFSTEP]
ext
[GOAL]
case h.h₁
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : A →⋆ₐ[R] B × C
x✝ : A
⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).fst = (↑f x✝).fst
[PROOFSTEP]
rfl
[GOAL]
case h.h₂
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : Star A
inst✝⁵ : Semiring B
inst✝⁴ : Algebra R B
inst✝³ : Star B
inst✝² : Semiring C
inst✝¹ : Algebra R C
inst✝ : Star C
f : A →⋆ₐ[R] B × C
x✝ : A
⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).snd = (↑f x✝).snd
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Star A
inst✝² : Semiring B
inst✝¹ : Algebra R B
inst✝ : Star B
hF : StarAlgEquivClass F R A B
f : F
r : R
⊢ ↑f (↑(algebraMap R A) r) = ↑(algebraMap R B) r
[PROOFSTEP]
simp only [Algebra.algebraMap_eq_smul_one, map_smul, map_one]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹¹ : Add A
inst✝¹⁰ : Add B
inst✝⁹ : Mul A
inst✝⁸ : Mul B
inst✝⁷ : SMul R A
inst✝⁶ : SMul R B
inst✝⁵ : Star A
inst✝⁴ : Star B
inst✝³ : Add C
inst✝² : Mul C
inst✝¹ : SMul R C
inst✝ : Star C
f g : A ≃⋆ₐ[R] B
h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g
h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g
⊢ f = g
[PROOFSTEP]
rcases f with ⟨⟨⟨_, _, _⟩, _⟩, _⟩
[GOAL]
case mk.mk.mk
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹¹ : Add A
inst✝¹⁰ : Add B
inst✝⁹ : Mul A
inst✝⁸ : Mul B
inst✝⁷ : SMul R A
inst✝⁶ : SMul R B
inst✝⁵ : Star A
inst✝⁴ : Star B
inst✝³ : Add C
inst✝² : Mul C
inst✝¹ : SMul R C
inst✝ : Star C
g : A ≃⋆ₐ[R] B
toFun✝ : A → B
invFun✝ : B → A
left_inv✝ : Function.LeftInverse invFun✝ toFun✝
right_inv✝ : Function.RightInverse invFun✝ toFun✝
map_mul'✝ :
∀ (x y : A),
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x * y) =
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x *
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y
map_add'✝ :
∀ (x y : A),
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x + y) =
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x +
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y
map_star'✝ :
∀ (a : A),
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
(star a) =
star
(Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
a)
map_smul'✝ :
∀ (r : R) (a : A),
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
(r • a) =
r •
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
a
h₁ :
(fun f => f.toFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_star' := map_star'✝, map_smul' := map_smul'✝ } =
(fun f => f.toFun) g
h₂ :
(fun f => f.invFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_star' := map_star'✝, map_smul' := map_smul'✝ } =
(fun f => f.invFun) g
⊢ {
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_star' := map_star'✝, map_smul' := map_smul'✝ } =
g
[PROOFSTEP]
rcases g with ⟨⟨⟨_, _, _⟩, _⟩, _⟩
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹¹ : Add A
inst✝¹⁰ : Add B
inst✝⁹ : Mul A
inst✝⁸ : Mul B
inst✝⁷ : SMul R A
inst✝⁶ : SMul R B
inst✝⁵ : Star A
inst✝⁴ : Star B
inst✝³ : Add C
inst✝² : Mul C
inst✝¹ : SMul R C
inst✝ : Star C
toFun✝¹ : A → B
invFun✝¹ : B → A
left_inv✝¹ : Function.LeftInverse invFun✝¹ toFun✝¹
right_inv✝¹ : Function.RightInverse invFun✝¹ toFun✝¹
map_mul'✝¹ :
∀ (x y : A),
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } (x * y) =
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } x *
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } y
map_add'✝¹ :
∀ (x y : A),
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } (x + y) =
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } x +
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } y
map_star'✝¹ :
∀ (a : A),
Equiv.toFun
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv
(star a) =
star
(Equiv.toFun
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv
a)
map_smul'✝¹ :
∀ (r : R) (a : A),
Equiv.toFun
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv
(r • a) =
r •
Equiv.toFun
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv
a
toFun✝ : A → B
invFun✝ : B → A
left_inv✝ : Function.LeftInverse invFun✝ toFun✝
right_inv✝ : Function.RightInverse invFun✝ toFun✝
map_mul'✝ :
∀ (x y : A),
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x * y) =
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x *
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y
map_add'✝ :
∀ (x y : A),
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x + y) =
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x +
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y
map_star'✝ :
∀ (a : A),
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
(star a) =
star
(Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
a)
map_smul'✝ :
∀ (r : R) (a : A),
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
(r • a) =
r •
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
a
h₁ :
(fun f => f.toFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ },
map_star' := map_star'✝¹, map_smul' := map_smul'✝¹ } =
(fun f => f.toFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_star' := map_star'✝, map_smul' := map_smul'✝ }
h₂ :
(fun f => f.invFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ },
map_star' := map_star'✝¹, map_smul' := map_smul'✝¹ } =
(fun f => f.invFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_star' := map_star'✝, map_smul' := map_smul'✝ }
⊢ {
toRingEquiv :=
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ },
map_star' := map_star'✝¹, map_smul' := map_smul'✝¹ } =
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_star' := map_star'✝, map_smul' := map_smul'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹¹ : Add A
inst✝¹⁰ : Add B
inst✝⁹ : Mul A
inst✝⁸ : Mul B
inst✝⁷ : SMul R A
inst✝⁶ : SMul R B
inst✝⁵ : Star A
inst✝⁴ : Star B
inst✝³ : Add C
inst✝² : Mul C
inst✝¹ : SMul R C
inst✝ : Star C
e : A ≃⋆ₐ[R] B
src✝ : B ≃+* A := RingEquiv.symm e.toRingEquiv
b : B
⊢ Equiv.toFun
{ toEquiv := src✝.toEquiv,
map_mul' :=
(_ :
∀ (x y : B), Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y),
map_add' :=
(_ :
∀ (x y : B),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }.toEquiv
(star b) =
star
(Equiv.toFun
{ toEquiv := src✝.toEquiv,
map_mul' :=
(_ :
∀ (x y : B),
Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y),
map_add' :=
(_ :
∀ (x y : B),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }.toEquiv
b)
[PROOFSTEP]
simpa only [apply_inv_apply, inv_apply_apply] using congr_arg (inv e) (map_star e (inv e b)).symm
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹¹ : Add A
inst✝¹⁰ : Add B
inst✝⁹ : Mul A
inst✝⁸ : Mul B
inst✝⁷ : SMul R A
inst✝⁶ : SMul R B
inst✝⁵ : Star A
inst✝⁴ : Star B
inst✝³ : Add C
inst✝² : Mul C
inst✝¹ : SMul R C
inst✝ : Star C
e : A ≃⋆ₐ[R] B
src✝ : B ≃+* A := RingEquiv.symm e.toRingEquiv
r : R
b : B
⊢ Equiv.toFun
{ toEquiv := src✝.toEquiv,
map_mul' :=
(_ :
∀ (x y : B), Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y),
map_add' :=
(_ :
∀ (x y : B),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }.toEquiv
(r • b) =
r •
Equiv.toFun
{ toEquiv := src✝.toEquiv,
map_mul' :=
(_ :
∀ (x y : B),
Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y),
map_add' :=
(_ :
∀ (x y : B),
Equiv.toFun src✝.toEquiv (x + y) = Equiv.toFun src✝.toEquiv x + Equiv.toFun src✝.toEquiv y) }.toEquiv
b
[PROOFSTEP]
simpa only [apply_inv_apply, inv_apply_apply] using congr_arg (inv e) (map_smul e r (inv e b)).symm
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹¹ : Add A
inst✝¹⁰ : Add B
inst✝⁹ : Mul A
inst✝⁸ : Mul B
inst✝⁷ : SMul R A
inst✝⁶ : SMul R B
inst✝⁵ : Star A
inst✝⁴ : Star B
inst✝³ : Add C
inst✝² : Mul C
inst✝¹ : SMul R C
inst✝ : Star C
e : A ≃⋆ₐ[R] B
⊢ symm (symm e) = e
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹¹ : Add A
inst✝¹⁰ : Add B
inst✝⁹ : Mul A
inst✝⁸ : Mul B
inst✝⁷ : SMul R A
inst✝⁶ : SMul R B
inst✝⁵ : Star A
inst✝⁴ : Star B
inst✝³ : Add C
inst✝² : Mul C
inst✝¹ : SMul R C
inst✝ : Star C
e : A ≃⋆ₐ[R] B
a✝ : A
⊢ ↑(symm (symm e)) a✝ = ↑e a✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹¹ : Add A
inst✝¹⁰ : Add B
inst✝⁹ : Mul A
inst✝⁸ : Mul B
inst✝⁷ : SMul R A
inst✝⁶ : SMul R B
inst✝⁵ : Star A
inst✝⁴ : Star B
inst✝³ : Add C
inst✝² : Mul C
inst✝¹ : SMul R C
inst✝ : Star C
e₁ : A ≃⋆ₐ[R] B
e₂ : B ≃⋆ₐ[R] C
src✝ : A ≃+* C := RingEquiv.trans e₁.toRingEquiv e₂.toRingEquiv
a : A
⊢ Equiv.toFun e₂.toEquiv (Equiv.toFun e₁.toEquiv (star a)) = star (Equiv.toFun e₂.toEquiv (Equiv.toFun e₁.toEquiv a))
[PROOFSTEP]
rw [e₁.map_star', e₂.map_star']
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹¹ : Add A
inst✝¹⁰ : Add B
inst✝⁹ : Mul A
inst✝⁸ : Mul B
inst✝⁷ : SMul R A
inst✝⁶ : SMul R B
inst✝⁵ : Star A
inst✝⁴ : Star B
inst✝³ : Add C
inst✝² : Mul C
inst✝¹ : SMul R C
inst✝ : Star C
e₁ : A ≃⋆ₐ[R] B
e₂ : B ≃⋆ₐ[R] C
src✝ : A ≃+* C := RingEquiv.trans e₁.toRingEquiv e₂.toRingEquiv
r : R
a : A
⊢ Equiv.toFun e₂.toEquiv (Equiv.toFun e₁.toEquiv (r • a)) = r • Equiv.toFun e₂.toEquiv (Equiv.toFun e₁.toEquiv a)
[PROOFSTEP]
rw [e₁.map_smul', e₂.map_smul']
| {"mathlib_filename": "Mathlib.Algebra.Star.StarAlgHom", "llama_tokens": 22485} |
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.OrderDual", "llama_tokens": 0} |
|
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Group α
inst✝² : CommSemigroup β
inst✝¹ : LE β
inst✝ : SubmultiplicativeHomClass F α β
f : F
a b : α
⊢ ↑f a ≤ ↑f b * ↑f (a / b)
[PROOFSTEP]
simpa only [mul_comm, div_mul_cancel'] using map_mul_le_mul f (a / b) b
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Group α
inst✝² : AddCommSemigroup β
inst✝¹ : LE β
inst✝ : MulLEAddHomClass F α β
f : F
a b : α
⊢ ↑f a ≤ ↑f b + ↑f (a / b)
[PROOFSTEP]
simpa only [add_comm, div_mul_cancel'] using map_mul_le_add f (a / b) b
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Group α
inst✝² : CommSemigroup β
inst✝¹ : LE β
inst✝ : SubmultiplicativeHomClass F α β
f : F
a b c : α
⊢ ↑f (a / c) ≤ ↑f (a / b) * ↑f (b / c)
[PROOFSTEP]
simpa only [div_mul_div_cancel'] using map_mul_le_mul f (a / b) (b / c)
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝³ : Group α
inst✝² : AddCommSemigroup β
inst✝¹ : LE β
inst✝ : MulLEAddHomClass F α β
f : F
a b c : α
⊢ ↑f (a / c) ≤ ↑f (a / b) + ↑f (b / c)
[PROOFSTEP]
simpa only [div_mul_div_cancel'] using map_mul_le_add f (a / b) (b / c)
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : GroupSeminormClass F α β
f : F
x y : α
⊢ ↑f (x / y) ≤ ↑f x + ↑f y
[PROOFSTEP]
rw [div_eq_mul_inv, ← map_inv_eq_map f y]
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : GroupSeminormClass F α β
f : F
x y : α
⊢ ↑f (x * y⁻¹) ≤ ↑f x + ↑f y⁻¹
[PROOFSTEP]
exact map_mul_le_add _ _ _
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : GroupSeminormClass F α β
f : F
x y : α
⊢ ↑f (x / y) = ↑f (y / x)
[PROOFSTEP]
rw [← inv_div, map_inv_eq_map]
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : GroupSeminormClass F α β
f : F
x y : α
⊢ ↑f x ≤ ↑f y + ↑f (y / x)
[PROOFSTEP]
simpa only [add_comm, map_div_rev, div_mul_cancel'] using map_mul_le_add f (x / y) y
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : LinearOrderedAddCommGroup β
inst✝ : GroupSeminormClass F α β
f : F
x y : α
⊢ |↑f x - ↑f y| ≤ ↑f (x / y)
[PROOFSTEP]
rw [abs_sub_le_iff, sub_le_iff_le_add', sub_le_iff_le_add']
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : LinearOrderedAddCommGroup β
inst✝ : GroupSeminormClass F α β
f : F
x y : α
⊢ ↑f x ≤ ↑f y + ↑f (x / y) ∧ ↑f y ≤ ↑f x + ↑f (x / y)
[PROOFSTEP]
exact ⟨le_map_add_map_div _ _ _, le_map_add_map_div' _ _ _⟩
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : LinearOrderedAddCommMonoid β
inst✝ : GroupSeminormClass F α β
src✝ : GroupSeminormClass F α β := inst✝
f : F
a : α
⊢ 0 ≤ 2 • ↑f a
[PROOFSTEP]
rw [two_nsmul, ← map_one_eq_zero f, ← div_self' a]
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : LinearOrderedAddCommMonoid β
inst✝ : GroupSeminormClass F α β
src✝ : GroupSeminormClass F α β := inst✝
f : F
a : α
⊢ ↑f (a / a) ≤ ↑f a + ↑f a
[PROOFSTEP]
exact map_div_le_add _ _ _
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : GroupNormClass F α β
f : F
x : α
⊢ x = 1 → ↑f x = 0
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
F : Type u_2
α : Type u_3
β : Type u_4
γ : Type u_5
δ : Type u_6
inst✝² : Group α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : GroupNormClass F α β
f : F
⊢ ↑f 1 = 0
[PROOFSTEP]
exact map_one_eq_zero _
| {"mathlib_filename": "Mathlib.Algebra.Order.Hom.Basic", "llama_tokens": 2144} |
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : Nontrivial α
C : PositiveCone α
src✝¹ : Ring α := inst✝¹
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
h : 0 = 1
⊢ False
[PROOFSTEP]
simpa [← h, C.pos_iff] using C.one_pos
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : Nontrivial α
C : PositiveCone α
src✝¹ : Ring α := inst✝¹
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
⊢ 0 ≤ 1
[PROOFSTEP]
change C.nonneg (1 - 0)
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : Nontrivial α
C : PositiveCone α
src✝¹ : Ring α := inst✝¹
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
⊢ AddCommGroup.PositiveCone.nonneg C.toPositiveCone (1 - 0)
[PROOFSTEP]
convert C.one_nonneg
[GOAL]
case h.e'_4
α : Type u_1
inst✝¹ : Ring α
inst✝ : Nontrivial α
C : PositiveCone α
src✝¹ : Ring α := inst✝¹
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
⊢ 1 - 0 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : Nontrivial α
C : PositiveCone α
src✝¹ : Ring α := inst✝¹
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
x y : α
xp : 0 < x
yp : 0 < y
⊢ 0 < x * y
[PROOFSTEP]
change
C.pos
(x * y - 0)
-- porting note: used to be convert, but it relied on unfolding definitions
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : Nontrivial α
C : PositiveCone α
src✝¹ : Ring α := inst✝¹
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
x y : α
xp : 0 < x
yp : 0 < y
⊢ AddCommGroup.PositiveCone.pos C.toPositiveCone (x * y - 0)
[PROOFSTEP]
rw [sub_zero]
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : Nontrivial α
C : PositiveCone α
src✝¹ : Ring α := inst✝¹
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
x y : α
xp : 0 < x
yp : 0 < y
⊢ AddCommGroup.PositiveCone.pos C.toPositiveCone (x * y)
[PROOFSTEP]
exact C.mul_pos x y (by rwa [← sub_zero x]) (by rwa [← sub_zero y])
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : Nontrivial α
C : PositiveCone α
src✝¹ : Ring α := inst✝¹
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
x y : α
xp : 0 < x
yp : 0 < y
⊢ AddCommGroup.PositiveCone.pos C.toPositiveCone x
[PROOFSTEP]
rwa [← sub_zero x]
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : Nontrivial α
C : PositiveCone α
src✝¹ : Ring α := inst✝¹
src✝ : OrderedAddCommGroup α := OrderedAddCommGroup.mkOfPositiveCone C.toPositiveCone
x y : α
xp : 0 < x
yp : 0 < y
⊢ AddCommGroup.PositiveCone.pos C.toPositiveCone y
[PROOFSTEP]
rwa [← sub_zero y]
| {"mathlib_filename": "Mathlib.Algebra.Order.Ring.Cone", "llama_tokens": 1233} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : Mul α
inst✝² : LinearOrder α
a b c d : α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
h : a * b ≤ c * d
⊢ min a b ≤ max c d
[PROOFSTEP]
simp_rw [min_le_iff, le_max_iff]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : Mul α
inst✝² : LinearOrder α
a b c d : α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
h : a * b ≤ c * d
⊢ (a ≤ c ∨ a ≤ d) ∨ b ≤ c ∨ b ≤ d
[PROOFSTEP]
contrapose! h
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : Mul α
inst✝² : LinearOrder α
a b c d : α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
h : (c < a ∧ d < a) ∧ c < b ∧ d < b
⊢ c * d < a * b
[PROOFSTEP]
exact mul_lt_mul_of_lt_of_lt h.1.1 h.2.2
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
h : a ≤ a * b
⊢ ?m.15077 h * 1 ≤ ?m.15077 h * b
[PROOFSTEP]
simpa only [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
h : a * b ≤ a
⊢ ?m.15584 h * b ≤ ?m.15584 h * 1
[PROOFSTEP]
simpa only [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
h : b ≤ a * b
⊢ 1 * ?m.16128 h ≤ a * ?m.16128 h
[PROOFSTEP]
simpa only [one_mul]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LE α
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
h : a * b ≤ b
⊢ a * ?m.16669 h ≤ 1 * ?m.16669 h
[PROOFSTEP]
simpa only [one_mul]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : LE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
⊢ a ≤ a * b ↔ a * 1 ≤ a * b
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : LE α
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
⊢ a ≤ b * a ↔ 1 * a ≤ b * a
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : LE α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
⊢ a * b ≤ a ↔ a * b ≤ a * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : LE α
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
⊢ a * b ≤ b ↔ a * b ≤ 1 * b
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
h : a < a * b
⊢ ?m.21985 h * 1 < ?m.21985 h * b
[PROOFSTEP]
simpa only [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
h : a * b < a
⊢ ?m.22488 h * b < ?m.22488 h * 1
[PROOFSTEP]
simpa only [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
h : b < a * b
⊢ 1 * ?m.23024 h < a * ?m.23024 h
[PROOFSTEP]
simpa only [one_mul]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LT α
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
h : a * b < b
⊢ a * ?m.23557 h < 1 * ?m.23557 h
[PROOFSTEP]
simpa only [one_mul]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
⊢ a < a * b ↔ a * 1 < a * b
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : LT α
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
⊢ a < b * a ↔ 1 * a < b * a
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : LT α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
⊢ a * b < a ↔ a * b < a * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : LT α
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a b : α
⊢ a * b < b ↔ a * b < 1 * b
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : PartialOrder α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
ha : 1 ≤ a
hb : 1 ≤ b
⊢ a = 1 ∧ b = 1 → a * b = 1
[PROOFSTEP]
rintro ⟨rfl, rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝³ : MulOneClass α
inst✝² : PartialOrder α
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
ha hb : 1 ≤ 1
⊢ 1 * 1 = 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb : b₁ ≤ b₂
⊢ a₂ * b₂ ≤ a₁ * b₁ ↔ a₁ = a₂ ∧ b₁ = b₂
[PROOFSTEP]
refine' ⟨fun h ↦ _, by rintro ⟨rfl, rfl⟩; rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb : b₁ ≤ b₂
⊢ a₁ = a₂ ∧ b₁ = b₂ → a₂ * b₂ ≤ a₁ * b₁
[PROOFSTEP]
rintro ⟨rfl, rfl⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ b₁ : α
ha : a₁ ≤ a₁
hb : b₁ ≤ b₁
⊢ a₁ * b₁ ≤ a₁ * b₁
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb : b₁ ≤ b₂
h : a₂ * b₂ ≤ a₁ * b₁
⊢ a₁ = a₂ ∧ b₁ = b₂
[PROOFSTEP]
simp only [eq_iff_le_not_lt, ha, hb, true_and]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb : b₁ ≤ b₂
h : a₂ * b₂ ≤ a₁ * b₁
⊢ ¬a₁ < a₂ ∧ ¬b₁ < b₂
[PROOFSTEP]
refine' ⟨fun ha ↦ h.not_lt _, fun hb ↦ h.not_lt _⟩
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha✝ : a₁ ≤ a₂
hb : b₁ ≤ b₂
h : a₂ * b₂ ≤ a₁ * b₁
ha : a₁ < a₂
⊢ a₁ * b₁ < a₂ * b₂
case refine'_2
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb✝ : b₁ ≤ b₂
h : a₂ * b₂ ≤ a₁ * b₁
hb : b₁ < b₂
⊢ a₁ * b₁ < a₂ * b₂
[PROOFSTEP]
{exact mul_lt_mul_of_lt_of_le ha hb
}
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha✝ : a₁ ≤ a₂
hb : b₁ ≤ b₂
h : a₂ * b₂ ≤ a₁ * b₁
ha : a₁ < a₂
⊢ a₁ * b₁ < a₂ * b₂
[PROOFSTEP]
exact mul_lt_mul_of_lt_of_le ha hb
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb✝ : b₁ ≤ b₂
h : a₂ * b₂ ≤ a₁ * b₁
hb : b₁ < b₂
⊢ a₁ * b₁ < a₂ * b₂
[PROOFSTEP]
{exact mul_lt_mul_of_le_of_lt ha hb
}
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
inst✝⁵ : MulOneClass α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
a₁ a₂ b₁ b₂ : α
ha : a₁ ≤ a₂
hb✝ : b₁ ≤ b₂
h : a₂ * b₂ ≤ a₁ * b₁
hb : b₁ < b₂
⊢ a₁ * b₁ < a₂ * b₂
[PROOFSTEP]
exact mul_lt_mul_of_le_of_lt ha hb
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a : α
⊢ ∃ b, b * b ≤ a
[PROOFSTEP]
by_cases h : a < 1
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a : α
h : a < 1
⊢ ∃ b, b * b ≤ a
[PROOFSTEP]
use a
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a : α
h : a < 1
⊢ a * a ≤ a
[PROOFSTEP]
have : a * a < a * 1 := mul_lt_mul_left' h a
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a : α
h : a < 1
this : a * a < a * 1
⊢ a * a ≤ a
[PROOFSTEP]
rw [mul_one] at this
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a : α
h : a < 1
this : a * a < a
⊢ a * a ≤ a
[PROOFSTEP]
exact le_of_lt this
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a : α
h : ¬a < 1
⊢ ∃ b, b * b ≤ a
[PROOFSTEP]
use 1
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a : α
h : ¬a < 1
⊢ 1 * 1 ≤ a
[PROOFSTEP]
push_neg at h
[GOAL]
case h
α : Type u_1
β : Type u_2
inst✝² : MulOneClass α
inst✝¹ : LinearOrder α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
a : α
h : 1 ≤ a
⊢ 1 * 1 ≤ a
[PROOFSTEP]
rwa [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hac : a ≤ c
hbd : b ≤ d
⊢ a * b = c * d ↔ a = c ∧ b = d
[PROOFSTEP]
refine' ⟨fun h => _, fun h => congr_arg₂ (· * ·) h.1 h.2⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hac : a ≤ c
hbd : b ≤ d
h : a * b = c * d
⊢ a = c ∧ b = d
[PROOFSTEP]
rcases hac.eq_or_lt with (rfl | hac)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b d : α
hbd : b ≤ d
hac : a ≤ a
h : a * b = a * d
⊢ a = a ∧ b = d
[PROOFSTEP]
exact ⟨rfl, mul_left_cancel'' h⟩
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hac✝ : a ≤ c
hbd : b ≤ d
h : a * b = c * d
hac : a < c
⊢ a = c ∧ b = d
[PROOFSTEP]
rcases eq_or_lt_of_le hbd with (rfl | hbd)
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
hac✝ : a ≤ c
hac : a < c
hbd : b ≤ b
h : a * b = c * b
⊢ a = c ∧ b = b
[PROOFSTEP]
exact ⟨mul_right_cancel'' h, rfl⟩
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝² : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hac✝ : a ≤ c
hbd✝ : b ≤ d
h : a * b = c * d
hac : a < c
hbd : b < d
⊢ a = c ∧ b = d
[PROOFSTEP]
exact ((Left.mul_lt_mul hac hbd).ne h).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hac : a ≤ c
hbd : b ≤ d
⊢ a * b = c * d ↔ a = c ∧ b = d
[PROOFSTEP]
refine' ⟨fun h => _, fun h => congr_arg₂ (· * ·) h.1 h.2⟩
[GOAL]
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hac : a ≤ c
hbd : b ≤ d
h : a * b = c * d
⊢ a = c ∧ b = d
[PROOFSTEP]
rcases hac.eq_or_lt with (rfl | hac)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b d : α
hbd : b ≤ d
hac : a ≤ a
h : a * b = a * d
⊢ a = a ∧ b = d
[PROOFSTEP]
exact ⟨rfl, mul_left_cancel'' h⟩
[GOAL]
case inr
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hac✝ : a ≤ c
hbd : b ≤ d
h : a * b = c * d
hac : a < c
⊢ a = c ∧ b = d
[PROOFSTEP]
rcases eq_or_lt_of_le hbd with (rfl | hbd)
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
hac✝ : a ≤ c
hac : a < c
hbd : b ≤ b
h : a * b = c * b
⊢ a = c ∧ b = b
[PROOFSTEP]
exact ⟨mul_right_cancel'' h, rfl⟩
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝⁵ : Semigroup α
inst✝⁴ : PartialOrder α
inst✝³ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝² : ContravariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
inst✝¹ : CovariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x < x_1
inst✝ : ContravariantClass α α (swap fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c d : α
hac✝ : a ≤ c
hbd✝ : b ≤ d
h : a * b = c * d
hac : a < c
hbd : b < d
⊢ a = c ∧ b = d
[PROOFSTEP]
exact ((Right.mul_lt_mul hac hbd).ne h).elim
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
inst✝ : LE α
a b : α
⊢ 1 * a ≤ 1 * b → a ≤ b
[PROOFSTEP]
simpa only [one_mul] using id
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CommSemigroup α
inst✝ : PartialOrder α
a : α
ha : MulLECancellable a
b c : α
h : (fun x => x * a) b = (fun x => x * a) c
⊢ (fun x x_1 => x * x_1) a b = (fun x x_1 => x * x_1) a c
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : CommSemigroup α
inst✝ : PartialOrder α
a : α
ha : MulLECancellable a
b c : α
h : (fun x => x * a) b = (fun x => x * a) c
⊢ a * b = a * c
[PROOFSTEP]
rwa [mul_comm a, mul_comm a]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : CommSemigroup α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b c : α
ha : MulLECancellable a
⊢ b * a ≤ c * a ↔ b ≤ c
[PROOFSTEP]
rw [mul_comm b, mul_comm c, ha.mul_le_mul_iff_left]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : MulOneClass α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
ha : MulLECancellable a
⊢ a ≤ a * b ↔ a * 1 ≤ a * b
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : MulOneClass α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
ha : MulLECancellable a
⊢ a * b ≤ a ↔ a * b ≤ a * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : CommMonoid α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
ha : MulLECancellable a
⊢ a ≤ b * a ↔ 1 ≤ b
[PROOFSTEP]
rw [mul_comm, ha.le_mul_iff_one_le_right]
[GOAL]
α : Type u_1
β : Type u_2
inst✝² : LE α
inst✝¹ : CommMonoid α
inst✝ : CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
a b : α
ha : MulLECancellable a
⊢ b * a ≤ a ↔ b ≤ 1
[PROOFSTEP]
rw [mul_comm, ha.mul_le_iff_le_one_right]
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Lemmas", "llama_tokens": 11166} |
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b c d e : α
m n : ℤ
a : α
ha : 0 < a
⊢ a * 0 < a * a⁻¹
[PROOFSTEP]
simp [ne_of_gt ha, zero_lt_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
⊢ 0 ≤ a⁻¹ ↔ 0 ≤ a
[PROOFSTEP]
simp only [le_iff_eq_or_lt, inv_pos, zero_eq_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
⊢ a⁻¹ < 0 ↔ a < 0
[PROOFSTEP]
simp only [← not_le, inv_nonneg]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
⊢ a⁻¹ ≤ 0 ↔ a ≤ 0
[PROOFSTEP]
simp only [← not_lt, inv_pos]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
⊢ 0 < a / b
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
⊢ 0 < a * b⁻¹
[PROOFSTEP]
exact mul_pos ha (inv_pos.2 hb)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ a / b
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ a * b⁻¹
[PROOFSTEP]
exact mul_nonneg ha (inv_nonneg.2 hb)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : a ≤ 0
hb : 0 ≤ b
⊢ a / b ≤ 0
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : a ≤ 0
hb : 0 ≤ b
⊢ a * b⁻¹ ≤ 0
[PROOFSTEP]
exact mul_nonpos_of_nonpos_of_nonneg ha (inv_nonneg.2 hb)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 ≤ a
hb : b ≤ 0
⊢ a / b ≤ 0
[PROOFSTEP]
rw [div_eq_mul_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 ≤ a
hb : b ≤ 0
⊢ a * b⁻¹ ≤ 0
[PROOFSTEP]
exact mul_nonpos_of_nonneg_of_nonpos ha (inv_nonpos.2 hb)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n✝ : ℤ
ha : 0 ≤ a
n : ℕ
⊢ 0 ≤ a ^ ↑n
[PROOFSTEP]
rw [zpow_ofNat]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n✝ : ℤ
ha : 0 ≤ a
n : ℕ
⊢ 0 ≤ a ^ n
[PROOFSTEP]
exact pow_nonneg ha _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n✝ : ℤ
ha : 0 ≤ a
n : ℕ
⊢ 0 ≤ a ^ (-↑(n + 1))
[PROOFSTEP]
rw [zpow_neg, inv_nonneg, zpow_ofNat]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n✝ : ℤ
ha : 0 ≤ a
n : ℕ
⊢ 0 ≤ a ^ (n + 1)
[PROOFSTEP]
exact pow_nonneg ha _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n✝ : ℤ
ha : 0 < a
n : ℕ
⊢ 0 < a ^ ↑n
[PROOFSTEP]
rw [zpow_ofNat]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n✝ : ℤ
ha : 0 < a
n : ℕ
⊢ 0 < a ^ n
[PROOFSTEP]
exact pow_pos ha _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n✝ : ℤ
ha : 0 < a
n : ℕ
⊢ 0 < a ^ (-↑(n + 1))
[PROOFSTEP]
rw [zpow_neg, inv_pos, zpow_ofNat]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n✝ : ℤ
ha : 0 < a
n : ℕ
⊢ 0 < a ^ (n + 1)
[PROOFSTEP]
exact pow_pos ha _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hc : 0 < c
⊢ a ≤ b / c ↔ c * a ≤ b
[PROOFSTEP]
rw [mul_comm, le_div_iff hc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 < b
h : a / b ≤ c
⊢ a = a / b * b
[PROOFSTEP]
rw [div_mul_cancel _ (ne_of_lt hb).symm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 < b
h : a ≤ c * b
⊢ c * b / b = c
[PROOFSTEP]
refine' (div_eq_iff (ne_of_gt hb)).mpr rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 < b
⊢ a / b ≤ c ↔ a ≤ b * c
[PROOFSTEP]
rw [mul_comm, div_le_iff hb]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hc : 0 < c
⊢ a < b / c ↔ c * a < b
[PROOFSTEP]
rw [mul_comm, lt_div_iff hc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hc : 0 < c
⊢ b / c < a ↔ b < c * a
[PROOFSTEP]
rw [mul_comm, div_lt_iff hc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ b⁻¹ * a ≤ c ↔ a ≤ b * c
[PROOFSTEP]
rw [inv_eq_one_div, mul_comm, ← div_eq_mul_one_div]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ a / b ≤ c ↔ a ≤ b * c
[PROOFSTEP]
exact div_le_iff' h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ b⁻¹ * a ≤ c ↔ a ≤ c * b
[PROOFSTEP]
rw [inv_mul_le_iff h, mul_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ a * b⁻¹ ≤ c ↔ a ≤ b * c
[PROOFSTEP]
rw [mul_comm, inv_mul_le_iff h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ a * b⁻¹ ≤ c ↔ a ≤ c * b
[PROOFSTEP]
rw [mul_comm, inv_mul_le_iff' h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b c d e : α
m n : ℤ
a : α
h : a = 0
⊢ a / a ≤ 1
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b c d e : α
m n : ℤ
a : α
h : ¬a = 0
⊢ a / a ≤ 1
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ b⁻¹ * a < c ↔ a < b * c
[PROOFSTEP]
rw [inv_eq_one_div, mul_comm, ← div_eq_mul_one_div]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ a / b < c ↔ a < b * c
[PROOFSTEP]
exact div_lt_iff' h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ b⁻¹ * a < c ↔ a < c * b
[PROOFSTEP]
rw [inv_mul_lt_iff h, mul_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ a * b⁻¹ < c ↔ a < b * c
[PROOFSTEP]
rw [mul_comm, inv_mul_lt_iff h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : 0 < b
⊢ a * b⁻¹ < c ↔ a < c * b
[PROOFSTEP]
rw [mul_comm, inv_mul_lt_iff' h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
⊢ a⁻¹ ≤ b ↔ 1 ≤ b * a
[PROOFSTEP]
rw [inv_eq_one_div]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
⊢ 1 / a ≤ b ↔ 1 ≤ b * a
[PROOFSTEP]
exact div_le_iff ha
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
⊢ a⁻¹ ≤ b ↔ 1 ≤ a * b
[PROOFSTEP]
rw [inv_eq_one_div]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
⊢ 1 / a ≤ b ↔ 1 ≤ a * b
[PROOFSTEP]
exact div_le_iff' ha
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
⊢ a⁻¹ < b ↔ 1 < b * a
[PROOFSTEP]
rw [inv_eq_one_div]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
⊢ 1 / a < b ↔ 1 < b * a
[PROOFSTEP]
exact div_lt_iff ha
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
⊢ a⁻¹ < b ↔ 1 < a * b
[PROOFSTEP]
rw [inv_eq_one_div]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
⊢ 1 / a < b ↔ 1 < a * b
[PROOFSTEP]
exact div_lt_iff' ha
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 ≤ b
hc : 0 ≤ c
h : a ≤ c * b
⊢ a / b ≤ c
[PROOFSTEP]
rcases eq_or_lt_of_le hb with (rfl | hb')
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a c d e : α
m n : ℤ
hc : 0 ≤ c
hb : 0 ≤ 0
h : a ≤ c * 0
⊢ a / 0 ≤ c
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 ≤ b
hc : 0 ≤ c
h : a ≤ c * b
hb' : 0 < b
⊢ a / b ≤ c
[PROOFSTEP]
simp [hc]
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 ≤ b
hc : 0 ≤ c
h : a ≤ c * b
hb' : 0 < b
⊢ a / b ≤ c
[PROOFSTEP]
rwa [div_le_iff hb']
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 ≤ b
hc : 0 ≤ c
h : a ≤ b / c
⊢ a * c ≤ b
[PROOFSTEP]
obtain rfl | hc := hc.eq_or_lt
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b d e : α
m n : ℤ
hb : 0 ≤ b
hc : 0 ≤ 0
h : a ≤ b / 0
⊢ a * 0 ≤ b
[PROOFSTEP]
simpa using hb
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 ≤ b
hc✝ : 0 ≤ c
h : a ≤ b / c
hc : 0 < c
⊢ a * c ≤ b
[PROOFSTEP]
rwa [le_div_iff hc] at h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : a ≤ b
hb : 0 ≤ b
⊢ a ≤ 1 * b
[PROOFSTEP]
rwa [one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
h : a ≤ b
⊢ b⁻¹ ≤ a⁻¹
[PROOFSTEP]
rwa [← one_div a, le_div_iff' ha, ← div_eq_mul_inv, div_le_iff (ha.trans_le h), one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
⊢ a⁻¹ ≤ b⁻¹ ↔ b ≤ a
[PROOFSTEP]
rw [← one_div, div_le_iff ha, ← div_eq_inv_mul, le_div_iff hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
⊢ a⁻¹ ≤ b ↔ b⁻¹ ≤ a
[PROOFSTEP]
rw [← inv_le_inv hb (inv_pos.2 ha), inv_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
⊢ a ≤ b⁻¹ ↔ b ≤ a⁻¹
[PROOFSTEP]
rw [← inv_le_inv (inv_pos.2 hb) ha, inv_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 1 < a
⊢ a⁻¹ < 1
[PROOFSTEP]
rwa [inv_lt (zero_lt_one.trans ha) zero_lt_one, inv_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h₁ : 0 < a
h₂ : a < 1
⊢ 1 < a⁻¹
[PROOFSTEP]
rwa [lt_inv (@zero_lt_one α _ _ _ _ _) h₁, inv_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 1 ≤ a
⊢ a⁻¹ ≤ 1
[PROOFSTEP]
rwa [inv_le (zero_lt_one.trans_le ha) zero_lt_one, inv_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h₁ : 0 < a
h₂ : a ≤ 1
⊢ 1 ≤ a⁻¹
[PROOFSTEP]
rwa [le_inv (@zero_lt_one α _ _ _ _ _) h₁, inv_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
⊢ a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a
[PROOFSTEP]
cases' le_or_lt a 0 with ha ha
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : a ≤ 0
⊢ a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a
[PROOFSTEP]
simp [ha, (inv_nonpos.2 ha).trans_lt zero_lt_one]
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
⊢ a⁻¹ < 1 ↔ a ≤ 0 ∨ 1 < a
[PROOFSTEP]
simp only [ha.not_le, false_or_iff, inv_lt_one_iff_of_pos ha]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
⊢ a⁻¹ ≤ 1 ↔ a ≤ 0 ∨ 1 ≤ a
[PROOFSTEP]
rcases em (a = 1) with (rfl | ha)
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
b c d e : α
m n : ℤ
⊢ 1⁻¹ ≤ 1 ↔ 1 ≤ 0 ∨ 1 ≤ 1
[PROOFSTEP]
simp [le_rfl]
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : ¬a = 1
⊢ a⁻¹ ≤ 1 ↔ a ≤ 0 ∨ 1 ≤ a
[PROOFSTEP]
simp only [Ne.le_iff_lt (Ne.symm ha), Ne.le_iff_lt (mt inv_eq_one.1 ha), inv_lt_one_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hc : 0 ≤ c
h : a ≤ b
⊢ a / c ≤ b / c
[PROOFSTEP]
rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hc : 0 ≤ c
h : a ≤ b
⊢ a * (1 / c) ≤ b * (1 / c)
[PROOFSTEP]
exact mul_le_mul_of_nonneg_right h (one_div_nonneg.2 hc)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 ≤ a
hc : 0 < c
h : c ≤ b
⊢ a / b ≤ a / c
[PROOFSTEP]
rw [div_eq_mul_inv, div_eq_mul_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 ≤ a
hc : 0 < c
h : c ≤ b
⊢ a * b⁻¹ ≤ a * c⁻¹
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left ((inv_le_inv (hc.trans_le h) hc).mpr h) ha
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hc : 0 < c
h : a < b
⊢ a / c < b / c
[PROOFSTEP]
rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hc : 0 < c
h : a < b
⊢ a * (1 / c) < b * (1 / c)
[PROOFSTEP]
exact mul_lt_mul_of_pos_right h (one_div_pos.2 hc)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
hc : 0 < c
⊢ a / b < a / c ↔ c < b
[PROOFSTEP]
simp only [div_eq_mul_inv, mul_lt_mul_left ha, inv_lt_inv hb hc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
b0 : 0 < b
d0 : 0 < d
⊢ a / b < c / d ↔ a * d < c * b
[PROOFSTEP]
rw [lt_div_iff d0, div_mul_eq_mul_div, div_lt_iff b0]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
b0 : 0 < b
d0 : 0 < d
⊢ a / b ≤ c / d ↔ a * d ≤ c * b
[PROOFSTEP]
rw [le_div_iff d0, div_mul_eq_mul_div, div_le_iff b0]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hc : 0 ≤ c
hac : a ≤ c
hd : 0 < d
hbd : d ≤ b
⊢ a / b ≤ c / d
[PROOFSTEP]
rw [div_le_div_iff (hd.trans_le hbd) hd]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hc : 0 ≤ c
hac : a ≤ c
hd : 0 < d
hbd : d ≤ b
⊢ a * d ≤ c * b
[PROOFSTEP]
exact mul_le_mul hac hbd hd.le hc
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 ≤ a
hb : 1 ≤ b
⊢ a / b ≤ a
[PROOFSTEP]
simpa only [div_one] using div_le_div_of_le_left ha zero_lt_one hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 1 < b
⊢ a / b < a
[PROOFSTEP]
simpa only [div_one] using div_lt_div_of_lt_left ha zero_lt_one hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 ≤ a
hb₀ : 0 < b
hb₁ : b ≤ 1
⊢ a ≤ a / b
[PROOFSTEP]
simpa only [div_one] using div_le_div_of_le_left ha hb₀ hb₁
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 < b
⊢ 1 ≤ a / b ↔ b ≤ a
[PROOFSTEP]
rw [le_div_iff hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 < b
⊢ a / b ≤ 1 ↔ a ≤ b
[PROOFSTEP]
rw [div_le_iff hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 < b
⊢ 1 < a / b ↔ b < a
[PROOFSTEP]
rw [lt_div_iff hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
hb : 0 < b
⊢ a / b < 1 ↔ a < b
[PROOFSTEP]
rw [div_lt_iff hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
⊢ 1 / a ≤ b ↔ 1 / b ≤ a
[PROOFSTEP]
simpa using inv_le ha hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
⊢ 1 / a < b ↔ 1 / b < a
[PROOFSTEP]
simpa using inv_lt ha hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
⊢ a ≤ 1 / b ↔ b ≤ 1 / a
[PROOFSTEP]
simpa using le_inv ha hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
hb : 0 < b
⊢ a < 1 / b ↔ b < 1 / a
[PROOFSTEP]
simpa using lt_inv ha hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
h : a ≤ b
⊢ 1 / b ≤ 1 / a
[PROOFSTEP]
simpa using inv_le_inv_of_le ha h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
ha : 0 < a
h : a < b
⊢ 1 / b < 1 / a
[PROOFSTEP]
rwa [lt_div_iff' ha, ← div_eq_mul_one_div, div_lt_one (ha.trans h)]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h1 : 0 < a
h2 : a < 1
⊢ 1 < 1 / a
[PROOFSTEP]
rwa [lt_one_div (@zero_lt_one α _ _ _ _ _) h1, one_div_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h1 : 0 < a
h2 : a ≤ 1
⊢ 1 ≤ 1 / a
[PROOFSTEP]
rwa [le_one_div (@zero_lt_one α _ _ _ _ _) h1, one_div_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b c d e : α
m n : ℤ
a : α
⊢ a / 2 + a / 2 = a
[PROOFSTEP]
rw [div_add_div_same, ← two_mul, mul_div_cancel_left a two_ne_zero]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b c d e : α
m n : ℤ
a : α
⊢ (a + a) / 2 = a
[PROOFSTEP]
rw [← mul_two, mul_div_cancel a two_ne_zero]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
⊢ a / 2 ≤ a ↔ 0 ≤ a
[PROOFSTEP]
rw [div_le_iff (zero_lt_two' α), mul_two, le_add_iff_nonneg_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
⊢ a / 2 < a ↔ 0 < a
[PROOFSTEP]
rw [div_lt_iff (zero_lt_two' α), mul_two, lt_add_iff_pos_left]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
⊢ a < (a + b) / 2 ↔ a < b
[PROOFSTEP]
simp [lt_div_iff, mul_two]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
⊢ (a + b) / 2 < b ↔ a < b
[PROOFSTEP]
simp [div_lt_iff, mul_two]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b c d e : α
m n : ℤ
a : α
⊢ a / 3 + a / 3 + a / 3 = a
[PROOFSTEP]
rw [div_add_div_same, div_add_div_same, ← two_mul, ← add_one_mul 2 a, two_add_one_eq_three,
mul_div_cancel_left a three_ne_zero]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : a * (b / c) ≤ d
hc : 0 < c
⊢ b * a ≤ d * c
[PROOFSTEP]
rw [← mul_div_assoc] at h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : a * b / c ≤ d
hc : 0 < c
⊢ b * a ≤ d * c
[PROOFSTEP]
rwa [mul_comm b, ← div_le_iff hc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : a / b ≤ c / d
he : 0 ≤ e
⊢ a / (b * e) ≤ c / (d * e)
[PROOFSTEP]
rw [div_mul_eq_div_mul_one_div, div_mul_eq_div_mul_one_div]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
h : a / b ≤ c / d
he : 0 ≤ e
⊢ a / b * (1 / e) ≤ c / d * (1 / e)
[PROOFSTEP]
exact mul_le_mul_of_nonneg_right h (one_div_nonneg.2 he)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b✝ c d e : α
m n : ℤ
a : α
h : 0 < a
b : α
⊢ ∃ c, 0 < c ∧ b * c < a
[PROOFSTEP]
have : 0 < a / max (b + 1) 1 := div_pos h (lt_max_iff.2 (Or.inr zero_lt_one))
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b✝ c d e : α
m n : ℤ
a : α
h : 0 < a
b : α
this : 0 < a / max (b + 1) 1
⊢ ∃ c, 0 < c ∧ b * c < a
[PROOFSTEP]
refine' ⟨a / max (b + 1) 1, this, _⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b✝ c d e : α
m n : ℤ
a : α
h : 0 < a
b : α
this : 0 < a / max (b + 1) 1
⊢ b * (a / max (b + 1) 1) < a
[PROOFSTEP]
rw [← lt_div_iff this, div_div_cancel' h.ne']
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b✝ c d e : α
m n : ℤ
a : α
h : 0 < a
b : α
this : 0 < a / max (b + 1) 1
⊢ b < max (b + 1) 1
[PROOFSTEP]
exact lt_max_iff.2 (Or.inl <| lt_add_one _)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a✝ b✝ c✝ d e : α
m n : ℤ
a : α
h : 0 < a
b c : α
hc₀ : 0 < c
hc : b * c < a
⊢ b < c⁻¹ * a
[PROOFSTEP]
rwa [← div_eq_inv_mul, lt_div_iff hc₀]
[GOAL]
ι : Type u_1
α : Type u_2
β✝ : Type u_3
inst✝¹ : LinearOrderedSemifield α
a b c✝ d e : α
m n : ℤ
β : Type u_4
inst✝ : Preorder β
f : β → α
hf : Monotone f
c : α
hc : 0 ≤ c
⊢ Monotone fun x => f x / c
[PROOFSTEP]
haveI := @LinearOrder.decidableLE α _
[GOAL]
ι : Type u_1
α : Type u_2
β✝ : Type u_3
inst✝¹ : LinearOrderedSemifield α
a b c✝ d e : α
m n : ℤ
β : Type u_4
inst✝ : Preorder β
f : β → α
hf : Monotone f
c : α
hc : 0 ≤ c
this : DecidableRel fun x x_1 => x ≤ x_1
⊢ Monotone fun x => f x / c
[PROOFSTEP]
simpa only [div_eq_mul_inv] using (monotone_mul_right_of_nonneg (inv_nonneg.2 hc)).comp hf
[GOAL]
ι : Type u_1
α : Type u_2
β✝ : Type u_3
inst✝¹ : LinearOrderedSemifield α
a b c✝ d e : α
m n : ℤ
β : Type u_4
inst✝ : Preorder β
f : β → α
hf : StrictMono f
c : α
hc : 0 < c
⊢ StrictMono fun x => f x / c
[PROOFSTEP]
simpa only [div_eq_mul_inv] using hf.mul_const (inv_pos.2 hc)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 ≤ a
m n : ℕ
mn : m ≤ n
⊢ 1 / a ^ n ≤ 1 / a ^ m
[PROOFSTEP]
refine' (one_div_le_one_div _ _).mpr (pow_le_pow a1 mn)
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 ≤ a
m n : ℕ
mn : m ≤ n
⊢ 0 < a ^ n
[PROOFSTEP]
exact pow_pos (zero_lt_one.trans_le a1) _
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 ≤ a
m n : ℕ
mn : m ≤ n
⊢ 0 < a ^ m
[PROOFSTEP]
exact pow_pos (zero_lt_one.trans_le a1) _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 < a
m n : ℕ
mn : m < n
⊢ 1 / a ^ n < 1 / a ^ m
[PROOFSTEP]
refine' (one_div_lt_one_div _ _).mpr (pow_lt_pow a1 mn)
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 < a
m n : ℕ
mn : m < n
⊢ 0 < a ^ n
[PROOFSTEP]
exact pow_pos (zero_lt_one.trans a1) _
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 < a
m n : ℕ
mn : m < n
⊢ 0 < a ^ m
[PROOFSTEP]
exact pow_pos (zero_lt_one.trans a1) _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 ≤ a
m n : ℕ
mn : m ≤ n
⊢ (a ^ n)⁻¹ ≤ (a ^ m)⁻¹
[PROOFSTEP]
convert one_div_pow_le_one_div_pow_of_le a1 mn using 1
[GOAL]
case h.e'_3
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 ≤ a
m n : ℕ
mn : m ≤ n
⊢ (a ^ n)⁻¹ = 1 / a ^ n
[PROOFSTEP]
simp
[GOAL]
case h.e'_4
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 ≤ a
m n : ℕ
mn : m ≤ n
⊢ (a ^ m)⁻¹ = 1 / a ^ m
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 < a
m n : ℕ
mn : m < n
⊢ (a ^ n)⁻¹ < (a ^ m)⁻¹
[PROOFSTEP]
convert one_div_pow_lt_one_div_pow_of_lt a1 mn using 1
[GOAL]
case h.e'_3
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 < a
m n : ℕ
mn : m < n
⊢ (a ^ n)⁻¹ = 1 / a ^ n
[PROOFSTEP]
simp
[GOAL]
case h.e'_4
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m✝ n✝ : ℤ
a1 : 1 < a
m n : ℕ
mn : m < n
⊢ (a ^ m)⁻¹ = 1 / a ^ m
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
s : Set α
ha : 0 ≤ a
hs : IsGLB s b
⊢ IsGLB ((fun b => a * b) '' s) (a * b)
[PROOFSTEP]
rcases lt_or_eq_of_le ha with (ha | rfl)
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
s : Set α
ha✝ : 0 ≤ a
hs : IsGLB s b
ha : 0 < a
⊢ IsGLB ((fun b => a * b) '' s) (a * b)
[PROOFSTEP]
exact (OrderIso.mulLeft₀ _ ha).isGLB_image'.2 hs
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
b c d e : α
m n : ℤ
s : Set α
hs : IsGLB s b
ha : 0 ≤ 0
⊢ IsGLB ((fun b => 0 * b) '' s) (0 * b)
[PROOFSTEP]
simp_rw [zero_mul]
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
b c d e : α
m n : ℤ
s : Set α
hs : IsGLB s b
ha : 0 ≤ 0
⊢ IsGLB ((fun a => 0) '' s) 0
[PROOFSTEP]
rw [hs.nonempty.image_const]
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
b c d e : α
m n : ℤ
s : Set α
hs : IsGLB s b
ha : 0 ≤ 0
⊢ IsGLB {0} 0
[PROOFSTEP]
exact isGLB_singleton
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedSemifield α
a b c d e : α
m n : ℤ
s : Set α
ha : 0 ≤ a
hs : IsGLB s b
⊢ IsGLB ((fun b => b * a) '' s) (b * a)
[PROOFSTEP]
simpa [mul_comm] using hs.mul_left ha
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
⊢ 0 < a / b ↔ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0
[PROOFSTEP]
simp only [division_def, mul_pos_iff, inv_pos, inv_lt_zero]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
⊢ a / b < 0 ↔ 0 < a ∧ b < 0 ∨ a < 0 ∧ 0 < b
[PROOFSTEP]
simp [division_def, mul_neg_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
⊢ 0 ≤ a / b ↔ 0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0
[PROOFSTEP]
simp [division_def, mul_nonneg_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
⊢ a / b ≤ 0 ↔ 0 ≤ a ∧ b ≤ 0 ∨ a ≤ 0 ∧ 0 ≤ b
[PROOFSTEP]
simp [division_def, mul_nonpos_iff]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c < 0
⊢ b / c ≤ a ↔ c * a ≤ b
[PROOFSTEP]
rw [mul_comm, div_le_iff_of_neg hc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c < 0
⊢ a ≤ b / c ↔ b ≤ a * c
[PROOFSTEP]
rw [← neg_neg c, mul_neg, div_neg, le_neg, div_le_iff (neg_pos.2 hc), neg_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c < 0
⊢ a ≤ b / c ↔ b ≤ c * a
[PROOFSTEP]
rw [mul_comm, le_div_iff_of_neg hc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c < 0
⊢ b / c < a ↔ c * a < b
[PROOFSTEP]
rw [mul_comm, div_lt_iff_of_neg hc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c < 0
⊢ a < b / c ↔ b < c * a
[PROOFSTEP]
rw [mul_comm, lt_div_iff_of_neg hc]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
h : b ≤ a
hb : b ≤ 0
⊢ a / b ≤ 1
[PROOFSTEP]
simpa only [neg_div_neg_eq] using div_le_one_of_le (neg_le_neg h) (neg_nonneg_of_nonpos hb)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
ha : a < 0
hb : b < 0
⊢ a⁻¹ ≤ b⁻¹ ↔ b ≤ a
[PROOFSTEP]
rw [← one_div, div_le_iff_of_neg ha, ← div_eq_inv_mul, div_le_iff_of_neg hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
ha : a < 0
hb : b < 0
⊢ a⁻¹ ≤ b ↔ b⁻¹ ≤ a
[PROOFSTEP]
rw [← inv_le_inv_of_neg hb (inv_lt_zero.2 ha), inv_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
ha : a < 0
hb : b < 0
⊢ a ≤ b⁻¹ ↔ b ≤ a⁻¹
[PROOFSTEP]
rw [← inv_le_inv_of_neg (inv_lt_zero.2 hb) ha, inv_inv]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c ≤ 0
h : b ≤ a
⊢ a / c ≤ b / c
[PROOFSTEP]
rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c ≤ 0
h : b ≤ a
⊢ a * (1 / c) ≤ b * (1 / c)
[PROOFSTEP]
exact mul_le_mul_of_nonpos_right h (one_div_nonpos.2 hc)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c < 0
h : b < a
⊢ a / c < b / c
[PROOFSTEP]
rw [div_eq_mul_one_div a c, div_eq_mul_one_div b c]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c < 0
h : b < a
⊢ a * (1 / c) < b * (1 / c)
[PROOFSTEP]
exact mul_lt_mul_of_neg_right h (one_div_neg.2 hc)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
⊢ 1 ≤ a / b ↔ a ≤ b
[PROOFSTEP]
rw [le_div_iff_of_neg hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
⊢ a / b ≤ 1 ↔ b ≤ a
[PROOFSTEP]
rw [div_le_iff_of_neg hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
⊢ 1 < a / b ↔ a < b
[PROOFSTEP]
rw [lt_div_iff_of_neg hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
⊢ a / b < 1 ↔ b < a
[PROOFSTEP]
rw [div_lt_iff_of_neg hb, one_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
ha : a < 0
hb : b < 0
⊢ 1 / a ≤ b ↔ 1 / b ≤ a
[PROOFSTEP]
simpa using inv_le_of_neg ha hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
ha : a < 0
hb : b < 0
⊢ 1 / a < b ↔ 1 / b < a
[PROOFSTEP]
simpa using inv_lt_of_neg ha hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
ha : a < 0
hb : b < 0
⊢ a ≤ 1 / b ↔ b ≤ 1 / a
[PROOFSTEP]
simpa using le_inv_of_neg ha hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
ha : a < 0
hb : b < 0
⊢ a < 1 / b ↔ b < 1 / a
[PROOFSTEP]
simpa using lt_inv_of_neg ha hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
⊢ 1 < a / b ↔ 0 < b ∧ b < a ∨ b < 0 ∧ a < b
[PROOFSTEP]
rcases lt_trichotomy b 0 with (hb | rfl | hb)
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
⊢ 1 < a / b ↔ 0 < b ∧ b < a ∨ b < 0 ∧ a < b
[PROOFSTEP]
simp [hb, hb.not_lt, one_lt_div_of_neg]
[GOAL]
case inr.inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a c d : α
n : ℤ
⊢ 1 < a / 0 ↔ 0 < 0 ∧ 0 < a ∨ 0 < 0 ∧ a < 0
[PROOFSTEP]
simp [lt_irrefl, zero_le_one]
[GOAL]
case inr.inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : 0 < b
⊢ 1 < a / b ↔ 0 < b ∧ b < a ∨ b < 0 ∧ a < b
[PROOFSTEP]
simp [hb, hb.not_lt, one_lt_div]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b
[PROOFSTEP]
rcases lt_trichotomy b 0 with (hb | rfl | hb)
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b
[PROOFSTEP]
simp [hb, hb.not_lt, one_le_div_of_neg]
[GOAL]
case inr.inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a c d : α
n : ℤ
⊢ 1 ≤ a / 0 ↔ 0 < 0 ∧ 0 ≤ a ∨ 0 < 0 ∧ a ≤ 0
[PROOFSTEP]
simp [lt_irrefl, zero_lt_one.not_le, zero_lt_one]
[GOAL]
case inr.inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : 0 < b
⊢ 1 ≤ a / b ↔ 0 < b ∧ b ≤ a ∨ b < 0 ∧ a ≤ b
[PROOFSTEP]
simp [hb, hb.not_lt, one_le_div]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
⊢ a / b < 1 ↔ 0 < b ∧ a < b ∨ b = 0 ∨ b < 0 ∧ b < a
[PROOFSTEP]
rcases lt_trichotomy b 0 with (hb | rfl | hb)
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
⊢ a / b < 1 ↔ 0 < b ∧ a < b ∨ b = 0 ∨ b < 0 ∧ b < a
[PROOFSTEP]
simp [hb, hb.not_lt, hb.ne, div_lt_one_of_neg]
[GOAL]
case inr.inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a c d : α
n : ℤ
⊢ a / 0 < 1 ↔ 0 < 0 ∧ a < 0 ∨ 0 = 0 ∨ 0 < 0 ∧ 0 < a
[PROOFSTEP]
simp [zero_lt_one]
[GOAL]
case inr.inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : 0 < b
⊢ a / b < 1 ↔ 0 < b ∧ a < b ∨ b = 0 ∨ b < 0 ∧ b < a
[PROOFSTEP]
simp [hb, hb.not_lt, div_lt_one, hb.ne.symm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
⊢ a / b ≤ 1 ↔ 0 < b ∧ a ≤ b ∨ b = 0 ∨ b < 0 ∧ b ≤ a
[PROOFSTEP]
rcases lt_trichotomy b 0 with (hb | rfl | hb)
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
⊢ a / b ≤ 1 ↔ 0 < b ∧ a ≤ b ∨ b = 0 ∨ b < 0 ∧ b ≤ a
[PROOFSTEP]
simp [hb, hb.not_lt, hb.ne, div_le_one_of_neg]
[GOAL]
case inr.inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a c d : α
n : ℤ
⊢ a / 0 ≤ 1 ↔ 0 < 0 ∧ a ≤ 0 ∨ 0 = 0 ∨ 0 < 0 ∧ 0 ≤ a
[PROOFSTEP]
simp [zero_le_one]
[GOAL]
case inr.inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : 0 < b
⊢ a / b ≤ 1 ↔ 0 < b ∧ a ≤ b ∨ b = 0 ∨ b < 0 ∧ b ≤ a
[PROOFSTEP]
simp [hb, hb.not_lt, div_le_one, hb.ne.symm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
h : a ≤ b
⊢ 1 / b ≤ 1 / a
[PROOFSTEP]
rwa [div_le_iff_of_neg' hb, ← div_eq_mul_one_div, div_le_one_of_neg (h.trans_lt hb)]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hb : b < 0
h : a < b
⊢ 1 / b < 1 / a
[PROOFSTEP]
rwa [div_lt_iff_of_neg' hb, ← div_eq_mul_one_div, div_lt_one_of_neg (h.trans hb)]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
ha : a < 0
hb : b < 0
⊢ 1 / a ≤ 1 / b ↔ b ≤ a
[PROOFSTEP]
simpa [one_div] using inv_le_inv_of_neg ha hb
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
h1 : a < 0
h2 : -1 < a
this : 1 / a < 1 / -1
⊢ 1 / a < -1
[PROOFSTEP]
rwa [one_div_neg_one_eq_neg_one] at this
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
h1 : a < 0
h2 : -1 ≤ a
this : 1 / a ≤ 1 / -1
⊢ 1 / a ≤ -1
[PROOFSTEP]
rwa [one_div_neg_one_eq_neg_one] at this
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a✝ b c d : α
n : ℤ
a : α
⊢ a - a / 2 = a / 2
[PROOFSTEP]
suffices a / 2 + a / 2 - a / 2 = a / 2 by rwa [add_halves] at this
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a✝ b c d : α
n : ℤ
a : α
this : a / 2 + a / 2 - a / 2 = a / 2
⊢ a - a / 2 = a / 2
[PROOFSTEP]
rwa [add_halves] at this
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a✝ b c d : α
n : ℤ
a : α
⊢ a / 2 + a / 2 - a / 2 = a / 2
[PROOFSTEP]
rw [add_sub_cancel]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a✝ b c d : α
n : ℤ
a : α
⊢ a / 2 - a = -(a / 2)
[PROOFSTEP]
suffices a / 2 - (a / 2 + a / 2) = -(a / 2) by rwa [add_halves] at this
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a✝ b c d : α
n : ℤ
a : α
this : a / 2 - (a / 2 + a / 2) = -(a / 2)
⊢ a / 2 - a = -(a / 2)
[PROOFSTEP]
rwa [add_halves] at this
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a✝ b c d : α
n : ℤ
a : α
⊢ a / 2 - (a / 2 + a / 2) = -(a / 2)
[PROOFSTEP]
rw [sub_add_eq_sub_sub, sub_self, zero_sub]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
h : a < b
⊢ a + (b - a) / 2 < b
[PROOFSTEP]
rwa [← div_sub_div_same, sub_eq_add_neg, add_comm (b / 2), ← add_assoc, ← sub_eq_add_neg, ← lt_sub_iff_add_lt,
sub_self_div_two, sub_self_div_two, div_lt_div_right (zero_lt_two' α)]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
a2 : 2 ≤ a
⊢ (1 - 1 / a)⁻¹ ≤ 2
[PROOFSTEP]
refine'
(inv_le_inv_of_le (inv_pos.2 <| zero_lt_two' α) _).trans_eq
(inv_inv (2 : α))
-- move `1 / a` to the left and `2⁻¹` to the right.
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
a2 : 2 ≤ a
⊢ 2⁻¹ ≤ 1 - 1 / a
[PROOFSTEP]
rw [le_sub_iff_add_le, add_comm, ← le_sub_iff_add_le]
-- take inverses on both sides and use the assumption `2 ≤ a`.
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
a2 : 2 ≤ a
⊢ 1 / a ≤ 1 - 2⁻¹
[PROOFSTEP]
convert (one_div a).le.trans (inv_le_inv_of_le zero_lt_two a2) using 1
-- show `1 - 1 / 2 = 1 / 2`.
[GOAL]
case h.e'_4
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
a2 : 2 ≤ a
⊢ 1 - 2⁻¹ = 2⁻¹
[PROOFSTEP]
rw [sub_eq_iff_eq_add, ← two_mul, mul_inv_cancel two_ne_zero]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
s : Set α
ha : 0 ≤ a
hs : IsLUB s b
⊢ IsLUB ((fun b => a * b) '' s) (a * b)
[PROOFSTEP]
rcases lt_or_eq_of_le ha with (ha | rfl)
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
s : Set α
ha✝ : 0 ≤ a
hs : IsLUB s b
ha : 0 < a
⊢ IsLUB ((fun b => a * b) '' s) (a * b)
[PROOFSTEP]
exact (OrderIso.mulLeft₀ _ ha).isLUB_image'.2 hs
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
s : Set α
hs : IsLUB s b
ha : 0 ≤ 0
⊢ IsLUB ((fun b => 0 * b) '' s) (0 * b)
[PROOFSTEP]
simp_rw [zero_mul]
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
s : Set α
hs : IsLUB s b
ha : 0 ≤ 0
⊢ IsLUB ((fun a => 0) '' s) 0
[PROOFSTEP]
rw [hs.nonempty.image_const]
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
s : Set α
hs : IsLUB s b
ha : 0 ≤ 0
⊢ IsLUB {0} 0
[PROOFSTEP]
exact isLUB_singleton
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
s : Set α
ha : 0 ≤ a
hs : IsLUB s b
⊢ IsLUB ((fun b => b * a) '' s) (b * a)
[PROOFSTEP]
simpa [mul_comm] using hs.mul_left ha
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c ≠ 0
hd : d ≠ 0
⊢ (a * d - b * c) / (c * d) < 0 ↔ a / c < b / d
[PROOFSTEP]
rw [mul_comm b c, ← div_sub_div _ _ hc hd, sub_lt_zero]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
hc : c ≠ 0
hd : d ≠ 0
⊢ (a * d - b * c) / (c * d) ≤ 0 ↔ a / c ≤ b / d
[PROOFSTEP]
rw [mul_comm b c, ← div_sub_div _ _ hc hd, sub_nonpos]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
h : ∀ (ε : α), ε > 0 → b - ε ≤ a
⊢ b ≤ a
[PROOFSTEP]
contrapose! h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
h : a < b
⊢ ∃ ε, ε > 0 ∧ a < b - ε
[PROOFSTEP]
simpa only [@and_comm ((0 : α) < _), lt_sub_iff_add_lt, gt_iff_lt] using exists_add_lt_and_pos_of_lt h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a b c d : α
n : ℤ
a0 : 0 ≤ a
b0 : 0 ≤ b
h : a = -b
⊢ a = b
[PROOFSTEP]
subst a
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
b0 : 0 ≤ b
a0 : 0 ≤ -b
⊢ -b = b
[PROOFSTEP]
have : b = 0 := le_antisymm (neg_nonneg.1 a0) b0
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
b c d : α
n : ℤ
b0 : 0 ≤ b
a0 : 0 ≤ -b
this : b = 0
⊢ -b = b
[PROOFSTEP]
rw [this, neg_zero]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
inst✝ : LinearOrderedField α
a✝ b c d : α
n : ℤ
a : α
⊢ |1 / a| = 1 / |a|
[PROOFSTEP]
rw [abs_div, abs_one]
| {"mathlib_filename": "Mathlib.Algebra.Order.Field.Basic", "llama_tokens": 22625} |
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : NonAssocSemiring α
inst✝⁶ : Preorder α
inst✝⁵ : NonAssocSemiring β
inst✝⁴ : Preorder β
inst✝³ : NonAssocSemiring γ
inst✝² : Preorder γ
inst✝¹ : NonAssocSemiring δ
inst✝ : Preorder δ
f g : α →+*o β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := f
[GOAL]
case mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : NonAssocSemiring α
inst✝⁶ : Preorder α
inst✝⁵ : NonAssocSemiring β
inst✝⁴ : Preorder β
inst✝³ : NonAssocSemiring γ
inst✝² : Preorder γ
inst✝¹ : NonAssocSemiring δ
inst✝ : Preorder δ
g : α →+*o β
toMonoidHom✝ : α →* β
map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0
map_add'✝ :
∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y
monotone'✝ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }).toFun
h :
(fun f => f.toFun)
{ toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ },
monotone' := monotone'✝ } =
(fun f => f.toFun) g
⊢ { toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ },
monotone' := monotone'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨_, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : NonAssocSemiring α
inst✝⁶ : Preorder α
inst✝⁵ : NonAssocSemiring β
inst✝⁴ : Preorder β
inst✝³ : NonAssocSemiring γ
inst✝² : Preorder γ
inst✝¹ : NonAssocSemiring δ
inst✝ : Preorder δ
toMonoidHom✝¹ : α →* β
map_zero'✝¹ : OneHom.toFun (↑toMonoidHom✝¹) 0 = 0
map_add'✝¹ :
∀ (x y : α), OneHom.toFun (↑toMonoidHom✝¹) (x + y) = OneHom.toFun (↑toMonoidHom✝¹) x + OneHom.toFun (↑toMonoidHom✝¹) y
monotone'✝¹ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }).toFun
toMonoidHom✝ : α →* β
map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0
map_add'✝ :
∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y
monotone'✝ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }).toFun
h :
(fun f => f.toFun)
{ toRingHom := { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
monotone' := monotone'✝¹ } =
(fun f => f.toFun)
{ toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ },
monotone' := monotone'✝ }
⊢ { toRingHom := { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
monotone' := monotone'✝¹ } =
{ toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ },
monotone' := monotone'✝ }
[PROOFSTEP]
congr
-- porting note: needed to add the following line
[GOAL]
case mk.mk.mk.mk.e_toRingHom.e_toMonoidHom
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : NonAssocSemiring α
inst✝⁶ : Preorder α
inst✝⁵ : NonAssocSemiring β
inst✝⁴ : Preorder β
inst✝³ : NonAssocSemiring γ
inst✝² : Preorder γ
inst✝¹ : NonAssocSemiring δ
inst✝ : Preorder δ
toMonoidHom✝¹ : α →* β
map_zero'✝¹ : OneHom.toFun (↑toMonoidHom✝¹) 0 = 0
map_add'✝¹ :
∀ (x y : α), OneHom.toFun (↑toMonoidHom✝¹) (x + y) = OneHom.toFun (↑toMonoidHom✝¹) x + OneHom.toFun (↑toMonoidHom✝¹) y
monotone'✝¹ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ }).toFun
toMonoidHom✝ : α →* β
map_zero'✝ : OneHom.toFun (↑toMonoidHom✝) 0 = 0
map_add'✝ :
∀ (x y : α), OneHom.toFun (↑toMonoidHom✝) (x + y) = OneHom.toFun (↑toMonoidHom✝) x + OneHom.toFun (↑toMonoidHom✝) y
monotone'✝ : Monotone (↑↑{ toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ }).toFun
h :
(fun f => f.toFun)
{ toRingHom := { toMonoidHom := toMonoidHom✝¹, map_zero' := map_zero'✝¹, map_add' := map_add'✝¹ },
monotone' := monotone'✝¹ } =
(fun f => f.toFun)
{ toRingHom := { toMonoidHom := toMonoidHom✝, map_zero' := map_zero'✝, map_add' := map_add'✝ },
monotone' := monotone'✝ }
⊢ toMonoidHom✝¹ = toMonoidHom✝
[PROOFSTEP]
exact MonoidHom.monoidHomClass.coe_injective' h
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : NonAssocSemiring α
inst✝⁶ : Preorder α
inst✝⁵ : NonAssocSemiring β
inst✝⁴ : Preorder β
inst✝³ : NonAssocSemiring γ
inst✝² : Preorder γ
inst✝¹ : NonAssocSemiring δ
inst✝ : Preorder δ
f₁ f₂ : β →+*o γ
g : α →+*o β
hg : Surjective ↑g
h : f₁ = f₂
⊢ OrderRingHom.comp f₁ g = OrderRingHom.comp f₂ g
[PROOFSTEP]
rw [h]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : NonAssocSemiring α
inst✝⁶ : Preorder α
inst✝⁵ : NonAssocSemiring β
inst✝⁴ : Preorder β
inst✝³ : NonAssocSemiring γ
inst✝² : Preorder γ
inst✝¹ : NonAssocSemiring δ
inst✝ : Preorder δ
f : β →+*o γ
g₁ g₂ : α →+*o β
hf : Injective ↑f
h : OrderRingHom.comp f g₁ = OrderRingHom.comp f g₂
a : α
⊢ ↑f (↑g₁ a) = ↑f (↑g₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹¹ : Mul α
inst✝¹⁰ : Add α
inst✝⁹ : LE α
inst✝⁸ : Mul β
inst✝⁷ : Add β
inst✝⁶ : LE β
inst✝⁵ : Mul γ
inst✝⁴ : Add γ
inst✝³ : LE γ
inst✝² : Mul δ
inst✝¹ : Add δ
inst✝ : LE δ
f g : α ≃+*o β
h₁ : (fun f => f.toFun) f = (fun f => f.toFun) g
h₂ : (fun f => f.invFun) f = (fun f => f.invFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := f
[GOAL]
case mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹¹ : Mul α
inst✝¹⁰ : Add α
inst✝⁹ : LE α
inst✝⁸ : Mul β
inst✝⁷ : Add β
inst✝⁶ : LE β
inst✝⁵ : Mul γ
inst✝⁴ : Add γ
inst✝³ : LE γ
inst✝² : Mul δ
inst✝¹ : Add δ
inst✝ : LE δ
g : α ≃+*o β
toFun✝ : α → β
invFun✝ : β → α
left_inv✝ : LeftInverse invFun✝ toFun✝
right_inv✝ : Function.RightInverse invFun✝ toFun✝
map_mul'✝ :
∀ (x y : α),
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x * y) =
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x *
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y
map_add'✝ :
∀ (x y : α),
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x + y) =
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x +
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y
map_le_map_iff'✝ :
∀ {a b : α},
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
a ≤
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
b ↔
a ≤ b
h₁ :
(fun f => f.toFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_le_map_iff' := map_le_map_iff'✝ } =
(fun f => f.toFun) g
h₂ :
(fun f => f.invFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_le_map_iff' := map_le_map_iff'✝ } =
(fun f => f.invFun) g
⊢ {
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_le_map_iff' := map_le_map_iff'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩, _⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹¹ : Mul α
inst✝¹⁰ : Add α
inst✝⁹ : LE α
inst✝⁸ : Mul β
inst✝⁷ : Add β
inst✝⁶ : LE β
inst✝⁵ : Mul γ
inst✝⁴ : Add γ
inst✝³ : LE γ
inst✝² : Mul δ
inst✝¹ : Add δ
inst✝ : LE δ
toFun✝¹ : α → β
invFun✝¹ : β → α
left_inv✝¹ : LeftInverse invFun✝¹ toFun✝¹
right_inv✝¹ : Function.RightInverse invFun✝¹ toFun✝¹
map_mul'✝¹ :
∀ (x y : α),
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } (x * y) =
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } x *
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } y
map_add'✝¹ :
∀ (x y : α),
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } (x + y) =
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } x +
Equiv.toFun { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ } y
map_le_map_iff'✝¹ :
∀ {a b : α},
Equiv.toFun
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv
a ≤
Equiv.toFun
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ }.toEquiv
b ↔
a ≤ b
toFun✝ : α → β
invFun✝ : β → α
left_inv✝ : LeftInverse invFun✝ toFun✝
right_inv✝ : Function.RightInverse invFun✝ toFun✝
map_mul'✝ :
∀ (x y : α),
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x * y) =
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x *
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y
map_add'✝ :
∀ (x y : α),
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } (x + y) =
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } x +
Equiv.toFun { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ } y
map_le_map_iff'✝ :
∀ {a b : α},
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
a ≤
Equiv.toFun
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ }.toEquiv
b ↔
a ≤ b
h₁ :
(fun f => f.toFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ },
map_le_map_iff' := map_le_map_iff'✝¹ } =
(fun f => f.toFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_le_map_iff' := map_le_map_iff'✝ }
h₂ :
(fun f => f.invFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ },
map_le_map_iff' := map_le_map_iff'✝¹ } =
(fun f => f.invFun)
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_le_map_iff' := map_le_map_iff'✝ }
⊢ {
toRingEquiv :=
{ toEquiv := { toFun := toFun✝¹, invFun := invFun✝¹, left_inv := left_inv✝¹, right_inv := right_inv✝¹ },
map_mul' := map_mul'✝¹, map_add' := map_add'✝¹ },
map_le_map_iff' := map_le_map_iff'✝¹ } =
{
toRingEquiv :=
{ toEquiv := { toFun := toFun✝, invFun := invFun✝, left_inv := left_inv✝, right_inv := right_inv✝ },
map_mul' := map_mul'✝, map_add' := map_add'✝ },
map_le_map_iff' := map_le_map_iff'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹¹ : Mul α
inst✝¹⁰ : Add α
inst✝⁹ : LE α
inst✝⁸ : Mul β
inst✝⁷ : Add β
inst✝⁶ : LE β
inst✝⁵ : Mul γ
inst✝⁴ : Add γ
inst✝³ : LE γ
inst✝² : Mul δ
inst✝¹ : Add δ
inst✝ : LE δ
x : α
⊢ ↑(OrderRingIso.refl α) x = x
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹¹ : Mul α
inst✝¹⁰ : Add α
inst✝⁹ : LE α
inst✝⁸ : Mul β
inst✝⁷ : Add β
inst✝⁶ : LE β
inst✝⁵ : Mul γ
inst✝⁴ : Add γ
inst✝³ : LE γ
inst✝² : Mul δ
inst✝¹ : Add δ
inst✝ : LE δ
e : α ≃+*o β
⊢ ∀ {a b : β},
Equiv.toFun (RingEquiv.symm e.toRingEquiv).toEquiv a ≤ Equiv.toFun (RingEquiv.symm e.toRingEquiv).toEquiv b ↔ a ≤ b
[PROOFSTEP]
intro a b
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝¹¹ : Mul α
inst✝¹⁰ : Add α
inst✝⁹ : LE α
inst✝⁸ : Mul β
inst✝⁷ : Add β
inst✝⁶ : LE β
inst✝⁵ : Mul γ
inst✝⁴ : Add γ
inst✝³ : LE γ
inst✝² : Mul δ
inst✝¹ : Add δ
inst✝ : LE δ
e : α ≃+*o β
a b : β
⊢ Equiv.toFun (RingEquiv.symm e.toRingEquiv).toEquiv a ≤ Equiv.toFun (RingEquiv.symm e.toRingEquiv).toEquiv b ↔ a ≤ b
[PROOFSTEP]
erw [← map_le_map_iff e, e.1.apply_symm_apply, e.1.apply_symm_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁵ : NonAssocSemiring α
inst✝⁴ : Preorder α
inst✝³ : NonAssocSemiring β
inst✝² : Preorder β
inst✝¹ : NonAssocSemiring γ
inst✝ : Preorder γ
f g : α ≃+*o β
h : toOrderRingHom f = toOrderRingHom g
⊢ (fun f => ↑f) f = (fun f => ↑f) g
[PROOFSTEP]
convert FunLike.ext'_iff.1 h using 0
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LinearOrderedField α
inst✝¹ : LinearOrderedField β
inst✝ : Archimedean β
f g : α →+*o β
⊢ f = g
[PROOFSTEP]
ext x
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LinearOrderedField α
inst✝¹ : LinearOrderedField β
inst✝ : Archimedean β
f g : α →+*o β
x : α
⊢ ↑f x = ↑g x
[PROOFSTEP]
by_contra' h' : f x ≠ g x
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LinearOrderedField α
inst✝¹ : LinearOrderedField β
inst✝ : Archimedean β
f g : α →+*o β
x : α
h' : ↑f x ≠ ↑g x
⊢ False
[PROOFSTEP]
wlog h : f x < g x generalizing α β with h₂
[GOAL]
case h.inr
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : LinearOrderedField α
inst✝¹ : LinearOrderedField β
inst✝ : Archimedean β
f g : α →+*o β
x : α
h' : ↑f x ≠ ↑g x
h₂ :
∀ {α : Type u_2} {β : Type u_3} [inst : LinearOrderedField α] [inst_1 : LinearOrderedField β] [inst_2 : Archimedean β]
(f g : α →+*o β) (x : α), ↑f x ≠ ↑g x → ↑f x < ↑g x → False
h : ¬↑f x < ↑g x
⊢ False
[PROOFSTEP]
exact h₂ g f x (Ne.symm h') (h'.lt_or_lt.resolve_left h)
[GOAL]
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
α : Type u_2
β : Type u_3
inst✝² : LinearOrderedField α
inst✝¹ : LinearOrderedField β
inst✝ : Archimedean β
f g : α →+*o β
x : α
h' : ↑f x ≠ ↑g x
h : ↑f x < ↑g x
⊢ False
[PROOFSTEP]
obtain ⟨q, hf, hg⟩ := exists_rat_btwn h
[GOAL]
case intro.intro
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
α : Type u_2
β : Type u_3
inst✝² : LinearOrderedField α
inst✝¹ : LinearOrderedField β
inst✝ : Archimedean β
f g : α →+*o β
x : α
h' : ↑f x ≠ ↑g x
h : ↑f x < ↑g x
q : ℚ
hf : ↑f x < ↑q
hg : ↑q < ↑g x
⊢ False
[PROOFSTEP]
rw [← map_ratCast f] at hf
[GOAL]
case intro.intro
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
α : Type u_2
β : Type u_3
inst✝² : LinearOrderedField α
inst✝¹ : LinearOrderedField β
inst✝ : Archimedean β
f g : α →+*o β
x : α
h' : ↑f x ≠ ↑g x
h : ↑f x < ↑g x
q : ℚ
hf : ↑f x < ↑f ↑q
hg : ↑q < ↑g x
⊢ False
[PROOFSTEP]
rw [← map_ratCast g] at hg
[GOAL]
case intro.intro
F : Type u_1
α✝ : Type u_2
β✝ : Type u_3
γ : Type u_4
δ : Type u_5
α : Type u_2
β : Type u_3
inst✝² : LinearOrderedField α
inst✝¹ : LinearOrderedField β
inst✝ : Archimedean β
f g : α →+*o β
x : α
h' : ↑f x ≠ ↑g x
h : ↑f x < ↑g x
q : ℚ
hf : ↑f x < ↑f ↑q
hg : ↑g ↑q < ↑g x
⊢ False
[PROOFSTEP]
exact (lt_asymm ((OrderHomClass.mono g).reflect_lt hg) <| (OrderHomClass.mono f).reflect_lt hf).elim
| {"mathlib_filename": "Mathlib.Algebra.Order.Hom.Ring", "llama_tokens": 8703} |
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c a b : α
⊢ |a * b| = |a| * |b|
[PROOFSTEP]
rw [abs_eq (mul_nonneg (abs_nonneg a) (abs_nonneg b))]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c a b : α
⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|)
[PROOFSTEP]
cases' le_total a 0 with ha ha
[GOAL]
case inl
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c a b : α
ha : a ≤ 0
⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|)
[PROOFSTEP]
cases' le_total b 0 with hb hb
[GOAL]
case inr
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c a b : α
ha : 0 ≤ a
⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|)
[PROOFSTEP]
cases' le_total b 0 with hb hb
[GOAL]
case inl.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c a b : α
ha : a ≤ 0
hb : b ≤ 0
⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|)
[PROOFSTEP]
simp only [abs_of_nonpos, abs_of_nonneg, true_or_iff, or_true_iff, eq_self_iff_true, neg_mul, mul_neg, neg_neg, *]
[GOAL]
case inl.inr
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c a b : α
ha : a ≤ 0
hb : 0 ≤ b
⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|)
[PROOFSTEP]
simp only [abs_of_nonpos, abs_of_nonneg, true_or_iff, or_true_iff, eq_self_iff_true, neg_mul, mul_neg, neg_neg, *]
[GOAL]
case inr.inl
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c a b : α
ha : 0 ≤ a
hb : b ≤ 0
⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|)
[PROOFSTEP]
simp only [abs_of_nonpos, abs_of_nonneg, true_or_iff, or_true_iff, eq_self_iff_true, neg_mul, mul_neg, neg_neg, *]
[GOAL]
case inr.inr
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c a b : α
ha : 0 ≤ a
hb : 0 ≤ b
⊢ a * b = |a| * |b| ∨ a * b = -(|a| * |b|)
[PROOFSTEP]
simp only [abs_of_nonpos, abs_of_nonneg, true_or_iff, or_true_iff, eq_self_iff_true, neg_mul, mul_neg, neg_neg, *]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
⊢ |a * a| = a * a
[PROOFSTEP]
rw [abs_mul, abs_mul_abs_self]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ |a| = a ↔ 0 ≤ a
[PROOFSTEP]
simp [abs_eq_max_neg]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ |a| = -a ↔ a ≤ 0
[PROOFSTEP]
simp [abs_eq_max_neg]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
⊢ |a| = a ∧ 0 ≤ a ∨ |a| = -a ∧ a < 0
[PROOFSTEP]
by_cases h : 0 ≤ a
[GOAL]
case pos
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
h : 0 ≤ a
⊢ |a| = a ∧ 0 ≤ a ∨ |a| = -a ∧ a < 0
[PROOFSTEP]
left
[GOAL]
case pos.h
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
h : 0 ≤ a
⊢ |a| = a ∧ 0 ≤ a
[PROOFSTEP]
exact ⟨abs_eq_self.mpr h, h⟩
[GOAL]
case neg
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
h : ¬0 ≤ a
⊢ |a| = a ∧ 0 ≤ a ∨ |a| = -a ∧ a < 0
[PROOFSTEP]
right
[GOAL]
case neg.h
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
h : ¬0 ≤ a
⊢ |a| = -a ∧ a < 0
[PROOFSTEP]
push_neg at h
[GOAL]
case neg.h
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
h : a < 0
⊢ |a| = -a ∧ a < 0
[PROOFSTEP]
exact ⟨abs_eq_neg_self.mpr (le_of_lt h), h⟩
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
⊢ max a 0 + max (-a) 0 = |a|
[PROOFSTEP]
symm
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
⊢ |a| = max a 0 + max (-a) 0
[PROOFSTEP]
rcases le_total 0 a with (ha | ha)
[GOAL]
case inl
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
ha : 0 ≤ a
⊢ |a| = max a 0 + max (-a) 0
[PROOFSTEP]
simp [ha]
[GOAL]
case inr
α : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
ha : a ≤ 0
⊢ |a| = max a 0 + max (-a) 0
[PROOFSTEP]
simp [ha]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ |a| = |b| ↔ a * a = b * b
[PROOFSTEP]
rw [← abs_mul_abs_self, ← abs_mul_abs_self b]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ |a| = |b| ↔ |a| * |a| = |b| * |b|
[PROOFSTEP]
exact (mul_self_inj (abs_nonneg a) (abs_nonneg b)).symm
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ |a| < |b| ↔ a * a < b * b
[PROOFSTEP]
rw [← abs_mul_abs_self, ← abs_mul_abs_self b]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ |a| < |b| ↔ |a| * |a| < |b| * |b|
[PROOFSTEP]
exact mul_self_lt_mul_self_iff (abs_nonneg a) (abs_nonneg b)
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ |a| ≤ |b| ↔ a * a ≤ b * b
[PROOFSTEP]
rw [← abs_mul_abs_self, ← abs_mul_abs_self b]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ |a| ≤ |b| ↔ |a| * |a| ≤ |b| * |b|
[PROOFSTEP]
exact mul_self_le_mul_self_iff (abs_nonneg a) (abs_nonneg b)
[GOAL]
α : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ |a| ≤ 1 ↔ a * a ≤ 1
[PROOFSTEP]
simpa only [abs_one, one_mul] using @abs_le_iff_mul_self_le α _ a 1
[GOAL]
α : Type u_1
inst✝ : LinearOrderedCommRing α
a✝ b✝ c d a b : α
⊢ |a - b| * |a - b| = a * a + b * b - (1 + 1) * a * b
[PROOFSTEP]
rw [abs_mul_abs_self]
[GOAL]
α : Type u_1
inst✝ : LinearOrderedCommRing α
a✝ b✝ c d a b : α
⊢ (a - b) * (a - b) = a * a + b * b - (1 + 1) * a * b
[PROOFSTEP]
simp only [mul_add, add_comm, add_left_comm, mul_comm, sub_eq_add_neg, mul_one, mul_neg, neg_add_rev, neg_neg,
add_assoc]
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : LinearOrder α
a✝ b✝ a b : α
⊢ |a| ∣ b ↔ a ∣ b
[PROOFSTEP]
cases' abs_choice a with h h
[GOAL]
case inl
α : Type u_1
inst✝¹ : Ring α
inst✝ : LinearOrder α
a✝ b✝ a b : α
h : |a| = a
⊢ |a| ∣ b ↔ a ∣ b
[PROOFSTEP]
simp only [h, neg_dvd]
[GOAL]
case inr
α : Type u_1
inst✝¹ : Ring α
inst✝ : LinearOrder α
a✝ b✝ a b : α
h : |a| = -a
⊢ |a| ∣ b ↔ a ∣ b
[PROOFSTEP]
simp only [h, neg_dvd]
[GOAL]
α : Type u_1
inst✝¹ : Ring α
inst✝ : LinearOrder α
a✝ b✝ a b : α
⊢ a ∣ |b| ↔ a ∣ b
[PROOFSTEP]
cases' abs_choice b with h h
[GOAL]
case inl
α : Type u_1
inst✝¹ : Ring α
inst✝ : LinearOrder α
a✝ b✝ a b : α
h : |b| = b
⊢ a ∣ |b| ↔ a ∣ b
[PROOFSTEP]
simp only [h, dvd_neg]
[GOAL]
case inr
α : Type u_1
inst✝¹ : Ring α
inst✝ : LinearOrder α
a✝ b✝ a b : α
h : |b| = -b
⊢ a ∣ |b| ↔ a ∣ b
[PROOFSTEP]
simp only [h, dvd_neg]
| {"mathlib_filename": "Mathlib.Algebra.Order.Ring.Abs", "llama_tokens": 3267} |
{"mathlib_filename": "Mathlib.Algebra.Order.Monoid.Cancel.Defs", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
inst✝³ : AddMonoidWithOne α
inst✝² : Preorder α
inst✝¹ : ZeroLEOneClass α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 ≤ 2
[PROOFSTEP]
rw [← one_add_one_eq_two]
[GOAL]
α : Type u_1
inst✝³ : AddMonoidWithOne α
inst✝² : Preorder α
inst✝¹ : ZeroLEOneClass α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 ≤ 1 + 1
[PROOFSTEP]
exact add_nonneg zero_le_one zero_le_one
[GOAL]
α : Type u_1
inst✝³ : AddMonoidWithOne α
inst✝² : Preorder α
inst✝¹ : ZeroLEOneClass α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 ≤ 3
[PROOFSTEP]
rw [← two_add_one_eq_three]
[GOAL]
α : Type u_1
inst✝³ : AddMonoidWithOne α
inst✝² : Preorder α
inst✝¹ : ZeroLEOneClass α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 ≤ 2 + 1
[PROOFSTEP]
exact add_nonneg zero_le_two zero_le_one
[GOAL]
α : Type u_1
inst✝³ : AddMonoidWithOne α
inst✝² : Preorder α
inst✝¹ : ZeroLEOneClass α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 ≤ 4
[PROOFSTEP]
rw [← three_add_one_eq_four]
[GOAL]
α : Type u_1
inst✝³ : AddMonoidWithOne α
inst✝² : Preorder α
inst✝¹ : ZeroLEOneClass α
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 ≤ 3 + 1
[PROOFSTEP]
exact add_nonneg zero_le_three zero_le_one
[GOAL]
α : Type u_1
inst✝⁴ : AddMonoidWithOne α
inst✝³ : PartialOrder α
inst✝² : ZeroLEOneClass α
inst✝¹ : NeZero 1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 < 3
[PROOFSTEP]
rw [← two_add_one_eq_three]
[GOAL]
α : Type u_1
inst✝⁴ : AddMonoidWithOne α
inst✝³ : PartialOrder α
inst✝² : ZeroLEOneClass α
inst✝¹ : NeZero 1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 < 2 + 1
[PROOFSTEP]
exact lt_add_of_lt_of_nonneg zero_lt_two zero_le_one
[GOAL]
α : Type u_1
inst✝⁴ : AddMonoidWithOne α
inst✝³ : PartialOrder α
inst✝² : ZeroLEOneClass α
inst✝¹ : NeZero 1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 < 4
[PROOFSTEP]
rw [← three_add_one_eq_four]
[GOAL]
α : Type u_1
inst✝⁴ : AddMonoidWithOne α
inst✝³ : PartialOrder α
inst✝² : ZeroLEOneClass α
inst✝¹ : NeZero 1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
⊢ 0 < 3 + 1
[PROOFSTEP]
exact lt_add_of_lt_of_nonneg zero_lt_three zero_le_one
[GOAL]
α : Type u_1
inst✝⁴ : AddMonoidWithOne α
inst✝³ : PartialOrder α
inst✝² : ZeroLEOneClass α
inst✝¹ : NeZero 1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
⊢ 1 < 2
[PROOFSTEP]
rw [← one_add_one_eq_two]
[GOAL]
α : Type u_1
inst✝⁴ : AddMonoidWithOne α
inst✝³ : PartialOrder α
inst✝² : ZeroLEOneClass α
inst✝¹ : NeZero 1
inst✝ : CovariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x < x_1
⊢ 1 < 1 + 1
[PROOFSTEP]
exact lt_add_one _
| {"mathlib_filename": "Mathlib.Algebra.Order.Monoid.NatCast", "llama_tokens": 1484} |
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
inst✝ : ExistsAddOfLE α
hab : a ≤ b
hcd : c ≤ d
⊢ a * d + b * c ≤ a * c + b * d
[PROOFSTEP]
obtain ⟨b, rfl⟩ := exists_add_of_le hab
[GOAL]
case intro
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a c d : α
inst✝ : ExistsAddOfLE α
hcd : c ≤ d
b : α
hab : a ≤ a + b
⊢ a * d + (a + b) * c ≤ a * c + (a + b) * d
[PROOFSTEP]
obtain ⟨d, rfl⟩ := exists_add_of_le hcd
[GOAL]
case intro.intro
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a c : α
inst✝ : ExistsAddOfLE α
b : α
hab : a ≤ a + b
d : α
hcd : c ≤ c + d
⊢ a * (c + d) + (a + b) * c ≤ a * c + (a + b) * (c + d)
[PROOFSTEP]
rw [mul_add, add_right_comm, mul_add, ← add_assoc]
[GOAL]
case intro.intro
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a c : α
inst✝ : ExistsAddOfLE α
b : α
hab : a ≤ a + b
d : α
hcd : c ≤ c + d
⊢ a * c + (a + b) * c + a * d ≤ a * c + (a + b) * c + (a + b) * d
[PROOFSTEP]
exact add_le_add_left (mul_le_mul_of_nonneg_right hab <| (le_add_iff_nonneg_right _).1 hcd) _
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
inst✝ : ExistsAddOfLE α
hba : b ≤ a
hdc : d ≤ c
⊢ a • d + b • c ≤ a • c + b • d
[PROOFSTEP]
rw [add_comm (a • d), add_comm (a • c)]
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
inst✝ : ExistsAddOfLE α
hba : b ≤ a
hdc : d ≤ c
⊢ b • c + a • d ≤ b • d + a • c
[PROOFSTEP]
exact mul_add_mul_le_mul_add_mul hba hdc
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
inst✝ : ExistsAddOfLE α
hab : a < b
hcd : c < d
⊢ a * d + b * c < a * c + b * d
[PROOFSTEP]
obtain ⟨b, rfl⟩ := exists_add_of_le hab.le
[GOAL]
case intro
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a c d : α
inst✝ : ExistsAddOfLE α
hcd : c < d
b : α
hab : a < a + b
⊢ a * d + (a + b) * c < a * c + (a + b) * d
[PROOFSTEP]
obtain ⟨d, rfl⟩ := exists_add_of_le hcd.le
[GOAL]
case intro.intro
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a c : α
inst✝ : ExistsAddOfLE α
b : α
hab : a < a + b
d : α
hcd : c < c + d
⊢ a * (c + d) + (a + b) * c < a * c + (a + b) * (c + d)
[PROOFSTEP]
rw [mul_add, add_right_comm, mul_add, ← add_assoc]
[GOAL]
case intro.intro
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a c : α
inst✝ : ExistsAddOfLE α
b : α
hab : a < a + b
d : α
hcd : c < c + d
⊢ a * c + (a + b) * c + a * d < a * c + (a + b) * c + (a + b) * d
[PROOFSTEP]
exact add_lt_add_left (mul_lt_mul_of_pos_right hab <| (lt_add_iff_pos_right _).1 hcd) _
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
inst✝ : ExistsAddOfLE α
hba : b < a
hdc : d < c
⊢ a • d + b • c < a • c + b • d
[PROOFSTEP]
rw [add_comm (a • d), add_comm (a • c)]
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
inst✝ : ExistsAddOfLE α
hba : b < a
hdc : d < c
⊢ b • c + a • d < b • d + a • c
[PROOFSTEP]
exact mul_add_mul_lt_mul_add_mul hba hdc
[GOAL]
α : Type u
β : Type u_1
inst✝ : CanonicallyOrderedCommSemiring α
a b : α
⊢ CovariantClass α α (fun x x_1 => x * x_1) fun x x_1 => x ≤ x_1
[PROOFSTEP]
refine' ⟨fun a b c h => _⟩
[GOAL]
α : Type u
β : Type u_1
inst✝ : CanonicallyOrderedCommSemiring α
a✝ b✝ a b c : α
h : b ≤ c
⊢ a * b ≤ a * c
[PROOFSTEP]
rcases exists_add_of_le h with ⟨c, rfl⟩
[GOAL]
case intro
α : Type u
β : Type u_1
inst✝ : CanonicallyOrderedCommSemiring α
a✝ b✝ a b c : α
h : b ≤ b + c
⊢ a * b ≤ a * (b + c)
[PROOFSTEP]
rw [mul_add]
[GOAL]
case intro
α : Type u
β : Type u_1
inst✝ : CanonicallyOrderedCommSemiring α
a✝ b✝ a b c : α
h : b ≤ b + c
⊢ a * b ≤ a * b + a * c
[PROOFSTEP]
apply self_le_add_right
[GOAL]
α : Type u
β : Type u_1
inst✝ : CanonicallyOrderedCommSemiring α
a b : α
⊢ 0 < a * b ↔ 0 < a ∧ 0 < b
[PROOFSTEP]
simp only [pos_iff_ne_zero, ne_eq, mul_eq_zero, not_or]
[GOAL]
α : Type u
β : Type u_1
inst✝³ : CanonicallyOrderedCommSemiring α
a b c : α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
h : AddLECancellable (a * c)
⊢ a * (b - c) = a * b - a * c
[PROOFSTEP]
cases' total_of (· ≤ ·) b c with hbc hcb
[GOAL]
case inl
α : Type u
β : Type u_1
inst✝³ : CanonicallyOrderedCommSemiring α
a b c : α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
h : AddLECancellable (a * c)
hbc : b ≤ c
⊢ a * (b - c) = a * b - a * c
[PROOFSTEP]
rw [tsub_eq_zero_iff_le.2 hbc, mul_zero, tsub_eq_zero_iff_le.2 (mul_le_mul_left' hbc a)]
[GOAL]
case inr
α : Type u
β : Type u_1
inst✝³ : CanonicallyOrderedCommSemiring α
a b c : α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
h : AddLECancellable (a * c)
hcb : c ≤ b
⊢ a * (b - c) = a * b - a * c
[PROOFSTEP]
apply h.eq_tsub_of_add_eq
[GOAL]
case inr
α : Type u
β : Type u_1
inst✝³ : CanonicallyOrderedCommSemiring α
a b c : α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
h : AddLECancellable (a * c)
hcb : c ≤ b
⊢ a * (b - c) + a * c = a * b
[PROOFSTEP]
rw [← mul_add, tsub_add_cancel_of_le hcb]
[GOAL]
α : Type u
β : Type u_1
inst✝³ : CanonicallyOrderedCommSemiring α
a b c : α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
h : AddLECancellable (b * c)
⊢ (a - b) * c = a * c - b * c
[PROOFSTEP]
simp only [mul_comm _ c] at *
[GOAL]
α : Type u
β : Type u_1
inst✝³ : CanonicallyOrderedCommSemiring α
a b c : α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : IsTotal α fun x x_1 => x ≤ x_1
h : AddLECancellable (c * b)
⊢ c * (a - b) = c * a - c * b
[PROOFSTEP]
exact h.mul_tsub
| {"mathlib_filename": "Mathlib.Algebra.Order.Ring.Canonical", "llama_tokens": 2828} |
[GOAL]
α : Type u_1
a b c d : α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
ha : 0 < a
hb : 0 < b
⊢ 0 < a * b
[PROOFSTEP]
simpa only [mul_zero] using mul_lt_mul_of_pos_left hb ha
[GOAL]
α : Type u_1
a b c d : α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
ha : 0 < a
hb : b < 0
⊢ a * b < 0
[PROOFSTEP]
simpa only [mul_zero] using mul_lt_mul_of_pos_left hb ha
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulZeroClass α
inst✝² : Preorder α
inst✝¹ : PosMulStrictMono α
inst✝ : PosMulReflectLT α
h : 0 < c
⊢ 0 < c * b ↔ 0 < b
[PROOFSTEP]
rw [← mul_zero c, mul_lt_mul_left h]
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulZeroClass α
inst✝² : Preorder α
inst✝¹ : PosMulStrictMono α
inst✝ : PosMulReflectLT α
h : 0 < c
⊢ 0 < b ↔ c * 0 < b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
a b c d : α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
ha : 0 < a
hb : 0 < b
⊢ 0 < a * b
[PROOFSTEP]
simpa only [zero_mul] using mul_lt_mul_of_pos_right ha hb
[GOAL]
α : Type u_1
a b c d : α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
ha : a < 0
hb : 0 < b
⊢ a * b < 0
[PROOFSTEP]
simpa only [zero_mul] using mul_lt_mul_of_pos_right ha hb
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulZeroClass α
inst✝² : Preorder α
inst✝¹ : MulPosStrictMono α
inst✝ : MulPosReflectLT α
h : 0 < c
⊢ 0 < b * c ↔ 0 < b
[PROOFSTEP]
rw [← zero_mul c, mul_lt_mul_right h]
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulZeroClass α
inst✝² : Preorder α
inst✝¹ : MulPosStrictMono α
inst✝ : MulPosReflectLT α
h : 0 < c
⊢ 0 < b ↔ 0 * c < b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
a b c d : α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ a * b
[PROOFSTEP]
simpa only [mul_zero] using mul_le_mul_of_nonneg_left hb ha
[GOAL]
α : Type u_1
a b c d : α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
ha : 0 ≤ a
hb : b ≤ 0
⊢ a * b ≤ 0
[PROOFSTEP]
simpa only [mul_zero] using mul_le_mul_of_nonneg_left hb ha
[GOAL]
α : Type u_1
a b c d : α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ a * b
[PROOFSTEP]
simpa only [zero_mul] using mul_le_mul_of_nonneg_right ha hb
[GOAL]
α : Type u_1
a b c d : α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
ha : a ≤ 0
hb : 0 ≤ b
⊢ a * b ≤ 0
[PROOFSTEP]
simpa only [zero_mul] using mul_le_mul_of_nonneg_right ha hb
[GOAL]
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : CovariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x ≤ x_1
a : { x // 0 ≤ x }
b c : α
h : b ≤ c
⊢ ↑a * b ≤ ↑a * c
[PROOFSTEP]
obtain ha | ha := a.prop.eq_or_lt
[GOAL]
case inl
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : CovariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x ≤ x_1
a : { x // 0 ≤ x }
b c : α
h : b ≤ c
ha : 0 = ↑a
⊢ ↑a * b ≤ ↑a * c
[PROOFSTEP]
simp [← ha]
[GOAL]
case inr
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : CovariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x ≤ x_1
a : { x // 0 ≤ x }
b c : α
h : b ≤ c
ha : 0 < ↑a
⊢ ↑a * b ≤ ↑a * c
[PROOFSTEP]
exact @CovariantClass.elim α>0 α (fun x y => x * y) (· ≤ ·) _ ⟨_, ha⟩ _ _ h
[GOAL]
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : CovariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x ≤ x_1
a : { x // 0 ≤ x }
b c : α
h : b ≤ c
⊢ b * ↑a ≤ c * ↑a
[PROOFSTEP]
obtain ha | ha := a.prop.eq_or_lt
[GOAL]
case inl
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : CovariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x ≤ x_1
a : { x // 0 ≤ x }
b c : α
h : b ≤ c
ha : 0 = ↑a
⊢ b * ↑a ≤ c * ↑a
[PROOFSTEP]
simp [← ha]
[GOAL]
case inr
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : CovariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x ≤ x_1
a : { x // 0 ≤ x }
b c : α
h : b ≤ c
ha : 0 < ↑a
⊢ b * ↑a ≤ c * ↑a
[PROOFSTEP]
exact @CovariantClass.elim α>0 α (fun x y => y * x) (· ≤ ·) _ ⟨_, ha⟩ _ _ h
[GOAL]
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : ContravariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x < x_1
a : { x // 0 ≤ x }
b c : α
h : ↑a * b < ↑a * c
⊢ b < c
[PROOFSTEP]
obtain ha | ha := a.prop.eq_or_lt
[GOAL]
case inl
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : ContravariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x < x_1
a : { x // 0 ≤ x }
b c : α
h : ↑a * b < ↑a * c
ha : 0 = ↑a
⊢ b < c
[PROOFSTEP]
simp [← ha] at h
[GOAL]
case inr
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : ContravariantClass { x // 0 < x } α (fun x y => ↑x * y) fun x x_1 => x < x_1
a : { x // 0 ≤ x }
b c : α
h : ↑a * b < ↑a * c
ha : 0 < ↑a
⊢ b < c
[PROOFSTEP]
exact @ContravariantClass.elim α>0 α (fun x y => x * y) (· < ·) _ ⟨_, ha⟩ _ _ h
[GOAL]
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : ContravariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x < x_1
a : { x // 0 ≤ x }
b c : α
h : b * ↑a < c * ↑a
⊢ b < c
[PROOFSTEP]
obtain ha | ha := a.prop.eq_or_lt
[GOAL]
case inl
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : ContravariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x < x_1
a : { x // 0 ≤ x }
b c : α
h : b * ↑a < c * ↑a
ha : 0 = ↑a
⊢ b < c
[PROOFSTEP]
simp [← ha] at h
[GOAL]
case inr
α : Type u_1
a✝ b✝ c✝ d : α
inst✝¹ : MulZeroClass α
inst✝ : PartialOrder α
h✝ : ContravariantClass { x // 0 < x } α (fun x y => y * ↑x) fun x x_1 => x < x_1
a : { x // 0 ≤ x }
b c : α
h : b * ↑a < c * ↑a
ha : 0 < ↑a
⊢ b < c
[PROOFSTEP]
exact @ContravariantClass.elim α>0 α (fun x y => y * x) (· < ·) _ ⟨_, ha⟩ _ _ h
[GOAL]
α : Type u_1
a✝ b✝ c✝ d : α
inst✝² : MulZeroClass α
inst✝¹ : PartialOrder α
inst✝ : PosMulMonoRev α
a : { x // 0 < x }
b c : α
h : ↑a * b < ↑a * c
⊢ b ≠ c
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
a✝ b✝ c d : α
inst✝² : MulZeroClass α
inst✝¹ : PartialOrder α
inst✝ : PosMulMonoRev α
a : { x // 0 < x }
b : α
h : ↑a * b < ↑a * b
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
α : Type u_1
a✝ b✝ c✝ d : α
inst✝² : MulZeroClass α
inst✝¹ : PartialOrder α
inst✝ : MulPosMonoRev α
a : { x // 0 < x }
b c : α
h : b * ↑a < c * ↑a
⊢ b ≠ c
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
a✝ b✝ c d : α
inst✝² : MulZeroClass α
inst✝¹ : PartialOrder α
inst✝ : MulPosMonoRev α
a : { x // 0 < x }
b : α
h : b * ↑a < b * ↑a
⊢ False
[PROOFSTEP]
simp at h
[GOAL]
α : Type u_1
a b c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac : a ≤ b
hbd : c ≤ d
a0 : 0 < a
d0 : 0 < d
⊢ a * c = b * d ↔ a = b ∧ c = d
[PROOFSTEP]
refine' ⟨fun h => _, fun h => congr_arg₂ (· * ·) h.1 h.2⟩
[GOAL]
α : Type u_1
a b c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac : a ≤ b
hbd : c ≤ d
a0 : 0 < a
d0 : 0 < d
h : a * c = b * d
⊢ a = b ∧ c = d
[PROOFSTEP]
rcases hac.eq_or_lt with (rfl | hac)
[GOAL]
case inl
α : Type u_1
a c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hbd : c ≤ d
a0 : 0 < a
d0 : 0 < d
hac : a ≤ a
h : a * c = a * d
⊢ a = a ∧ c = d
[PROOFSTEP]
exact ⟨rfl, (mul_left_cancel_iff_of_pos a0).mp h⟩
[GOAL]
case inr
α : Type u_1
a b c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac✝ : a ≤ b
hbd : c ≤ d
a0 : 0 < a
d0 : 0 < d
h : a * c = b * d
hac : a < b
⊢ a = b ∧ c = d
[PROOFSTEP]
rcases eq_or_lt_of_le hbd with (rfl | hbd)
[GOAL]
case inr.inl
α : Type u_1
a b c : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac✝ : a ≤ b
a0 : 0 < a
hac : a < b
hbd : c ≤ c
d0 : 0 < c
h : a * c = b * c
⊢ a = b ∧ c = c
[PROOFSTEP]
exact ⟨(mul_right_cancel_iff_of_pos d0).mp h, rfl⟩
[GOAL]
case inr.inr
α : Type u_1
a b c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac✝ : a ≤ b
hbd✝ : c ≤ d
a0 : 0 < a
d0 : 0 < d
h : a * c = b * d
hac : a < b
hbd : c < d
⊢ a = b ∧ c = d
[PROOFSTEP]
exact ((mul_lt_mul_of_pos_of_pos hac hbd a0 d0).ne h).elim
[GOAL]
α : Type u_1
a b c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac : a ≤ b
hbd : c ≤ d
b0 : 0 < b
c0 : 0 < c
⊢ a * c = b * d ↔ a = b ∧ c = d
[PROOFSTEP]
refine' ⟨fun h => _, fun h => congr_arg₂ (· * ·) h.1 h.2⟩
[GOAL]
α : Type u_1
a b c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac : a ≤ b
hbd : c ≤ d
b0 : 0 < b
c0 : 0 < c
h : a * c = b * d
⊢ a = b ∧ c = d
[PROOFSTEP]
rcases hac.eq_or_lt with (rfl | hac)
[GOAL]
case inl
α : Type u_1
a c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hbd : c ≤ d
c0 : 0 < c
hac : a ≤ a
b0 : 0 < a
h : a * c = a * d
⊢ a = a ∧ c = d
[PROOFSTEP]
exact ⟨rfl, (mul_left_cancel_iff_of_pos b0).mp h⟩
[GOAL]
case inr
α : Type u_1
a b c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac✝ : a ≤ b
hbd : c ≤ d
b0 : 0 < b
c0 : 0 < c
h : a * c = b * d
hac : a < b
⊢ a = b ∧ c = d
[PROOFSTEP]
rcases eq_or_lt_of_le hbd with (rfl | hbd)
[GOAL]
case inr.inl
α : Type u_1
a b c : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac✝ : a ≤ b
b0 : 0 < b
c0 : 0 < c
hac : a < b
hbd : c ≤ c
h : a * c = b * c
⊢ a = b ∧ c = c
[PROOFSTEP]
exact ⟨(mul_right_cancel_iff_of_pos c0).mp h, rfl⟩
[GOAL]
case inr.inr
α : Type u_1
a b c d : α
inst✝⁵ : MulZeroClass α
inst✝⁴ : PartialOrder α
inst✝³ : PosMulStrictMono α
inst✝² : MulPosStrictMono α
inst✝¹ : PosMulMonoRev α
inst✝ : MulPosMonoRev α
hac✝ : a ≤ b
hbd✝ : c ≤ d
b0 : 0 < b
c0 : 0 < c
h : a * c = b * d
hac : a < b
hbd : c < d
⊢ a = b ∧ c = d
[PROOFSTEP]
exact ((mul_lt_mul_of_lt_of_lt' hac hbd b0 c0).ne h).elim
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulZeroClass α
inst✝² : LinearOrder α
inst✝¹ : PosMulMono α
inst✝ : MulPosMono α
hab : 0 < a * b
⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0
[PROOFSTEP]
rcases lt_trichotomy a 0 with (ha | rfl | ha)
[GOAL]
case inl
α : Type u_1
a b c d : α
inst✝³ : MulZeroClass α
inst✝² : LinearOrder α
inst✝¹ : PosMulMono α
inst✝ : MulPosMono α
hab : 0 < a * b
ha : a < 0
⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0
[PROOFSTEP]
refine' Or.inr ⟨ha, lt_imp_lt_of_le_imp_le (fun hb => _) hab⟩
[GOAL]
case inl
α : Type u_1
a b c d : α
inst✝³ : MulZeroClass α
inst✝² : LinearOrder α
inst✝¹ : PosMulMono α
inst✝ : MulPosMono α
hab : 0 < a * b
ha : a < 0
hb : 0 ≤ b
⊢ a * b ≤ 0
[PROOFSTEP]
exact mul_nonpos_of_nonpos_of_nonneg ha.le hb
[GOAL]
case inr.inl
α : Type u_1
b c d : α
inst✝³ : MulZeroClass α
inst✝² : LinearOrder α
inst✝¹ : PosMulMono α
inst✝ : MulPosMono α
hab : 0 < 0 * b
⊢ 0 < 0 ∧ 0 < b ∨ 0 < 0 ∧ b < 0
[PROOFSTEP]
rw [zero_mul] at hab
[GOAL]
case inr.inl
α : Type u_1
b c d : α
inst✝³ : MulZeroClass α
inst✝² : LinearOrder α
inst✝¹ : PosMulMono α
inst✝ : MulPosMono α
hab : 0 < 0
⊢ 0 < 0 ∧ 0 < b ∨ 0 < 0 ∧ b < 0
[PROOFSTEP]
exact hab.false.elim
[GOAL]
case inr.inr
α : Type u_1
a b c d : α
inst✝³ : MulZeroClass α
inst✝² : LinearOrder α
inst✝¹ : PosMulMono α
inst✝ : MulPosMono α
hab : 0 < a * b
ha : 0 < a
⊢ 0 < a ∧ 0 < b ∨ a < 0 ∧ b < 0
[PROOFSTEP]
refine' Or.inl ⟨ha, lt_imp_lt_of_le_imp_le (fun hb => _) hab⟩
[GOAL]
case inr.inr
α : Type u_1
a b c d : α
inst✝³ : MulZeroClass α
inst✝² : LinearOrder α
inst✝¹ : PosMulMono α
inst✝ : MulPosMono α
hab : 0 < a * b
ha : 0 < a
hb : b ≤ 0
⊢ a * b ≤ 0
[PROOFSTEP]
exact mul_nonpos_of_nonneg_of_nonpos ha.le hb
[GOAL]
α : Type u_1
a b c d : α
inst✝⁴ : MulOneClass α
inst✝³ : Zero α
inst✝² : Preorder α
inst✝¹ : PosMulMono α
inst✝ : PosMulMonoRev α
a0 : 0 < a
⊢ a ≤ a * b ↔ a * 1 ≤ a * b
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
a b c d : α
inst✝⁴ : MulOneClass α
inst✝³ : Zero α
inst✝² : Preorder α
inst✝¹ : PosMulStrictMono α
inst✝ : PosMulReflectLT α
a0 : 0 < a
⊢ a < a * b ↔ a * 1 < a * b
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
a b c d : α
inst✝⁴ : MulOneClass α
inst✝³ : Zero α
inst✝² : Preorder α
inst✝¹ : PosMulMono α
inst✝ : PosMulMonoRev α
a0 : 0 < a
⊢ a * b ≤ a ↔ a * b ≤ a * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
a b c d : α
inst✝⁴ : MulOneClass α
inst✝³ : Zero α
inst✝² : Preorder α
inst✝¹ : PosMulStrictMono α
inst✝ : PosMulReflectLT α
a0 : 0 < a
⊢ a * b < a ↔ a * b < a * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u_1
a b c d : α
inst✝⁴ : MulOneClass α
inst✝³ : Zero α
inst✝² : Preorder α
inst✝¹ : MulPosMono α
inst✝ : MulPosMonoRev α
a0 : 0 < a
⊢ a ≤ b * a ↔ 1 * a ≤ b * a
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u_1
a b c d : α
inst✝⁴ : MulOneClass α
inst✝³ : Zero α
inst✝² : Preorder α
inst✝¹ : MulPosStrictMono α
inst✝ : MulPosReflectLT α
a0 : 0 < a
⊢ a < b * a ↔ 1 * a < b * a
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u_1
a b c d : α
inst✝⁴ : MulOneClass α
inst✝³ : Zero α
inst✝² : Preorder α
inst✝¹ : MulPosMono α
inst✝ : MulPosMonoRev α
b0 : 0 < b
⊢ a * b ≤ b ↔ a * b ≤ 1 * b
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u_1
a b c d : α
inst✝⁴ : MulOneClass α
inst✝³ : Zero α
inst✝² : Preorder α
inst✝¹ : MulPosStrictMono α
inst✝ : MulPosReflectLT α
b0 : 0 < b
⊢ a * b < b ↔ a * b < 1 * b
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
hb : 0 ≤ b
h : a ≤ 1
⊢ a * b ≤ b
[PROOFSTEP]
simpa only [one_mul] using mul_le_mul_of_nonneg_right h hb
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
hb : 0 ≤ b
h : 1 ≤ a
⊢ b ≤ a * b
[PROOFSTEP]
simpa only [one_mul] using mul_le_mul_of_nonneg_right h hb
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
ha : 0 ≤ a
h : b ≤ 1
⊢ a * b ≤ a
[PROOFSTEP]
simpa only [mul_one] using mul_le_mul_of_nonneg_left h ha
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
ha : 0 ≤ a
h : 1 ≤ b
⊢ a ≤ a * b
[PROOFSTEP]
simpa only [mul_one] using mul_le_mul_of_nonneg_left h ha
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
hb : 0 < b
h : a < 1
⊢ a * b < b
[PROOFSTEP]
simpa only [one_mul] using mul_lt_mul_of_pos_right h hb
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
hb : 0 < b
h : 1 < a
⊢ b < a * b
[PROOFSTEP]
simpa only [one_mul] using mul_lt_mul_of_pos_right h hb
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
ha : 0 < a
h : b < 1
⊢ a * b < a
[PROOFSTEP]
simpa only [mul_one] using mul_lt_mul_of_pos_left h ha
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
ha : 0 < a
h : 1 < b
⊢ a < a * b
[PROOFSTEP]
simpa only [mul_one] using mul_lt_mul_of_pos_left h ha
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : LinearOrder α
inst✝ : PosMulStrictMono α
a0 : 0 < a
⊢ ∃ b, b * b ≤ a
[PROOFSTEP]
obtain ha | ha := lt_or_le a 1
[GOAL]
case inl
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : LinearOrder α
inst✝ : PosMulStrictMono α
a0 : 0 < a
ha : a < 1
⊢ ∃ b, b * b ≤ a
[PROOFSTEP]
exact ⟨a, (mul_lt_of_lt_one_right a0 ha).le⟩
[GOAL]
case inr
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : LinearOrder α
inst✝ : PosMulStrictMono α
a0 : 0 < a
ha : 1 ≤ a
⊢ ∃ b, b * b ≤ a
[PROOFSTEP]
exact ⟨1, by rwa [mul_one]⟩
[GOAL]
α : Type u_1
a b c d : α
inst✝³ : MulOneClass α
inst✝² : Zero α
inst✝¹ : LinearOrder α
inst✝ : PosMulStrictMono α
a0 : 0 < a
ha : 1 ≤ a
⊢ 1 * 1 ≤ a
[PROOFSTEP]
rwa [mul_one]
[GOAL]
α : Type u_1
a b c d : α
inst✝² : CommSemigroup α
inst✝¹ : Zero α
inst✝ : Preorder α
⊢ PosMulStrictMono α ↔ MulPosStrictMono α
[PROOFSTEP]
simp only [PosMulStrictMono, MulPosStrictMono, mul_comm]
[GOAL]
α : Type u_1
a b c d : α
inst✝² : CommSemigroup α
inst✝¹ : Zero α
inst✝ : Preorder α
⊢ PosMulReflectLT α ↔ MulPosReflectLT α
[PROOFSTEP]
simp only [PosMulReflectLT, MulPosReflectLT, mul_comm]
[GOAL]
α : Type u_1
a b c d : α
inst✝² : CommSemigroup α
inst✝¹ : Zero α
inst✝ : Preorder α
⊢ PosMulMono α ↔ MulPosMono α
[PROOFSTEP]
simp only [PosMulMono, MulPosMono, mul_comm]
[GOAL]
α : Type u_1
a b c d : α
inst✝² : CommSemigroup α
inst✝¹ : Zero α
inst✝ : Preorder α
⊢ PosMulMonoRev α ↔ MulPosMonoRev α
[PROOFSTEP]
simp only [PosMulMonoRev, MulPosMonoRev, mul_comm]
| {"mathlib_filename": "Mathlib.Algebra.Order.Ring.Lemmas", "llama_tokens": 9634} |
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
p q : StarSubalgebra R A
h : (fun S => S.carrier) p = (fun S => S.carrier) q
⊢ p = q
[PROOFSTEP]
obtain ⟨⟨⟨⟨⟨_, _⟩, _⟩, _⟩, _⟩, _⟩ := p
[GOAL]
case mk.mk.mk.mk.mk
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
q : StarSubalgebra R A
carrier✝ : Set A
mul_mem'✝ : ∀ {a b : A}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝
one_mem'✝ : 1 ∈ { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier
add_mem'✝ :
∀ {a b : A},
a ∈
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ },
one_mem' := one_mem'✝ }.toSubsemigroup.carrier →
b ∈
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ },
one_mem' := one_mem'✝ }.toSubsemigroup.carrier →
a + b ∈
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ },
one_mem' := one_mem'✝ }.toSubsemigroup.carrier
zero_mem'✝ :
0 ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier
algebraMap_mem'✝ :
∀ (r : R),
↑(algebraMap R A) r ∈
{ toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }.toSubmonoid.toSubsemigroup.carrier
star_mem'✝ :
∀ {a : A},
a ∈
{
toSubsemiring :=
{
toSubmonoid :=
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ },
algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
star a ∈
{
toSubsemiring :=
{
toSubmonoid :=
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ },
algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
h :
(fun S => S.carrier)
{
toSubalgebra :=
{
toSubsemiring :=
{
toSubmonoid :=
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ },
algebraMap_mem' := algebraMap_mem'✝ },
star_mem' := star_mem'✝ } =
(fun S => S.carrier) q
⊢ {
toSubalgebra :=
{
toSubsemiring :=
{
toSubmonoid :=
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ },
algebraMap_mem' := algebraMap_mem'✝ },
star_mem' := star_mem'✝ } =
q
[PROOFSTEP]
cases q
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
carrier✝ : Set A
mul_mem'✝ : ∀ {a b : A}, a ∈ carrier✝ → b ∈ carrier✝ → a * b ∈ carrier✝
one_mem'✝ : 1 ∈ { carrier := carrier✝, mul_mem' := mul_mem'✝ }.carrier
add_mem'✝ :
∀ {a b : A},
a ∈
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ },
one_mem' := one_mem'✝ }.toSubsemigroup.carrier →
b ∈
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ },
one_mem' := one_mem'✝ }.toSubsemigroup.carrier →
a + b ∈
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ },
one_mem' := one_mem'✝ }.toSubsemigroup.carrier
zero_mem'✝ :
0 ∈ { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ }.toSubsemigroup.carrier
algebraMap_mem'✝ :
∀ (r : R),
↑(algebraMap R A) r ∈
{ toSubmonoid := { toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ }.toSubmonoid.toSubsemigroup.carrier
star_mem'✝¹ :
∀ {a : A},
a ∈
{
toSubsemiring :=
{
toSubmonoid :=
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ },
algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
star a ∈
{
toSubsemiring :=
{
toSubmonoid :=
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ },
algebraMap_mem' := algebraMap_mem'✝ }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
toSubalgebra✝ : Subalgebra R A
star_mem'✝ : ∀ {a : A}, a ∈ toSubalgebra✝.carrier → star a ∈ toSubalgebra✝.carrier
h :
(fun S => S.carrier)
{
toSubalgebra :=
{
toSubsemiring :=
{
toSubmonoid :=
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ },
algebraMap_mem' := algebraMap_mem'✝ },
star_mem' := star_mem'✝¹ } =
(fun S => S.carrier) { toSubalgebra := toSubalgebra✝, star_mem' := star_mem'✝ }
⊢ {
toSubalgebra :=
{
toSubsemiring :=
{
toSubmonoid :=
{ toSubsemigroup := { carrier := carrier✝, mul_mem' := mul_mem'✝ }, one_mem' := one_mem'✝ },
add_mem' := add_mem'✝, zero_mem' := zero_mem'✝ },
algebraMap_mem' := algebraMap_mem'✝ },
star_mem' := star_mem'✝¹ } =
{ toSubalgebra := toSubalgebra✝, star_mem' := star_mem'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S T : StarSubalgebra R A
h : S.toSubalgebra = T.toSubalgebra
x : A
⊢ x ∈ S ↔ x ∈ T
[PROOFSTEP]
rw [← mem_toSubalgebra, ← mem_toSubalgebra, h]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
s : Set A
hs : s = ↑S
a : A
ha : a ∈ (Subalgebra.copy S.toSubalgebra s hs).toSubsemiring.toSubmonoid.toSubsemigroup.carrier
⊢ a ∈ S.carrier
[PROOFSTEP]
simpa [hs] using ha
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
a : A
hs : ↑S = ↑S
ha : a ∈ (Subalgebra.copy S.toSubalgebra (↑S) hs).toSubsemiring.toSubmonoid.toSubsemigroup.carrier
⊢ a ∈ S.carrier
[PROOFSTEP]
simpa [hs] using ha
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
⊢ { x // x ∈ S } →⋆ₐ[R] A
[PROOFSTEP]
refine' { toFun := ((↑) : S → A), .. }
[GOAL]
case refine'_1
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
⊢ ↑1 = 1
[PROOFSTEP]
intros
[GOAL]
case refine'_2
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
⊢ ∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y
[PROOFSTEP]
intros
[GOAL]
case refine'_3
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
0 =
0
[PROOFSTEP]
intros
[GOAL]
case refine'_4
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
⊢ ∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
y
[PROOFSTEP]
intros
[GOAL]
case refine'_5
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
⊢ ∀ (r : R),
OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) },
map_zero' := ?refine'_3,
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
y) })
(↑(algebraMap R { x // x ∈ S }) r) =
↑(algebraMap R A) r
[PROOFSTEP]
intros
[GOAL]
case refine'_6
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
⊢ ∀ (x : { x // x ∈ S }),
OneHom.toFun
(↑↑↑{
toRingHom :=
{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) },
map_zero' := ?refine'_3,
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
y) },
commutes' :=
(_ :
∀ (r : R),
OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) },
map_zero' := ?refine'_3,
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
y) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
y) })
y) })
(↑(algebraMap R { x // x ∈ S }) r) =
↑(algebraMap R A) r) })
(star x) =
star
(OneHom.toFun
(↑↑↑{
toRingHom :=
{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) },
map_zero' := ?refine'_3,
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) })
y) },
commutes' :=
(_ :
∀ (r : R),
OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 } y) },
map_zero' := ?refine'_3,
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
x *
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
y) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
x *
OneHom.toFun
{ toFun := Subtype.val, map_one' := ?refine'_1 } y) })
x +
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := ?refine'_1 },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := ?refine'_1 }
x *
OneHom.toFun
{ toFun := Subtype.val, map_one' := ?refine'_1 } y) })
y) })
(↑(algebraMap R { x // x ∈ S }) r) =
↑(algebraMap R A) r) })
x)
[PROOFSTEP]
intros
[GOAL]
case refine'_1
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
⊢ ↑1 = 1
[PROOFSTEP]
rfl
[GOAL]
case refine'_2
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
x✝ y✝ : { x // x ∈ S }
⊢ OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x✝ * y✝) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } x✝ *
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } y✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_3
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
0 =
0
[PROOFSTEP]
rfl
[GOAL]
case refine'_4
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
x✝ y✝ : { x // x ∈ S }
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
(x✝ + y✝) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
x✝ +
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
y✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_5
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
r✝ : R
⊢ OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
0 =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
0),
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
(x + y)) })
(↑(algebraMap R { x // x ∈ S }) r✝) =
↑(algebraMap R A) r✝
[PROOFSTEP]
rfl
[GOAL]
case refine'_6
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
x✝ : { x // x ∈ S }
⊢ OneHom.toFun
(↑↑↑{
toRingHom :=
{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
0 =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
0),
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
(x + y)) },
commutes' :=
(_ :
∀ (r : R),
OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
0 =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
0),
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
(x + y)) })
(↑(algebraMap R { x // x ∈ S }) r) =
OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
0 =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
0),
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
(x + y)) })
(↑(algebraMap R { x // x ∈ S }) r)) })
(star x✝) =
star
(OneHom.toFun
(↑↑↑{
toRingHom :=
{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
0 =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
0),
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) })
(x + y)) },
commutes' :=
(_ :
∀ (r : R),
OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
0 =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
0),
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
(x + y)) })
(↑(algebraMap R { x // x ∈ S }) r) =
OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) } (x * y)) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
0 =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
0),
map_add' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
(x + y) =
OneHom.toFun
(↑{ toOneHom := { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) },
map_mul' :=
(_ :
∀ (x y : { x // x ∈ S }),
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y) =
OneHom.toFun { toFun := Subtype.val, map_one' := (_ : ↑1 = ↑1) }
(x * y)) })
(x + y)) })
(↑(algebraMap R { x // x ∈ S }) r)) })
x✝)
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S✝ : StarSubalgebra R A
f : A →⋆ₐ[R] B
S : StarSubalgebra R A
src✝ : Subalgebra R B := Subalgebra.map f.toAlgHom S.toSubalgebra
⊢ ∀ {a : B},
a ∈
{ toSubsemiring := src✝.toSubsemiring,
algebraMap_mem' :=
(_ :
∀ (r : R),
↑(algebraMap R B) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
star a ∈
{ toSubsemiring := src✝.toSubsemiring,
algebraMap_mem' :=
(_ :
∀ (r : R), ↑(algebraMap R B) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
rintro _ ⟨a, ha, rfl⟩
[GOAL]
case intro.intro
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S✝ : StarSubalgebra R A
f : A →⋆ₐ[R] B
S : StarSubalgebra R A
src✝ : Subalgebra R B := Subalgebra.map f.toAlgHom S.toSubalgebra
a : A
ha : a ∈ ↑S.toSubsemiring
⊢ star (↑↑f.toAlgHom a) ∈
{ toSubsemiring := src✝.toSubsemiring,
algebraMap_mem' :=
(_ : ∀ (r : R), ↑(algebraMap R B) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
exact map_star f a ▸ Set.mem_image_of_mem _ (S.star_mem' ha)
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S✝ : StarSubalgebra R A
S : StarSubalgebra R C
g : B →⋆ₐ[R] C
f : A →⋆ₐ[R] B
⊢ ↑(comap f (comap g S)) = ↑(comap (StarAlgHom.comp g f) S)
[PROOFSTEP]
exact Set.preimage_preimage
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
s : Set A
z : A
⊢ z ∈ centralizer R s ↔ ∀ (g : A), g ∈ s → g * z = z * g ∧ star g * z = z * star g
[PROOFSTEP]
show (∀ g ∈ s ∪ star s, g * z = z * g) ↔ ∀ g ∈ s, g * z = z * g ∧ star g * z = z * star g
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
s : Set A
z : A
⊢ (∀ (g : A), g ∈ s ∪ star s → g * z = z * g) ↔ ∀ (g : A), g ∈ s → g * z = z * g ∧ star g * z = z * star g
[PROOFSTEP]
simp only [Set.mem_union, or_imp, forall_and, and_congr_right_iff]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
C : Type u_5
inst✝¹³ : CommSemiring R
inst✝¹² : StarRing R
inst✝¹¹ : Semiring A
inst✝¹⁰ : StarRing A
inst✝⁹ : Algebra R A
inst✝⁸ : StarModule R A
inst✝⁷ : Semiring B
inst✝⁶ : StarRing B
inst✝⁵ : Algebra R B
inst✝⁴ : StarModule R B
inst✝³ : Semiring C
inst✝² : StarRing C
inst✝¹ : Algebra R C
inst✝ : StarModule R C
S : StarSubalgebra R A
s : Set A
z : A
⊢ (∀ (x : A), x ∈ s → x * z = z * x) →
((∀ (x : A), x ∈ star s → x * z = z * x) ↔ ∀ (x : A), x ∈ s → star x * z = z * star x)
[PROOFSTEP]
exact fun _ => ⟨fun hz a ha => hz _ (Set.star_mem_star.mpr ha), fun hz a ha => star_star a ▸ hz _ ha⟩
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Subalgebra R A
x y : A
hx : x ∈ star S.carrier
hy : y ∈ star S.carrier
⊢ x * y ∈ star S.carrier
[PROOFSTEP]
simp only [Set.mem_star, Subalgebra.mem_carrier] at *
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Subalgebra R A
x y : A
hx : star x ∈ S
hy : star y ∈ S
⊢ star (x * y) ∈ S
[PROOFSTEP]
exact (star_mul x y).symm ▸ mul_mem hy hx
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Subalgebra R A
x y : A
hx :
x ∈
{
toSubsemigroup :=
{ carrier := star S.carrier,
mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) },
one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier
hy :
y ∈
{
toSubsemigroup :=
{ carrier := star S.carrier,
mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) },
one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier
⊢ x + y ∈
{
toSubsemigroup :=
{ carrier := star S.carrier,
mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) },
one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier
[PROOFSTEP]
simp only [Set.mem_star, Subalgebra.mem_carrier] at *
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Subalgebra R A
x y : A
hx : star x ∈ S
hy : star y ∈ S
⊢ star (x + y) ∈ S
[PROOFSTEP]
exact (star_add x y).symm ▸ add_mem hx hy
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Subalgebra R A
r : R
⊢ ↑(algebraMap R A) r ∈
{
toSubmonoid :=
{
toSubsemigroup :=
{ carrier := star S.carrier,
mul_mem' := (_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) },
one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) },
add_mem' :=
(_ :
∀ {x y : A},
x ∈
{
toSubsemigroup :=
{ carrier := star S.carrier,
mul_mem' :=
(_ : ∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) },
one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier →
y ∈
{
toSubsemigroup :=
{ carrier := star S.carrier,
mul_mem' :=
(_ :
∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) },
one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier →
x + y ∈
{
toSubsemigroup :=
{ carrier := star S.carrier,
mul_mem' :=
(_ :
∀ {x y : A}, x ∈ star S.carrier → y ∈ star S.carrier → x * y ∈ star S.carrier) },
one_mem' := (_ : star 1 ∈ S.toSubsemigroup.1) }.toSubsemigroup.carrier),
zero_mem' := (_ : star 0 ∈ S.toSubsemigroup.1) }.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
simpa only [Set.mem_star, Subalgebra.mem_carrier, ← algebraMap_star_comm] using S.algebraMap_mem (star r)
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Subalgebra R A
x : A
⊢ star x ∈ star S ↔ x ∈ S
[PROOFSTEP]
simp only [mem_star_iff, star_star]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
this : ∀ (t : Set A), Algebra.adjoin R (star t) ≤ star (Algebra.adjoin R t)
⊢ star (Algebra.adjoin R s) ≤ Algebra.adjoin R (star s)
[PROOFSTEP]
simpa only [star_star] using Subalgebra.star_mono (this (star s))
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Subalgebra R A
a : A
ha : a ∈ (S ⊔ star S).carrier
⊢ star a ∈ (S ⊔ star S).carrier
[PROOFSTEP]
simp only [Subalgebra.mem_carrier, ← (@Algebra.gi R A _ _ _).l_sup_u _ _] at *
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Subalgebra R A
a : A
ha : a ∈ Algebra.adjoin R (↑S ⊔ ↑(star S))
⊢ star a ∈ Algebra.adjoin R (↑S ⊔ ↑(star S))
[PROOFSTEP]
rw [← mem_star_iff _ a, star_adjoin_comm, sup_comm]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Subalgebra R A
a : A
ha : a ∈ Algebra.adjoin R (↑S ⊔ ↑(star S))
⊢ a ∈ Algebra.adjoin R (star (↑(star S) ⊔ ↑S))
[PROOFSTEP]
simpa using ha
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
src✝ : Subalgebra R A := Algebra.adjoin R (s ∪ star s)
a✝ : A
hx :
a✝ ∈
{ toSubsemiring := src✝.toSubsemiring,
algebraMap_mem' :=
(_ : ∀ (r : R), ↑(algebraMap R A) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
⊢ star a✝ ∈
{ toSubsemiring := src✝.toSubsemiring,
algebraMap_mem' :=
(_ : ∀ (r : R), ↑(algebraMap R A) r ∈ src✝.carrier) }.toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
rwa [Subalgebra.mem_carrier, ← Subalgebra.mem_star_iff, Subalgebra.star_adjoin_comm, Set.union_star, star_star,
Set.union_comm]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
⊢ GaloisConnection (adjoin R) SetLike.coe
[PROOFSTEP]
intro s S
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
S : StarSubalgebra R A
⊢ adjoin R s ≤ S ↔ s ≤ ↑S
[PROOFSTEP]
rw [← toSubalgebra_le_iff, adjoin_toSubalgebra, Algebra.adjoin_le_iff, coe_toSubalgebra]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
S : StarSubalgebra R A
⊢ s ∪ star s ⊆ ↑S ↔ s ≤ ↑S
[PROOFSTEP]
exact
⟨fun h => (Set.subset_union_left s _).trans h, fun h =>
Set.union_subset h fun x hx => star_star x ▸ star_mem (show star x ∈ S from h hx)⟩
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
⊢ p a b
[PROOFSTEP]
refine'
Algebra.adjoin_induction₂ ha hb (fun x hx y hy => _) Halg (fun r x hx => _) (fun r x hx => _) Hadd_left Hadd_right
Hmul_left Hmul_right
[GOAL]
case refine'_1
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
x : A
hx : x ∈ s ∪ star s
y : A
hy : y ∈ s ∪ star s
⊢ p x y
[PROOFSTEP]
cases' hx with hx hx
[GOAL]
case refine'_1.inl
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
x y : A
hy : y ∈ s ∪ star s
hx : x ∈ s
⊢ p x y
[PROOFSTEP]
cases' hy with hy hy
[GOAL]
case refine'_1.inr
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
x y : A
hy : y ∈ s ∪ star s
hx : x ∈ star s
⊢ p x y
[PROOFSTEP]
cases' hy with hy hy
[GOAL]
case refine'_1.inl.inl
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
x y : A
hx : x ∈ s
hy : y ∈ s
⊢ p x y
[PROOFSTEP]
exact Hs x hx y hy
[GOAL]
case refine'_1.inl.inr
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
x y : A
hx : x ∈ s
hy : y ∈ star s
⊢ p x y
[PROOFSTEP]
exact star_star y ▸ Hstar_right _ _ (Hs _ hx _ hy)
[GOAL]
case refine'_1.inr.inl
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
x y : A
hx : x ∈ star s
hy : y ∈ s
⊢ p x y
[PROOFSTEP]
exact star_star x ▸ Hstar_left _ _ (Hs _ hx _ hy)
[GOAL]
case refine'_1.inr.inr
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
x y : A
hx : x ∈ star s
hy : y ∈ star s
⊢ p x y
[PROOFSTEP]
exact star_star x ▸ star_star y ▸ Hstar _ _ (Hs _ hx _ hy)
[GOAL]
case refine'_2
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
r : R
x : A
hx : x ∈ s ∪ star s
⊢ p (↑(algebraMap R A) r) x
[PROOFSTEP]
cases' hx with hx hx
[GOAL]
case refine'_2.inl
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
r : R
x : A
hx : x ∈ s
⊢ p (↑(algebraMap R A) r) x
[PROOFSTEP]
exact Halg_left _ _ hx
[GOAL]
case refine'_2.inr
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
r : R
x : A
hx : x ∈ star s
⊢ p (↑(algebraMap R A) r) x
[PROOFSTEP]
exact star_star x ▸ Hstar_right _ _ (Halg_left r _ hx)
[GOAL]
case refine'_3
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
r : R
x : A
hx : x ∈ s ∪ star s
⊢ p x (↑(algebraMap R A) r)
[PROOFSTEP]
cases' hx with hx hx
[GOAL]
case refine'_3.inl
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
r : R
x : A
hx : x ∈ s
⊢ p x (↑(algebraMap R A) r)
[PROOFSTEP]
exact Halg_right _ _ hx
[GOAL]
case refine'_3.inr
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : A → A → Prop
a b : A
ha : a ∈ adjoin R s
hb : b ∈ adjoin R s
Hs : ∀ (x : A), x ∈ s → ∀ (y : A), y ∈ s → p x y
Halg : ∀ (r₁ r₂ : R), p (↑(algebraMap R A) r₁) (↑(algebraMap R A) r₂)
Halg_left : ∀ (r : R) (x : A), x ∈ s → p (↑(algebraMap R A) r) x
Halg_right : ∀ (r : R) (x : A), x ∈ s → p x (↑(algebraMap R A) r)
Hadd_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ + x₂) y
Hadd_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ + y₂)
Hmul_left : ∀ (x₁ x₂ y : A), p x₁ y → p x₂ y → p (x₁ * x₂) y
Hmul_right : ∀ (x y₁ y₂ : A), p x y₁ → p x y₂ → p x (y₁ * y₂)
Hstar : ∀ (x y : A), p x y → p (star x) (star y)
Hstar_left : ∀ (x y : A), p x y → p (star x) y
Hstar_right : ∀ (x y : A), p x y → p x (star y)
r : R
x : A
hx : x ∈ star s
⊢ p x (↑(algebraMap R A) r)
[PROOFSTEP]
exact star_star x ▸ Hstar_left _ _ (Halg_right r _ hx)
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : { x // x ∈ adjoin R s } → Prop
a : { x // x ∈ adjoin R s }
Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }
Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r)
Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y)
Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y)
Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x)
b : A
hb : b ∈ adjoin R s
⊢ p { val := b, property := hb }
[PROOFSTEP]
refine' Exists.elim _ fun (hb : b ∈ adjoin R s) (hc : p ⟨b, hb⟩) => hc
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : { x // x ∈ adjoin R s } → Prop
a : { x // x ∈ adjoin R s }
Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }
Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r)
Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y)
Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y)
Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x)
b : A
hb : b ∈ adjoin R s
⊢ ∃ x, p { val := b, property := x }
[PROOFSTEP]
apply adjoin_induction hb
[GOAL]
case Hs
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : { x // x ∈ adjoin R s } → Prop
a : { x // x ∈ adjoin R s }
Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }
Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r)
Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y)
Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y)
Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x)
b : A
hb : b ∈ adjoin R s
⊢ ∀ (x : A), x ∈ s → ∃ x_1, p { val := x, property := x_1 }
case Halg
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : { x // x ∈ adjoin R s } → Prop
a : { x // x ∈ adjoin R s }
Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }
Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r)
Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y)
Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y)
Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x)
b : A
hb : b ∈ adjoin R s
⊢ ∀ (r : R), ∃ x, p { val := ↑(algebraMap R A) r, property := x }
case Hadd
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : { x // x ∈ adjoin R s } → Prop
a : { x // x ∈ adjoin R s }
Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }
Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r)
Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y)
Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y)
Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x)
b : A
hb : b ∈ adjoin R s
⊢ ∀ (x y : A),
(∃ x_1, p { val := x, property := x_1 }) →
(∃ x, p { val := y, property := x }) → ∃ x_1, p { val := x + y, property := x_1 }
case Hmul
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : { x // x ∈ adjoin R s } → Prop
a : { x // x ∈ adjoin R s }
Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }
Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r)
Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y)
Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y)
Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x)
b : A
hb : b ∈ adjoin R s
⊢ ∀ (x y : A),
(∃ x_1, p { val := x, property := x_1 }) →
(∃ x, p { val := y, property := x }) → ∃ x_1, p { val := x * y, property := x_1 }
case Hstar
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
p : { x // x ∈ adjoin R s } → Prop
a : { x // x ∈ adjoin R s }
Hs : ∀ (x : A) (h : x ∈ s), p { val := x, property := (_ : x ∈ ↑(adjoin R s)) }
Halg : ∀ (r : R), p (↑(algebraMap R { x // x ∈ adjoin R s }) r)
Hadd : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x + y)
Hmul : ∀ (x y : { x // x ∈ adjoin R s }), p x → p y → p (x * y)
Hstar : ∀ (x : { x // x ∈ adjoin R s }), p x → p (star x)
b : A
hb : b ∈ adjoin R s
⊢ ∀ (x : A), (∃ x_1, p { val := x, property := x_1 }) → ∃ x_1, p { val := star x, property := x_1 }
[PROOFSTEP]
exacts [fun x hx => ⟨subset_adjoin R s hx, Hs x hx⟩, fun r => ⟨StarSubalgebra.algebraMap_mem _ r, Halg r⟩,
fun x y hx hy => Exists.elim hx fun hx' hx => Exists.elim hy fun hy' hy => ⟨add_mem hx' hy', Hadd _ _ hx hy⟩,
fun x y hx hy => Exists.elim hx fun hx' hx => Exists.elim hy fun hy' hy => ⟨mul_mem hx' hy', Hmul _ _ hx hy⟩,
fun x hx => Exists.elim hx fun hx' hx => ⟨star_mem hx', Hstar _ hx⟩]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
⊢ ∀ (a b : { x // x ∈ adjoin R s }), a * b = b * a
[PROOFSTEP]
rintro ⟨x, hx⟩ ⟨y, hy⟩
[GOAL]
case mk.mk
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ adjoin R s
y : A
hy : y ∈ adjoin R s
⊢ { val := x, property := hx } * { val := y, property := hy } =
{ val := y, property := hy } * { val := x, property := hx }
[PROOFSTEP]
ext
[GOAL]
case mk.mk.a
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ adjoin R s
y : A
hy : y ∈ adjoin R s
⊢ ↑({ val := x, property := hx } * { val := y, property := hy }) =
↑({ val := y, property := hy } * { val := x, property := hx })
[PROOFSTEP]
simp only [MulMemClass.mk_mul_mk]
[GOAL]
case mk.mk.a
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ adjoin R s
y : A
hy : y ∈ adjoin R s
⊢ x * y = y * x
[PROOFSTEP]
rw [← mem_toSubalgebra, adjoin_toSubalgebra] at hx hy
[GOAL]
case mk.mk.a
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
⊢ x * y = y * x
[PROOFSTEP]
letI : CommSemiring (Algebra.adjoin R (s ∪ star s)) :=
Algebra.adjoinCommSemiringOfComm R
(by
intro a ha b hb
cases' ha with ha ha <;> cases' hb with hb hb
· exact hcomm _ ha _ hb
· exact star_star b ▸ hcomm_star _ ha _ hb
· exact star_star a ▸ (hcomm_star _ hb _ ha).symm
· simpa only [star_mul, star_star] using congr_arg star (hcomm _ hb _ ha))
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
⊢ ∀ (a : A), a ∈ s ∪ star s → ∀ (b : A), b ∈ s ∪ star s → a * b = b * a
[PROOFSTEP]
intro a ha b hb
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
a : A
ha : a ∈ s ∪ star s
b : A
hb : b ∈ s ∪ star s
⊢ a * b = b * a
[PROOFSTEP]
cases' ha with ha ha
[GOAL]
case inl
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
a b : A
hb : b ∈ s ∪ star s
ha : a ∈ s
⊢ a * b = b * a
[PROOFSTEP]
cases' hb with hb hb
[GOAL]
case inr
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
a b : A
hb : b ∈ s ∪ star s
ha : a ∈ star s
⊢ a * b = b * a
[PROOFSTEP]
cases' hb with hb hb
[GOAL]
case inl.inl
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
a b : A
ha : a ∈ s
hb : b ∈ s
⊢ a * b = b * a
[PROOFSTEP]
exact hcomm _ ha _ hb
[GOAL]
case inl.inr
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
a b : A
ha : a ∈ s
hb : b ∈ star s
⊢ a * b = b * a
[PROOFSTEP]
exact star_star b ▸ hcomm_star _ ha _ hb
[GOAL]
case inr.inl
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
a b : A
ha : a ∈ star s
hb : b ∈ s
⊢ a * b = b * a
[PROOFSTEP]
exact star_star a ▸ (hcomm_star _ hb _ ha).symm
[GOAL]
case inr.inr
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
a b : A
ha : a ∈ star s
hb : b ∈ star s
⊢ a * b = b * a
[PROOFSTEP]
simpa only [star_mul, star_star] using congr_arg star (hcomm _ hb _ ha)
[GOAL]
case mk.mk.a
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
s : Set A
hcomm : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * b = b * a
hcomm_star : ∀ (a : A), a ∈ s → ∀ (b : A), b ∈ s → a * star b = star b * a
src✝ : Semiring { x // x ∈ (adjoin R s).toSubalgebra } := Subalgebra.toSemiring (adjoin R s).toSubalgebra
x : A
hx : x ∈ Algebra.adjoin R (s ∪ star s)
y : A
hy : y ∈ Algebra.adjoin R (s ∪ star s)
this : CommSemiring { x // x ∈ Algebra.adjoin R (s ∪ star s) } :=
Algebra.adjoinCommSemiringOfComm R (_ : ∀ (a : A), a ∈ s ∪ star s → ∀ (b : A), b ∈ s ∪ star s → a * b = b * a)
⊢ x * y = y * x
[PROOFSTEP]
exact congr_arg Subtype.val (mul_comm (⟨x, hx⟩ : Algebra.adjoin R (s ∪ star s)) ⟨y, hy⟩)
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
x : A
inst✝ : IsStarNormal x
a : A
ha : a ∈ {x}
b : A
hb : b ∈ {x}
⊢ a * b = b * a
[PROOFSTEP]
rw [Set.mem_singleton_iff] at ha hb
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
x : A
inst✝ : IsStarNormal x
a : A
ha : a = x
b : A
hb : b = x
⊢ a * b = b * a
[PROOFSTEP]
rw [ha, hb]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
x : A
inst✝ : IsStarNormal x
a : A
ha : a ∈ {x}
b : A
hb : b ∈ {x}
⊢ a * star b = star b * a
[PROOFSTEP]
rw [Set.mem_singleton_iff] at ha hb
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
x : A
inst✝ : IsStarNormal x
a : A
ha : a = x
b : A
hb : b = x
⊢ a * star b = star b * a
[PROOFSTEP]
simpa only [ha, hb] using (star_comm_self' x).symm
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
⊢ ⊤.toSubalgebra = ⊤
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
x✝ : A
⊢ x✝ ∈ ⊤.toSubalgebra ↔ x✝ ∈ ⊤
[PROOFSTEP]
simp
-- porting note: Lean can no longer prove this by `rfl`, it times out
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S T : StarSubalgebra R A
⊢ (S ⊓ T).toSubalgebra = S.toSubalgebra ⊓ T.toSubalgebra
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S T : StarSubalgebra R A
x✝ : A
⊢ x✝ ∈ (S ⊓ T).toSubalgebra ↔ x✝ ∈ S.toSubalgebra ⊓ T.toSubalgebra
[PROOFSTEP]
simp
-- porting note: Lean can no longer prove this by `rfl`, it times out
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Set (StarSubalgebra R A)
x : A
⊢ x ∈ sInf S ↔ ∀ (p : StarSubalgebra R A), p ∈ S → x ∈ p
[PROOFSTEP]
simp only [← SetLike.mem_coe, coe_sInf, Set.mem_iInter₂]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : Set (StarSubalgebra R A)
⊢ ↑(sInf S).toSubalgebra = ↑(sInf (toSubalgebra '' S))
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
ι : Sort u_5
S : ι → StarSubalgebra R A
⊢ ↑(⨅ (i : ι), S i) = ⋂ (i : ι), ↑(S i)
[PROOFSTEP]
simp [iInf]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
ι : Sort u_5
S : ι → StarSubalgebra R A
x : A
⊢ x ∈ ⨅ (i : ι), S i ↔ ∀ (i : ι), x ∈ S i
[PROOFSTEP]
simp only [iInf, mem_sInf, Set.forall_range_iff]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
ι : Sort u_5
S : ι → StarSubalgebra R A
⊢ ↑(⨅ (i : ι), S i).toSubalgebra = ↑(⨅ (i : ι), (S i).toSubalgebra)
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
⊢ ⊥.toSubalgebra = ⊥
[PROOFSTEP]
change Algebra.adjoin R (∅ ∪ star ∅) = Algebra.adjoin R ∅
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
⊢ Algebra.adjoin R (∅ ∪ star ∅) = Algebra.adjoin R ∅
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
x : A
⊢ x ∈ ⊥ ↔ x ∈ Set.range ↑(algebraMap R A)
[PROOFSTEP]
rw [← mem_toSubalgebra, bot_toSubalgebra, Algebra.mem_bot]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
⊢ ↑⊥ = Set.range ↑(algebraMap R A)
[PROOFSTEP]
simp [Set.ext_iff, mem_bot]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : StarSubalgebra R A
h : S = ⊤
x : A
⊢ x ∈ S
[PROOFSTEP]
rw [h]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : StarSubalgebra R A
h : S = ⊤
x : A
⊢ x ∈ ⊤
[PROOFSTEP]
exact mem_top
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : StarSubalgebra R A
h : ∀ (x : A), x ∈ S
⊢ S = ⊤
[PROOFSTEP]
ext x
[GOAL]
case h
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
S : StarSubalgebra R A
h : ∀ (x : A), x ∈ S
x : A
⊢ x ∈ S ↔ x ∈ ⊤
[PROOFSTEP]
exact ⟨fun _ => mem_top, fun _ => h x⟩
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
hF : StarAlgHomClass F R A B
f g : F
a : A
ha : ↑f a = ↑g a
⊢ star a ∈ (AlgHom.equalizer ↑f ↑g).toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
simpa only [← map_star] using congrArg star ha
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
hF : StarAlgHomClass F R A B
f✝ g✝ : F
s : Set A
inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B
f g : F
h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x
⊢ f = g
[PROOFSTEP]
refine'
FunLike.ext f g fun a =>
adjoin_induction' (p := fun y => f y = g y) a (fun x hx => _) (fun r => _) (fun x y hx hy => _) (fun x y hx hy => _)
fun x hx => _
[GOAL]
case refine'_1
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
hF : StarAlgHomClass F R A B
f✝ g✝ : F
s : Set A
inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B
f g : F
h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x
a : { x // x ∈ adjoin R s }
x : A
hx : x ∈ s
⊢ (fun y => ↑f y = ↑g y) { val := x, property := (_ : x ∈ ↑(adjoin R s)) }
[PROOFSTEP]
exact h ⟨x, subset_adjoin R s hx⟩ hx
[GOAL]
case refine'_2
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
hF : StarAlgHomClass F R A B
f✝ g✝ : F
s : Set A
inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B
f g : F
h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x
a : { x // x ∈ adjoin R s }
r : R
⊢ (fun y => ↑f y = ↑g y) (↑(algebraMap R { x // x ∈ adjoin R s }) r)
[PROOFSTEP]
simp only [AlgHomClass.commutes]
[GOAL]
case refine'_3
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
hF : StarAlgHomClass F R A B
f✝ g✝ : F
s : Set A
inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B
f g : F
h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x
a x y : { x // x ∈ adjoin R s }
hx : (fun y => ↑f y = ↑g y) x
hy : (fun y => ↑f y = ↑g y) y
⊢ (fun y => ↑f y = ↑g y) (x + y)
[PROOFSTEP]
simp only [map_add, map_add, hx, hy]
[GOAL]
case refine'_4
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
hF : StarAlgHomClass F R A B
f✝ g✝ : F
s : Set A
inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B
f g : F
h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x
a x y : { x // x ∈ adjoin R s }
hx : (fun y => ↑f y = ↑g y) x
hy : (fun y => ↑f y = ↑g y) y
⊢ (fun y => ↑f y = ↑g y) (x * y)
[PROOFSTEP]
simp only [map_mul, map_mul, hx, hy]
[GOAL]
case refine'_5
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝¹⁰ : CommSemiring R
inst✝⁹ : StarRing R
inst✝⁸ : Semiring A
inst✝⁷ : Algebra R A
inst✝⁶ : StarRing A
inst✝⁵ : StarModule R A
inst✝⁴ : Semiring B
inst✝³ : Algebra R B
inst✝² : StarRing B
inst✝¹ : StarModule R B
hF : StarAlgHomClass F R A B
f✝ g✝ : F
s : Set A
inst✝ : StarAlgHomClass F R { x // x ∈ adjoin R s } B
f g : F
h : ∀ (x : { x // x ∈ adjoin R s }), ↑x ∈ s → ↑f x = ↑g x
a x : { x // x ∈ adjoin R s }
hx : (fun y => ↑f y = ↑g y) x
⊢ (fun y => ↑f y = ↑g y) (star x)
[PROOFSTEP]
simp only [map_star, hx]
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
hF : StarAlgHomClass F R A B
f g : F
φ : A →⋆ₐ[R] B
⊢ ∀ {a : B},
a ∈ (AlgHom.range φ.toAlgHom).toSubsemiring.toSubmonoid.toSubsemigroup.carrier →
star a ∈ (AlgHom.range φ.toAlgHom).toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
rintro _ ⟨b, rfl⟩
[GOAL]
case intro
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
hF : StarAlgHomClass F R A B
f g : F
φ : A →⋆ₐ[R] B
b : A
⊢ star (↑↑φ.toAlgHom b) ∈ (AlgHom.range φ.toAlgHom).toSubsemiring.toSubmonoid.toSubsemigroup.carrier
[PROOFSTEP]
exact ⟨star b, map_star φ b⟩
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
hF : StarAlgHomClass F R A B
f g : F
φ : A →⋆ₐ[R] B
x : B
⊢ x ∈ StarAlgHom.range φ → x ∈ map φ ⊤
[PROOFSTEP]
rintro ⟨a, ha⟩
[GOAL]
case intro
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
hF : StarAlgHomClass F R A B
f g : F
φ : A →⋆ₐ[R] B
x : B
a : A
ha : ↑↑φ.toAlgHom a = x
⊢ x ∈ map φ ⊤
[PROOFSTEP]
exact ⟨a, by simp, ha⟩
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
hF : StarAlgHomClass F R A B
f g : F
φ : A →⋆ₐ[R] B
x : B
a : A
ha : ↑↑φ.toAlgHom a = x
⊢ a ∈ ↑⊤.toSubsemiring
[PROOFSTEP]
simp
[GOAL]
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
hF : StarAlgHomClass F R A B
f g : F
φ : A →⋆ₐ[R] B
x : B
⊢ x ∈ map φ ⊤ → x ∈ StarAlgHom.range φ
[PROOFSTEP]
rintro ⟨a, -, ha⟩
[GOAL]
case intro.intro
F : Type u_1
R : Type u_2
A : Type u_3
B : Type u_4
inst✝⁹ : CommSemiring R
inst✝⁸ : StarRing R
inst✝⁷ : Semiring A
inst✝⁶ : Algebra R A
inst✝⁵ : StarRing A
inst✝⁴ : StarModule R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : StarRing B
inst✝ : StarModule R B
hF : StarAlgHomClass F R A B
f g : F
φ : A →⋆ₐ[R] B
x : B
a : A
ha : ↑↑φ.toAlgHom a = x
⊢ x ∈ StarAlgHom.range φ
[PROOFSTEP]
exact ⟨a, ha⟩
| {"mathlib_filename": "Mathlib.Algebra.Star.Subalgebra", "llama_tokens": 49469} |
[GOAL]
α : Type u_1
inst✝ : StrictOrderedSemiring α
n : ℕ
⊢ ↑n < ↑(n + 1)
[PROOFSTEP]
rw [Nat.cast_succ]
[GOAL]
α : Type u_1
inst✝ : StrictOrderedSemiring α
n : ℕ
⊢ ↑n < ↑n + 1
[PROOFSTEP]
apply lt_add_one
| {"mathlib_filename": "Mathlib.Algebra.Order.Ring.CharZero", "llama_tokens": 119} |
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : OrderedAddCommMonoid α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : OrderAddMonoidHomClass F α β
f : F
a : α
ha : 0 ≤ a
⊢ 0 ≤ ↑f a
[PROOFSTEP]
rw [← map_zero f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : OrderedAddCommMonoid α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : OrderAddMonoidHomClass F α β
f : F
a : α
ha : 0 ≤ a
⊢ ↑f 0 ≤ ↑f a
[PROOFSTEP]
exact OrderHomClass.mono _ ha
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : OrderedAddCommMonoid α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : OrderAddMonoidHomClass F α β
f : F
a : α
ha : a ≤ 0
⊢ ↑f a ≤ 0
[PROOFSTEP]
rw [← map_zero f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : OrderedAddCommMonoid α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : OrderAddMonoidHomClass F α β
f : F
a : α
ha : a ≤ 0
⊢ ↑f a ≤ ↑f 0
[PROOFSTEP]
exact OrderHomClass.mono _ ha
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : OrderedAddCommGroup α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : AddMonoidHomClass F α β
f : F
h : Monotone ↑f
a : α
⊢ 0 ≤ a → 0 ≤ ↑f a
[PROOFSTEP]
rw [← map_zero f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : OrderedAddCommGroup α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : AddMonoidHomClass F α β
f : F
h : Monotone ↑f
a : α
⊢ 0 ≤ a → ↑f 0 ≤ ↑f a
[PROOFSTEP]
apply h
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : OrderedAddCommGroup α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : AddMonoidHomClass F α β
f : F
h : ∀ (a : α), 0 ≤ a → 0 ≤ ↑f a
a b : α
hl : a ≤ b
⊢ ↑f a ≤ ↑f b
[PROOFSTEP]
rw [← sub_add_cancel b a, map_add f]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝² : OrderedAddCommGroup α
inst✝¹ : OrderedAddCommMonoid β
inst✝ : AddMonoidHomClass F α β
f : F
h : ∀ (a : α), 0 ≤ a → 0 ≤ ↑f a
a b : α
hl : a ≤ b
⊢ ↑f a ≤ ↑f (b - a) + ↑f a
[PROOFSTEP]
exact le_add_of_nonneg_left (h _ <| sub_nonneg.2 hl)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : OrderedAddCommGroup α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : AddMonoidHomClass F α β
f : F
inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1
⊢ StrictMono ↑f ↔ ∀ (a : α), 0 < a → 0 < ↑f a
[PROOFSTEP]
refine ⟨fun h a => ?_, fun h a b hl => ?_⟩
[GOAL]
case refine_1
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : OrderedAddCommGroup α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : AddMonoidHomClass F α β
f : F
inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1
h : StrictMono ↑f
a : α
⊢ 0 < a → 0 < ↑f a
[PROOFSTEP]
rw [← map_zero f]
[GOAL]
case refine_1
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : OrderedAddCommGroup α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : AddMonoidHomClass F α β
f : F
inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1
h : StrictMono ↑f
a : α
⊢ 0 < a → ↑f 0 < ↑f a
[PROOFSTEP]
apply h
[GOAL]
case refine_2
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : OrderedAddCommGroup α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : AddMonoidHomClass F α β
f : F
inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1
h : ∀ (a : α), 0 < a → 0 < ↑f a
a b : α
hl : a < b
⊢ ↑f a < ↑f b
[PROOFSTEP]
rw [← sub_add_cancel b a, map_add f]
[GOAL]
case refine_2
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝³ : OrderedAddCommGroup α
inst✝² : OrderedAddCommMonoid β
inst✝¹ : AddMonoidHomClass F α β
f : F
inst✝ : CovariantClass β β (fun x x_1 => x + x_1) fun x x_1 => x < x_1
h : ∀ (a : α), 0 < a → 0 < ↑f a
a b : α
hl : a < b
⊢ ↑f a < ↑f (b - a) + ↑f a
[PROOFSTEP]
exact lt_add_of_pos_left _ (h _ <| sub_pos.2 hl)
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulOneClass α
inst✝² : MulOneClass β
inst✝¹ : MulOneClass γ
inst✝ : MulOneClass δ
f✝ g✝ f g : α →*o β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩⟩, _⟩ := f
[GOAL]
case mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulOneClass α
inst✝² : MulOneClass β
inst✝¹ : MulOneClass γ
inst✝ : MulOneClass δ
f g✝ g : α →*o β
toFun✝ : α → β
map_one'✝ : toFun✝ 1 = 1
map_mul'✝ :
∀ (x y : α),
OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } (x * y) =
OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } x *
OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } y
monotone'✝ : Monotone (↑{ toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }).toFun
h :
(fun f => f.toFun)
{ toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ },
monotone' := monotone'✝ } =
(fun f => f.toFun) g
⊢ { toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ },
monotone' := monotone'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulOneClass α
inst✝² : MulOneClass β
inst✝¹ : MulOneClass γ
inst✝ : MulOneClass δ
f g : α →*o β
toFun✝¹ : α → β
map_one'✝¹ : toFun✝¹ 1 = 1
map_mul'✝¹ :
∀ (x y : α),
OneHom.toFun { toFun := toFun✝¹, map_one' := map_one'✝¹ } (x * y) =
OneHom.toFun { toFun := toFun✝¹, map_one' := map_one'✝¹ } x *
OneHom.toFun { toFun := toFun✝¹, map_one' := map_one'✝¹ } y
monotone'✝¹ : Monotone (↑{ toOneHom := { toFun := toFun✝¹, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ }).toFun
toFun✝ : α → β
map_one'✝ : toFun✝ 1 = 1
map_mul'✝ :
∀ (x y : α),
OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } (x * y) =
OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } x *
OneHom.toFun { toFun := toFun✝, map_one' := map_one'✝ } y
monotone'✝ : Monotone (↑{ toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ }).toFun
h :
(fun f => f.toFun)
{ toMonoidHom := { toOneHom := { toFun := toFun✝¹, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ },
monotone' := monotone'✝¹ } =
(fun f => f.toFun)
{ toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ },
monotone' := monotone'✝ }
⊢ { toMonoidHom := { toOneHom := { toFun := toFun✝¹, map_one' := map_one'✝¹ }, map_mul' := map_mul'✝¹ },
monotone' := monotone'✝¹ } =
{ toMonoidHom := { toOneHom := { toFun := toFun✝, map_one' := map_one'✝ }, map_mul' := map_mul'✝ },
monotone' := monotone'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulOneClass α
inst✝² : MulOneClass β
inst✝¹ : MulOneClass γ
inst✝ : MulOneClass δ
f✝ g f : α →*o β
h : Monotone (↑↑f).toFun
⊢ { toMonoidHom := ↑f, monotone' := h } = f
[PROOFSTEP]
ext
[GOAL]
case h
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulOneClass α
inst✝² : MulOneClass β
inst✝¹ : MulOneClass γ
inst✝ : MulOneClass δ
f✝ g f : α →*o β
h : Monotone (↑↑f).toFun
a✝ : α
⊢ ↑{ toMonoidHom := ↑f, monotone' := h } a✝ = ↑f a✝
[PROOFSTEP]
rfl
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulOneClass α
inst✝² : MulOneClass β
inst✝¹ : MulOneClass γ
inst✝ : MulOneClass δ
f✝ g✝ f g : α →*o β
h : f.toMonoidHom = g.toMonoidHom
⊢ ∀ (a : α), ↑f a = ↑g a
[PROOFSTEP]
convert FunLike.ext_iff.1 h using 0
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulOneClass α
inst✝² : MulOneClass β
inst✝¹ : MulOneClass γ
inst✝ : MulOneClass δ
f✝ g✝ f g : α →*o β
h : toOrderHom f = toOrderHom g
⊢ ∀ (a : α), ↑f a = ↑g a
[PROOFSTEP]
convert FunLike.ext_iff.1 h using 0
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulOneClass α
inst✝² : MulOneClass β
inst✝¹ : MulOneClass γ
inst✝ : MulOneClass δ
f✝ g : α →*o β
g₁ g₂ : β →*o γ
f : α →*o β
hf : Surjective ↑f
x✝ : g₁ = g₂
⊢ comp g₁ f = comp g₂ f
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulOneClass α
inst✝² : MulOneClass β
inst✝¹ : MulOneClass γ
inst✝ : MulOneClass δ
f g✝ : α →*o β
g : β →*o γ
f₁ f₂ : α →*o β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulZeroOneClass α
inst✝² : MulZeroOneClass β
inst✝¹ : MulZeroOneClass γ
inst✝ : MulZeroOneClass δ
f✝ g✝ f g : α →*₀o β
h : (fun f => f.toFun) f = (fun f => f.toFun) g
⊢ f = g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩⟩, _⟩ := f
[GOAL]
case mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulZeroOneClass α
inst✝² : MulZeroOneClass β
inst✝¹ : MulZeroOneClass γ
inst✝ : MulZeroOneClass δ
f g✝ g : α →*₀o β
toFun✝ : α → β
map_zero'✝ : toFun✝ 0 = 0
map_one'✝ : ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } 1 = 1
map_mul'✝ :
∀ (x y : α),
ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } (x * y) =
ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } x *
ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } y
monotone'✝ :
Monotone
(↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }).toFun
h :
(fun f => f.toFun)
{
toMonoidWithZeroHom :=
{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ },
monotone' := monotone'✝ } =
(fun f => f.toFun) g
⊢ {
toMonoidWithZeroHom :=
{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ },
monotone' := monotone'✝ } =
g
[PROOFSTEP]
obtain ⟨⟨⟨_, _⟩⟩, _⟩ := g
[GOAL]
case mk.mk.mk.mk.mk.mk
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulZeroOneClass α
inst✝² : MulZeroOneClass β
inst✝¹ : MulZeroOneClass γ
inst✝ : MulZeroOneClass δ
f g : α →*₀o β
toFun✝¹ : α → β
map_zero'✝¹ : toFun✝¹ 0 = 0
map_one'✝¹ : ZeroHom.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹ } 1 = 1
map_mul'✝¹ :
∀ (x y : α),
ZeroHom.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹ } (x * y) =
ZeroHom.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹ } x *
ZeroHom.toFun { toFun := toFun✝¹, map_zero' := map_zero'✝¹ } y
monotone'✝¹ :
Monotone
(↑{ toZeroHom := { toFun := toFun✝¹, map_zero' := map_zero'✝¹ }, map_one' := map_one'✝¹,
map_mul' := map_mul'✝¹ }).toFun
toFun✝ : α → β
map_zero'✝ : toFun✝ 0 = 0
map_one'✝ : ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } 1 = 1
map_mul'✝ :
∀ (x y : α),
ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } (x * y) =
ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } x *
ZeroHom.toFun { toFun := toFun✝, map_zero' := map_zero'✝ } y
monotone'✝ :
Monotone
(↑{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ }).toFun
h :
(fun f => f.toFun)
{
toMonoidWithZeroHom :=
{ toZeroHom := { toFun := toFun✝¹, map_zero' := map_zero'✝¹ }, map_one' := map_one'✝¹,
map_mul' := map_mul'✝¹ },
monotone' := monotone'✝¹ } =
(fun f => f.toFun)
{
toMonoidWithZeroHom :=
{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ },
monotone' := monotone'✝ }
⊢ {
toMonoidWithZeroHom :=
{ toZeroHom := { toFun := toFun✝¹, map_zero' := map_zero'✝¹ }, map_one' := map_one'✝¹, map_mul' := map_mul'✝¹ },
monotone' := monotone'✝¹ } =
{
toMonoidWithZeroHom :=
{ toZeroHom := { toFun := toFun✝, map_zero' := map_zero'✝ }, map_one' := map_one'✝, map_mul' := map_mul'✝ },
monotone' := monotone'✝ }
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulZeroOneClass α
inst✝² : MulZeroOneClass β
inst✝¹ : MulZeroOneClass γ
inst✝ : MulZeroOneClass δ
f✝ g✝ f g : α →*₀o β
h : toOrderMonoidHom f = toOrderMonoidHom g
⊢ ∀ (a : α), ↑f a = ↑g a
[PROOFSTEP]
convert FunLike.ext_iff.1 h using 0
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulZeroOneClass α
inst✝² : MulZeroOneClass β
inst✝¹ : MulZeroOneClass γ
inst✝ : MulZeroOneClass δ
f✝ g✝ f g : α →*₀o β
h : f.toMonoidWithZeroHom = g.toMonoidWithZeroHom
⊢ ∀ (a : α), ↑f a = ↑g a
[PROOFSTEP]
convert FunLike.ext_iff.1 h using 0
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulZeroOneClass α
inst✝² : MulZeroOneClass β
inst✝¹ : MulZeroOneClass γ
inst✝ : MulZeroOneClass δ
f✝ g : α →*₀o β
g₁ g₂ : β →*₀o γ
f : α →*₀o β
hf : Surjective ↑f
x✝ : g₁ = g₂
⊢ comp g₁ f = comp g₂ f
[PROOFSTEP]
congr
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
inst✝⁷ : Preorder α
inst✝⁶ : Preorder β
inst✝⁵ : Preorder γ
inst✝⁴ : Preorder δ
inst✝³ : MulZeroOneClass α
inst✝² : MulZeroOneClass β
inst✝¹ : MulZeroOneClass γ
inst✝ : MulZeroOneClass δ
f g✝ : α →*₀o β
g : β →*₀o γ
f₁ f₂ : α →*₀o β
hg : Injective ↑g
h : comp g f₁ = comp g f₂
a : α
⊢ ↑g (↑f₁ a) = ↑g (↑f₂ a)
[PROOFSTEP]
rw [← comp_apply, h, comp_apply]
[GOAL]
F : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
δ : Type u_5
hα : Preorder α
hα' : MulZeroOneClass α
hβ : Preorder β
hβ' : MulZeroOneClass β
f : α →*₀o β
⊢ f.toMonoidWithZeroHom = ↑f
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Order.Hom.Monoid", "llama_tokens": 7840} |
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
ι✝ : Type ?u.1725
v : ComplexShape ι✝
⊢ Category.{?u.1722, max (max u v) ?u.1725} (HomotopyCategory V v)
[PROOFSTEP]
dsimp only [HomotopyCategory]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
ι✝ : Type ?u.1725
v : ComplexShape ι✝
⊢ Category.{?u.1722, max (max u v) ?u.1725} (CategoryTheory.Quotient (homotopic V v))
[PROOFSTEP]
infer_instance
-- TODO the homotopy_category is preadditive
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D : HomologicalComplex V c
f : C ⟶ D
⊢ Homotopy (Quot.out ((quotient V c).map f)) f
[PROOFSTEP]
apply homotopyOfEq
[GOAL]
case w
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D : HomologicalComplex V c
f : C ⟶ D
⊢ (quotient V c).map (Quot.out ((quotient V c).map f)) = (quotient V c).map f
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomotopyCategory V c
f : C ⟶ D
g : D ⟶ E
⊢ (quotient V c).map (Quot.out f ≫ Quot.out g) = f ≫ g
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D : HomologicalComplex V c
f : HomotopyEquiv C D
⊢ (quotient V c).map f.hom ≫ (quotient V c).map f.inv = 𝟙 ((quotient V c).obj C)
[PROOFSTEP]
rw [← (quotient V c).map_comp, ← (quotient V c).map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D : HomologicalComplex V c
f : HomotopyEquiv C D
⊢ (quotient V c).map (f.hom ≫ f.inv) = (quotient V c).map (𝟙 C)
[PROOFSTEP]
exact eq_of_homotopy _ _ f.homotopyHomInvId
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D : HomologicalComplex V c
f : HomotopyEquiv C D
⊢ (quotient V c).map f.inv ≫ (quotient V c).map f.hom = 𝟙 ((quotient V c).obj D)
[PROOFSTEP]
rw [← (quotient V c).map_comp, ← (quotient V c).map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D : HomologicalComplex V c
f : HomotopyEquiv C D
⊢ (quotient V c).map (f.inv ≫ f.hom) = (quotient V c).map (𝟙 D)
[PROOFSTEP]
exact eq_of_homotopy _ _ f.homotopyInvHomId
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D : HomologicalComplex V c
i : (quotient V c).obj C ≅ (quotient V c).obj D
⊢ (quotient V c).map (Quot.out i.hom ≫ Quot.out i.inv) = (quotient V c).map (𝟙 C)
[PROOFSTEP]
rw [quotient_map_out_comp_out, i.hom_inv_id, (quotient V c).map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D : HomologicalComplex V c
i : (quotient V c).obj C ≅ (quotient V c).obj D
⊢ (quotient V c).map (Quot.out i.inv ≫ Quot.out i.hom) = (quotient V c).map (𝟙 D)
[PROOFSTEP]
rw [quotient_map_out_comp_out, i.inv_hom_id, (quotient V c).map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c✝ : ComplexShape ι
W : Type u_2
inst✝³ : Category.{?u.46796, u_2} W
inst✝² : Preadditive W
F G : V ⥤ W
inst✝¹ : Functor.Additive F
inst✝ : Functor.Additive G
α : F ⟶ G
c : ComplexShape ι
⊢ ∀ ⦃X Y : HomotopyCategory V c⦄ (f : X ⟶ Y),
(Functor.mapHomotopyCategory F c).map f ≫
(fun C => (HomotopyCategory.quotient W c).map (app (mapHomologicalComplex α c) C.as)) Y =
(fun C => (HomotopyCategory.quotient W c).map (app (mapHomologicalComplex α c) C.as)) X ≫
(Functor.mapHomotopyCategory G c).map f
[PROOFSTEP]
rintro ⟨C⟩ ⟨D⟩ ⟨f : C ⟶ D⟩
[GOAL]
case mk.mk.mk
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c✝ : ComplexShape ι
W : Type u_2
inst✝³ : Category.{?u.46796, u_2} W
inst✝² : Preadditive W
F G : V ⥤ W
inst✝¹ : Functor.Additive F
inst✝ : Functor.Additive G
α : F ⟶ G
c : ComplexShape ι
C D : HomologicalComplex V c
f✝ : { as := C } ⟶ { as := D }
f : C ⟶ D
⊢ (Functor.mapHomotopyCategory F c).map (Quot.mk (Quotient.CompClosure (homotopic V c)) f) ≫
(fun C => (HomotopyCategory.quotient W c).map (app (mapHomologicalComplex α c) C.as)) { as := D } =
(fun C => (HomotopyCategory.quotient W c).map (app (mapHomologicalComplex α c) C.as)) { as := C } ≫
(Functor.mapHomotopyCategory G c).map (Quot.mk (Quotient.CompClosure (homotopic V c)) f)
[PROOFSTEP]
simp only [HomotopyCategory.quot_mk_eq_quotient_map, Functor.mapHomotopyCategory_map, ← Functor.map_comp,
NatTrans.naturality]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c✝ : ComplexShape ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
c : ComplexShape ι
F : V ⥤ W
inst✝ : Functor.Additive F
⊢ mapHomotopyCategory (𝟙 F) c = 𝟙 (Functor.mapHomotopyCategory F c)
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
W : Type u_2
inst✝⁴ : Category.{u_3, u_2} W
inst✝³ : Preadditive W
c : ComplexShape ι
F G H : V ⥤ W
inst✝² : Functor.Additive F
inst✝¹ : Functor.Additive G
inst✝ : Functor.Additive H
α : F ⟶ G
β : G ⟶ H
⊢ mapHomotopyCategory (α ≫ β) c = mapHomotopyCategory α c ≫ mapHomotopyCategory β c
[PROOFSTEP]
aesop_cat
| {"mathlib_filename": "Mathlib.Algebra.Homology.HomotopyCategory", "llama_tokens": 2540} |
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : OrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul
src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast
⊢ f 0 ≤ f 1
[PROOFSTEP]
simp only [zero, one, zero_le_one]
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : OrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul
src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast
a b c : β
h : a ≤ b
hc : 0 ≤ c
⊢ f (c * a) ≤ f (c * b)
[PROOFSTEP]
rw [mul, mul]
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : OrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul
src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast
a b c : β
h : a ≤ b
hc : 0 ≤ c
⊢ f c * f a ≤ f c * f b
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_left h _
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : OrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul
src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast
a b c : β
h : a ≤ b
hc : 0 ≤ c
⊢ 0 ≤ f c
[PROOFSTEP]
rwa [← zero]
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : OrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul
src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast
a b c : β
h : a ≤ b
hc : 0 ≤ c
⊢ f (a * c) ≤ f (b * c)
[PROOFSTEP]
rw [mul, mul]
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : OrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul
src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast
a b c : β
h : a ≤ b
hc : 0 ≤ c
⊢ f a * f c ≤ f b * f c
[PROOFSTEP]
refine' mul_le_mul_of_nonneg_right h _
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : OrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝¹ : OrderedAddCommMonoid β := orderedAddCommMonoid f hf zero add nsmul
src✝ : Semiring β := Injective.semiring f hf zero one add mul nsmul npow nat_cast
a b c : β
h : a ≤ b
hc : 0 ≤ c
⊢ 0 ≤ f c
[PROOFSTEP]
rwa [← zero]
[GOAL]
α : Type u
β : Type u_1
inst✝¹¹ : OrderedRing α
inst✝¹⁰ : Zero β
inst✝⁹ : One β
inst✝⁸ : Add β
inst✝⁷ : Mul β
inst✝⁶ : Neg β
inst✝⁵ : Sub β
inst✝⁴ : SMul ℕ β
inst✝³ : SMul ℤ β
inst✝² : Pow β ℕ
inst✝¹ : NatCast β
inst✝ : IntCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
neg : ∀ (x : β), f (-x) = -f x
sub : ∀ (x y : β), f (x - y) = f x - f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
int_cast : ∀ (n : ℤ), f ↑n = ↑n
src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast
a b : β
ha : 0 ≤ a
hb : 0 ≤ b
⊢ f 0 ≤ f (a * b)
[PROOFSTEP]
rw [zero, mul]
[GOAL]
α : Type u
β : Type u_1
inst✝¹¹ : OrderedRing α
inst✝¹⁰ : Zero β
inst✝⁹ : One β
inst✝⁸ : Add β
inst✝⁷ : Mul β
inst✝⁶ : Neg β
inst✝⁵ : Sub β
inst✝⁴ : SMul ℕ β
inst✝³ : SMul ℤ β
inst✝² : Pow β ℕ
inst✝¹ : NatCast β
inst✝ : IntCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
neg : ∀ (x : β), f (-x) = -f x
sub : ∀ (x y : β), f (x - y) = f x - f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
int_cast : ∀ (n : ℤ), f ↑n = ↑n
src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast
a b : β
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ f a * f b
[PROOFSTEP]
apply mul_nonneg
[GOAL]
case ha
α : Type u
β : Type u_1
inst✝¹¹ : OrderedRing α
inst✝¹⁰ : Zero β
inst✝⁹ : One β
inst✝⁸ : Add β
inst✝⁷ : Mul β
inst✝⁶ : Neg β
inst✝⁵ : Sub β
inst✝⁴ : SMul ℕ β
inst✝³ : SMul ℤ β
inst✝² : Pow β ℕ
inst✝¹ : NatCast β
inst✝ : IntCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
neg : ∀ (x : β), f (-x) = -f x
sub : ∀ (x y : β), f (x - y) = f x - f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
int_cast : ∀ (n : ℤ), f ↑n = ↑n
src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast
a b : β
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ f a
[PROOFSTEP]
rwa [← zero]
[GOAL]
case hb
α : Type u
β : Type u_1
inst✝¹¹ : OrderedRing α
inst✝¹⁰ : Zero β
inst✝⁹ : One β
inst✝⁸ : Add β
inst✝⁷ : Mul β
inst✝⁶ : Neg β
inst✝⁵ : Sub β
inst✝⁴ : SMul ℕ β
inst✝³ : SMul ℤ β
inst✝² : Pow β ℕ
inst✝¹ : NatCast β
inst✝ : IntCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
neg : ∀ (x : β), f (-x) = -f x
sub : ∀ (x y : β), f (x - y) = f x - f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
int_cast : ∀ (n : ℤ), f ↑n = ↑n
src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast
a b : β
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ f b
[PROOFSTEP]
rwa [← zero]
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : StrictOrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝² : OrderedCancelAddCommMonoid β := orderedCancelAddCommMonoid f hf zero add nsmul
src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Nontrivial β := pullback_nonzero f zero one
a b c : β
h : a < b
hc : 0 < c
⊢ f (c * a) < f (c * b)
[PROOFSTEP]
simpa only [mul, zero] using mul_lt_mul_of_pos_left ‹f a < f b› (by rwa [← zero])
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : StrictOrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝² : OrderedCancelAddCommMonoid β := orderedCancelAddCommMonoid f hf zero add nsmul
src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Nontrivial β := pullback_nonzero f zero one
a b c : β
h : a < b
hc : 0 < c
⊢ 0 < f c
[PROOFSTEP]
rwa [← zero]
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : StrictOrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝² : OrderedCancelAddCommMonoid β := orderedCancelAddCommMonoid f hf zero add nsmul
src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Nontrivial β := pullback_nonzero f zero one
a b c : β
h : a < b
hc : 0 < c
⊢ f (a * c) < f (b * c)
[PROOFSTEP]
simpa only [mul, zero] using mul_lt_mul_of_pos_right ‹f a < f b› (by rwa [← zero])
[GOAL]
α : Type u
β : Type u_1
inst✝⁷ : StrictOrderedSemiring α
inst✝⁶ : Zero β
inst✝⁵ : One β
inst✝⁴ : Add β
inst✝³ : Mul β
inst✝² : Pow β ℕ
inst✝¹ : SMul ℕ β
inst✝ : NatCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
src✝² : OrderedCancelAddCommMonoid β := orderedCancelAddCommMonoid f hf zero add nsmul
src✝¹ : OrderedSemiring β := Injective.orderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Nontrivial β := pullback_nonzero f zero one
a b c : β
h : a < b
hc : 0 < c
⊢ 0 < f c
[PROOFSTEP]
rwa [← zero]
[GOAL]
α : Type u
β : Type u_1
inst✝¹¹ : StrictOrderedRing α
inst✝¹⁰ : Zero β
inst✝⁹ : One β
inst✝⁸ : Add β
inst✝⁷ : Mul β
inst✝⁶ : Neg β
inst✝⁵ : Sub β
inst✝⁴ : SMul ℕ β
inst✝³ : SMul ℤ β
inst✝² : Pow β ℕ
inst✝¹ : NatCast β
inst✝ : IntCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
neg : ∀ (x : β), f (-x) = -f x
sub : ∀ (x y : β), f (x - y) = f x - f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
int_cast : ∀ (n : ℤ), f ↑n = ↑n
src✝¹ : StrictOrderedSemiring β := Injective.strictOrderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast
a b : β
a0 : 0 < a
b0 : 0 < b
⊢ f 0 < f (a * b)
[PROOFSTEP]
rw [zero, mul]
[GOAL]
α : Type u
β : Type u_1
inst✝¹¹ : StrictOrderedRing α
inst✝¹⁰ : Zero β
inst✝⁹ : One β
inst✝⁸ : Add β
inst✝⁷ : Mul β
inst✝⁶ : Neg β
inst✝⁵ : Sub β
inst✝⁴ : SMul ℕ β
inst✝³ : SMul ℤ β
inst✝² : Pow β ℕ
inst✝¹ : NatCast β
inst✝ : IntCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
neg : ∀ (x : β), f (-x) = -f x
sub : ∀ (x y : β), f (x - y) = f x - f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
int_cast : ∀ (n : ℤ), f ↑n = ↑n
src✝¹ : StrictOrderedSemiring β := Injective.strictOrderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast
a b : β
a0 : 0 < a
b0 : 0 < b
⊢ 0 < f a * f b
[PROOFSTEP]
apply mul_pos
[GOAL]
case ha
α : Type u
β : Type u_1
inst✝¹¹ : StrictOrderedRing α
inst✝¹⁰ : Zero β
inst✝⁹ : One β
inst✝⁸ : Add β
inst✝⁷ : Mul β
inst✝⁶ : Neg β
inst✝⁵ : Sub β
inst✝⁴ : SMul ℕ β
inst✝³ : SMul ℤ β
inst✝² : Pow β ℕ
inst✝¹ : NatCast β
inst✝ : IntCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
neg : ∀ (x : β), f (-x) = -f x
sub : ∀ (x y : β), f (x - y) = f x - f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
int_cast : ∀ (n : ℤ), f ↑n = ↑n
src✝¹ : StrictOrderedSemiring β := Injective.strictOrderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast
a b : β
a0 : 0 < a
b0 : 0 < b
⊢ 0 < f a
[PROOFSTEP]
rwa [← zero]
[GOAL]
case hb
α : Type u
β : Type u_1
inst✝¹¹ : StrictOrderedRing α
inst✝¹⁰ : Zero β
inst✝⁹ : One β
inst✝⁸ : Add β
inst✝⁷ : Mul β
inst✝⁶ : Neg β
inst✝⁵ : Sub β
inst✝⁴ : SMul ℕ β
inst✝³ : SMul ℤ β
inst✝² : Pow β ℕ
inst✝¹ : NatCast β
inst✝ : IntCast β
f : β → α
hf : Injective f
zero : f 0 = 0
one : f 1 = 1
add : ∀ (x y : β), f (x + y) = f x + f y
mul : ∀ (x y : β), f (x * y) = f x * f y
neg : ∀ (x : β), f (-x) = -f x
sub : ∀ (x y : β), f (x - y) = f x - f y
nsmul : ∀ (x : β) (n : ℕ), f (n • x) = n • f x
zsmul : ∀ (x : β) (n : ℤ), f (n • x) = n • f x
npow : ∀ (x : β) (n : ℕ), f (x ^ n) = f x ^ n
nat_cast : ∀ (n : ℕ), f ↑n = ↑n
int_cast : ∀ (n : ℤ), f ↑n = ↑n
src✝¹ : StrictOrderedSemiring β := Injective.strictOrderedSemiring f hf zero one add mul nsmul npow nat_cast
src✝ : Ring β := Injective.ring f hf zero one add mul neg sub nsmul zsmul npow nat_cast int_cast
a b : β
a0 : 0 < a
b0 : 0 < b
⊢ 0 < f b
[PROOFSTEP]
rwa [← zero]
| {"mathlib_filename": "Mathlib.Algebra.Order.Ring.InjSurj", "llama_tokens": 8492} |
[GOAL]
ι : Type u_1
c : ComplexShape ι
⊢ symm (symm c) = c
[PROOFSTEP]
ext
[GOAL]
case Rel.h.h.a
ι : Type u_1
c : ComplexShape ι
x✝¹ x✝ : ι
⊢ Rel (symm (symm c)) x✝¹ x✝ ↔ Rel c x✝¹ x✝
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
c₁ c₂ : ComplexShape ι
i✝ j✝ j'✝ : ι
w : Relation.Comp c₁.Rel c₂.Rel i✝ j✝
w' : Relation.Comp c₁.Rel c₂.Rel i✝ j'✝
⊢ j✝ = j'✝
[PROOFSTEP]
obtain ⟨k, w₁, w₂⟩ := w
[GOAL]
case intro.intro
ι : Type u_1
c₁ c₂ : ComplexShape ι
i✝ j✝ j'✝ : ι
w' : Relation.Comp c₁.Rel c₂.Rel i✝ j'✝
k : ι
w₁ : Rel c₁ i✝ k
w₂ : Rel c₂ k j✝
⊢ j✝ = j'✝
[PROOFSTEP]
obtain ⟨k', w₁', w₂'⟩ := w'
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
c₁ c₂ : ComplexShape ι
i✝ j✝ j'✝ k : ι
w₁ : Rel c₁ i✝ k
w₂ : Rel c₂ k j✝
k' : ι
w₁' : Rel c₁ i✝ k'
w₂' : Rel c₂ k' j'✝
⊢ j✝ = j'✝
[PROOFSTEP]
rw [c₁.next_eq w₁ w₁'] at w₂
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
c₁ c₂ : ComplexShape ι
i✝ j✝ j'✝ k : ι
w₁ : Rel c₁ i✝ k
k' : ι
w₂ : Rel c₂ k' j✝
w₁' : Rel c₁ i✝ k'
w₂' : Rel c₂ k' j'✝
⊢ j✝ = j'✝
[PROOFSTEP]
exact c₂.next_eq w₂ w₂'
[GOAL]
ι : Type u_1
c₁ c₂ : ComplexShape ι
i✝ i'✝ j✝ : ι
w : Relation.Comp c₁.Rel c₂.Rel i✝ j✝
w' : Relation.Comp c₁.Rel c₂.Rel i'✝ j✝
⊢ i✝ = i'✝
[PROOFSTEP]
obtain ⟨k, w₁, w₂⟩ := w
[GOAL]
case intro.intro
ι : Type u_1
c₁ c₂ : ComplexShape ι
i✝ i'✝ j✝ : ι
w' : Relation.Comp c₁.Rel c₂.Rel i'✝ j✝
k : ι
w₁ : Rel c₁ i✝ k
w₂ : Rel c₂ k j✝
⊢ i✝ = i'✝
[PROOFSTEP]
obtain ⟨k', w₁', w₂'⟩ := w'
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
c₁ c₂ : ComplexShape ι
i✝ i'✝ j✝ k : ι
w₁ : Rel c₁ i✝ k
w₂ : Rel c₂ k j✝
k' : ι
w₁' : Rel c₁ i'✝ k'
w₂' : Rel c₂ k' j✝
⊢ i✝ = i'✝
[PROOFSTEP]
rw [c₂.prev_eq w₂ w₂'] at w₁
[GOAL]
case intro.intro.intro.intro
ι : Type u_1
c₁ c₂ : ComplexShape ι
i✝ i'✝ j✝ k : ι
w₂ : Rel c₂ k j✝
k' : ι
w₁ : Rel c₁ i✝ k'
w₁' : Rel c₁ i'✝ k'
w₂' : Rel c₂ k' j✝
⊢ i✝ = i'✝
[PROOFSTEP]
exact c₁.prev_eq w₁ w₁'
[GOAL]
ι : Type u_1
c : ComplexShape ι
i : ι
⊢ Subsingleton { j // Rel c i j }
[PROOFSTEP]
constructor
[GOAL]
case allEq
ι : Type u_1
c : ComplexShape ι
i : ι
⊢ ∀ (a b : { j // Rel c i j }), a = b
[PROOFSTEP]
rintro ⟨j, rij⟩ ⟨k, rik⟩
[GOAL]
case allEq.mk.mk
ι : Type u_1
c : ComplexShape ι
i j : ι
rij : Rel c i j
k : ι
rik : Rel c i k
⊢ { val := j, property := rij } = { val := k, property := rik }
[PROOFSTEP]
congr
[GOAL]
case allEq.mk.mk.e_val
ι : Type u_1
c : ComplexShape ι
i j : ι
rij : Rel c i j
k : ι
rik : Rel c i k
⊢ j = k
[PROOFSTEP]
exact c.next_eq rij rik
[GOAL]
ι : Type u_1
c : ComplexShape ι
j : ι
⊢ Subsingleton { i // Rel c i j }
[PROOFSTEP]
constructor
[GOAL]
case allEq
ι : Type u_1
c : ComplexShape ι
j : ι
⊢ ∀ (a b : { i // Rel c i j }), a = b
[PROOFSTEP]
rintro ⟨i, rik⟩ ⟨j, rjk⟩
[GOAL]
case allEq.mk.mk
ι : Type u_1
c : ComplexShape ι
j✝ i : ι
rik : Rel c i j✝
j : ι
rjk : Rel c j j✝
⊢ { val := i, property := rik } = { val := j, property := rjk }
[PROOFSTEP]
congr
[GOAL]
case allEq.mk.mk.e_val
ι : Type u_1
c : ComplexShape ι
j✝ i : ι
rik : Rel c i j✝
j : ι
rjk : Rel c j j✝
⊢ i = j
[PROOFSTEP]
exact c.prev_eq rik rjk
[GOAL]
ι : Type u_1
c : ComplexShape ι
i j : ι
h : Rel c i j
⊢ next c i = j
[PROOFSTEP]
apply c.next_eq _ h
[GOAL]
ι : Type u_1
c : ComplexShape ι
i j : ι
h : Rel c i j
⊢ Rel c i (next c i)
[PROOFSTEP]
rw [next]
[GOAL]
ι : Type u_1
c : ComplexShape ι
i j : ι
h : Rel c i j
⊢ Rel c i (if h : ∃ j, Rel c i j then Exists.choose h else i)
[PROOFSTEP]
rw [dif_pos]
[GOAL]
ι : Type u_1
c : ComplexShape ι
i j : ι
h : Rel c i j
⊢ Rel c i (Exists.choose ?hc)
case hc ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ ∃ j, Rel c i j
[PROOFSTEP]
exact Exists.choose_spec ⟨j, h⟩
[GOAL]
ι : Type u_1
c : ComplexShape ι
i j : ι
h : Rel c i j
⊢ prev c j = i
[PROOFSTEP]
apply c.prev_eq _ h
[GOAL]
ι : Type u_1
c : ComplexShape ι
i j : ι
h : Rel c i j
⊢ Rel c (prev c j) j
[PROOFSTEP]
rw [prev, dif_pos]
[GOAL]
ι : Type u_1
c : ComplexShape ι
i j : ι
h : Rel c i j
⊢ Rel c (Exists.choose ?hc) j
case hc ι : Type u_1 c : ComplexShape ι i j : ι h : Rel c i j ⊢ ∃ i, Rel c i j
[PROOFSTEP]
exact Exists.choose_spec (⟨i, h⟩ : ∃ k, c.Rel k j)
| {"mathlib_filename": "Mathlib.Algebra.Homology.ComplexShape", "llama_tokens": 2308} |
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
t : T
i j : ι
h : ¬ComplexShape.Rel c i j
⊢ (fun i j => NatTrans.app (d C i j) t) i j = 0
[PROOFSTEP]
have := C.shape _ _ h
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
t : T
i j : ι
h : ¬ComplexShape.Rel c i j
this : d C i j = 0
⊢ (fun i j => NatTrans.app (d C i j) t) i j = 0
[PROOFSTEP]
rw [NatTrans.ext_iff, Function.funext_iff] at this
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
t : T
i j : ι
h : ¬ComplexShape.Rel c i j
this : ∀ (a : T), NatTrans.app (d C i j) a = NatTrans.app 0 a
⊢ (fun i j => NatTrans.app (d C i j) t) i j = 0
[PROOFSTEP]
exact this t
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
t : T
i j k : ι
x✝¹ : ComplexShape.Rel c i j
x✝ : ComplexShape.Rel c j k
⊢ (fun i j => NatTrans.app (d C i j) t) i j ≫ (fun i j => NatTrans.app (d C i j) t) j k = 0
[PROOFSTEP]
have := C.d_comp_d i j k
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
t : T
i j k : ι
x✝¹ : ComplexShape.Rel c i j
x✝ : ComplexShape.Rel c j k
this : d C i j ≫ d C j k = 0
⊢ (fun i j => NatTrans.app (d C i j) t) i j ≫ (fun i j => NatTrans.app (d C i j) t) j k = 0
[PROOFSTEP]
rw [NatTrans.ext_iff, Function.funext_iff] at this
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
t : T
i j k : ι
x✝¹ : ComplexShape.Rel c i j
x✝ : ComplexShape.Rel c j k
this : ∀ (a : T), NatTrans.app (d C i j ≫ d C j k) a = NatTrans.app 0 a
⊢ (fun i j => NatTrans.app (d C i j) t) i j ≫ (fun i j => NatTrans.app (d C i j) t) j k = 0
[PROOFSTEP]
exact this t
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
t : T
⊢ { obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map
(𝟙 t) =
𝟙
({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.obj
t)
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
t : T
i : ι
⊢ Hom.f
({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map
(𝟙 t))
i =
Hom.f
(𝟙
({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.obj
t))
i
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
t : T
i : ι
⊢ (X C i).map (𝟙 t) = 𝟙 ((X C i).obj t)
[PROOFSTEP]
rw [(C.X i).map_id]
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
X✝ Y✝ Z✝ : T
h₁ : X✝ ⟶ Y✝
h₂ : Y✝ ⟶ Z✝
⊢ { obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map
(h₁ ≫ h₂) =
{ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map
h₁ ≫
{ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map
h₂
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
X✝ Y✝ Z✝ : T
h₁ : X✝ ⟶ Y✝
h₂ : Y✝ ⟶ Z✝
i : ι
⊢ Hom.f
({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map
(h₁ ≫ h₂))
i =
Hom.f
({ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map
h₁ ≫
{ obj := fun t => mk (fun i => (X C i).obj t) fun i j => NatTrans.app (d C i j) t,
map := fun {X Y} h => Hom.mk fun i => (HomologicalComplex.X C i).map h }.map
h₂)
i
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.78, u_2} T
C : HomologicalComplex (T ⥤ V) c
X✝ Y✝ Z✝ : T
h₁ : X✝ ⟶ Y✝
h₂ : Y✝ ⟶ Z✝
i : ι
⊢ (X C i).map (h₁ ≫ h₂) = (X C i).map h₁ ≫ (X C i).map h₂
[PROOFSTEP]
rw [Functor.map_comp]
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.4445, u_2} T
X✝ Y✝ : HomologicalComplex (T ⥤ V) c
f : X✝ ⟶ Y✝
t t' : T
g : t ⟶ t'
⊢ ((fun C => asFunctor C) X✝).map g ≫ (fun t => Hom.mk fun i => NatTrans.app (Hom.f f i) t) t' =
(fun t => Hom.mk fun i => NatTrans.app (Hom.f f i) t) t ≫ ((fun C => asFunctor C) Y✝).map g
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
T : Type u_2
inst✝ : Category.{?u.4445, u_2} T
X✝ Y✝ : HomologicalComplex (T ⥤ V) c
f : X✝ ⟶ Y✝
t t' : T
g : t ⟶ t'
i : ι
⊢ Hom.f (((fun C => asFunctor C) X✝).map g ≫ (fun t => Hom.mk fun i => NatTrans.app (Hom.f f i) t) t') i =
Hom.f ((fun t => Hom.mk fun i => NatTrans.app (Hom.f f i) t) t ≫ ((fun C => asFunctor C) Y✝).map g) i
[PROOFSTEP]
exact (f.f i).naturality g
| {"mathlib_filename": "Mathlib.Algebra.Homology.Functor", "llama_tokens": 3317} |
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
i : ι
h : ¬ComplexShape.Rel c i (ComplexShape.next c i)
⊢ cycles C i = ⊤
[PROOFSTEP]
rw [eq_top_iff]
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
i : ι
h : ¬ComplexShape.Rel c i (ComplexShape.next c i)
⊢ ⊤ ≤ cycles C i
[PROOFSTEP]
apply le_kernelSubobject
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
i : ι
h : ¬ComplexShape.Rel c i (ComplexShape.next c i)
⊢ Subobject.arrow ⊤ ≫ dFrom C i = 0
[PROOFSTEP]
rw [C.dFrom_eq_zero h, comp_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝¹ : HasImages V
inst✝ : HasZeroObject V
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ boundaries C j = ⊥
[PROOFSTEP]
rw [eq_bot_iff]
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝¹ : HasImages V
inst✝ : HasZeroObject V
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ boundaries C j ≤ ⊥
[PROOFSTEP]
refine' imageSubobject_le _ 0 _
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝¹ : HasImages V
inst✝ : HasZeroObject V
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ 0 ≫ Subobject.arrow ⊥ = dTo C j
[PROOFSTEP]
rw [C.dTo_eq_zero h, zero_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
C : HomologicalComplex V c
i j k : ι
hij : ComplexShape.Rel c i j
hjk : ComplexShape.Rel c j k
⊢ (xPrevIso C hij).hom ≫ (Arrow.mk (d C i j)).hom = (Arrow.mk (dTo C j)).hom ≫ (Iso.refl (Arrow.mk (dTo C j)).right).hom
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
C : HomologicalComplex V c
i j k : ι
hij : ComplexShape.Rel c i j
hjk : ComplexShape.Rel c j k
⊢ (xPrevIso C hij).hom ≫ d C i j = dTo C j ≫ 𝟙 (X C j)
[PROOFSTEP]
rw [C.dTo_eq hij, Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
C : HomologicalComplex V c
i j k : ι
hij : ComplexShape.Rel c i j
hjk : ComplexShape.Rel c j k
⊢ (Iso.refl (Arrow.mk (dFrom C j)).left).hom ≫ (Arrow.mk (d C j k)).hom =
(Arrow.mk (dFrom C j)).hom ≫ (xNextIso C hjk).hom
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
C : HomologicalComplex V c
i j k : ι
hij : ComplexShape.Rel c i j
hjk : ComplexShape.Rel c j k
⊢ 𝟙 (X C j) ≫ d C j k = dFrom C j ≫ (xNextIso C hjk).hom
[PROOFSTEP]
rw [C.dFrom_comp_xNextIso hjk, Category.id_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝³ : HasKernels V
inst✝² : HasImages V
inst✝¹ : HasCokernels V
C : ChainComplex V ℕ
inst✝ : Epi (factorThruImage (HomologicalComplex.d C 1 0))
⊢ (HomologicalComplex.xPrevIso C (_ : 0 + 1 = 0 + 1)).hom ≫ (Arrow.mk (HomologicalComplex.d C 1 0)).hom =
(Arrow.mk (HomologicalComplex.dTo C 0)).hom ≫ (Iso.refl (Arrow.mk (HomologicalComplex.dTo C 0)).right).hom
[PROOFSTEP]
rw [C.dTo_eq rfl]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝³ : HasKernels V
inst✝² : HasImages V
inst✝¹ : HasCokernels V
C : ChainComplex V ℕ
inst✝ : Epi (factorThruImage (HomologicalComplex.d C 1 0))
⊢ (HomologicalComplex.xPrevIso C (_ : 0 + 1 = 0 + 1)).hom ≫ (Arrow.mk (HomologicalComplex.d C 1 0)).hom =
(Arrow.mk ((HomologicalComplex.xPrevIso C (_ : 0 + 1 = 0 + 1)).hom ≫ HomologicalComplex.d C (0 + 1) 0)).hom ≫
(Iso.refl
(Arrow.mk
((HomologicalComplex.xPrevIso C (_ : 0 + 1 = 0 + 1)).hom ≫ HomologicalComplex.d C (0 + 1) 0)).right).hom
[PROOFSTEP]
exact (Category.comp_id _).symm
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝³ : HasKernels V
inst✝² : HasImages V
inst✝¹ : HasCokernels V
C : ChainComplex V ℕ
inst✝ : Epi (factorThruImage (HomologicalComplex.d C 1 0))
⊢ (Iso.refl (Arrow.mk (HomologicalComplex.dFrom C 0)).left).hom ≫ (Arrow.mk 0).hom =
(Arrow.mk (HomologicalComplex.dFrom C 0)).hom ≫ (Iso.refl (Arrow.mk (HomologicalComplex.dFrom C 0)).right).hom
[PROOFSTEP]
simp [C.dFrom_eq_zero fun h : _ = _ => one_ne_zero <| by rwa [ChainComplex.next_nat_zero, Nat.zero_add] at h ]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝³ : HasKernels V
inst✝² : HasImages V
inst✝¹ : HasCokernels V
C : ChainComplex V ℕ
inst✝ : Epi (factorThruImage (HomologicalComplex.d C 1 0))
h : ComplexShape.next (ComplexShape.down ℕ) ?m.17177 + 1 = ?m.17177
⊢ 1 = 0
[PROOFSTEP]
rwa [ChainComplex.next_nat_zero, Nat.zero_add] at h
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝³ : HasZeroObject V
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
C : CochainComplex V ℕ
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0
[PROOFSTEP]
rw [CochainComplex.prev_nat_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝³ : HasZeroObject V
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
C : CochainComplex V ℕ
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 0
[PROOFSTEP]
exact one_ne_zero
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝³ : HasZeroObject V
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
C : CochainComplex V ℕ
⊢ (HomologicalComplex.xPrevIsoSelf C
(_ : ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0)).hom ≫
(Arrow.mk 0).hom =
(Arrow.mk (HomologicalComplex.dTo C 0)).hom ≫ (Iso.refl (Arrow.mk (HomologicalComplex.dTo C 0)).right).hom
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝³ : HasZeroObject V
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
C : CochainComplex V ℕ
⊢ (Iso.refl (Arrow.mk (HomologicalComplex.dFrom C 0)).left).hom ≫ (Arrow.mk (HomologicalComplex.d C 0 1)).hom =
(Arrow.mk (HomologicalComplex.dFrom C 0)).hom ≫ (HomologicalComplex.xNextIso C (_ : 0 + 1 = 0 + 1)).hom
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C✝ : HomologicalComplex V c
inst✝³ : HasZeroObject V
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
C : CochainComplex V ℕ
⊢ (Arrow.isoMk
(HomologicalComplex.xPrevIsoSelf C
(_ : ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0))
(Iso.refl (Arrow.mk (HomologicalComplex.dTo C 0)).right)).hom.right =
(Arrow.isoMk (Iso.refl (Arrow.mk (HomologicalComplex.dFrom C 0)).left)
(HomologicalComplex.xNextIso C (_ : 0 + 1 = 0 + 1))).hom.left
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
C₁ C₂ C₃ : HomologicalComplex V c
f✝ f : C₁ ⟶ C₂
i : ι
⊢ (Subobject.arrow (cycles C₁ i) ≫ Hom.f f i) ≫ dFrom C₂ i = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
C₁ C₂ C₃ : HomologicalComplex V c
f✝ f : C₁ ⟶ C₂
i : ι
⊢ cyclesMap f i ≫ Subobject.arrow (cycles C₂ i) = Subobject.arrow (cycles C₁ i) ≫ Hom.f f i
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
C₁ C₂ C₃ : HomologicalComplex V c
f : C₁ ⟶ C₂
i : ι
⊢ cyclesMap (𝟙 C₁) i = 𝟙 (Subobject.underlying.obj (cycles C₁ i))
[PROOFSTEP]
dsimp only [cyclesMap]
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
C₁ C₂ C₃ : HomologicalComplex V c
f : C₁ ⟶ C₂
i : ι
⊢ Subobject.factorThru (cycles C₁ i) (Subobject.arrow (cycles C₁ i) ≫ Hom.f (𝟙 C₁) i)
(_ : Subobject.Factors (kernelSubobject (dFrom C₁ i)) (Subobject.arrow (cycles C₁ i) ≫ Hom.f (𝟙 C₁) i)) =
𝟙 (Subobject.underlying.obj (cycles C₁ i))
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
C₁ C₂ C₃ : HomologicalComplex V c
f✝ f : C₁ ⟶ C₂
g : C₂ ⟶ C₃
i : ι
⊢ cyclesMap (f ≫ g) i = cyclesMap f i ≫ cyclesMap g i
[PROOFSTEP]
dsimp only [cyclesMap]
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
C₁ C₂ C₃ : HomologicalComplex V c
f✝ f : C₁ ⟶ C₂
g : C₂ ⟶ C₃
i : ι
⊢ Subobject.factorThru (cycles C₃ i) (Subobject.arrow (cycles C₁ i) ≫ Hom.f (f ≫ g) i)
(_ : Subobject.Factors (kernelSubobject (dFrom C₃ i)) (Subobject.arrow (cycles C₁ i) ≫ Hom.f (f ≫ g) i)) =
Subobject.factorThru (cycles C₂ i) (Subobject.arrow (cycles C₁ i) ≫ Hom.f f i)
(_ : Subobject.Factors (kernelSubobject (dFrom C₂ i)) (Subobject.arrow (cycles C₁ i) ≫ Hom.f f i)) ≫
Subobject.factorThru (cycles C₃ i) (Subobject.arrow (cycles C₂ i) ≫ Hom.f g i)
(_ : Subobject.Factors (kernelSubobject (dFrom C₃ i)) (Subobject.arrow (cycles C₂ i) ≫ Hom.f g i))
[PROOFSTEP]
simp [Subobject.factorThru_right]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝² : HasEqualizers V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
i : ι
⊢ boundariesMap f i ≫ boundariesToCycles C₂ i = boundariesToCycles C₁ i ≫ cyclesMap f i
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝² : HasEqualizers V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
i : ι
⊢ (boundariesMap f i ≫ boundariesToCycles C₂ i) ≫ Subobject.arrow (cycles C₂ i) =
(boundariesToCycles C₁ i ≫ cyclesMap f i) ≫ Subobject.arrow (cycles C₂ i)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
i : ι
x✝ : HomologicalComplex V c
⊢ { obj := fun C => HomologicalComplex.homology C i,
map := fun {C₁ C₂} f =>
homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i)
(_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.map
(𝟙 x✝) =
𝟙
({ obj := fun C => HomologicalComplex.homology C i,
map := fun {C₁ C₂} f =>
homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i)
(Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.obj
x✝)
[PROOFSTEP]
simp only
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
i : ι
x✝ : HomologicalComplex V c
⊢ homology.map (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo (𝟙 x✝) i) (Hom.sqFrom (𝟙 x✝) i)
(_ : (Hom.sqTo (𝟙 x✝) i).right = (Hom.sqTo (𝟙 x✝) i).right) =
𝟙 (HomologicalComplex.homology x✝ i)
[PROOFSTEP]
ext1
[GOAL]
case p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
i : ι
x✝ : HomologicalComplex V c
⊢ homology.π (dTo x✝ i) (dFrom x✝ i) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) ≫
homology.map (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo (𝟙 x✝) i)
(Hom.sqFrom (𝟙 x✝) i) (_ : (Hom.sqTo (𝟙 x✝) i).right = (Hom.sqTo (𝟙 x✝) i).right) =
homology.π (dTo x✝ i) (dFrom x✝ i) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) ≫ 𝟙 (HomologicalComplex.homology x✝ i)
[PROOFSTEP]
simp only [homology.π_map, kernelSubobjectMap_id, Hom.sqFrom_id, Category.id_comp, Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
i : ι
X✝ Y✝ Z✝ : HomologicalComplex V c
x✝¹ : X✝ ⟶ Y✝
x✝ : Y✝ ⟶ Z✝
⊢ { obj := fun C => HomologicalComplex.homology C i,
map := fun {C₁ C₂} f =>
homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i)
(_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.map
(x✝¹ ≫ x✝) =
{ obj := fun C => HomologicalComplex.homology C i,
map := fun {C₁ C₂} f =>
homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i)
(Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.map
x✝¹ ≫
{ obj := fun C => HomologicalComplex.homology C i,
map := fun {C₁ C₂} f =>
homology.map (_ : dTo C₁ i ≫ dFrom C₁ i = 0) (_ : dTo C₂ i ≫ dFrom C₂ i = 0) (Hom.sqTo f i)
(Hom.sqFrom f i) (_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) }.map
x✝
[PROOFSTEP]
simp only
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
i : ι
X✝ Y✝ Z✝ : HomologicalComplex V c
x✝¹ : X✝ ⟶ Y✝
x✝ : Y✝ ⟶ Z✝
⊢ homology.map (_ : dTo X✝ i ≫ dFrom X✝ i = 0) (_ : dTo Z✝ i ≫ dFrom Z✝ i = 0) (Hom.sqTo (x✝¹ ≫ x✝) i)
(Hom.sqFrom (x✝¹ ≫ x✝) i) (_ : (Hom.sqTo (x✝¹ ≫ x✝) i).right = (Hom.sqTo (x✝¹ ≫ x✝) i).right) =
homology.map (_ : dTo X✝ i ≫ dFrom X✝ i = 0) (_ : dTo Y✝ i ≫ dFrom Y✝ i = 0) (Hom.sqTo x✝¹ i) (Hom.sqFrom x✝¹ i)
(_ : (Hom.sqTo x✝¹ i).right = (Hom.sqTo x✝¹ i).right) ≫
homology.map (_ : dTo Y✝ i ≫ dFrom Y✝ i = 0) (_ : dTo Z✝ i ≫ dFrom Z✝ i = 0) (Hom.sqTo x✝ i) (Hom.sqFrom x✝ i)
(_ : (Hom.sqTo x✝ i).right = (Hom.sqTo x✝ i).right)
[PROOFSTEP]
ext1
[GOAL]
case p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
i : ι
X✝ Y✝ Z✝ : HomologicalComplex V c
x✝¹ : X✝ ⟶ Y✝
x✝ : Y✝ ⟶ Z✝
⊢ homology.π (dTo X✝ i) (dFrom X✝ i) (_ : dTo X✝ i ≫ dFrom X✝ i = 0) ≫
homology.map (_ : dTo X✝ i ≫ dFrom X✝ i = 0) (_ : dTo Z✝ i ≫ dFrom Z✝ i = 0) (Hom.sqTo (x✝¹ ≫ x✝) i)
(Hom.sqFrom (x✝¹ ≫ x✝) i) (_ : (Hom.sqTo (x✝¹ ≫ x✝) i).right = (Hom.sqTo (x✝¹ ≫ x✝) i).right) =
homology.π (dTo X✝ i) (dFrom X✝ i) (_ : dTo X✝ i ≫ dFrom X✝ i = 0) ≫
homology.map (_ : dTo X✝ i ≫ dFrom X✝ i = 0) (_ : dTo Y✝ i ≫ dFrom Y✝ i = 0) (Hom.sqTo x✝¹ i) (Hom.sqFrom x✝¹ i)
(_ : (Hom.sqTo x✝¹ i).right = (Hom.sqTo x✝¹ i).right) ≫
homology.map (_ : dTo Y✝ i ≫ dFrom Y✝ i = 0) (_ : dTo Z✝ i ≫ dFrom Z✝ i = 0) (Hom.sqTo x✝ i) (Hom.sqFrom x✝ i)
(_ : (Hom.sqTo x✝ i).right = (Hom.sqTo x✝ i).right)
[PROOFSTEP]
simp only [Hom.sqFrom_comp, kernelSubobjectMap_comp, homology.π_map_assoc, homology.π_map, Category.assoc]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
x✝ : HomologicalComplex V c
⊢ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map
(𝟙 x✝) =
𝟙
({ obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.obj
x✝)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
x✝¹ : HomologicalComplex V c
x✝ : ι
⊢ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map
(𝟙 x✝¹) x✝ =
𝟙
({ obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.obj
x✝¹)
x✝
[PROOFSTEP]
simp only [GradedObject.categoryOfGradedObjects_id]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
x✝¹ : HomologicalComplex V c
x✝ : ι
⊢ (homologyFunctor V c x✝).map (𝟙 x✝¹) = 𝟙 (HomologicalComplex.homology x✝¹ x✝)
[PROOFSTEP]
ext
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
x✝¹ : HomologicalComplex V c
x✝ : ι
⊢ homology.π (dTo x✝¹ x✝) (dFrom x✝¹ x✝) (_ : dTo x✝¹ x✝ ≫ dFrom x✝¹ x✝ = 0) ≫ (homologyFunctor V c x✝).map (𝟙 x✝¹) =
homology.π (dTo x✝¹ x✝) (dFrom x✝¹ x✝) (_ : dTo x✝¹ x✝ ≫ dFrom x✝¹ x✝ = 0) ≫ 𝟙 (HomologicalComplex.homology x✝¹ x✝)
[PROOFSTEP]
simp only [homology.π_map, homologyFunctor_map, kernelSubobjectMap_id, Hom.sqFrom_id, Category.id_comp,
Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
X✝ Y✝ Z✝ : HomologicalComplex V c
x✝¹ : X✝ ⟶ Y✝
x✝ : Y✝ ⟶ Z✝
⊢ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map
(x✝¹ ≫ x✝) =
{ obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map
x✝¹ ≫
{ obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map
x✝
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
X✝ Y✝ Z✝ : HomologicalComplex V c
x✝² : X✝ ⟶ Y✝
x✝¹ : Y✝ ⟶ Z✝
x✝ : ι
⊢ { obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map
(x✝² ≫ x✝¹) x✝ =
({ obj := fun C i => HomologicalComplex.homology C i, map := fun {C C'} f i => (homologyFunctor V c i).map f }.map
x✝² ≫
{ obj := fun C i => HomologicalComplex.homology C i,
map := fun {C C'} f i => (homologyFunctor V c i).map f }.map
x✝¹)
x✝
[PROOFSTEP]
simp only [GradedObject.categoryOfGradedObjects_comp]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
X✝ Y✝ Z✝ : HomologicalComplex V c
x✝² : X✝ ⟶ Y✝
x✝¹ : Y✝ ⟶ Z✝
x✝ : ι
⊢ (homologyFunctor V c x✝).map (x✝² ≫ x✝¹) = (homologyFunctor V c x✝).map x✝² ≫ (homologyFunctor V c x✝).map x✝¹
[PROOFSTEP]
ext
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝³ : HasEqualizers V
inst✝² : HasImages V
inst✝¹ : HasImageMaps V
C₁ C₂ : HomologicalComplex V c
f : C₁ ⟶ C₂
inst✝ : HasCokernels V
X✝ Y✝ Z✝ : HomologicalComplex V c
x✝² : X✝ ⟶ Y✝
x✝¹ : Y✝ ⟶ Z✝
x✝ : ι
⊢ homology.π (dTo X✝ x✝) (dFrom X✝ x✝) (_ : dTo X✝ x✝ ≫ dFrom X✝ x✝ = 0) ≫ (homologyFunctor V c x✝).map (x✝² ≫ x✝¹) =
homology.π (dTo X✝ x✝) (dFrom X✝ x✝) (_ : dTo X✝ x✝ ≫ dFrom X✝ x✝ = 0) ≫
(homologyFunctor V c x✝).map x✝² ≫ (homologyFunctor V c x✝).map x✝¹
[PROOFSTEP]
simp only [Hom.sqFrom_comp, kernelSubobjectMap_comp, homology.π_map_assoc, homology.π_map, homologyFunctor_map,
Category.assoc]
| {"mathlib_filename": "Mathlib.Algebra.Homology.Homology", "llama_tokens": 10853} |
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
⊢ ⊤ * ⊤ = ⊤
[PROOFSTEP]
simp [mul_def]
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
⊢ Option.map₂ (fun x x_1 => x * x_1) ⊤ ⊤ = ⊤
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a : WithTop α
⊢ a * ⊤ = if a = 0 then 0 else ⊤
[PROOFSTEP]
induction a using recTopCoe
[GOAL]
case top
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
⊢ ⊤ * ⊤ = if ⊤ = 0 then 0 else ⊤
[PROOFSTEP]
simp [mul_def]
[GOAL]
case coe
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a✝ : α
⊢ ↑a✝ * ⊤ = if ↑a✝ = 0 then 0 else ⊤
[PROOFSTEP]
simp [mul_def]
[GOAL]
case top
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
⊢ Option.map₂ (fun x x_1 => x * x_1) ⊤ ⊤ = ⊤
[PROOFSTEP]
rfl
[GOAL]
case coe
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a✝ : α
⊢ (if a✝ = 0 then 0 else Option.map₂ (fun x x_1 => x * x_1) ↑a✝ ⊤) = if a✝ = 0 then 0 else ⊤
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a : WithTop α
h : a ≠ 0
⊢ a * ⊤ = ⊤
[PROOFSTEP]
rw [mul_top', if_neg h]
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a : WithTop α
⊢ ⊤ * a = if a = 0 then 0 else ⊤
[PROOFSTEP]
induction a using recTopCoe
[GOAL]
case top
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
⊢ ⊤ * ⊤ = if ⊤ = 0 then 0 else ⊤
[PROOFSTEP]
simp [mul_def]
[GOAL]
case coe
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a✝ : α
⊢ ⊤ * ↑a✝ = if ↑a✝ = 0 then 0 else ⊤
[PROOFSTEP]
simp [mul_def]
[GOAL]
case top
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
⊢ Option.map₂ (fun x x_1 => x * x_1) ⊤ ⊤ = ⊤
[PROOFSTEP]
rfl
[GOAL]
case coe
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a✝ : α
⊢ (if a✝ = 0 then 0 else Option.map₂ (fun x x_1 => x * x_1) ⊤ ↑a✝) = if a✝ = 0 then 0 else ⊤
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a : WithTop α
h : a ≠ 0
⊢ ⊤ * a = ⊤
[PROOFSTEP]
rw [top_mul', if_neg h]
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a b : WithTop α
⊢ a * b = ⊤ ↔ a ≠ 0 ∧ b = ⊤ ∨ a = ⊤ ∧ b ≠ 0
[PROOFSTEP]
rw [mul_def, ite_eq_iff, ← none_eq_top, Option.map₂_eq_none_iff]
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a b : WithTop α
⊢ (a = 0 ∨ b = 0) ∧ 0 = none ∨ ¬(a = 0 ∨ b = 0) ∧ (a = none ∨ b = none) ↔ a ≠ 0 ∧ b = none ∨ a = none ∧ b ≠ 0
[PROOFSTEP]
have ha : a = 0 → a ≠ none := fun h => h.symm ▸ zero_ne_top
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a b : WithTop α
ha : a = 0 → a ≠ none
⊢ (a = 0 ∨ b = 0) ∧ 0 = none ∨ ¬(a = 0 ∨ b = 0) ∧ (a = none ∨ b = none) ↔ a ≠ 0 ∧ b = none ∨ a = none ∧ b ≠ 0
[PROOFSTEP]
have hb : b = 0 → b ≠ none := fun h => h.symm ▸ zero_ne_top
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : Zero α
inst✝ : Mul α
a b : WithTop α
ha : a = 0 → a ≠ none
hb : b = 0 → b ≠ none
⊢ (a = 0 ∨ b = 0) ∧ 0 = none ∨ ¬(a = 0 ∨ b = 0) ∧ (a = none ∨ b = none) ↔ a ≠ 0 ∧ b = none ∨ a = none ∧ b ≠ 0
[PROOFSTEP]
tauto
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : Zero α
inst✝¹ : Mul α
inst✝ : LT α
a b : WithTop α
ha : a < ⊤
hb : b < ⊤
⊢ a * b < ⊤
[PROOFSTEP]
rw [WithTop.lt_top_iff_ne_top] at *
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : Zero α
inst✝¹ : Mul α
inst✝ : LT α
a b : WithTop α
ha : a ≠ ⊤
hb : b ≠ ⊤
⊢ a * b ≠ ⊤
[PROOFSTEP]
simp only [Ne.def, mul_eq_top_iff, *, and_false, false_and, false_or]
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : Zero α
inst✝¹ : Mul α
inst✝ : NoZeroDivisors α
⊢ NoZeroDivisors (WithTop α)
[PROOFSTEP]
refine ⟨fun h₁ => Decidable.by_contradiction <| fun h₂ => ?_⟩
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : Zero α
inst✝¹ : Mul α
inst✝ : NoZeroDivisors α
a✝ b✝ : WithTop α
h₁ : a✝ * b✝ = 0
h₂ : ¬(a✝ = 0 ∨ b✝ = 0)
⊢ False
[PROOFSTEP]
rw [mul_def, if_neg h₂] at h₁
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : Zero α
inst✝¹ : Mul α
inst✝ : NoZeroDivisors α
a✝ b✝ : WithTop α
h₁ : Option.map₂ (fun x x_1 => x * x_1) a✝ b✝ = 0
h₂ : ¬(a✝ = 0 ∨ b✝ = 0)
⊢ False
[PROOFSTEP]
rcases Option.mem_map₂_iff.1 h₁ with ⟨a, b, (rfl : _ = _), (rfl : _ = _), hab⟩
[GOAL]
case intro.intro.intro.intro
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : Zero α
inst✝¹ : Mul α
inst✝ : NoZeroDivisors α
a b : α
hab : a * b = 0
h₁ : Option.map₂ (fun x x_1 => x * x_1) (Option.some a) (Option.some b) = 0
h₂ : ¬(Option.some a = 0 ∨ Option.some b = 0)
⊢ False
[PROOFSTEP]
exact h₂ ((eq_zero_or_eq_zero_of_mul_eq_zero hab).imp (congr_arg some) (congr_arg some))
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : α
⊢ ↑(a * b) = ↑a * ↑b
[PROOFSTEP]
by_cases ha : a = 0
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : α
ha : a = 0
⊢ ↑(a * b) = ↑a * ↑b
[PROOFSTEP]
simp [ha]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : α
ha : ¬a = 0
⊢ ↑(a * b) = ↑a * ↑b
[PROOFSTEP]
by_cases hb : b = 0
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : α
ha : ¬a = 0
hb : b = 0
⊢ ↑(a * b) = ↑a * ↑b
[PROOFSTEP]
simp [hb]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : α
ha : ¬a = 0
hb : ¬b = 0
⊢ ↑(a * b) = ↑a * ↑b
[PROOFSTEP]
simp [*, mul_def]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : α
ha : ¬a = 0
hb : ¬b = 0
⊢ ↑(a * b) = Option.map₂ (fun x x_1 => x * x_1) ↑a ↑b
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
b : α
hb : b ≠ 0
⊢ (if ⊤ = 0 ∨ ↑b = 0 then 0 else ⊤) = ⊤
[PROOFSTEP]
simp [hb]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
b : α
hb : b ≠ 0
a : α
⊢ Option.some a * ↑b = Option.bind (Option.some a) fun a => Option.some (a * b)
[PROOFSTEP]
rw [some_eq_coe, ← coe_mul]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
b : α
hb : b ≠ 0
a : α
⊢ ↑(a * b) = Option.bind ↑a fun a => Option.some (a * b)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : WithTop α
⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b
[PROOFSTEP]
by_cases ha : a = 0
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : WithTop α
ha : a = 0
⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b
[PROOFSTEP]
rw [ha, zero_mul, ← coe_zero, untop'_coe, zero_mul]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : WithTop α
ha : ¬a = 0
⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b
[PROOFSTEP]
by_cases hb : b = 0
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : WithTop α
ha : ¬a = 0
hb : b = 0
⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b
[PROOFSTEP]
rw [hb, mul_zero, ← coe_zero, untop'_coe, mul_zero]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a b : WithTop α
ha : ¬a = 0
hb : ¬b = 0
⊢ untop' 0 (a * b) = untop' 0 a * untop' 0 b
[PROOFSTEP]
induction a using WithTop.recTopCoe
[GOAL]
case neg.top
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
b : WithTop α
hb : ¬b = 0
ha : ¬⊤ = 0
⊢ untop' 0 (⊤ * b) = untop' 0 ⊤ * untop' 0 b
[PROOFSTEP]
rw [top_mul hb, untop'_top, zero_mul]
[GOAL]
case neg.coe
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
b : WithTop α
hb : ¬b = 0
a✝ : α
ha : ¬↑a✝ = 0
⊢ untop' 0 (↑a✝ * b) = untop' 0 ↑a✝ * untop' 0 b
[PROOFSTEP]
induction b using WithTop.recTopCoe
[GOAL]
case neg.coe.top
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a✝ : α
ha : ¬↑a✝ = 0
hb : ¬⊤ = 0
⊢ untop' 0 (↑a✝ * ⊤) = untop' 0 ↑a✝ * untop' 0 ⊤
[PROOFSTEP]
rw [mul_top ha, untop'_top, mul_zero]
[GOAL]
case neg.coe.coe
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : MulZeroClass α
a✝¹ : α
ha : ¬↑a✝¹ = 0
a✝ : α
hb : ¬↑a✝ = 0
⊢ untop' 0 (↑a✝¹ * ↑a✝) = untop' 0 ↑a✝¹ * untop' 0 ↑a✝
[PROOFSTEP]
rw [← coe_mul, untop'_coe, untop'_coe, untop'_coe]
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : MulZeroOneClass α
inst✝ : Nontrivial α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a✝ : WithTop α
a : α
⊢ 1 * ↑a = ↑a
[PROOFSTEP]
rw [← coe_one, ← coe_mul, one_mul]
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : MulZeroOneClass α
inst✝ : Nontrivial α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a✝ : WithTop α
a : α
⊢ ↑a * 1 = ↑a
[PROOFSTEP]
rw [← coe_one, ← coe_mul, mul_one]
[GOAL]
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x y : WithTop R
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * y) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y
[PROOFSTEP]
have : ∀ z, map f z = 0 ↔ z = 0 := fun z => (Option.map_injective hf).eq_iff' f.toZeroHom.withTopMap.map_zero
[GOAL]
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x y : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * y) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y
[PROOFSTEP]
rcases Decidable.eq_or_ne x 0 with (rfl | hx)
[GOAL]
case inl
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
y : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (0 * y) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } 0 *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x y : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
hx : x ≠ 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * y) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y
[PROOFSTEP]
rcases Decidable.eq_or_ne y 0 with (rfl | hy)
[GOAL]
case inr.inl
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
hx : x ≠ 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * 0) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } 0
[PROOFSTEP]
simp
[GOAL]
case inr.inr
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x y : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
hx : x ≠ 0
hy : y ≠ 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (x * y) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } x *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y
[PROOFSTEP]
induction' x using WithTop.recTopCoe with x
[GOAL]
case inr.inr.top
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x y : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
hx✝ : x ≠ 0
hy : y ≠ 0
hx : ⊤ ≠ 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (⊤ * y) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ⊤ *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y
[PROOFSTEP]
simp [hy, this]
[GOAL]
case inr.inr.coe
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x✝ y : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
hx✝ : x✝ ≠ 0
hy : y ≠ 0
x : R
hx : ↑x ≠ 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (↑x * y) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑x *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } y
[PROOFSTEP]
induction' y using WithTop.recTopCoe with y
[GOAL]
case inr.inr.coe.top
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x✝ y : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
hx✝ : x✝ ≠ 0
hy✝ : y ≠ 0
x : R
hx : ↑x ≠ 0
hy : ⊤ ≠ 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (↑x * ⊤) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑x *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ⊤
[PROOFSTEP]
have : (f x : WithTop S) ≠ 0 := by simpa [hf.eq_iff' (map_zero f)] using hx
[GOAL]
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x✝ y : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
hx✝ : x✝ ≠ 0
hy✝ : y ≠ 0
x : R
hx : ↑x ≠ 0
hy : ⊤ ≠ 0
⊢ ↑(↑f x) ≠ 0
[PROOFSTEP]
simpa [hf.eq_iff' (map_zero f)] using hx
[GOAL]
case inr.inr.coe.top
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x✝ y : WithTop R
this✝ : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
hx✝ : x✝ ≠ 0
hy✝ : y ≠ 0
x : R
hx : ↑x ≠ 0
hy : ⊤ ≠ 0
this : ↑(↑f x) ≠ 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (↑x * ⊤) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑x *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ⊤
[PROOFSTEP]
simp [mul_top hx, mul_top this]
[GOAL]
case inr.inr.coe.coe
α : Type u_1
inst✝⁶ : DecidableEq α
R : Type u_2
S : Type u_3
inst✝⁵ : MulZeroOneClass R
inst✝⁴ : DecidableEq R
inst✝³ : Nontrivial R
inst✝² : MulZeroOneClass S
inst✝¹ : DecidableEq S
inst✝ : Nontrivial S
f : R →*₀ S
hf : Function.Injective ↑f
src✝¹ : ZeroHom (WithTop R) (WithTop S) := ZeroHom.withTopMap ↑f
src✝ : OneHom (WithTop R) (WithTop S) := OneHom.withTopMap ↑↑f
x✝ y✝ : WithTop R
this : ∀ (z : WithTop R), map (↑f) z = 0 ↔ z = 0
hx✝ : x✝ ≠ 0
hy✝ : y✝ ≠ 0
x : R
hx : ↑x ≠ 0
y : R
hy : ↑y ≠ 0
⊢ ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } (↑x * ↑y) =
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑x *
ZeroHom.toFun { toFun := map ↑f, map_zero' := (_ : ZeroHom.toFun src✝¹ 0 = 0) } ↑y
[PROOFSTEP]
simp only [map_coe, ← coe_mul, map_mul]
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a b c : WithTop α
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
rcases eq_or_ne a 0 with (rfl | ha)
[GOAL]
case inl
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
b c : WithTop α
⊢ 0 * b * c = 0 * (b * c)
[PROOFSTEP]
simp only [zero_mul]
[GOAL]
case inr
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a b c : WithTop α
ha : a ≠ 0
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
rcases eq_or_ne b 0 with (rfl | hb)
[GOAL]
case inr.inl
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a c : WithTop α
ha : a ≠ 0
⊢ a * 0 * c = a * (0 * c)
[PROOFSTEP]
simp only [zero_mul, mul_zero]
[GOAL]
case inr.inr
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a b c : WithTop α
ha : a ≠ 0
hb : b ≠ 0
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
rcases eq_or_ne c 0 with (rfl | hc)
[GOAL]
case inr.inr.inl
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a b : WithTop α
ha : a ≠ 0
hb : b ≠ 0
⊢ a * b * 0 = a * (b * 0)
[PROOFSTEP]
simp only [mul_zero]
-- Porting note: below needed to be rewritten due to changed `simp` behaviour for `coe`
[GOAL]
case inr.inr.inr
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a b c : WithTop α
ha : a ≠ 0
hb : b ≠ 0
hc : c ≠ 0
⊢ a * b * c = a * (b * c)
[PROOFSTEP]
induction' a using WithTop.recTopCoe with a
[GOAL]
case inr.inr.inr.top
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a b c : WithTop α
ha✝ : a ≠ 0
hb : b ≠ 0
hc : c ≠ 0
ha : ⊤ ≠ 0
⊢ ⊤ * b * c = ⊤ * (b * c)
[PROOFSTEP]
simp [hb, hc]
[GOAL]
case inr.inr.inr.coe
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a✝ b c : WithTop α
ha✝ : a✝ ≠ 0
hb : b ≠ 0
hc : c ≠ 0
a : α
ha : ↑a ≠ 0
⊢ ↑a * b * c = ↑a * (b * c)
[PROOFSTEP]
induction' b using WithTop.recTopCoe with b
[GOAL]
case inr.inr.inr.coe.top
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a✝ b c : WithTop α
ha✝ : a✝ ≠ 0
hb✝ : b ≠ 0
hc : c ≠ 0
a : α
ha : ↑a ≠ 0
hb : ⊤ ≠ 0
⊢ ↑a * ⊤ * c = ↑a * (⊤ * c)
[PROOFSTEP]
simp [mul_top ha, top_mul hc]
[GOAL]
case inr.inr.inr.coe.coe
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a✝ b✝ c : WithTop α
ha✝ : a✝ ≠ 0
hb✝ : b✝ ≠ 0
hc : c ≠ 0
a : α
ha : ↑a ≠ 0
b : α
hb : ↑b ≠ 0
⊢ ↑a * ↑b * c = ↑a * (↑b * c)
[PROOFSTEP]
induction' c using WithTop.recTopCoe with c
[GOAL]
case inr.inr.inr.coe.coe.top
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a✝ b✝ c : WithTop α
ha✝ : a✝ ≠ 0
hb✝ : b✝ ≠ 0
hc✝ : c ≠ 0
a : α
ha : ↑a ≠ 0
b : α
hb : ↑b ≠ 0
hc : ⊤ ≠ 0
⊢ ↑a * ↑b * ⊤ = ↑a * (↑b * ⊤)
[PROOFSTEP]
rw [mul_top hb, mul_top ha]
[GOAL]
case inr.inr.inr.coe.coe.top
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a✝ b✝ c : WithTop α
ha✝ : a✝ ≠ 0
hb✝ : b✝ ≠ 0
hc✝ : c ≠ 0
a : α
ha : ↑a ≠ 0
b : α
hb : ↑b ≠ 0
hc : ⊤ ≠ 0
⊢ ↑a * ↑b * ⊤ = ⊤
[PROOFSTEP]
rw [← coe_zero, ne_eq, coe_eq_coe] at ha hb
[GOAL]
case inr.inr.inr.coe.coe.top
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a✝ b✝ c : WithTop α
ha✝ : a✝ ≠ 0
hb✝ : b✝ ≠ 0
hc✝ : c ≠ 0
a : α
ha : ¬a = 0
b : α
hb : ¬b = 0
hc : ⊤ ≠ 0
⊢ ↑a * ↑b * ⊤ = ⊤
[PROOFSTEP]
simp [ha, hb]
[GOAL]
case inr.inr.inr.coe.coe.coe
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : SemigroupWithZero α
inst✝ : NoZeroDivisors α
src✝ : MulZeroClass (WithTop α) := instMulZeroClassWithTop
a✝ b✝ c✝ : WithTop α
ha✝ : a✝ ≠ 0
hb✝ : b✝ ≠ 0
hc✝ : c✝ ≠ 0
a : α
ha : ↑a ≠ 0
b : α
hb : ↑b ≠ 0
c : α
hc : ↑c ≠ 0
⊢ ↑a * ↑b * ↑c = ↑a * (↑b * ↑c)
[PROOFSTEP]
simp only [← coe_mul, mul_assoc]
[GOAL]
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
a b c : WithTop α
⊢ (a + b) * c = a * c + b * c
[PROOFSTEP]
induction' c using WithTop.recTopCoe with c
[GOAL]
case top
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
a b : WithTop α
⊢ (a + b) * ⊤ = a * ⊤ + b * ⊤
[PROOFSTEP]
by_cases ha : a = 0
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
a b : WithTop α
ha : a = 0
⊢ (a + b) * ⊤ = a * ⊤ + b * ⊤
[PROOFSTEP]
simp [ha]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
a b : WithTop α
ha : ¬a = 0
⊢ (a + b) * ⊤ = a * ⊤ + b * ⊤
[PROOFSTEP]
simp [ha]
[GOAL]
case coe
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
a b : WithTop α
c : α
⊢ (a + b) * ↑c = a * ↑c + b * ↑c
[PROOFSTEP]
by_cases hc : c = 0
[GOAL]
case pos
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
a b : WithTop α
c : α
hc : c = 0
⊢ (a + b) * ↑c = a * ↑c + b * ↑c
[PROOFSTEP]
simp [hc]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
a b : WithTop α
c : α
hc : ¬c = 0
⊢ (a + b) * ↑c = a * ↑c + b * ↑c
[PROOFSTEP]
simp [mul_coe hc]
[GOAL]
case neg
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
a b : WithTop α
c : α
hc : ¬c = 0
⊢ (Option.bind (a + b) fun a => Option.some (a * c)) =
(Option.bind a fun a => Option.some (a * c)) + Option.bind b fun a => Option.some (a * c)
[PROOFSTEP]
cases a
[GOAL]
case neg.none
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
b : WithTop α
c : α
hc : ¬c = 0
⊢ (Option.bind (none + b) fun a => Option.some (a * c)) =
(Option.bind none fun a => Option.some (a * c)) + Option.bind b fun a => Option.some (a * c)
[PROOFSTEP]
cases b
[GOAL]
case neg.some
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
b : WithTop α
c : α
hc : ¬c = 0
val✝ : α
⊢ (Option.bind (Option.some val✝ + b) fun a => Option.some (a * c)) =
(Option.bind (Option.some val✝) fun a => Option.some (a * c)) + Option.bind b fun a => Option.some (a * c)
[PROOFSTEP]
cases b
[GOAL]
case neg.none.none
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
⊢ (Option.bind (none + none) fun a => Option.some (a * c)) =
(Option.bind none fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c)
case neg.none.some
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝ : α
⊢ (Option.bind (none + Option.some val✝) fun a => Option.some (a * c)) =
(Option.bind none fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c)
case neg.some.none
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝ : α
⊢ (Option.bind (Option.some val✝ + none) fun a => Option.some (a * c)) =
(Option.bind (Option.some val✝) fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c)
case neg.some.some
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝¹ val✝ : α
⊢ (Option.bind (Option.some val✝¹ + Option.some val✝) fun a => Option.some (a * c)) =
(Option.bind (Option.some val✝¹) fun a => Option.some (a * c)) +
Option.bind (Option.some val✝) fun a => Option.some (a * c)
[PROOFSTEP]
repeat'
first
| rfl
| exact congr_arg some (add_mul _ _ _)
[GOAL]
case neg.none.none
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
⊢ (Option.bind (none + none) fun a => Option.some (a * c)) =
(Option.bind none fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c)
[PROOFSTEP]
first
| rfl
| exact congr_arg some (add_mul _ _ _)
[GOAL]
case neg.none.none
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
⊢ (Option.bind (none + none) fun a => Option.some (a * c)) =
(Option.bind none fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c)
[PROOFSTEP]
rfl
[GOAL]
case neg.none.some
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝ : α
⊢ (Option.bind (none + Option.some val✝) fun a => Option.some (a * c)) =
(Option.bind none fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c)
[PROOFSTEP]
first
| rfl
| exact congr_arg some (add_mul _ _ _)
[GOAL]
case neg.none.some
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝ : α
⊢ (Option.bind (none + Option.some val✝) fun a => Option.some (a * c)) =
(Option.bind none fun a => Option.some (a * c)) + Option.bind (Option.some val✝) fun a => Option.some (a * c)
[PROOFSTEP]
rfl
[GOAL]
case neg.some.none
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝ : α
⊢ (Option.bind (Option.some val✝ + none) fun a => Option.some (a * c)) =
(Option.bind (Option.some val✝) fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c)
[PROOFSTEP]
first
| rfl
| exact congr_arg some (add_mul _ _ _)
[GOAL]
case neg.some.none
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝ : α
⊢ (Option.bind (Option.some val✝ + none) fun a => Option.some (a * c)) =
(Option.bind (Option.some val✝) fun a => Option.some (a * c)) + Option.bind none fun a => Option.some (a * c)
[PROOFSTEP]
rfl
[GOAL]
case neg.some.some
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝¹ val✝ : α
⊢ (Option.bind (Option.some val✝¹ + Option.some val✝) fun a => Option.some (a * c)) =
(Option.bind (Option.some val✝¹) fun a => Option.some (a * c)) +
Option.bind (Option.some val✝) fun a => Option.some (a * c)
[PROOFSTEP]
first
| rfl
| exact congr_arg some (add_mul _ _ _)
[GOAL]
case neg.some.some
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝¹ val✝ : α
⊢ (Option.bind (Option.some val✝¹ + Option.some val✝) fun a => Option.some (a * c)) =
(Option.bind (Option.some val✝¹) fun a => Option.some (a * c)) +
Option.bind (Option.some val✝) fun a => Option.some (a * c)
[PROOFSTEP]
rfl
[GOAL]
case neg.some.some
α : Type u_1
inst✝¹ : DecidableEq α
inst✝ : CanonicallyOrderedCommSemiring α
c : α
hc : ¬c = 0
val✝¹ val✝ : α
⊢ (Option.bind (Option.some val✝¹ + Option.some val✝) fun a => Option.some (a * c)) =
(Option.bind (Option.some val✝¹) fun a => Option.some (a * c)) +
Option.bind (Option.some val✝) fun a => Option.some (a * c)
[PROOFSTEP]
exact congr_arg some (add_mul _ _ _)
[GOAL]
α : Type u_1
inst✝² : DecidableEq α
inst✝¹ : CanonicallyOrderedCommSemiring α
inst✝ : Nontrivial α
src✝¹ : AddCommMonoidWithOne (WithTop α) := addCommMonoidWithOne
src✝ : CommMonoidWithZero (WithTop α) := commMonoidWithZero
a b c : WithTop α
⊢ a * (b + c) = a * b + a * c
[PROOFSTEP]
rw [mul_comm, distrib', mul_comm b, mul_comm c]
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
⊢ Covariant { x // 0 ≤ x } (WithBot α) (fun x y => ↑x * y) fun x x_1 => x ≤ x_1
[PROOFSTEP]
intro ⟨x, x0⟩ a b h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a ≤ b
⊢ (fun x y => ↑x * y) { val := x, property := x0 } a ≤ (fun x y => ↑x * y) { val := x, property := x0 } b
[PROOFSTEP]
simp only [Subtype.coe_mk]
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a ≤ b
⊢ x * a ≤ x * b
[PROOFSTEP]
rcases eq_or_ne x 0 with rfl | x0'
[GOAL]
case inl
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
a b : WithBot α
h : a ≤ b
x0 : 0 ≤ 0
⊢ 0 * a ≤ 0 * b
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a ≤ b
x0' : x ≠ 0
⊢ x * a ≤ x * b
[PROOFSTEP]
lift x to α
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a ≤ b
x0' : x ≠ 0
⊢ x ≠ ⊥
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
a b : WithBot α
h : a ≤ b
x0 : 0 ≤ ⊥
x0' : ⊥ ≠ 0
⊢ False
[PROOFSTEP]
exact (WithBot.bot_lt_coe (0 : α)).not_le x0
[GOAL]
case inr.intro
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
a b : WithBot α
h : a ≤ b
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
⊢ ↑x * a ≤ ↑x * b
[PROOFSTEP]
induction a using WithBot.recBotCoe
[GOAL]
case inr.intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
b : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
h : ⊥ ≤ b
⊢ ↑x * ⊥ ≤ ↑x * b
[PROOFSTEP]
simp_rw [mul_bot x0', bot_le]
[GOAL]
case inr.intro.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
b : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝ : α
h : ↑a✝ ≤ b
⊢ ↑x * ↑a✝ ≤ ↑x * b
[PROOFSTEP]
induction b using WithBot.recBotCoe
[GOAL]
case inr.intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝ : α
h : ↑a✝ ≤ ⊥
⊢ ↑x * ↑a✝ ≤ ↑x * ⊥
[PROOFSTEP]
exact absurd h (bot_lt_coe _).not_le
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : ↑a✝¹ ≤ ↑a✝
⊢ ↑x * ↑a✝¹ ≤ ↑x * ↑a✝
[PROOFSTEP]
simp only [← coe_mul, coe_le_coe] at *
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : a✝¹ ≤ a✝
⊢ x * a✝¹ ≤ x * a✝
[PROOFSTEP]
norm_cast at x0
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMono α
x : α
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : a✝¹ ≤ a✝
x0 : 0 ≤ x
⊢ x * a✝¹ ≤ x * a✝
[PROOFSTEP]
exact mul_le_mul_of_nonneg_left h x0
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
⊢ Covariant { x // 0 ≤ x } (WithBot α) (fun x y => y * ↑x) fun x x_1 => x ≤ x_1
[PROOFSTEP]
intro ⟨x, x0⟩ a b h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a ≤ b
⊢ (fun x y => y * ↑x) { val := x, property := x0 } a ≤ (fun x y => y * ↑x) { val := x, property := x0 } b
[PROOFSTEP]
simp only [Subtype.coe_mk]
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a ≤ b
⊢ a * x ≤ b * x
[PROOFSTEP]
rcases eq_or_ne x 0 with rfl | x0'
[GOAL]
case inl
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
a b : WithBot α
h : a ≤ b
x0 : 0 ≤ 0
⊢ a * 0 ≤ b * 0
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a ≤ b
x0' : x ≠ 0
⊢ a * x ≤ b * x
[PROOFSTEP]
lift x to α
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a ≤ b
x0' : x ≠ 0
⊢ x ≠ ⊥
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
a b : WithBot α
h : a ≤ b
x0 : 0 ≤ ⊥
x0' : ⊥ ≠ 0
⊢ False
[PROOFSTEP]
exact (WithBot.bot_lt_coe (0 : α)).not_le x0
[GOAL]
case inr.intro
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
a b : WithBot α
h : a ≤ b
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
⊢ a * ↑x ≤ b * ↑x
[PROOFSTEP]
induction a using WithBot.recBotCoe
[GOAL]
case inr.intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
b : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
h : ⊥ ≤ b
⊢ ⊥ * ↑x ≤ b * ↑x
[PROOFSTEP]
simp_rw [bot_mul x0', bot_le]
[GOAL]
case inr.intro.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
b : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝ : α
h : ↑a✝ ≤ b
⊢ ↑a✝ * ↑x ≤ b * ↑x
[PROOFSTEP]
induction b using WithBot.recBotCoe
[GOAL]
case inr.intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝ : α
h : ↑a✝ ≤ ⊥
⊢ ↑a✝ * ↑x ≤ ⊥ * ↑x
[PROOFSTEP]
exact absurd h (bot_lt_coe _).not_le
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : ↑a✝¹ ≤ ↑a✝
⊢ ↑a✝¹ * ↑x ≤ ↑a✝ * ↑x
[PROOFSTEP]
simp only [← coe_mul, coe_le_coe] at *
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : a✝¹ ≤ a✝
⊢ a✝¹ * x ≤ a✝ * x
[PROOFSTEP]
norm_cast at x0
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMono α
x : α
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : a✝¹ ≤ a✝
x0 : 0 ≤ x
⊢ a✝¹ * x ≤ a✝ * x
[PROOFSTEP]
exact mul_le_mul_of_nonneg_right h x0
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
⊢ Covariant { x // 0 < x } (WithBot α) (fun x y => ↑x * y) fun x x_1 => x < x_1
[PROOFSTEP]
intro ⟨x, x0⟩ a b h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
x : WithBot α
x0 : 0 < x
a b : WithBot α
h : a < b
⊢ (fun x y => ↑x * y) { val := x, property := x0 } a < (fun x y => ↑x * y) { val := x, property := x0 } b
[PROOFSTEP]
simp only [Subtype.coe_mk]
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
x : WithBot α
x0 : 0 < x
a b : WithBot α
h : a < b
⊢ x * a < x * b
[PROOFSTEP]
lift x to α using x0.ne_bot
[GOAL]
case intro
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
a b : WithBot α
h : a < b
x : α
x0 : 0 < ↑x
⊢ ↑x * a < ↑x * b
[PROOFSTEP]
induction b using WithBot.recBotCoe
[GOAL]
case intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
a : WithBot α
x : α
x0 : 0 < ↑x
h : a < ⊥
⊢ ↑x * a < ↑x * ⊥
[PROOFSTEP]
exact absurd h not_lt_bot
[GOAL]
case intro.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
a : WithBot α
x : α
x0 : 0 < ↑x
a✝ : α
h : a < ↑a✝
⊢ ↑x * a < ↑x * ↑a✝
[PROOFSTEP]
induction a using WithBot.recBotCoe
[GOAL]
case intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
x : α
x0 : 0 < ↑x
a✝ : α
h : ⊥ < ↑a✝
⊢ ↑x * ⊥ < ↑x * ↑a✝
[PROOFSTEP]
simp_rw [mul_bot x0.ne.symm, ← coe_mul, bot_lt_coe]
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
x : α
x0 : 0 < ↑x
a✝¹ a✝ : α
h : ↑a✝ < ↑a✝¹
⊢ ↑x * ↑a✝ < ↑x * ↑a✝¹
[PROOFSTEP]
simp only [← coe_mul, coe_lt_coe] at *
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
x : α
x0 : 0 < ↑x
a✝¹ a✝ : α
h : a✝ < a✝¹
⊢ x * a✝ < x * a✝¹
[PROOFSTEP]
norm_cast at x0
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulStrictMono α
x a✝¹ a✝ : α
h : a✝ < a✝¹
x0 : 0 < x
⊢ x * a✝ < x * a✝¹
[PROOFSTEP]
exact mul_lt_mul_of_pos_left h x0
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
⊢ Covariant { x // 0 < x } (WithBot α) (fun x y => y * ↑x) fun x x_1 => x < x_1
[PROOFSTEP]
intro ⟨x, x0⟩ a b h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
x : WithBot α
x0 : 0 < x
a b : WithBot α
h : a < b
⊢ (fun x y => y * ↑x) { val := x, property := x0 } a < (fun x y => y * ↑x) { val := x, property := x0 } b
[PROOFSTEP]
simp only [Subtype.coe_mk]
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
x : WithBot α
x0 : 0 < x
a b : WithBot α
h : a < b
⊢ a * x < b * x
[PROOFSTEP]
lift x to α using x0.ne_bot
[GOAL]
case intro
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
a b : WithBot α
h : a < b
x : α
x0 : 0 < ↑x
⊢ a * ↑x < b * ↑x
[PROOFSTEP]
induction b using WithBot.recBotCoe
[GOAL]
case intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
a : WithBot α
x : α
x0 : 0 < ↑x
h : a < ⊥
⊢ a * ↑x < ⊥ * ↑x
[PROOFSTEP]
exact absurd h not_lt_bot
[GOAL]
case intro.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
a : WithBot α
x : α
x0 : 0 < ↑x
a✝ : α
h : a < ↑a✝
⊢ a * ↑x < ↑a✝ * ↑x
[PROOFSTEP]
induction a using WithBot.recBotCoe
[GOAL]
case intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
x : α
x0 : 0 < ↑x
a✝ : α
h : ⊥ < ↑a✝
⊢ ⊥ * ↑x < ↑a✝ * ↑x
[PROOFSTEP]
simp_rw [bot_mul x0.ne.symm, ← coe_mul, bot_lt_coe]
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
x : α
x0 : 0 < ↑x
a✝¹ a✝ : α
h : ↑a✝ < ↑a✝¹
⊢ ↑a✝ * ↑x < ↑a✝¹ * ↑x
[PROOFSTEP]
simp only [← coe_mul, coe_lt_coe] at *
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
x : α
x0 : 0 < ↑x
a✝¹ a✝ : α
h : a✝ < a✝¹
⊢ a✝ * x < a✝¹ * x
[PROOFSTEP]
norm_cast at x0
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosStrictMono α
x a✝¹ a✝ : α
h : a✝ < a✝¹
x0 : 0 < x
⊢ a✝ * x < a✝¹ * x
[PROOFSTEP]
exact mul_lt_mul_of_pos_right h x0
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
⊢ Contravariant { x // 0 ≤ x } (WithBot α) (fun x y => ↑x * y) fun x x_1 => x < x_1
[PROOFSTEP]
intro ⟨x, x0⟩ a b h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : (fun x y => ↑x * y) { val := x, property := x0 } a < (fun x y => ↑x * y) { val := x, property := x0 } b
⊢ a < b
[PROOFSTEP]
simp only [Subtype.coe_mk] at h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : x * a < x * b
⊢ a < b
[PROOFSTEP]
rcases eq_or_ne x 0 with rfl | x0'
[GOAL]
case inl
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
a b : WithBot α
x0 : 0 ≤ 0
h : 0 * a < 0 * b
⊢ a < b
[PROOFSTEP]
simp at h
[GOAL]
case inr
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : x * a < x * b
x0' : x ≠ 0
⊢ a < b
[PROOFSTEP]
lift x to α
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : x * a < x * b
x0' : x ≠ 0
⊢ x ≠ ⊥
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
a b : WithBot α
x0 : 0 ≤ ⊥
h : ⊥ * a < ⊥ * b
x0' : ⊥ ≠ 0
⊢ False
[PROOFSTEP]
exact (WithBot.bot_lt_coe (0 : α)).not_le x0
[GOAL]
case inr.intro
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
a b : WithBot α
x : α
x0 : 0 ≤ ↑x
h : ↑x * a < ↑x * b
x0' : ↑x ≠ 0
⊢ a < b
[PROOFSTEP]
induction b using WithBot.recBotCoe
[GOAL]
case inr.intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
a : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
h : ↑x * a < ↑x * ⊥
⊢ a < ⊥
[PROOFSTEP]
rw [mul_bot x0'] at h
[GOAL]
case inr.intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
a : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
h : ↑x * a < ⊥
⊢ a < ⊥
[PROOFSTEP]
exact absurd h bot_le.not_lt
[GOAL]
case inr.intro.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
a : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝ : α
h : ↑x * a < ↑x * ↑a✝
⊢ a < ↑a✝
[PROOFSTEP]
induction a using WithBot.recBotCoe
[GOAL]
case inr.intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝ : α
h : ↑x * ⊥ < ↑x * ↑a✝
⊢ ⊥ < ↑a✝
[PROOFSTEP]
exact WithBot.bot_lt_coe _
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : ↑x * ↑a✝ < ↑x * ↑a✝¹
⊢ ↑a✝ < ↑a✝¹
[PROOFSTEP]
simp only [← coe_mul, coe_lt_coe] at *
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : x * a✝ < x * a✝¹
⊢ a✝ < a✝¹
[PROOFSTEP]
norm_cast at x0
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulReflectLT α
x : α
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : x * a✝ < x * a✝¹
x0 : 0 ≤ x
⊢ a✝ < a✝¹
[PROOFSTEP]
exact lt_of_mul_lt_mul_left h x0
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
⊢ Contravariant { x // 0 ≤ x } (WithBot α) (fun x y => y * ↑x) fun x x_1 => x < x_1
[PROOFSTEP]
intro ⟨x, x0⟩ a b h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : (fun x y => y * ↑x) { val := x, property := x0 } a < (fun x y => y * ↑x) { val := x, property := x0 } b
⊢ a < b
[PROOFSTEP]
simp only [Subtype.coe_mk] at h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a * x < b * x
⊢ a < b
[PROOFSTEP]
rcases eq_or_ne x 0 with rfl | x0'
[GOAL]
case inl
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
a b : WithBot α
x0 : 0 ≤ 0
h : a * 0 < b * 0
⊢ a < b
[PROOFSTEP]
simp at h
[GOAL]
case inr
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a * x < b * x
x0' : x ≠ 0
⊢ a < b
[PROOFSTEP]
lift x to α
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
x : WithBot α
x0 : 0 ≤ x
a b : WithBot α
h : a * x < b * x
x0' : x ≠ 0
⊢ x ≠ ⊥
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
a b : WithBot α
x0 : 0 ≤ ⊥
h : a * ⊥ < b * ⊥
x0' : ⊥ ≠ 0
⊢ False
[PROOFSTEP]
exact (WithBot.bot_lt_coe (0 : α)).not_le x0
[GOAL]
case inr.intro
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
a b : WithBot α
x : α
x0 : 0 ≤ ↑x
h : a * ↑x < b * ↑x
x0' : ↑x ≠ 0
⊢ a < b
[PROOFSTEP]
induction b using WithBot.recBotCoe
[GOAL]
case inr.intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
a : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
h : a * ↑x < ⊥ * ↑x
⊢ a < ⊥
[PROOFSTEP]
rw [bot_mul x0'] at h
[GOAL]
case inr.intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
a : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
h : a * ↑x < ⊥
⊢ a < ⊥
[PROOFSTEP]
exact absurd h bot_le.not_lt
[GOAL]
case inr.intro.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
a : WithBot α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝ : α
h : a * ↑x < ↑a✝ * ↑x
⊢ a < ↑a✝
[PROOFSTEP]
induction a using WithBot.recBotCoe
[GOAL]
case inr.intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝ : α
h : ⊥ * ↑x < ↑a✝ * ↑x
⊢ ⊥ < ↑a✝
[PROOFSTEP]
exact WithBot.bot_lt_coe _
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : ↑a✝ * ↑x < ↑a✝¹ * ↑x
⊢ ↑a✝ < ↑a✝¹
[PROOFSTEP]
simp only [← coe_mul, coe_lt_coe] at *
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
x : α
x0 : 0 ≤ ↑x
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : a✝ * x < a✝¹ * x
⊢ a✝ < a✝¹
[PROOFSTEP]
norm_cast at x0
[GOAL]
case inr.intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosReflectLT α
x : α
x0' : ↑x ≠ 0
a✝¹ a✝ : α
h : a✝ * x < a✝¹ * x
x0 : 0 ≤ x
⊢ a✝ < a✝¹
[PROOFSTEP]
exact lt_of_mul_lt_mul_right h x0
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
⊢ Contravariant { x // 0 < x } (WithBot α) (fun x y => ↑x * y) fun x x_1 => x ≤ x_1
[PROOFSTEP]
intro ⟨x, x0⟩ a b h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
x : WithBot α
x0 : 0 < x
a b : WithBot α
h : (fun x y => ↑x * y) { val := x, property := x0 } a ≤ (fun x y => ↑x * y) { val := x, property := x0 } b
⊢ a ≤ b
[PROOFSTEP]
simp only [Subtype.coe_mk] at h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
x : WithBot α
x0 : 0 < x
a b : WithBot α
h : x * a ≤ x * b
⊢ a ≤ b
[PROOFSTEP]
lift x to α using x0.ne_bot
[GOAL]
case intro
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
a b : WithBot α
x : α
x0 : 0 < ↑x
h : ↑x * a ≤ ↑x * b
⊢ a ≤ b
[PROOFSTEP]
induction a using WithBot.recBotCoe
[GOAL]
case intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
b : WithBot α
x : α
x0 : 0 < ↑x
h : ↑x * ⊥ ≤ ↑x * b
⊢ ⊥ ≤ b
[PROOFSTEP]
exact bot_le
[GOAL]
case intro.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
b : WithBot α
x : α
x0 : 0 < ↑x
a✝ : α
h : ↑x * ↑a✝ ≤ ↑x * b
⊢ ↑a✝ ≤ b
[PROOFSTEP]
induction b using WithBot.recBotCoe
[GOAL]
case intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
x : α
x0 : 0 < ↑x
a✝ : α
h : ↑x * ↑a✝ ≤ ↑x * ⊥
⊢ ↑a✝ ≤ ⊥
[PROOFSTEP]
rw [mul_bot x0.ne.symm, ← coe_mul] at h
[GOAL]
case intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
x : α
x0 : 0 < ↑x
a✝ : α
h : ↑(x * a✝) ≤ ⊥
⊢ ↑a✝ ≤ ⊥
[PROOFSTEP]
exact absurd h (bot_lt_coe _).not_le
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
x : α
x0 : 0 < ↑x
a✝¹ a✝ : α
h : ↑x * ↑a✝¹ ≤ ↑x * ↑a✝
⊢ ↑a✝¹ ≤ ↑a✝
[PROOFSTEP]
simp only [← coe_mul, coe_le_coe] at *
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
x : α
x0 : 0 < ↑x
a✝¹ a✝ : α
h : x * a✝¹ ≤ x * a✝
⊢ a✝¹ ≤ a✝
[PROOFSTEP]
norm_cast at x0
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : PosMulMonoRev α
x a✝¹ a✝ : α
h : x * a✝¹ ≤ x * a✝
x0 : 0 < x
⊢ a✝¹ ≤ a✝
[PROOFSTEP]
exact le_of_mul_le_mul_left h x0
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
⊢ Contravariant { x // 0 < x } (WithBot α) (fun x y => y * ↑x) fun x x_1 => x ≤ x_1
[PROOFSTEP]
intro ⟨x, x0⟩ a b h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
x : WithBot α
x0 : 0 < x
a b : WithBot α
h : (fun x y => y * ↑x) { val := x, property := x0 } a ≤ (fun x y => y * ↑x) { val := x, property := x0 } b
⊢ a ≤ b
[PROOFSTEP]
simp only [Subtype.coe_mk] at h
[GOAL]
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
x : WithBot α
x0 : 0 < x
a b : WithBot α
h : a * x ≤ b * x
⊢ a ≤ b
[PROOFSTEP]
lift x to α using x0.ne_bot
[GOAL]
case intro
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
a b : WithBot α
x : α
x0 : 0 < ↑x
h : a * ↑x ≤ b * ↑x
⊢ a ≤ b
[PROOFSTEP]
induction a using WithBot.recBotCoe
[GOAL]
case intro.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
b : WithBot α
x : α
x0 : 0 < ↑x
h : ⊥ * ↑x ≤ b * ↑x
⊢ ⊥ ≤ b
[PROOFSTEP]
exact bot_le
[GOAL]
case intro.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
b : WithBot α
x : α
x0 : 0 < ↑x
a✝ : α
h : ↑a✝ * ↑x ≤ b * ↑x
⊢ ↑a✝ ≤ b
[PROOFSTEP]
induction b using WithBot.recBotCoe
[GOAL]
case intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
x : α
x0 : 0 < ↑x
a✝ : α
h : ↑a✝ * ↑x ≤ ⊥ * ↑x
⊢ ↑a✝ ≤ ⊥
[PROOFSTEP]
rw [bot_mul x0.ne.symm, ← coe_mul] at h
[GOAL]
case intro.coe.bot
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
x : α
x0 : 0 < ↑x
a✝ : α
h : ↑(a✝ * x) ≤ ⊥
⊢ ↑a✝ ≤ ⊥
[PROOFSTEP]
exact absurd h (bot_lt_coe _).not_le
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
x : α
x0 : 0 < ↑x
a✝¹ a✝ : α
h : ↑a✝¹ * ↑x ≤ ↑a✝ * ↑x
⊢ ↑a✝¹ ≤ ↑a✝
[PROOFSTEP]
simp only [← coe_mul, coe_le_coe] at *
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
x : α
x0 : 0 < ↑x
a✝¹ a✝ : α
h : a✝¹ * x ≤ a✝ * x
⊢ a✝¹ ≤ a✝
[PROOFSTEP]
norm_cast at x0
[GOAL]
case intro.coe.coe
α : Type u_1
inst✝³ : DecidableEq α
inst✝² : MulZeroClass α
inst✝¹ : Preorder α
inst✝ : MulPosMonoRev α
x a✝¹ a✝ : α
h : a✝¹ * x ≤ a✝ * x
x0 : 0 < x
⊢ a✝¹ ≤ a✝
[PROOFSTEP]
exact le_of_mul_le_mul_right h x0
| {"mathlib_filename": "Mathlib.Algebra.Order.Ring.WithTop", "llama_tokens": 29288} |
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
f : M → ι
i : ι
m : M
h : m ∈ 0.support
⊢ f m = i
[PROOFSTEP]
cases h
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
⊢ gradeBy R id = grade R
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
f : M → ι
i : ι
a : AddMonoidAlgebra R M
⊢ a ∈ gradeBy R f i ↔ ↑a.support ⊆ f ⁻¹' {i}
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
m : M
a : AddMonoidAlgebra R M
⊢ a ∈ grade R m ↔ a.support ⊆ {m}
[PROOFSTEP]
rw [← Finset.coe_subset, Finset.coe_singleton]
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
m : M
a : AddMonoidAlgebra R M
⊢ a ∈ grade R m ↔ ↑a.support ⊆ {m}
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
m : M
a : AddMonoidAlgebra R M
⊢ a ∈ grade R m ↔ a ∈ LinearMap.range (Finsupp.lsingle m)
[PROOFSTEP]
rw [mem_grade_iff, Finsupp.support_subset_singleton']
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
m : M
a : AddMonoidAlgebra R M
⊢ (∃ b, a = Finsupp.single m b) ↔ a ∈ LinearMap.range (Finsupp.lsingle m)
[PROOFSTEP]
apply exists_congr
[GOAL]
case h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
m : M
a : AddMonoidAlgebra R M
⊢ ∀ (a_1 : R), a = Finsupp.single m a_1 ↔ ↑(Finsupp.lsingle m) a_1 = a
[PROOFSTEP]
intro r
[GOAL]
case h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
m : M
a : AddMonoidAlgebra R M
r : R
⊢ a = Finsupp.single m r ↔ ↑(Finsupp.lsingle m) r = a
[PROOFSTEP]
constructor
[GOAL]
case h.mp
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
m : M
a : AddMonoidAlgebra R M
r : R
⊢ a = Finsupp.single m r → ↑(Finsupp.lsingle m) r = a
[PROOFSTEP]
exact Eq.symm
[GOAL]
case h.mpr
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝¹ : DecidableEq M
inst✝ : CommSemiring R
m : M
a : AddMonoidAlgebra R M
r : R
⊢ ↑(Finsupp.lsingle m) r = a → a = Finsupp.single m r
[PROOFSTEP]
exact Eq.symm
[GOAL]
M : Type u_1
ι : Type u_2
R✝ : Type u_3
inst✝² : DecidableEq M
inst✝¹ : CommSemiring R✝
R : Type u_4
inst✝ : CommSemiring R
f : M → ι
m : M
r : R
⊢ Finsupp.single m r ∈ gradeBy R f (f m)
[PROOFSTEP]
intro x hx
[GOAL]
M : Type u_1
ι : Type u_2
R✝ : Type u_3
inst✝² : DecidableEq M
inst✝¹ : CommSemiring R✝
R : Type u_4
inst✝ : CommSemiring R
f : M → ι
m : M
r : R
x : M
hx : x ∈ (Finsupp.single m r).support
⊢ f x = f m
[PROOFSTEP]
rw [Finset.mem_singleton.mp (Finsupp.support_single_subset hx)]
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
h : m ∈ 1.support
⊢ ↑f m = 0
[PROOFSTEP]
rw [one_def] at h
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
h : m ∈ (single 0 1).support
⊢ ↑f m = 0
[PROOFSTEP]
by_cases H : (1 : R) = (0 : R)
[GOAL]
case pos
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
h : m ∈ (single 0 1).support
H : 1 = 0
⊢ ↑f m = 0
[PROOFSTEP]
rw [H, single, Finsupp.single_zero] at h
[GOAL]
case pos
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
h : m ∈ 0.support
H : 1 = 0
⊢ ↑f m = 0
[PROOFSTEP]
cases h
[GOAL]
case neg
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
h : m ∈ (single 0 1).support
H : ¬1 = 0
⊢ ↑f m = 0
[PROOFSTEP]
rw [Finsupp.support_single_ne_zero _ H, Finset.mem_singleton] at h
[GOAL]
case neg
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
h : m = 0
H : ¬1 = 0
⊢ ↑f m = 0
[PROOFSTEP]
rw [h, AddMonoidHom.map_zero]
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : ι
a b : AddMonoidAlgebra R M
ha : a ∈ gradeBy R (↑f) i
hb : b ∈ gradeBy R (↑f) j
c : M
hc : c ∈ (a * b).support
⊢ ↑f c = i + j
[PROOFSTEP]
set h := support_mul a b hc
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : ι
a b : AddMonoidAlgebra R M
ha : a ∈ gradeBy R (↑f) i
hb : b ∈ gradeBy R (↑f) j
c : M
hc : c ∈ (a * b).support
h : c ∈ Finset.biUnion a.support fun a₁ => Finset.biUnion b.support fun a₂ => {a₁ + a₂} := support_mul a b hc
⊢ ↑f c = i + j
[PROOFSTEP]
simp only [Finset.mem_biUnion] at h
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : ι
a b : AddMonoidAlgebra R M
ha : a ∈ gradeBy R (↑f) i
hb : b ∈ gradeBy R (↑f) j
c : M
hc : c ∈ (a * b).support
h : ∃ a_1, a_1 ∈ a.support ∧ ∃ a, a ∈ b.support ∧ c ∈ {a_1 + a}
⊢ ↑f c = i + j
[PROOFSTEP]
rcases h with ⟨ma, ⟨hma, ⟨mb, ⟨hmb, hmc⟩⟩⟩⟩
[GOAL]
case intro.intro.intro.intro
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : ι
a b : AddMonoidAlgebra R M
ha : a ∈ gradeBy R (↑f) i
hb : b ∈ gradeBy R (↑f) j
c : M
hc : c ∈ (a * b).support
ma : M
hma : ma ∈ a.support
mb : M
hmb : mb ∈ b.support
hmc : c ∈ {ma + mb}
⊢ ↑f c = i + j
[PROOFSTEP]
rw [← ha ma hma, ← hb mb hmb, Finset.mem_singleton.mp hmc]
[GOAL]
case intro.intro.intro.intro
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝³ : DecidableEq M
inst✝² : AddMonoid M
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : ι
a b : AddMonoidAlgebra R M
ha : a ∈ gradeBy R (↑f) i
hb : b ∈ gradeBy R (↑f) j
c : M
hc : c ∈ (a * b).support
ma : M
hma : ma ∈ a.support
mb : M
hmb : mb ∈ b.support
hmc : c ∈ {ma + mb}
⊢ ↑f (ma + mb) = ↑f ma + ↑f mb
[PROOFSTEP]
apply AddMonoidHom.map_add
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝² : DecidableEq M
inst✝¹ : AddMonoid M
inst✝ : CommSemiring R
⊢ SetLike.GradedMonoid (grade R)
[PROOFSTEP]
apply gradeBy.gradedMonoid (AddMonoidHom.id _)
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
⊢ GradedMonoid.mk (↑f (↑Multiplicative.toAdd 1))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
GradedMonoid.mk 0 GradedMonoid.GOne.one
[PROOFSTEP]
congr 2
[GOAL]
case h.e_3.h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
⊢ ↑f (↑Multiplicative.toAdd 1) = 0
[PROOFSTEP]
simp
[GOAL]
case h.e_4.e_2.h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
⊢ (fun x => x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) = fun x => x ∈ (fun i => gradeBy R (↑f) i) 0
[PROOFSTEP]
simp
[GOAL]
case h.e_4.e_4
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
⊢ HEq (_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1)))
(_ : 1 ∈ gradeBy R (↑f) 0)
[PROOFSTEP]
simp
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
⊢ OneHom.toFun
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }
(i * j) =
OneHom.toFun
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }
i *
OneHom.toFun
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }
j
[PROOFSTEP]
symm
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
⊢ OneHom.toFun
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }
i *
OneHom.toFun
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }
j =
OneHom.toFun
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }
(i * j)
[PROOFSTEP]
dsimp only [toAdd_one, Eq.ndrec, Set.mem_setOf_eq, ne_eq, OneHom.toFun_eq_coe, OneHom.coe_mk, toAdd_mul]
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd i)))
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) } *
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd j)))
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)))
{ val := Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j))) }
[PROOFSTEP]
convert DirectSum.of_mul_of (A := (fun i : ι => gradeBy R f i)) _ _
[GOAL]
case h.e'_3.h.e'_1.h.e'_1.h.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_1.h.e'_3.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝² :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_5.e'_5
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
repeat {rw [AddMonoidHom.map_add]
}
[GOAL]
case h.e'_3.h.e'_1.h.e'_1.h.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_1.h.e'_3.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝² :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_5.e'_5
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
{rw [AddMonoidHom.map_add]
}
[GOAL]
case h.e'_3.h.e'_1.h.e'_1.h.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
case h.e'_3.h.e'_1.h.e'_3.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝² :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_5.e'_5
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
{rw [AddMonoidHom.map_add]
}
[GOAL]
case h.e'_3.h.e'_1.h.e'_3.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝² :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_5.e'_5
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
{rw [AddMonoidHom.map_add]
}
[GOAL]
case h.e'_3.h.e'_2.h.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝² :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_5.e'_5
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
{rw [AddMonoidHom.map_add]
}
[GOAL]
case h.e'_3.h.e'_4.e'_4.e'_2.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝² :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_5.e'_5
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
{rw [AddMonoidHom.map_add]
}
[GOAL]
case h.e'_3.h.e'_4.e'_6.e'_4.e'_2.e'_2.e'_8
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝² :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝¹ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_3✝ : HEq (fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) fun x => ⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }
e_1✝¹ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
e_4✝ : HEq AddZeroClass.toAdd AddZeroClass.toAdd
e_1✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
case h.e'_3.h.e'_5.e'_5
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
{rw [AddMonoidHom.map_add]
}
[GOAL]
case h.e'_3.h.e'_5.e'_5
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_1✝ :
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i }) =
({ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) } →+
⨁ (i : ι), { x // x ∈ gradeBy R (↑f) i })
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
{rw [AddMonoidHom.map_add]
}
[GOAL]
case h.e'_3.h.e'_6.e'_2.h.h.e'_5.h.e'_7
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
x✝ : AddMonoidAlgebra R M
⊢ ↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) = ↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
{rw [AddMonoidHom.map_add]
}
[GOAL]
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
rw [AddMonoidHom.map_add]
[GOAL]
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
↑(GradedMonoid.GMul.mul
{ val := Finsupp.single (↑Multiplicative.toAdd i) 1,
property := (_ : Finsupp.single (↑Multiplicative.toAdd i) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i))) }
{ val := Finsupp.single (↑Multiplicative.toAdd j) 1,
property :=
(_ : Finsupp.single (↑Multiplicative.toAdd j) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd j))) })
[PROOFSTEP]
simp only [SetLike.coe_gMul]
[GOAL]
case h.e'_3.h.e'_6.e'_3
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
Finsupp.single (↑Multiplicative.toAdd i) 1 * Finsupp.single (↑Multiplicative.toAdd j) 1
[PROOFSTEP]
refine Eq.trans (by rw [one_mul]) single_mul_single.symm
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i j : Multiplicative M
e_2✝ :
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j)) } =
{ x // x ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd i) + ↑f (↑Multiplicative.toAdd j)) }
⊢ Finsupp.single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) 1 =
single (↑Multiplicative.toAdd i + ↑Multiplicative.toAdd j) (1 * 1)
[PROOFSTEP]
rw [one_mul]
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
r : R
⊢ ↑(decomposeAux f) (Finsupp.single m r) =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m))
{ val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }
[PROOFSTEP]
refine' (lift_single _ _ _).trans _
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
r : R
⊢ r •
↑{
toOneHom :=
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd m) 1 ∈ gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) },
map_mul' :=
(_ :
∀ (i j : Multiplicative M),
OneHom.toFun
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd m) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }
(i * j) =
OneHom.toFun
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd m) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }
i *
OneHom.toFun
{
toFun := fun m =>
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd m)))
{ val := Finsupp.single (↑Multiplicative.toAdd m) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd m) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd m))) },
map_one' :=
(_ :
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f (↑Multiplicative.toAdd 1)))
{ val := Finsupp.single (↑Multiplicative.toAdd 1) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd 1) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd 1))) } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) 0) GradedMonoid.GOne.one) }
j) }
(↑Multiplicative.ofAdd m) =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m))
{ val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }
[PROOFSTEP]
refine' (DirectSum.of_smul R _ _ _).symm.trans _
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
r : R
⊢ ↑(DirectSum.of (fun i => (fun i => { x // x ∈ gradeBy R (↑f) i }) i)
(↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m))))
(r •
{ val := Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)))) }) =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m))
{ val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }
[PROOFSTEP]
apply DirectSum.of_eq_of_gradedMonoid_eq
[GOAL]
case h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
r : R
⊢ GradedMonoid.mk (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)))
(r •
{ val := Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)))) }) =
GradedMonoid.mk (↑f m) { val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }
[PROOFSTEP]
refine' Sigma.subtype_ext rfl _
[GOAL]
case h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
r : R
⊢ ↑(GradedMonoid.mk (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)))
(r •
{ val := Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1,
property :=
(_ :
Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) 1 ∈
gradeBy R (↑f) (↑f (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)))) })).snd =
↑(GradedMonoid.mk (↑f m)
{ val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }).snd
[PROOFSTEP]
refine' (Finsupp.smul_single' _ _ _).trans _
[GOAL]
case h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
r : R
⊢ Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) (r * 1) =
↑(GradedMonoid.mk (↑f m)
{ val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }).snd
[PROOFSTEP]
rw [mul_one]
[GOAL]
case h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
m : M
r : R
⊢ Finsupp.single (↑Multiplicative.toAdd (↑Multiplicative.ofAdd m)) r =
↑(GradedMonoid.mk (↑f m)
{ val := Finsupp.single m r, property := (_ : Finsupp.single m r ∈ gradeBy R (↑f) (↑f m)) }).snd
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : { x // x ∈ gradeBy R (↑f) i }
⊢ ↑(decomposeAux f) ↑x = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) x
[PROOFSTEP]
obtain ⟨x, hx⟩ := x
[GOAL]
case mk
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
hx : x ∈ gradeBy R (↑f) i
⊢ ↑(decomposeAux f) ↑{ val := x, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := x, property := hx }
[PROOFSTEP]
revert hx
[GOAL]
case mk
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
⊢ ∀ (hx : x ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := x, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := x, property := hx }
[PROOFSTEP]
refine' Finsupp.induction x _ _
[GOAL]
case mk.refine'_1
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
⊢ ∀ (hx : 0 ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := 0, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := 0, property := hx }
[PROOFSTEP]
intro hx
[GOAL]
case mk.refine'_1
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
hx : 0 ∈ gradeBy R (↑f) i
⊢ ↑(decomposeAux f) ↑{ val := 0, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := 0, property := hx }
[PROOFSTEP]
symm
[GOAL]
case mk.refine'_1
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
hx : 0 ∈ gradeBy R (↑f) i
⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := 0, property := hx } =
↑(decomposeAux f) ↑{ val := 0, property := hx }
[PROOFSTEP]
exact AddMonoidHom.map_zero _
[GOAL]
case mk.refine'_2
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
⊢ ∀ (a : M) (b : R) (f_1 : M →₀ R),
¬a ∈ f_1.support →
b ≠ 0 →
(∀ (hx : f_1 ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := f_1, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := f_1, property := hx }) →
∀ (hx : Finsupp.single a b + f_1 ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := Finsupp.single a b + f_1, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i)
{ val := Finsupp.single a b + f_1, property := hx }
[PROOFSTEP]
intro m b y hmy hb ih hmby
[GOAL]
case mk.refine'_2
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
ih :
∀ (hx : y ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i
⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
have : Disjoint (Finsupp.single m b).support y.support := by
simpa only [Finsupp.support_single_ne_zero _ hb, Finset.disjoint_singleton_left]
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
ih :
∀ (hx : y ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i
⊢ Disjoint (Finsupp.single m b).support y.support
[PROOFSTEP]
simpa only [Finsupp.support_single_ne_zero _ hb, Finset.disjoint_singleton_left]
[GOAL]
case mk.refine'_2
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
ih :
∀ (hx : y ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i
this : Disjoint (Finsupp.single m b).support y.support
⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
rw [mem_gradeBy_iff, Finsupp.support_add_eq this, Finset.coe_union, Set.union_subset_iff] at hmby
[GOAL]
case mk.refine'_2
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
ih :
∀ (hx : y ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx }
hmby✝ : Finsupp.single m b + y ∈ gradeBy R (↑f) i
hmby : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {i} ∧ ↑y.support ⊆ ↑f ⁻¹' {i}
this : Disjoint (Finsupp.single m b).support y.support
⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby✝ } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby✝ }
[PROOFSTEP]
cases' hmby with h1 h2
[GOAL]
case mk.refine'_2.intro
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
ih :
∀ (hx : y ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i
this : Disjoint (Finsupp.single m b).support y.support
h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {i}
h2 : ↑y.support ⊆ ↑f ⁻¹' {i}
⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
have : f m = i := by rwa [Finsupp.support_single_ne_zero _ hb, Finset.coe_singleton, Set.singleton_subset_iff] at h1
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
ih :
∀ (hx : y ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i
this : Disjoint (Finsupp.single m b).support y.support
h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {i}
h2 : ↑y.support ⊆ ↑f ⁻¹' {i}
⊢ ↑f m = i
[PROOFSTEP]
rwa [Finsupp.support_single_ne_zero _ hb, Finset.coe_singleton, Set.singleton_subset_iff] at h1
[GOAL]
case mk.refine'_2.intro
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
ih :
∀ (hx : y ∈ gradeBy R (↑f) i),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) i
this✝ : Disjoint (Finsupp.single m b).support y.support
h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {i}
h2 : ↑y.support ⊆ ↑f ⁻¹' {i}
this : ↑f m = i
⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
subst this
[GOAL]
case mk.refine'_2.intro
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
this : Disjoint (Finsupp.single m b).support y.support
ih :
∀ (hx : y ∈ gradeBy R (↑f) (↑f m)),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m)
h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m}
h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m}
⊢ ↑(decomposeAux f) ↑{ val := Finsupp.single m b + y, property := hmby } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
simp only [AlgHom.map_add, Submodule.coe_mk, decomposeAux_single f m]
[GOAL]
case mk.refine'_2.intro
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
this : Disjoint (Finsupp.single m b).support y.support
ih :
∀ (hx : y ∈ gradeBy R (↑f) (↑f m)),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m)
h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m}
h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m}
⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m))
{ val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } +
↑(decomposeAux f) y =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
let ih' := ih h2
[GOAL]
case mk.refine'_2.intro
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
this : Disjoint (Finsupp.single m b).support y.support
ih :
∀ (hx : y ∈ gradeBy R (↑f) (↑f m)),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m)
h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m}
h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m}
ih' : ↑(decomposeAux f) ↑{ val := y, property := h2 } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := h2 } :=
ih h2
⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m))
{ val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } +
↑(decomposeAux f) y =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
dsimp at ih'
[GOAL]
case mk.refine'_2.intro
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
this : Disjoint (Finsupp.single m b).support y.support
ih :
∀ (hx : y ∈ gradeBy R (↑f) (↑f m)),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m)
h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m}
h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m}
ih' : ↑(decomposeAux f) y =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := h2 } :=
ih h2
⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m))
{ val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } +
↑(decomposeAux f) y =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
rw [ih', ← AddMonoidHom.map_add]
[GOAL]
case mk.refine'_2.intro
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
this : Disjoint (Finsupp.single m b).support y.support
ih :
∀ (hx : y ∈ gradeBy R (↑f) (↑f m)),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m)
h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m}
h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m}
ih' : ↑(decomposeAux f) y =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := h2 } :=
ih h2
⊢ ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m))
({ val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } +
{ val := y, property := h2 }) =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
apply DirectSum.of_eq_of_gradedMonoid_eq
[GOAL]
case mk.refine'_2.intro.h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
x : AddMonoidAlgebra R M
m : M
b : R
y : M →₀ R
hmy : ¬m ∈ y.support
hb : b ≠ 0
this : Disjoint (Finsupp.single m b).support y.support
ih :
∀ (hx : y ∈ gradeBy R (↑f) (↑f m)),
↑(decomposeAux f) ↑{ val := y, property := hx } =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := hx }
hmby : Finsupp.single m b + y ∈ gradeBy R (↑f) (↑f m)
h1 : ↑(Finsupp.single m b).support ⊆ ↑f ⁻¹' {↑f m}
h2 : ↑y.support ⊆ ↑f ⁻¹' {↑f m}
ih' : ↑(decomposeAux f) y =
↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) (↑f m)) { val := y, property := h2 } :=
ih h2
⊢ GradedMonoid.mk (↑f m)
({ val := Finsupp.single m b, property := (_ : Finsupp.single m b ∈ gradeBy R (↑f) (↑f m)) } +
{ val := y, property := h2 }) =
GradedMonoid.mk (↑f m) { val := Finsupp.single m b + y, property := hmby }
[PROOFSTEP]
congr 2
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
⊢ AlgHom.comp (coeAlgHom (gradeBy R ↑f)) (decomposeAux f) = AlgHom.id R (AddMonoidAlgebra R M)
[PROOFSTEP]
ext : 2
[GOAL]
case h.h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
x✝ : Multiplicative M
⊢ ↑(MonoidHom.comp (↑(AlgHom.comp (coeAlgHom (gradeBy R ↑f)) (decomposeAux f))) (of R M)) x✝ =
↑(MonoidHom.comp (↑(AlgHom.id R (AddMonoidAlgebra R M))) (of R M)) x✝
[PROOFSTEP]
simp only [MonoidHom.coe_comp, MonoidHom.coe_coe, AlgHom.coe_comp, Function.comp_apply, of_apply, AlgHom.coe_id, id_eq]
[GOAL]
case h.h
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
x✝ : Multiplicative M
⊢ ↑(coeAlgHom (gradeBy R ↑f)) (↑(decomposeAux f) (single (↑Multiplicative.toAdd x✝) 1)) =
single (↑Multiplicative.toAdd x✝) 1
[PROOFSTEP]
rw [decomposeAux_single, DirectSum.coeAlgHom_of, Subtype.coe_mk]
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
i : ι
x : { x // x ∈ gradeBy R (↑f) i }
⊢ ↑(decomposeAux f) ↑x = ↑(DirectSum.of (fun i => { x // x ∈ gradeBy R (↑f) i }) i) x
[PROOFSTEP]
rw [decomposeAux_coe f x]
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
⊢ Decomposition (gradeBy R ↑f)
[PROOFSTEP]
infer_instance
[GOAL]
M : Type u_1
ι : Type u_2
R : Type u_3
inst✝⁴ : DecidableEq M
inst✝³ : AddMonoid M
inst✝² : DecidableEq ι
inst✝¹ : AddMonoid ι
inst✝ : CommSemiring R
f : M →+ ι
⊢ Decomposition (grade R)
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.Grading", "llama_tokens": 42454} |
[GOAL]
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
h : ShortExact f g
h' : ShortExact f' g'
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
⊢ IsIso i₂
[PROOFSTEP]
obtain ⟨_⟩ := h
[GOAL]
case mk
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
h' : ShortExact f' g'
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝ : Mono f
epi✝ : Epi g
exact✝ : Exact f g
⊢ IsIso i₂
[PROOFSTEP]
obtain ⟨_⟩ := h'
[GOAL]
case mk.mk
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ IsIso i₂
[PROOFSTEP]
refine
@Abelian.isIso_of_epi_of_isIso_of_isIso_of_mono 𝒜 _ _ 0 _ _ _ 0 _ _ _ 0 f g 0 f' g' 0 i₁ i₂ i₃ ?_ comm₁ comm₂ 0 0 0 0
0 ?_ ?_ ?_ ?_ ?_ ?_ ?_ _ _ _ _
[GOAL]
case mk.mk.refine_1
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ 0 ≫ 0 = 0 ≫ i₁
case mk.mk.refine_2
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ i₃ ≫ 0 = 0 ≫ 0
case mk.mk.refine_3
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f
case mk.mk.refine_4
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f g
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
case mk.mk.refine_6
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f'
case mk.mk.refine_7
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f' g'
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
all_goals try simp
[GOAL]
case mk.mk.refine_1
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ 0 ≫ 0 = 0 ≫ i₁
[PROOFSTEP]
try simp
[GOAL]
case mk.mk.refine_1
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ 0 ≫ 0 = 0 ≫ i₁
[PROOFSTEP]
simp
[GOAL]
case mk.mk.refine_2
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ i₃ ≫ 0 = 0 ≫ 0
[PROOFSTEP]
try simp
[GOAL]
case mk.mk.refine_2
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ i₃ ≫ 0 = 0 ≫ 0
[PROOFSTEP]
simp
[GOAL]
case mk.mk.refine_3
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f
[PROOFSTEP]
try simp
[GOAL]
case mk.mk.refine_3
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f
[PROOFSTEP]
simp
[GOAL]
case mk.mk.refine_4
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f g
[PROOFSTEP]
try simp
[GOAL]
case mk.mk.refine_4
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f g
[PROOFSTEP]
simp
[GOAL]
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
[PROOFSTEP]
try simp
[GOAL]
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
[PROOFSTEP]
simp
[GOAL]
case mk.mk.refine_6
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f'
[PROOFSTEP]
try simp
[GOAL]
case mk.mk.refine_6
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f'
[PROOFSTEP]
simp
[GOAL]
case mk.mk.refine_7
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f' g'
[PROOFSTEP]
try simp
[GOAL]
case mk.mk.refine_7
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f' g'
[PROOFSTEP]
simp
[GOAL]
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
try simp
[GOAL]
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
simp
[GOAL]
case mk.mk.refine_3
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f
case mk.mk.refine_4
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f g
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
case mk.mk.refine_6
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f'
case mk.mk.refine_7
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f' g'
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
all_goals try assumption
[GOAL]
case mk.mk.refine_3
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f
[PROOFSTEP]
try assumption
[GOAL]
case mk.mk.refine_3
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f
[PROOFSTEP]
assumption
[GOAL]
case mk.mk.refine_4
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f g
[PROOFSTEP]
try assumption
[GOAL]
case mk.mk.refine_4
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f g
[PROOFSTEP]
assumption
[GOAL]
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
[PROOFSTEP]
try assumption
[GOAL]
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
[PROOFSTEP]
assumption
[GOAL]
case mk.mk.refine_6
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f'
[PROOFSTEP]
try assumption
[GOAL]
case mk.mk.refine_6
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f'
[PROOFSTEP]
assumption
[GOAL]
case mk.mk.refine_7
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f' g'
[PROOFSTEP]
try assumption
[GOAL]
case mk.mk.refine_7
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact f' g'
[PROOFSTEP]
assumption
[GOAL]
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
try assumption
[GOAL]
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
assumption
[GOAL]
case mk.mk.refine_3
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
case mk.mk.refine_6
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f'
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
all_goals try apply exact_zero_left_of_mono
[GOAL]
case mk.mk.refine_3
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f
[PROOFSTEP]
try apply exact_zero_left_of_mono
[GOAL]
case mk.mk.refine_3
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f
[PROOFSTEP]
apply exact_zero_left_of_mono
[GOAL]
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
[PROOFSTEP]
try apply exact_zero_left_of_mono
[GOAL]
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
[PROOFSTEP]
apply exact_zero_left_of_mono
[GOAL]
case mk.mk.refine_6
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f'
[PROOFSTEP]
try apply exact_zero_left_of_mono
[GOAL]
case mk.mk.refine_6
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact 0 f'
[PROOFSTEP]
apply exact_zero_left_of_mono
[GOAL]
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
try apply exact_zero_left_of_mono
[GOAL]
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
apply exact_zero_left_of_mono
[GOAL]
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
all_goals rwa [← epi_iff_exact_zero_right]
[GOAL]
case mk.mk.refine_5
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g 0
[PROOFSTEP]
rwa [← epi_iff_exact_zero_right]
[GOAL]
case mk.mk.refine_8
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Abelian 𝒜
i₁ : A ⟶ A'
i₂ : B ⟶ B'
i₃ : C ⟶ C'
comm₁ : autoParam (i₁ ≫ f' = f ≫ i₂) _auto✝
comm₂ : autoParam (i₂ ≫ g' = g ≫ i₃) _auto✝
inst✝¹ : IsIso i₁
inst✝ : IsIso i₃
mono✝¹ : Mono f
epi✝¹ : Epi g
exact✝¹ : Exact f g
mono✝ : Mono f'
epi✝ : Epi g'
exact✝ : Exact f' g'
⊢ Exact g' 0
[PROOFSTEP]
rwa [← epi_iff_exact_zero_right]
[GOAL]
𝒜 : Type u_1
inst✝¹ : Category.{?u.11269, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝ : Abelian 𝒜
h : ShortExact f g
i : A ⊞ C ⟶ B
h1 : biprod.inl ≫ i = f
h2 : i ≫ g = biprod.snd
this : IsIso i
⊢ f ≫ (asIso i).symm.hom = biprod.inl
[PROOFSTEP]
rw [Iso.symm_hom, asIso_inv, IsIso.comp_inv_eq, h1]
[GOAL]
𝒜 : Type u_1
inst✝¹ : Category.{?u.11269, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝ : Abelian 𝒜
h : ShortExact f g
i : A ⊞ C ⟶ B
h1 : biprod.inl ≫ i = f
h2 : i ≫ g = biprod.snd
this : IsIso i
⊢ (asIso i).symm.hom ≫ biprod.snd = g
[PROOFSTEP]
rw [Iso.symm_hom, asIso_inv, IsIso.inv_comp_eq, h2]
[GOAL]
𝒜 : Type u_1
inst✝¹ : Category.{?u.20215, u_1} 𝒜
A B C A' B' C' : 𝒜
f✝ : A ⟶ B
g✝ : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝ : Abelian 𝒜
f : A ⟶ B
g : B ⟶ C
h : LeftSplit f g
⊢ f ≫ biprod.lift (Exists.choose (_ : ∃ φ, f ≫ φ = 𝟙 A)) g = biprod.inl
[PROOFSTEP]
ext
[GOAL]
case h₀
𝒜 : Type u_1
inst✝¹ : Category.{?u.20215, u_1} 𝒜
A B C A' B' C' : 𝒜
f✝ : A ⟶ B
g✝ : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝ : Abelian 𝒜
f : A ⟶ B
g : B ⟶ C
h : LeftSplit f g
⊢ (f ≫ biprod.lift (Exists.choose (_ : ∃ φ, f ≫ φ = 𝟙 A)) g) ≫ biprod.fst = biprod.inl ≫ biprod.fst
[PROOFSTEP]
simpa only [biprod.inl_fst, biprod.lift_fst, Category.assoc] using h.left_split.choose_spec
[GOAL]
case h₁
𝒜 : Type u_1
inst✝¹ : Category.{?u.20215, u_1} 𝒜
A B C A' B' C' : 𝒜
f✝ : A ⟶ B
g✝ : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝ : Abelian 𝒜
f : A ⟶ B
g : B ⟶ C
h : LeftSplit f g
⊢ (f ≫ biprod.lift (Exists.choose (_ : ∃ φ, f ≫ φ = 𝟙 A)) g) ≫ biprod.snd = biprod.inl ≫ biprod.snd
[PROOFSTEP]
simp only [biprod.inl_snd, biprod.lift_snd, Category.assoc, h.exact.w]
[GOAL]
𝒜 : Type u_1
inst✝¹ : Category.{?u.20215, u_1} 𝒜
A B C A' B' C' : 𝒜
f✝ : A ⟶ B
g✝ : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝ : Abelian 𝒜
f : A ⟶ B
g : B ⟶ C
h : LeftSplit f g
⊢ biprod.lift (Exists.choose (_ : ∃ φ, f ≫ φ = 𝟙 A)) g ≫ biprod.snd = g
[PROOFSTEP]
simp only [biprod.lift_snd]
[GOAL]
𝒜 : Type u_1
inst✝¹ : Category.{?u.22782, u_1} 𝒜
A B C A' B' C' : 𝒜
f✝ : A ⟶ B
g✝ : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝ : Abelian 𝒜
f : A ⟶ B
g : B ⟶ C
h : RightSplit f g
⊢ biprod.desc f (Exists.choose (_ : ∃ χ, χ ≫ g = 𝟙 C)) ≫ g = biprod.snd
[PROOFSTEP]
ext
[GOAL]
case h₀
𝒜 : Type u_1
inst✝¹ : Category.{?u.22782, u_1} 𝒜
A B C A' B' C' : 𝒜
f✝ : A ⟶ B
g✝ : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝ : Abelian 𝒜
f : A ⟶ B
g : B ⟶ C
h : RightSplit f g
⊢ biprod.inl ≫ biprod.desc f (Exists.choose (_ : ∃ χ, χ ≫ g = 𝟙 C)) ≫ g = biprod.inl ≫ biprod.snd
[PROOFSTEP]
rw [biprod.inl_snd, ← Category.assoc, biprod.inl_desc, h.exact.w]
[GOAL]
case h₁
𝒜 : Type u_1
inst✝¹ : Category.{?u.22782, u_1} 𝒜
A B C A' B' C' : 𝒜
f✝ : A ⟶ B
g✝ : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝ : Abelian 𝒜
f : A ⟶ B
g : B ⟶ C
h : RightSplit f g
⊢ biprod.inr ≫ biprod.desc f (Exists.choose (_ : ∃ χ, χ ≫ g = 𝟙 C)) ≫ g = biprod.inr ≫ biprod.snd
[PROOFSTEP]
rw [biprod.inr_snd, ← Category.assoc, biprod.inr_desc, h.right_split.choose_spec]
| {"mathlib_filename": "Mathlib.Algebra.Homology.ShortExact.Abelian", "llama_tokens": 20128} |
{"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.Homology", "llama_tokens": 0} |
|
[GOAL]
ι : Type u_1
V : Type u
inst✝⁷ : Category.{v, u} V
inst✝⁶ : HasZeroMorphisms V
inst✝⁵ : HasZeroObject V
inst✝⁴ : HasEqualizers V
inst✝³ : HasImages V
inst✝² : HasImageMaps V
inst✝¹ : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
f : C ⟶ D
inst✝ : IsIso f
i : ι
⊢ IsIso ((homologyFunctor V c i).map f)
[PROOFSTEP]
change IsIso ((homologyFunctor V c i).mapIso (asIso f)).hom
[GOAL]
ι : Type u_1
V : Type u
inst✝⁷ : Category.{v, u} V
inst✝⁶ : HasZeroMorphisms V
inst✝⁵ : HasZeroObject V
inst✝⁴ : HasEqualizers V
inst✝³ : HasImages V
inst✝² : HasImageMaps V
inst✝¹ : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
f : C ⟶ D
inst✝ : IsIso f
i : ι
⊢ IsIso ((homologyFunctor V c i).mapIso (asIso f)).hom
[PROOFSTEP]
infer_instance
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
f : C ⟶ D
inst✝¹ : QuasiIso f
g : D ⟶ E
inst✝ : QuasiIso g
i : ι
⊢ IsIso ((homologyFunctor V c i).map (f ≫ g))
[PROOFSTEP]
rw [Functor.map_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
f : C ⟶ D
inst✝¹ : QuasiIso f
g : D ⟶ E
inst✝ : QuasiIso g
i : ι
⊢ IsIso ((homologyFunctor V c i).map f ≫ (homologyFunctor V c i).map g)
[PROOFSTEP]
infer_instance
[GOAL]
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
⊢ IsIso ((homologyFunctor W c i).map e.hom)
[PROOFSTEP]
refine' ⟨⟨(homologyFunctor W c i).map e.inv, _⟩⟩
[GOAL]
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
⊢ (homologyFunctor W c i).map e.hom ≫ (homologyFunctor W c i).map e.inv = 𝟙 ((homologyFunctor W c i).obj C) ∧
(homologyFunctor W c i).map e.inv ≫ (homologyFunctor W c i).map e.hom = 𝟙 ((homologyFunctor W c i).obj D)
[PROOFSTEP]
simp only [← Functor.map_comp, ← (homologyFunctor W c i).map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
⊢ (homologyFunctor W c i).map (e.hom ≫ e.inv) = (homologyFunctor W c i).map (𝟙 C) ∧
(homologyFunctor W c i).map (e.inv ≫ e.hom) = (homologyFunctor W c i).map (𝟙 D)
[PROOFSTEP]
constructor
[GOAL]
case left
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
⊢ (homologyFunctor W c i).map (e.hom ≫ e.inv) = (homologyFunctor W c i).map (𝟙 C)
[PROOFSTEP]
apply homology_map_eq_of_homotopy
[GOAL]
case right
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
⊢ (homologyFunctor W c i).map (e.inv ≫ e.hom) = (homologyFunctor W c i).map (𝟙 D)
[PROOFSTEP]
apply homology_map_eq_of_homotopy
[GOAL]
case left.h
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
⊢ Homotopy (e.hom ≫ e.inv) (𝟙 C)
case right.h
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
⊢ Homotopy (e.inv ≫ e.hom) (𝟙 D)
[PROOFSTEP]
exacts [e.homotopyHomInvId, e.homotopyInvHomId]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
⊢ (asIso ((homologyFunctor W c i).map e.hom)).inv = (homologyFunctor W c i).map e.inv
[PROOFSTEP]
symm
[GOAL]
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
⊢ (homologyFunctor W c i).map e.inv = (asIso ((homologyFunctor W c i).map e.hom)).inv
[PROOFSTEP]
haveI := e.toQuasiIso.1 i
[GOAL]
ι : Type u_1
V : Type u
inst✝¹³ : Category.{v, u} V
inst✝¹² : HasZeroMorphisms V
inst✝¹¹ : HasZeroObject V
inst✝¹⁰ : HasEqualizers V
inst✝⁹ : HasImages V
inst✝⁸ : HasImageMaps V
inst✝⁷ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
W : Type u_2
inst✝⁶ : Category.{u_3, u_2} W
inst✝⁵ : Preadditive W
inst✝⁴ : HasCokernels W
inst✝³ : HasImages W
inst✝² : HasEqualizers W
inst✝¹ : HasZeroObject W
inst✝ : HasImageMaps W
C D : HomologicalComplex W c
e : HomotopyEquiv C D
i : ι
this : IsIso ((homologyFunctor W c i).map e.hom)
⊢ (homologyFunctor W c i).map e.inv = (asIso ((homologyFunctor W c i).map e.hom)).inv
[PROOFSTEP]
simp only [← Iso.hom_comp_eq_id, asIso_hom, ← Functor.map_comp, ← (homologyFunctor W c i).map_id,
homology_map_eq_of_homotopy e.homotopyHomInvId _]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{?u.22788, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0
[PROOFSTEP]
rw [← f.2 1 0 rfl]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{?u.22788, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ HomologicalComplex.Hom.f f 1 ≫ d ((ChainComplex.single₀ W).obj Y) 1 0 = 0
[PROOFSTEP]
exact comp_zero
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ (toSingle₀CokernelAtZeroIso f).hom =
cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) (_ : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ coequalizer.π (d X 1 0) 0 ≫ (toSingle₀CokernelAtZeroIso f).hom =
coequalizer.π (d X 1 0) 0 ≫
cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) (_ : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0)
[PROOFSTEP]
dsimp only [toSingle₀CokernelAtZeroIso, ChainComplex.homologyZeroIso, homologyOfZeroRight, homology.mapIso,
ChainComplex.homologyFunctor0Single₀, cokernel.map]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ coequalizer.π (d X 1 0) 0 ≫
((Iso.mk
(homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : d X 1 0 ≫ 0 = 0)
(Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10)
(Iso.refl (Arrow.mk (dTo X 0)).right)).hom
(Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (Iso.refl (Arrow.mk (dFrom X 0)).right)).hom
(_ :
(Arrow.isoMk (xPrevIso X (_ : 0 + 1 = 0 + 1)) (Iso.refl (Arrow.mk (dTo X 0)).right)).hom.right =
(Arrow.isoMk (xPrevIso X (_ : 0 + 1 = 0 + 1)) (Iso.refl (Arrow.mk (dTo X 0)).right)).hom.right))
(homology.map (_ : d X 1 0 ≫ 0 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0)
(Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10)
(Iso.refl (Arrow.mk (dTo X 0)).right)).inv
(Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left) (Iso.refl (Arrow.mk (dFrom X 0)).right)).inv
(_ :
(Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10)
(Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right =
(Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)
(Iso.refl (Arrow.mk (dFrom X 0)).right)).inv.left)) ≪≫
cokernel.mapIso (imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0)) (image.ι (d X 1 0))
(imageSubobjectIso (d X 1 0)) (kernelSubobjectIso 0 ≪≫ kernelZeroIsoSource)
(_ :
imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0) ≫ (kernelSubobjectIso 0).hom ≫ kernel.ι 0 =
(imageSubobjectIso (d X 1 0)).hom ≫ image.ι (d X 1 0)) ≪≫
cokernelImageι (d X 1 0)).symm ≪≫
asIso ((homologyFunctor W (ComplexShape.down ℕ) 0).map f) ≪≫
(NatIso.ofComponents fun X =>
homology.congr
(_ : dTo ((ChainComplex.single₀ W).obj X) 0 ≫ dFrom ((ChainComplex.single₀ W).obj X) 0 = 0)
(_ : 0 ≫ 0 = 0) (_ : 0 = 0)
(_ : d ((ChainComplex.single₀ W).obj X) 0 (ComplexShape.next (ComplexShape.down ℕ) 0) = 0) ≪≫
homologyZeroZero).app
Y).hom =
coequalizer.π (d X 1 0) 0 ≫
cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) (_ : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0)
[PROOFSTEP]
dsimp [asIso]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ cokernel.π (d X 1 0) ≫
((cokernel.desc (d X 1 0) (cokernel.π (image.ι (d X 1 0))) (_ : d X 1 0 ≫ cokernel.π (image.ι (d X 1 0)) = 0) ≫
cokernel.map (image.ι (d X 1 0)) (imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0))
(imageSubobjectIso (d X 1 0)).inv (kernelZeroIsoSource.inv ≫ (kernelSubobjectIso 0).inv)
(_ :
image.ι (d X 1 0) ≫ (kernelSubobjectIso 0 ≪≫ kernelZeroIsoSource).inv =
(imageSubobjectIso (d X 1 0)).inv ≫ imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0))) ≫
homology.map (_ : d X 1 0 ≫ 0 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0)
(Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10) (Iso.refl (HomologicalComplex.X X 0))).inv
(Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (Iso.refl (xNext X 0))).inv
(_ :
(Arrow.isoMk (xPrevIso X ChainComplex.homologyZeroIso.proof_10)
(Iso.refl (HomologicalComplex.X X 0))).inv.right =
(Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (Iso.refl (xNext X 0))).inv.left)) ≫
homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0)
(_ : dTo ((ChainComplex.single₀ W).obj Y) 0 ≫ dFrom ((ChainComplex.single₀ W).obj Y) 0 = 0) (sqTo f 0)
(sqFrom f 0) (_ : (sqTo f 0).right = (sqTo f 0).right) ≫
homology.map (_ : dTo ((ChainComplex.single₀ W).obj Y) 0 ≫ dFrom ((ChainComplex.single₀ W).obj Y) 0 = 0)
(_ : 0 ≫ 0 = 0) (CommaMorphism.mk (𝟙 (xPrev ((ChainComplex.single₀ W).obj Y) 0)) (𝟙 Y))
(CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((ChainComplex.single₀ W).obj Y) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫
homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0))
(_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) =
cokernel.π (d X 1 0) ≫
cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) (_ : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0)
[PROOFSTEP]
simp only [cokernel.π_desc, Category.assoc, homology.map_desc, cokernel.π_desc_assoc]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ kernelZeroIsoSource.inv ≫
(kernelSubobjectIso 0).inv ≫
cokernel.π (imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0)) ≫
homology.desc (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0)
(kernelSubobjectMap (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (Iso.refl (xNext X 0))).inv ≫
kernelSubobjectMap (sqFrom f 0) ≫
kernelSubobjectMap (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((ChainComplex.single₀ W).obj Y) 0))) ≫
Subobject.arrow (kernelSubobject 0))
(_ :
imageToKernel (d X 1 0) 0 (_ : d X 1 0 ≫ 0 = 0) ≫
kernelSubobjectMap (Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0)) (Iso.refl (xNext X 0))).inv ≫
kernelSubobjectMap (sqFrom f 0) ≫
kernelSubobjectMap (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((ChainComplex.single₀ W).obj Y) 0))) ≫
Subobject.arrow (kernelSubobject 0) =
0) =
HomologicalComplex.Hom.f f 0
[PROOFSTEP]
simp [homology.desc, Iso.refl_inv (X.X 0)]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ Epi (HomologicalComplex.Hom.f f 0)
[PROOFSTEP]
constructor
[GOAL]
case left_cancellation
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ ∀ {Z : W} (g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z),
HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h → g = h
[PROOFSTEP]
intro Z g h Hgh
[GOAL]
case left_cancellation
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
Z : W
g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z
Hgh : HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h
⊢ g = h
[PROOFSTEP]
rw [← cokernel.π_desc (X.d 1 0) (f.f 0) (by rw [← f.2 1 0 rfl]; exact comp_zero), ←
toSingle₀CokernelAtZeroIso_hom_eq] at Hgh
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
Z : W
g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z
Hgh : HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h
⊢ d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0
[PROOFSTEP]
rw [← f.2 1 0 rfl]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
Z : W
g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z
Hgh : HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h
⊢ HomologicalComplex.Hom.f f 1 ≫ d ((ChainComplex.single₀ W).obj Y) 1 0 = 0
[PROOFSTEP]
exact comp_zero
[GOAL]
case left_cancellation
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
Z : W
g h : HomologicalComplex.X ((ChainComplex.single₀ W).obj Y) 0 ⟶ Z
Hgh✝ : HomologicalComplex.Hom.f f 0 ≫ g = HomologicalComplex.Hom.f f 0 ≫ h
Hgh :
(cokernel.π (d X 1 0) ≫ (toSingle₀CokernelAtZeroIso f).hom) ≫ g =
(cokernel.π (d X 1 0) ≫ (toSingle₀CokernelAtZeroIso f).hom) ≫ h
⊢ g = h
[PROOFSTEP]
rw [(@cancel_epi _ _ _ _ _ _ (epi_comp _ _) _ _).1 Hgh]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ Exact (d X 1 0) (HomologicalComplex.Hom.f f 0)
[PROOFSTEP]
rw [Preadditive.exact_iff_homology_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ ∃ w, Nonempty (_root_.homology (d X 1 0) (HomologicalComplex.Hom.f f 0) w ≅ 0)
[PROOFSTEP]
have h : X.d 1 0 ≫ f.f 0 = 0 := by simp only [← f.2 1 0 rfl, ChainComplex.single₀_obj_X_d, comp_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
⊢ d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0
[PROOFSTEP]
simp only [← f.2 1 0 rfl, ChainComplex.single₀_obj_X_d, comp_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0
⊢ ∃ w, Nonempty (_root_.homology (d X 1 0) (HomologicalComplex.Hom.f f 0) w ≅ 0)
[PROOFSTEP]
refine' ⟨h, Nonempty.intro (homologyIsoKernelDesc _ _ _ ≪≫ _)⟩
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0
⊢ kernel (cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) h) ≅ 0
[PROOFSTEP]
suffices IsIso (cokernel.desc _ _ h) by apply kernel.ofMono
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0
this : IsIso (cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) h)
⊢ kernel (cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) h) ≅ 0
[PROOFSTEP]
apply kernel.ofMono
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0
⊢ IsIso (cokernel.desc (d X 1 0) (HomologicalComplex.Hom.f f 0) h)
[PROOFSTEP]
rw [← toSingle₀CokernelAtZeroIso_hom_eq]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : ChainComplex W ℕ
Y : W
f : X ⟶ (ChainComplex.single₀ W).obj Y
hf✝ hf : QuasiIso f
h : d X 1 0 ≫ HomologicalComplex.Hom.f f 0 = 0
⊢ IsIso (toSingle₀CokernelAtZeroIso f).hom
[PROOFSTEP]
infer_instance
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{?u.68820, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0
[PROOFSTEP]
rw [f.2 0 1 rfl]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{?u.68820, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ d ((CochainComplex.single₀ W).obj Y) 0 1 ≫ HomologicalComplex.Hom.f f 1 = 0
[PROOFSTEP]
exact zero_comp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ (fromSingle₀KernelAtZeroIso f).inv =
kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ (fromSingle₀KernelAtZeroIso f).inv ≫ equalizer.ι (d X 0 1) 0 =
kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0) ≫
equalizer.ι (d X 0 1) 0
[PROOFSTEP]
dsimp only [fromSingle₀KernelAtZeroIso, CochainComplex.homologyZeroIso, homologyOfZeroLeft, homology.mapIso,
CochainComplex.homologyFunctor0Single₀, kernel.map]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ ((Iso.mk
(homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0)
(Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)
(Iso.refl (Arrow.mk (dTo X 0)).right)).hom
(Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)
(xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom
(_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)))
(homology.map (_ : 0 ≫ d X 0 1 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0)
(Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)
(Iso.refl (Arrow.mk (dTo X 0)).right)).inv
(Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)
(xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv
(_ :
(Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)
(Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right =
(Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)
(xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv.left)) ≪≫
(cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0) ≪≫ cokernelZeroIsoTarget) ≪≫
kernelSubobjectIso (d X 0 1)).symm ≪≫
(asIso ((homologyFunctor W (ComplexShape.up ℕ) 0).map f)).symm ≪≫
(NatIso.ofComponents fun X =>
homology.congr
(_ : dTo ((CochainComplex.single₀ W).obj X) 0 ≫ dFrom ((CochainComplex.single₀ W).obj X) 0 = 0)
(_ : 0 ≫ 0 = 0)
(_ : d ((CochainComplex.single₀ W).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0)
(_ : 0 = 0) ≪≫
homologyZeroZero).app
Y).inv ≫
equalizer.ι (d X 0 1) 0 =
kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) (_ : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0) ≫
equalizer.ι (d X 0 1) 0
[PROOFSTEP]
simp only [Iso.trans_inv, Iso.app_inv, Iso.symm_inv, Category.assoc, equalizer_as_kernel, kernel.lift_ι]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ NatTrans.app
(NatIso.ofComponents fun X =>
homology.congr
(_ : dTo ((CochainComplex.single₀ W).obj X) 0 ≫ dFrom ((CochainComplex.single₀ W).obj X) 0 = 0)
(_ : 0 ≫ 0 = 0)
(_ : d ((CochainComplex.single₀ W).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0)
(_ : 0 = 0) ≪≫
homologyZeroZero).inv
Y ≫
(asIso ((homologyFunctor W (ComplexShape.up ℕ) 0).map f)).hom ≫
(Iso.mk
(homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0)
(Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)
(Iso.refl (Arrow.mk (dTo X 0)).right)).hom
(Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)
(xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom
(_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)))
(homology.map (_ : 0 ≫ d X 0 1 = 0) (_ : dTo X 0 ≫ dFrom X 0 = 0)
(Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)
(Iso.refl (Arrow.mk (dTo X 0)).right)).inv
(Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)
(xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv
(_ :
(Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)
(Iso.refl (Arrow.mk (dTo X 0)).right)).inv.right =
(Arrow.isoMk (Iso.refl (Arrow.mk (dFrom X 0)).left)
(xNextIso X CochainComplex.homologyZeroIso.proof_11)).inv.left)) ≪≫
(cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0) ≪≫ cokernelZeroIsoTarget) ≪≫
kernelSubobjectIso (d X 0 1)).hom ≫
kernel.ι (d X 0 1) =
HomologicalComplex.Hom.f f 0
[PROOFSTEP]
dsimp [asIso]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ ((inv (Subobject.arrow (kernelSubobject 0)) ≫ homology.π 0 0 (_ : 0 ≫ 0 = 0)) ≫
homology.map (_ : 0 ≫ 0 = 0)
(_ : dTo ((CochainComplex.single₀ W).obj Y) 0 ≫ dFrom ((CochainComplex.single₀ W).obj Y) 0 = 0)
(CommaMorphism.mk (𝟙 (xPrev ((CochainComplex.single₀ W).obj Y) 0)) (𝟙 Y))
(CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((CochainComplex.single₀ W).obj Y) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right)) ≫
homology.map (_ : dTo ((CochainComplex.single₀ W).obj Y) 0 ≫ dFrom ((CochainComplex.single₀ W).obj Y) 0 = 0)
(_ : dTo X 0 ≫ dFrom X 0 = 0) (sqTo f 0) (sqFrom f 0) (_ : (sqTo f 0).right = (sqTo f 0).right) ≫
(homology.map (_ : dTo X 0 ≫ dFrom X 0 = 0) (_ : 0 ≫ d X 0 1 = 0)
(Arrow.isoMk (xPrevIsoSelf X CochainComplex.homologyZeroIso.proof_9)
(Iso.refl (HomologicalComplex.X X 0))).hom
(Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0))
(xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom
(_ : 𝟙 (HomologicalComplex.X X 0) = 𝟙 (HomologicalComplex.X X 0)) ≫
((cokernelIsoOfEq (_ : imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) = 0)).hom ≫
cokernelZeroIsoTarget.hom) ≫
(kernelSubobjectIso (d X 0 1)).hom) ≫
kernel.ι (d X 0 1) =
HomologicalComplex.Hom.f f 0
[PROOFSTEP]
simp only [Category.assoc, homology.π_map, cokernelZeroIsoTarget_hom, cokernelIsoOfEq_hom_comp_desc,
kernelSubobject_arrow, homology.π_map_assoc, IsIso.inv_comp_eq]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ kernelSubobjectMap (CommaMorphism.mk (𝟙 Y) (𝟙 (xNext ((CochainComplex.single₀ W).obj Y) 0))) ≫
kernelSubobjectMap (sqFrom f 0) ≫
kernelSubobjectMap
(Arrow.isoMk (Iso.refl (HomologicalComplex.X X 0))
(xNextIso X CochainComplex.homologyZeroIso.proof_11)).hom ≫
homology.π 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) ≫
cokernel.desc (imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0))
(𝟙 (Subobject.underlying.obj (kernelSubobject (d X 0 1))))
(_ :
imageToKernel 0 (d X 0 1) (_ : 0 ≫ d X 0 1 = 0) ≫
𝟙 (Subobject.underlying.obj (kernelSubobject (d X 0 1))) =
0) ≫
Subobject.arrow (kernelSubobject (d X 0 1)) =
Subobject.arrow (kernelSubobject 0) ≫ HomologicalComplex.Hom.f f 0
[PROOFSTEP]
simp [homology.π, kernelSubobjectMap_comp, Iso.refl_hom (X.X 0), Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ Mono (HomologicalComplex.Hom.f f 0)
[PROOFSTEP]
constructor
[GOAL]
case right_cancellation
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ ∀ {Z : W} (g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0),
g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0 → g = h
[PROOFSTEP]
intro Z g h Hgh
[GOAL]
case right_cancellation
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
Z : W
g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0
Hgh : g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0
⊢ g = h
[PROOFSTEP]
rw [← kernel.lift_ι (X.d 0 1) (f.f 0) (by rw [f.2 0 1 rfl]; exact zero_comp), ← fromSingle₀KernelAtZeroIso_inv_eq] at
Hgh
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
Z : W
g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0
Hgh : g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0
⊢ HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0
[PROOFSTEP]
rw [f.2 0 1 rfl]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
Z : W
g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0
Hgh : g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0
⊢ d ((CochainComplex.single₀ W).obj Y) 0 1 ≫ HomologicalComplex.Hom.f f 1 = 0
[PROOFSTEP]
exact zero_comp
[GOAL]
case right_cancellation
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
Z : W
g h : Z ⟶ HomologicalComplex.X ((CochainComplex.single₀ W).obj Y) 0
Hgh✝ : g ≫ HomologicalComplex.Hom.f f 0 = h ≫ HomologicalComplex.Hom.f f 0
Hgh :
g ≫ (fromSingle₀KernelAtZeroIso f).inv ≫ kernel.ι (d X 0 1) =
h ≫ (fromSingle₀KernelAtZeroIso f).inv ≫ kernel.ι (d X 0 1)
⊢ g = h
[PROOFSTEP]
rw [(@cancel_mono _ _ _ _ _ _ (mono_comp _ _) _ _).1 Hgh]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ Exact (HomologicalComplex.Hom.f f 0) (d X 0 1)
[PROOFSTEP]
rw [Preadditive.exact_iff_homology_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ ∃ w, Nonempty (_root_.homology (HomologicalComplex.Hom.f f 0) (d X 0 1) w ≅ 0)
[PROOFSTEP]
have h : f.f 0 ≫ X.d 0 1 = 0 := by simp only [HomologicalComplex.Hom.comm, CochainComplex.single₀_obj_X_d, zero_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
⊢ HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0
[PROOFSTEP]
simp only [HomologicalComplex.Hom.comm, CochainComplex.single₀_obj_X_d, zero_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0
⊢ ∃ w, Nonempty (_root_.homology (HomologicalComplex.Hom.f f 0) (d X 0 1) w ≅ 0)
[PROOFSTEP]
refine' ⟨h, Nonempty.intro (homologyIsoCokernelLift _ _ _ ≪≫ _)⟩
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0
⊢ cokernel (kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) h) ≅ 0
[PROOFSTEP]
suffices IsIso (kernel.lift (X.d 0 1) (f.f 0) h) by apply cokernel.ofEpi
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0
this : IsIso (kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) h)
⊢ cokernel (kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) h) ≅ 0
[PROOFSTEP]
apply cokernel.ofEpi
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0
⊢ IsIso (kernel.lift (d X 0 1) (HomologicalComplex.Hom.f f 0) h)
[PROOFSTEP]
rw [← fromSingle₀KernelAtZeroIso_inv_eq f]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
inst✝⁶ : HasZeroObject V
inst✝⁵ : HasEqualizers V
inst✝⁴ : HasImages V
inst✝³ : HasImageMaps V
inst✝² : HasCokernels V
c : ComplexShape ι
C D E : HomologicalComplex V c
W : Type u_2
inst✝¹ : Category.{u_3, u_2} W
inst✝ : Abelian W
X : CochainComplex W ℕ
Y : W
f : (CochainComplex.single₀ W).obj Y ⟶ X
hf : QuasiIso f
h : HomologicalComplex.Hom.f f 0 ≫ d X 0 1 = 0
⊢ IsIso (fromSingle₀KernelAtZeroIso f).inv
[PROOFSTEP]
infer_instance
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁴ : Category.{v, u} V
inst✝¹³ : HasZeroMorphisms V
inst✝¹² : HasZeroObject V
inst✝¹¹ : HasEqualizers V
inst✝¹⁰ : HasImages V
inst✝⁹ : HasImageMaps V
inst✝⁸ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
A : Type u_2
inst✝⁷ : Category.{u_4, u_2} A
inst✝⁶ : Abelian A
B : Type u_3
inst✝⁵ : Category.{u_5, u_3} B
inst✝⁴ : Abelian B
F : A ⥤ B
inst✝³ : Additive F
inst✝² : PreservesFiniteLimits F
inst✝¹ : PreservesFiniteColimits F
inst✝ : Faithful F
C D : HomologicalComplex A c
f : C ⟶ D
hf : QuasiIso ((mapHomologicalComplex F c).map f)
i : ι
⊢ IsIso (F.map ((homologyFunctor A c i).map f))
[PROOFSTEP]
rw [← Functor.comp_map, ← NatIso.naturality_2 (F.homologyFunctorIso i) f, Functor.comp_map]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁴ : Category.{v, u} V
inst✝¹³ : HasZeroMorphisms V
inst✝¹² : HasZeroObject V
inst✝¹¹ : HasEqualizers V
inst✝¹⁰ : HasImages V
inst✝⁹ : HasImageMaps V
inst✝⁸ : HasCokernels V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
A : Type u_2
inst✝⁷ : Category.{u_4, u_2} A
inst✝⁶ : Abelian A
B : Type u_3
inst✝⁵ : Category.{u_5, u_3} B
inst✝⁴ : Abelian B
F : A ⥤ B
inst✝³ : Additive F
inst✝² : PreservesFiniteLimits F
inst✝¹ : PreservesFiniteColimits F
inst✝ : Faithful F
C D : HomologicalComplex A c
f : C ⟶ D
hf : QuasiIso ((mapHomologicalComplex F c).map f)
i : ι
⊢ IsIso
(NatTrans.app (homologyFunctorIso F i).hom C ≫
(homologyFunctor B c i).map ((mapHomologicalComplex F c).map f) ≫ NatTrans.app (homologyFunctorIso F i).inv D)
[PROOFSTEP]
infer_instance
| {"mathlib_filename": "Mathlib.Algebra.Homology.QuasiIso", "llama_tokens": 22059} |
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.4444, u_1} C
inst✝ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
i j k : ι
hi : ComplexShape.prev c j = i
hk : ComplexShape.next c j = k
K : HomologicalComplex C c
⊢ (XIsoOfEq K hi).hom ≫ ((shortComplexFunctor' C c i j k).obj K).f =
((shortComplexFunctor C c j).obj K).f ≫ (Iso.refl ((shortComplexFunctor C c j).obj K).X₂).hom
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.4444, u_1} C
inst✝ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
i j k : ι
hi : ComplexShape.prev c j = i
hk : ComplexShape.next c j = k
K : HomologicalComplex C c
⊢ (Iso.refl ((shortComplexFunctor C c j).obj K).X₂).hom ≫ ((shortComplexFunctor' C c i j k).obj K).g =
((shortComplexFunctor C c j).obj K).g ≫ (XIsoOfEq K hk).hom
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.4444, u_1} C
inst✝ : HasZeroMorphisms C
ι : Type u_2
c : ComplexShape ι
i j k : ι
hi : ComplexShape.prev c j = i
hk : ComplexShape.next c j = k
⊢ ∀ {X Y : HomologicalComplex C c} (f : X ⟶ Y),
(shortComplexFunctor C c j).map f ≫
((fun K => ShortComplex.isoMk (XIsoOfEq K hi) (Iso.refl ((shortComplexFunctor C c j).obj K).X₂) (XIsoOfEq K hk))
Y).hom =
((fun K => ShortComplex.isoMk (XIsoOfEq K hi) (Iso.refl ((shortComplexFunctor C c j).obj K).X₂) (XIsoOfEq K hk))
X).hom ≫
(shortComplexFunctor' C c i j k).map f
[PROOFSTEP]
aesop_cat
| {"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.HomologicalComplex", "llama_tokens": 651} |
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c) c'
i : ι
j j' : ι'
w : ¬ComplexShape.Rel c' j j'
⊢ (fun j j' => Hom.f (d C j j') i) j j' = 0
[PROOFSTEP]
simp_all only [shape, zero_f]
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c) c'
i i' : ι
w : ¬ComplexShape.Rel c i i'
⊢ (fun i i' => Hom.mk fun j => d (X C j) i i') i i' = 0
[PROOFSTEP]
ext j
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c) c'
i i' : ι
w : ¬ComplexShape.Rel c i i'
j : ι'
⊢ Hom.f ((fun i i' => Hom.mk fun j => d (X C j) i i') i i') j = Hom.f 0 j
[PROOFSTEP]
exact (C.X j).shape i i' w
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c) c'
i j : ι'
x✝ : ComplexShape.Rel c' i j
⊢ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((flip V c c' ⋙ flip V c' c).obj C) i j =
d ((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c) c'
i j : ι'
x✝ : ComplexShape.Rel c' i j
i✝ : ι
⊢ Hom.f ((fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((flip V c c' ⋙ flip V c' c).obj C) i j) i✝ =
Hom.f
(d ((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).obj C) i j ≫
(fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j)
i✝
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c) c'
i j : ι'
x✝ : ComplexShape.Rel c' i j
i✝ : ι
⊢ 𝟙 (X (X C i) i✝) ≫ Hom.f (d C i j) i✝ = Hom.f (d C i j) i✝ ≫ 𝟙 (X (X C j) i✝)
[PROOFSTEP]
simp only [Category.id_comp, Category.comp_id]
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c) c'
i j : ι'
x✝ : ComplexShape.Rel c' i j
⊢ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).obj C) i j =
d ((flip V c c' ⋙ flip V c' c).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c) c'
i j : ι'
x✝ : ComplexShape.Rel c' i j
i✝ : ι
⊢ Hom.f
((fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫
d ((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).obj C) i j)
i✝ =
Hom.f (d ((flip V c c' ⋙ flip V c' c).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j) i✝
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c) c'
i j : ι'
x✝ : ComplexShape.Rel c' i j
i✝ : ι
⊢ 𝟙 (X (X C i) i✝) ≫ Hom.f (d C i j) i✝ = Hom.f (d C i j) i✝ ≫ 𝟙 (X (X C j) i✝)
[PROOFSTEP]
simp only [Category.id_comp, Category.comp_id]
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
X Y : HomologicalComplex (HomologicalComplex V c) c'
f : X ⟶ Y
⊢ (𝟭 (HomologicalComplex (HomologicalComplex V c) c')).map f ≫
((fun C =>
Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))
(Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)))
Y).hom =
((fun C =>
Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))
(Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)))
X).hom ≫
(flip V c c' ⋙ flip V c' c).map f
[PROOFSTEP]
ext
[GOAL]
case h.h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
X Y : HomologicalComplex (HomologicalComplex V c) c'
f : X ⟶ Y
i✝¹ : ι'
i✝ : ι
⊢ Hom.f
(Hom.f
((𝟭 (HomologicalComplex (HomologicalComplex V c) c')).map f ≫
((fun C =>
Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))
(Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)))
Y).hom)
i✝¹)
i✝ =
Hom.f
(Hom.f
(((fun C =>
Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))
(Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)))
X).hom ≫
(flip V c c' ⋙ flip V c' c).map f)
i✝¹)
i✝
[PROOFSTEP]
dsimp
[GOAL]
case h.h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
X Y : HomologicalComplex (HomologicalComplex V c) c'
f : X ⟶ Y
i✝¹ : ι'
i✝ : ι
⊢ Hom.f (Hom.f f i✝¹) i✝ ≫ 𝟙 (HomologicalComplex.X (HomologicalComplex.X Y i✝¹) i✝) =
𝟙 (HomologicalComplex.X (HomologicalComplex.X X i✝¹) i✝) ≫ Hom.f (Hom.f f i✝¹) i✝
[PROOFSTEP]
simp only [Category.id_comp, Category.comp_id]
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c') c
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((𝟭 (HomologicalComplex (HomologicalComplex V c') c)).obj C) i j =
d ((flip V c' c ⋙ flip V c c').obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c') c
i j : ι
x✝ : ComplexShape.Rel c i j
i✝ : ι'
⊢ Hom.f
((fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫
d ((𝟭 (HomologicalComplex (HomologicalComplex V c') c)).obj C) i j)
i✝ =
Hom.f (d ((flip V c' c ⋙ flip V c c').obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j) i✝
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c') c
i j : ι
x✝ : ComplexShape.Rel c i j
i✝ : ι'
⊢ 𝟙 (X (X C i) i✝) ≫ Hom.f (d C i j) i✝ = Hom.f (d C i j) i✝ ≫ 𝟙 (X (X C j) i✝)
[PROOFSTEP]
simp only [Category.id_comp, Category.comp_id]
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c') c
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((flip V c' c ⋙ flip V c c').obj C) i j =
d ((𝟭 (HomologicalComplex (HomologicalComplex V c') c)).obj C) i j ≫ (fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c') c
i j : ι
x✝ : ComplexShape.Rel c i j
i✝ : ι'
⊢ Hom.f ((fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) i ≫ d ((flip V c' c ⋙ flip V c c').obj C) i j) i✝ =
Hom.f
(d ((𝟭 (HomologicalComplex (HomologicalComplex V c') c)).obj C) i j ≫
(fun i => Hom.mk fun j => 𝟙 (X (X C i) j)) j)
i✝
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
C : HomologicalComplex (HomologicalComplex V c') c
i j : ι
x✝ : ComplexShape.Rel c i j
i✝ : ι'
⊢ 𝟙 (X (X C i) i✝) ≫ Hom.f (d C i j) i✝ = Hom.f (d C i j) i✝ ≫ 𝟙 (X (X C j) i✝)
[PROOFSTEP]
simp only [Category.id_comp, Category.comp_id]
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
X Y : HomologicalComplex (HomologicalComplex V c') c
f : X ⟶ Y
⊢ (flip V c' c ⋙ flip V c c').map f ≫
((fun C =>
Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))
(Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)))
Y).hom =
((fun C =>
Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))
(Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)))
X).hom ≫
(𝟭 (HomologicalComplex (HomologicalComplex V c') c)).map f
[PROOFSTEP]
ext
[GOAL]
case h.h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
X Y : HomologicalComplex (HomologicalComplex V c') c
f : X ⟶ Y
i✝¹ : ι
i✝ : ι'
⊢ Hom.f
(Hom.f
((flip V c' c ⋙ flip V c c').map f ≫
((fun C =>
Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))
(Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)))
Y).hom)
i✝¹)
i✝ =
Hom.f
(Hom.f
(((fun C =>
Iso.mk (Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j))
(Hom.mk fun i => Hom.mk fun j => 𝟙 (HomologicalComplex.X (HomologicalComplex.X C i) j)))
X).hom ≫
(𝟭 (HomologicalComplex (HomologicalComplex V c') c)).map f)
i✝¹)
i✝
[PROOFSTEP]
dsimp
[GOAL]
case h.h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
ι : Type u_1
c : ComplexShape ι
ι' : Type u_2
c' : ComplexShape ι'
X Y : HomologicalComplex (HomologicalComplex V c') c
f : X ⟶ Y
i✝¹ : ι
i✝ : ι'
⊢ Hom.f (Hom.f f i✝¹) i✝ ≫ 𝟙 (HomologicalComplex.X (HomologicalComplex.X Y i✝¹) i✝) =
𝟙 (HomologicalComplex.X (HomologicalComplex.X X i✝¹) i✝) ≫ Hom.f (Hom.f f i✝¹) i✝
[PROOFSTEP]
simp only [Category.id_comp, Category.comp_id]
| {"mathlib_filename": "Mathlib.Algebra.Homology.Flip", "llama_tokens": 5222} |
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedSemiring α
a b c d : α
H : 0 ≤ a
⊢ 0 ≤ a ^ 0
[PROOFSTEP]
rw [pow_zero]
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedSemiring α
a b c d : α
H : 0 ≤ a
⊢ 0 ≤ 1
[PROOFSTEP]
exact zero_le_one
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedSemiring α
a b c d : α
H : 0 ≤ a
n : ℕ
⊢ 0 ≤ a ^ (n + 1)
[PROOFSTEP]
rw [pow_succ]
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedSemiring α
a b c d : α
H : 0 ≤ a
n : ℕ
⊢ 0 ≤ a * a ^ n
[PROOFSTEP]
exact mul_nonneg H (pow_nonneg H _)
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedSemiring α
a b c d : α
a2 : 2 ≤ a
b0 : 0 ≤ b
⊢ a + (a + a * b) ≤ a * (2 + b)
[PROOFSTEP]
rw [mul_add, mul_two, add_assoc]
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedSemiring α
a b c d : α
h : 0 < a
⊢ 0 < bit1 a
[PROOFSTEP]
nontriviality
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : OrderedSemiring α
a b c d : α
h : 0 < a
inst✝ : Nontrivial α
⊢ 0 < bit1 a
[PROOFSTEP]
exact bit1_pos h.le
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a✝ b✝ c✝ d : α
src✝¹ : OrderedRing α := inst✝
src✝ : Semiring α := Ring.toSemiring
a b c : α
h : a ≤ b
hc : 0 ≤ c
⊢ c * a ≤ c * b
[PROOFSTEP]
simpa only [mul_sub, sub_nonneg] using OrderedRing.mul_nonneg _ _ hc (sub_nonneg.2 h)
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a✝ b✝ c✝ d : α
src✝¹ : OrderedRing α := inst✝
src✝ : Semiring α := Ring.toSemiring
a b c : α
h : a ≤ b
hc : 0 ≤ c
⊢ a * c ≤ b * c
[PROOFSTEP]
simpa only [sub_mul, sub_nonneg] using OrderedRing.mul_nonneg _ _ (sub_nonneg.2 h) hc
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a b c d : α
h : b ≤ a
hc : c ≤ 0
⊢ c * a ≤ c * b
[PROOFSTEP]
simpa only [neg_mul, neg_le_neg_iff] using mul_le_mul_of_nonneg_left h (neg_nonneg.2 hc)
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a b c d : α
h : b ≤ a
hc : c ≤ 0
⊢ a * c ≤ b * c
[PROOFSTEP]
simpa only [mul_neg, neg_le_neg_iff] using mul_le_mul_of_nonneg_right h (neg_nonneg.2 hc)
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a b c d : α
ha : a ≤ 0
hb : b ≤ 0
⊢ 0 ≤ a * b
[PROOFSTEP]
simpa only [zero_mul] using mul_le_mul_of_nonpos_right ha hb
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a b c d : α
hb : b ≤ 0
h : a ≤ 1
⊢ b ≤ a * b
[PROOFSTEP]
simpa only [one_mul] using mul_le_mul_of_nonpos_right h hb
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a b c d : α
hb : b ≤ 0
h : 1 ≤ a
⊢ a * b ≤ b
[PROOFSTEP]
simpa only [one_mul] using mul_le_mul_of_nonpos_right h hb
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a b c d : α
ha : a ≤ 0
h : b ≤ 1
⊢ a ≤ a * b
[PROOFSTEP]
simpa only [mul_one] using mul_le_mul_of_nonpos_left h ha
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a b c d : α
ha : a ≤ 0
h : 1 ≤ b
⊢ a * b ≤ a
[PROOFSTEP]
simpa only [mul_one] using mul_le_mul_of_nonpos_left h ha
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a✝ b✝ c d a b : α
h : a ≤ b
⊢ b = a + (b - a)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a✝ b✝ c✝ d a b : α
x✝ : ∃ c, c ≥ 0 ∧ b = a + c
c : α
hc : c ≥ 0
h : b = a + c
⊢ a ≤ b
[PROOFSTEP]
rw [h, le_add_iff_nonneg_right]
[GOAL]
α : Type u
β : Type u_1
inst✝ : OrderedRing α
a✝ b✝ c✝ d a b : α
x✝ : ∃ c, c ≥ 0 ∧ b = a + c
c : α
hc : c ≥ 0
h : b = a + c
⊢ 0 ≤ c
[PROOFSTEP]
exact hc
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b✝ c✝ d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a b c : α
hab : a ≤ b
hc : 0 ≤ c
⊢ c * a ≤ c * b
[PROOFSTEP]
obtain rfl | hab := Decidable.eq_or_lt_of_le hab
[GOAL]
case inl
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b c✝ d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a c : α
hc : 0 ≤ c
hab : a ≤ a
⊢ c * a ≤ c * a
[PROOFSTEP]
rfl
[GOAL]
case inr
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b✝ c✝ d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a b c : α
hab✝ : a ≤ b
hc : 0 ≤ c
hab : a < b
⊢ c * a ≤ c * b
[PROOFSTEP]
obtain rfl | hc := Decidable.eq_or_lt_of_le hc
[GOAL]
case inr.inl
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b✝ c d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a b : α
hab✝ : a ≤ b
hab : a < b
hc : 0 ≤ 0
⊢ 0 * a ≤ 0 * b
[PROOFSTEP]
simp
[GOAL]
case inr.inr
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b✝ c✝ d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a b c : α
hab✝ : a ≤ b
hc✝ : 0 ≤ c
hab : a < b
hc : 0 < c
⊢ c * a ≤ c * b
[PROOFSTEP]
exact (mul_lt_mul_of_pos_left hab hc).le
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b✝ c✝ d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a b c : α
hab : a ≤ b
hc : 0 ≤ c
⊢ a * c ≤ b * c
[PROOFSTEP]
obtain rfl | hab := Decidable.eq_or_lt_of_le hab
[GOAL]
case inl
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b c✝ d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a c : α
hc : 0 ≤ c
hab : a ≤ a
⊢ a * c ≤ a * c
[PROOFSTEP]
rfl
[GOAL]
case inr
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b✝ c✝ d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a b c : α
hab✝ : a ≤ b
hc : 0 ≤ c
hab : a < b
⊢ a * c ≤ b * c
[PROOFSTEP]
obtain rfl | hc := Decidable.eq_or_lt_of_le hc
[GOAL]
case inr.inl
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b✝ c d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a b : α
hab✝ : a ≤ b
hab : a < b
hc : 0 ≤ 0
⊢ a * 0 ≤ b * 0
[PROOFSTEP]
simp
[GOAL]
case inr.inr
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a✝ b✝ c✝ d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝ : StrictOrderedSemiring α := inst✝¹
a b c : α
hab✝ : a ≤ b
hc✝ : 0 ≤ c
hab : a < b
hc : 0 < c
⊢ a * c ≤ b * c
[PROOFSTEP]
exact (mul_lt_mul_of_pos_right hab hc).le
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedSemiring α
a b c d : α
H : 0 < a
⊢ 0 < a ^ 0
[PROOFSTEP]
nontriviality
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
H : 0 < a
inst✝ : Nontrivial α
⊢ 0 < a ^ 0
[PROOFSTEP]
rw [pow_zero]
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
H : 0 < a
inst✝ : Nontrivial α
⊢ 0 < 1
[PROOFSTEP]
exact zero_lt_one
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedSemiring α
a b c d : α
H : 0 < a
n : ℕ
⊢ 0 < a ^ (n + 1)
[PROOFSTEP]
rw [pow_succ]
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedSemiring α
a b c d : α
H : 0 < a
n : ℕ
⊢ 0 < a * a ^ n
[PROOFSTEP]
exact mul_pos H (pow_pos H _)
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
h1 : a < c
h2 : b < d
h3 : 0 ≤ a
h4 : 0 ≤ b
b0 : 0 = b
⊢ a * b < c * d
[PROOFSTEP]
rw [← b0, mul_zero]
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedSemiring α
a b c d : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
h1 : a < c
h2 : b < d
h3 : 0 ≤ a
h4 : 0 ≤ b
b0 : 0 = b
⊢ 0 < c * d
[PROOFSTEP]
exact mul_pos (h3.trans_lt h1) (h4.trans_lt h2)
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedSemiring α
a b c d : α
⊢ a < c → b < d → 0 ≤ a → 0 ≤ b → a * b < c * d
[PROOFSTEP]
classical exact Decidable.mul_lt_mul''
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedSemiring α
a b c d : α
⊢ a < c → b < d → 0 ≤ a → 0 ≤ b → a * b < c * d
[PROOFSTEP]
exact Decidable.mul_lt_mul''
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedSemiring α
a b c d : α
hn : 0 < a
hm : 1 < b
⊢ a < b * a
[PROOFSTEP]
convert mul_lt_mul_of_pos_right hm hn
[GOAL]
case h.e'_3
α : Type u
β : Type u_1
inst✝ : StrictOrderedSemiring α
a b c d : α
hn : 0 < a
hm : 1 < b
⊢ a = 1 * a
[PROOFSTEP]
rw [one_mul]
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedSemiring α
a b c d : α
hn : 0 < a
hm : 1 < b
⊢ a < a * b
[PROOFSTEP]
convert mul_lt_mul_of_pos_left hm hn
[GOAL]
case h.e'_3
α : Type u
β : Type u_1
inst✝ : StrictOrderedSemiring α
a b c d : α
hn : 0 < a
hm : 1 < b
⊢ a = a * 1
[PROOFSTEP]
rw [mul_one]
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedRing α
a✝ b✝ c✝ : α
src✝¹ : StrictOrderedRing α := inst✝
src✝ : Semiring α := Ring.toSemiring
a b c : α
h : a < b
hc : 0 < c
⊢ c * a < c * b
[PROOFSTEP]
simpa only [mul_sub, sub_pos] using StrictOrderedRing.mul_pos _ _ hc (sub_pos.2 h)
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedRing α
a✝ b✝ c✝ : α
src✝¹ : StrictOrderedRing α := inst✝
src✝ : Semiring α := Ring.toSemiring
a b c : α
h : a < b
hc : 0 < c
⊢ a * c < b * c
[PROOFSTEP]
simpa only [sub_mul, sub_pos] using StrictOrderedRing.mul_pos _ _ (sub_pos.2 h) hc
[GOAL]
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedRing α
a✝ b✝ c : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : StrictOrderedRing α := inst✝¹
src✝ : Semiring α := Ring.toSemiring
a b : α
ha : 0 ≤ a
hb : 0 ≤ b
⊢ 0 ≤ a * b
[PROOFSTEP]
obtain ha | ha := Decidable.eq_or_lt_of_le ha
[GOAL]
case inl
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedRing α
a✝ b✝ c : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : StrictOrderedRing α := inst✝¹
src✝ : Semiring α := Ring.toSemiring
a b : α
ha✝ : 0 ≤ a
hb : 0 ≤ b
ha : 0 = a
⊢ 0 ≤ a * b
[PROOFSTEP]
rw [← ha, zero_mul]
[GOAL]
case inr
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedRing α
a✝ b✝ c : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : StrictOrderedRing α := inst✝¹
src✝ : Semiring α := Ring.toSemiring
a b : α
ha✝ : 0 ≤ a
hb : 0 ≤ b
ha : 0 < a
⊢ 0 ≤ a * b
[PROOFSTEP]
obtain hb | hb := Decidable.eq_or_lt_of_le hb
[GOAL]
case inr.inl
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedRing α
a✝ b✝ c : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : StrictOrderedRing α := inst✝¹
src✝ : Semiring α := Ring.toSemiring
a b : α
ha✝ : 0 ≤ a
hb✝ : 0 ≤ b
ha : 0 < a
hb : 0 = b
⊢ 0 ≤ a * b
[PROOFSTEP]
rw [← hb, mul_zero]
[GOAL]
case inr.inr
α : Type u
β : Type u_1
inst✝¹ : StrictOrderedRing α
a✝ b✝ c : α
inst✝ : DecidableRel fun x x_1 => x ≤ x_1
src✝¹ : StrictOrderedRing α := inst✝¹
src✝ : Semiring α := Ring.toSemiring
a b : α
ha✝ : 0 ≤ a
hb✝ : 0 ≤ b
ha : 0 < a
hb : 0 < b
⊢ 0 ≤ a * b
[PROOFSTEP]
exact (StrictOrderedRing.mul_pos _ _ ha hb).le
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedRing α
a b c : α
h : b < a
hc : c < 0
⊢ c * a < c * b
[PROOFSTEP]
simpa only [neg_mul, neg_lt_neg_iff] using mul_lt_mul_of_pos_left h (neg_pos_of_neg hc)
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedRing α
a b c : α
h : b < a
hc : c < 0
⊢ a * c < b * c
[PROOFSTEP]
simpa only [mul_neg, neg_lt_neg_iff] using mul_lt_mul_of_pos_right h (neg_pos_of_neg hc)
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedRing α
a✝ b✝ c a b : α
ha : a < 0
hb : b < 0
⊢ 0 < a * b
[PROOFSTEP]
simpa only [zero_mul] using mul_lt_mul_of_neg_right ha hb
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedRing α
a b c : α
hb : b < 0
h : a < 1
⊢ b < a * b
[PROOFSTEP]
simpa only [one_mul] using mul_lt_mul_of_neg_right h hb
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedRing α
a b c : α
hb : b < 0
h : 1 < a
⊢ a * b < b
[PROOFSTEP]
simpa only [one_mul] using mul_lt_mul_of_neg_right h hb
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedRing α
a b c : α
ha : a < 0
h : b < 1
⊢ a < a * b
[PROOFSTEP]
simpa only [mul_one] using mul_lt_mul_of_neg_left h ha
[GOAL]
α : Type u
β : Type u_1
inst✝ : StrictOrderedRing α
a b c : α
ha : a < 0
h : 1 < b
⊢ a * b < a
[PROOFSTEP]
simpa only [mul_one] using mul_lt_mul_of_neg_left h ha
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
hab : 0 ≤ a * b
⊢ 0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0
[PROOFSTEP]
refine' Decidable.or_iff_not_and_not.2 _
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
hab : 0 ≤ a * b
⊢ ¬(¬(0 ≤ a ∧ 0 ≤ b) ∧ ¬(a ≤ 0 ∧ b ≤ 0))
[PROOFSTEP]
simp only [not_and, not_le]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
hab : 0 ≤ a * b
⊢ (0 ≤ a → b < 0) → ¬(a ≤ 0 → 0 < b)
[PROOFSTEP]
intro ab nab
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
hab : 0 ≤ a * b
ab : 0 ≤ a → b < 0
nab : a ≤ 0 → 0 < b
⊢ False
[PROOFSTEP]
apply
not_lt_of_le hab
_
-- Porting note: for the middle case, we used to have `rfl`, but it is now rejected.
-- https://github.com/leanprover/std4/issues/62
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
hab : 0 ≤ a * b
ab : 0 ≤ a → b < 0
nab : a ≤ 0 → 0 < b
⊢ a * b < 0
[PROOFSTEP]
rcases lt_trichotomy 0 a with (ha | ha | ha)
[GOAL]
case inl
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
hab : 0 ≤ a * b
ab : 0 ≤ a → b < 0
nab : a ≤ 0 → 0 < b
ha : 0 < a
⊢ a * b < 0
[PROOFSTEP]
exact mul_neg_of_pos_of_neg ha (ab ha.le)
[GOAL]
case inr.inl
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
hab : 0 ≤ a * b
ab : 0 ≤ a → b < 0
nab : a ≤ 0 → 0 < b
ha : 0 = a
⊢ a * b < 0
[PROOFSTEP]
subst ha
[GOAL]
case inr.inl
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
b c d : α
hab : 0 ≤ 0 * b
ab : 0 ≤ 0 → b < 0
nab : 0 ≤ 0 → 0 < b
⊢ 0 * b < 0
[PROOFSTEP]
exact ((ab le_rfl).asymm (nab le_rfl)).elim
[GOAL]
case inr.inr
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
hab : 0 ≤ a * b
ab : 0 ≤ a → b < 0
nab : a ≤ 0 → 0 < b
ha : a < 0
⊢ a * b < 0
[PROOFSTEP]
exact mul_neg_of_neg_of_pos ha (nab ha.le)
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
h : 0 < c
⊢ 0 ≤ c * b ↔ 0 ≤ b
[PROOFSTEP]
simpa using (mul_le_mul_left h : c * 0 ≤ c * b ↔ 0 ≤ b)
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
h : 0 < c
⊢ 0 ≤ b * c ↔ 0 ≤ b
[PROOFSTEP]
simpa using (mul_le_mul_right h : 0 * c ≤ b * c ↔ 0 ≤ b)
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
⊢ bit0 a ≤ bit0 b ↔ a ≤ b
[PROOFSTEP]
rw [bit0, bit0, ← two_mul, ← two_mul, mul_le_mul_left (zero_lt_two : 0 < (2 : α))]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
⊢ bit0 a < bit0 b ↔ a < b
[PROOFSTEP]
rw [bit0, bit0, ← two_mul, ← two_mul, mul_lt_mul_left (zero_lt_two : 0 < (2 : α))]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
⊢ 1 ≤ bit1 a ↔ 0 ≤ a
[PROOFSTEP]
rw [bit1, le_add_iff_nonneg_left, bit0, ← two_mul, zero_le_mul_left (zero_lt_two : 0 < (2 : α))]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
⊢ 1 < bit1 a ↔ 0 < a
[PROOFSTEP]
rw [bit1, lt_add_iff_pos_left, bit0, ← two_mul, zero_lt_mul_left (zero_lt_two : 0 < (2 : α))]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
⊢ 0 ≤ bit0 a ↔ 0 ≤ a
[PROOFSTEP]
rw [bit0, ← two_mul, zero_le_mul_left (zero_lt_two : 0 < (2 : α))]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedSemiring α
a b c d : α
⊢ 0 < bit0 a ↔ 0 < a
[PROOFSTEP]
rw [bit0, ← two_mul, zero_lt_mul_left (zero_lt_two : 0 < (2 : α))]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
src✝ : LinearOrderedRing α := inst✝
⊢ ∀ {a b : α}, a * b = 0 → a = 0 ∨ b = 0
[PROOFSTEP]
intro a b hab
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c : α
src✝ : LinearOrderedRing α := inst✝
a b : α
hab : a * b = 0
⊢ a = 0 ∨ b = 0
[PROOFSTEP]
refine' Decidable.or_iff_not_and_not.2 fun h => _
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c : α
src✝ : LinearOrderedRing α := inst✝
a b : α
hab : a * b = 0
h : ¬a = 0 ∧ ¬b = 0
⊢ False
[PROOFSTEP]
revert hab
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c : α
src✝ : LinearOrderedRing α := inst✝
a b : α
h : ¬a = 0 ∧ ¬b = 0
⊢ a * b = 0 → False
[PROOFSTEP]
cases' lt_or_gt_of_ne h.1 with ha ha
[GOAL]
case inl
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c : α
src✝ : LinearOrderedRing α := inst✝
a b : α
h : ¬a = 0 ∧ ¬b = 0
ha : a < 0
⊢ a * b = 0 → False
[PROOFSTEP]
cases' lt_or_gt_of_ne h.2 with hb hb
[GOAL]
case inr
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c : α
src✝ : LinearOrderedRing α := inst✝
a b : α
h : ¬a = 0 ∧ ¬b = 0
ha : a > 0
⊢ a * b = 0 → False
[PROOFSTEP]
cases' lt_or_gt_of_ne h.2 with hb hb
[GOAL]
case inl.inl
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c : α
src✝ : LinearOrderedRing α := inst✝
a b : α
h : ¬a = 0 ∧ ¬b = 0
ha : a < 0
hb : b < 0
⊢ a * b = 0 → False
case inl.inr
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c : α
src✝ : LinearOrderedRing α := inst✝
a b : α
h : ¬a = 0 ∧ ¬b = 0
ha : a < 0
hb : b > 0
⊢ a * b = 0 → False
case inr.inl
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c : α
src✝ : LinearOrderedRing α := inst✝
a b : α
h : ¬a = 0 ∧ ¬b = 0
ha : a > 0
hb : b < 0
⊢ a * b = 0 → False
case inr.inr
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c : α
src✝ : LinearOrderedRing α := inst✝
a b : α
h : ¬a = 0 ∧ ¬b = 0
ha : a > 0
hb : b > 0
⊢ a * b = 0 → False
[PROOFSTEP]
exacts [(mul_pos_of_neg_of_neg ha hb).ne.symm, (mul_neg_of_neg_of_pos ha hb).ne, (mul_neg_of_pos_of_neg ha hb).ne,
(mul_pos ha hb).ne.symm]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ : α
src✝ : Nontrivial α := inferInstance
a b c : α
ha : a ≠ 0
h : a * b = a * c
⊢ b = c
[PROOFSTEP]
rw [← sub_eq_zero, ← mul_sub] at h
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ : α
src✝ : Nontrivial α := inferInstance
a b c : α
ha : a ≠ 0
h✝ : a * b = a * c
h : a * (b - c) = 0
⊢ b = c
[PROOFSTEP]
exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_left ha)
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ : α
src✝ : Nontrivial α := inferInstance
a b c : α
hb : b ≠ 0
h : a * b = c * b
⊢ a = c
[PROOFSTEP]
rw [← sub_eq_zero, ← sub_mul] at h
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ : α
src✝ : Nontrivial α := inferInstance
a b c : α
hb : b ≠ 0
h✝ : a * b = c * b
h : (a - c) * b = 0
⊢ a = c
[PROOFSTEP]
exact sub_eq_zero.1 ((eq_zero_or_eq_zero_of_mul_eq_zero h).resolve_right hb)
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ a * b < 0 ↔ 0 < a ∧ b < 0 ∨ a < 0 ∧ 0 < b
[PROOFSTEP]
rw [← neg_pos, neg_mul_eq_mul_neg, mul_pos_iff, neg_pos, neg_lt_zero]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ a b c : α
⊢ 0 ≤ a * b ∨ 0 ≤ b * c ∨ 0 ≤ c * a
[PROOFSTEP]
iterate 3 rw [mul_nonneg_iff]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ a b c : α
⊢ 0 ≤ a * b ∨ 0 ≤ b * c ∨ 0 ≤ c * a
[PROOFSTEP]
rw [mul_nonneg_iff]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ a b c : α
⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ 0 ≤ b * c ∨ 0 ≤ c * a
[PROOFSTEP]
rw [mul_nonneg_iff]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ a b c : α
⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c * a
[PROOFSTEP]
rw [mul_nonneg_iff]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ a b c : α
⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0
[PROOFSTEP]
have or_a := le_total 0 a
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ a b c : α
or_a : 0 ≤ a ∨ a ≤ 0
⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0
[PROOFSTEP]
have or_b := le_total 0 b
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ a b c : α
or_a : 0 ≤ a ∨ a ≤ 0
or_b : 0 ≤ b ∨ b ≤ 0
⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0
[PROOFSTEP]
have or_c := le_total 0 c
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b✝ c✝ a b c : α
or_a : 0 ≤ a ∨ a ≤ 0
or_b : 0 ≤ b ∨ b ≤ 0
or_c : 0 ≤ c ∨ c ≤ 0
⊢ (0 ≤ a ∧ 0 ≤ b ∨ a ≤ 0 ∧ b ≤ 0) ∨ (0 ≤ b ∧ 0 ≤ c ∨ b ≤ 0 ∧ c ≤ 0) ∨ 0 ≤ c ∧ 0 ≤ a ∨ c ≤ 0 ∧ a ≤ 0
[PROOFSTEP]
exact
Or.elim or_c
(fun (h0 : 0 ≤ c) =>
Or.elim or_b
(fun (h1 : 0 ≤ b) =>
Or.elim or_a (fun (h2 : 0 ≤ a) => Or.inl (Or.inl ⟨h2, h1⟩))
(fun (_ : a ≤ 0) => Or.inr (Or.inl (Or.inl ⟨h1, h0⟩))))
(fun (h1 : b ≤ 0) =>
Or.elim or_a (fun (h3 : 0 ≤ a) => Or.inr (Or.inr (Or.inl ⟨h0, h3⟩)))
(fun (h3 : a ≤ 0) => Or.inl (Or.inr ⟨h3, h1⟩))))
(fun (h0 : c ≤ 0) =>
Or.elim or_b
(fun (h4 : 0 ≤ b) =>
Or.elim or_a (fun (h5 : 0 ≤ a) => Or.inl (Or.inl ⟨h5, h4⟩))
(fun (h5 : a ≤ 0) => Or.inr (Or.inr (Or.inr ⟨h0, h5⟩))))
(fun (h4 : b ≤ 0) =>
Or.elim or_a (fun (_ : 0 ≤ a) => Or.inr (Or.inl (Or.inr ⟨h4, h0⟩)))
(fun (h6 : a ≤ 0) => Or.inl (Or.inr ⟨h6, h4⟩))))
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ a * b ≤ 0 ↔ 0 ≤ a ∧ b ≤ 0 ∨ a ≤ 0 ∧ 0 ≤ b
[PROOFSTEP]
rw [← neg_nonneg, neg_mul_eq_mul_neg, mul_nonneg_iff, neg_nonneg, neg_nonpos]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ -a ≤ a ↔ 0 ≤ a
[PROOFSTEP]
simp [neg_le_iff_add_nonneg, ← two_mul, mul_nonneg_iff, zero_le_one, (zero_lt_two' α).not_le]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ -a < a ↔ 0 < a
[PROOFSTEP]
simp [neg_lt_iff_pos_add, ← two_mul, mul_pos_iff, zero_lt_one, (zero_lt_two' α).not_lt]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ a ≤ -a ↔ - -a ≤ -a
[PROOFSTEP]
rw [neg_neg]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
⊢ a < -a ↔ - -a < -a
[PROOFSTEP]
rw [neg_neg]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
h : c * a < c * b
hc : c ≤ 0
⊢ -c * b < -c * a
[PROOFSTEP]
rwa [neg_mul, neg_mul, neg_lt_neg_iff]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
h : a * c < b * c
hc : c ≤ 0
⊢ b * -c < a * -c
[PROOFSTEP]
rwa [mul_neg, mul_neg, neg_lt_neg_iff]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
⊢ 0 < a * a ↔ a ≠ 0
[PROOFSTEP]
constructor
[GOAL]
case mp
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
⊢ 0 < a * a → a ≠ 0
[PROOFSTEP]
rintro h rfl
[GOAL]
case mp
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
h : 0 < 0 * 0
⊢ False
[PROOFSTEP]
rw [mul_zero] at h
[GOAL]
case mp
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c : α
h : 0 < 0
⊢ False
[PROOFSTEP]
exact h.false
[GOAL]
case mpr
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
⊢ a ≠ 0 → 0 < a * a
[PROOFSTEP]
intro h
[GOAL]
case mpr
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
h : a ≠ 0
⊢ 0 < a * a
[PROOFSTEP]
cases' h.lt_or_lt with h h
[GOAL]
case mpr.inl
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a✝ b c a : α
h✝ : a ≠ 0
h : a < 0
⊢ 0 < a * a
case mpr.inr α : Type u β : Type u_1 inst✝ : LinearOrderedRing α a✝ b c a : α h✝ : a ≠ 0 h : 0 < a ⊢ 0 < a * a
[PROOFSTEP]
exacts [mul_pos_of_neg_of_neg h h, mul_pos h h]
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c x y : α
⊢ x * x + y * y = 0 ↔ x = 0 ∧ y = 0
[PROOFSTEP]
rw [add_eq_zero_iff', mul_self_eq_zero, mul_self_eq_zero]
[GOAL]
case ha
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c x y : α
⊢ 0 ≤ x * x
[PROOFSTEP]
apply mul_self_nonneg
[GOAL]
case hb
α : Type u
β : Type u_1
inst✝ : LinearOrderedRing α
a b c x y : α
⊢ 0 ≤ y * y
[PROOFSTEP]
apply mul_self_nonneg
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedCommRing α
a b✝ c✝ d b c : α
ha : 0 ≤ a
hd : 0 ≤ d
ba : b * a ≤ max d b * max c a
cd : c * d ≤ max a c * max b d
⊢ a * b ≤ max a c * max d b
[PROOFSTEP]
simpa [mul_comm, max_comm] using ba
[GOAL]
α : Type u
β : Type u_1
inst✝ : LinearOrderedCommRing α
a b✝ c✝ d b c : α
ha : 0 ≤ a
hd : 0 ≤ d
ba : b * a ≤ max d b * max c a
cd : c * d ≤ max a c * max b d
⊢ d * c ≤ max a c * max d b
[PROOFSTEP]
simpa [mul_comm, max_comm] using cd
| {"mathlib_filename": "Mathlib.Algebra.Order.Ring.Defs", "llama_tokens": 13165} |
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
h : Exact f g
⊢ homology f g (_ : f ≫ g = 0) ≅ 0
[PROOFSTEP]
haveI := h.epi
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
h : Exact f g
this : Epi (imageToKernel f g (_ : f ≫ g = 0))
⊢ homology f g (_ : f ≫ g = 0) ≅ 0
[PROOFSTEP]
exact cokernel.ofEpi _
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
h : ∃ w, Nonempty (homology f g w ≅ 0)
⊢ Exact f g
[PROOFSTEP]
obtain ⟨w, ⟨i⟩⟩ := h
[GOAL]
case intro.intro
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
i : homology f g w ≅ 0
⊢ Exact f g
[PROOFSTEP]
exact ⟨w, Preadditive.epi_of_cokernel_zero ((cancel_mono i.hom).mp (by ext))⟩
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
i : homology f g w ≅ 0
⊢ cokernel.π (imageToKernel f g w) ≫ i.hom = 0 ≫ i.hom
[PROOFSTEP]
ext
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h : Exact f₁ g₁
⊢ Exact f₂ g₂
[PROOFSTEP]
rw [Preadditive.exact_iff_homology_zero] at h ⊢
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h✝ : Exact f₁ g₁
h : ∃ w, Nonempty (homology f₁ g₁ w ≅ 0)
⊢ ∃ w, Nonempty (homology f₂ g₂ w ≅ 0)
[PROOFSTEP]
rcases h with ⟨w₁, ⟨i⟩⟩
[GOAL]
case intro.intro
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h : Exact f₁ g₁
w₁ : f₁ ≫ g₁ = 0
i : homology f₁ g₁ w₁ ≅ 0
⊢ ∃ w, Nonempty (homology f₂ g₂ w ≅ 0)
[PROOFSTEP]
suffices w₂ : f₂ ≫ g₂ = 0
[GOAL]
case intro.intro
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h : Exact f₁ g₁
w₁ : f₁ ≫ g₁ = 0
i : homology f₁ g₁ w₁ ≅ 0
w₂ : f₂ ≫ g₂ = 0
⊢ ∃ w, Nonempty (homology f₂ g₂ w ≅ 0)
case w₂
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h : Exact f₁ g₁
w₁ : f₁ ≫ g₁ = 0
i : homology f₁ g₁ w₁ ≅ 0
⊢ f₂ ≫ g₂ = 0
[PROOFSTEP]
exact ⟨w₂, ⟨(homology.mapIso w₁ w₂ α β p).symm.trans i⟩⟩
[GOAL]
case w₂
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h : Exact f₁ g₁
w₁ : f₁ ≫ g₁ = 0
i : homology f₁ g₁ w₁ ≅ 0
⊢ f₂ ≫ g₂ = 0
[PROOFSTEP]
rw [← cancel_epi α.hom.left, ← cancel_mono β.inv.right, comp_zero, zero_comp, ← w₁]
[GOAL]
case w₂
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h : Exact f₁ g₁
w₁ : f₁ ≫ g₁ = 0
i : homology f₁ g₁ w₁ ≅ 0
⊢ (α.hom.left ≫ f₂ ≫ g₂) ≫ β.inv.right = f₁ ≫ g₁
[PROOFSTEP]
have eq₁ := β.inv.w
[GOAL]
case w₂
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h : Exact f₁ g₁
w₁ : f₁ ≫ g₁ = 0
i : homology f₁ g₁ w₁ ≅ 0
eq₁ : (𝟭 V).map β.inv.left ≫ (Arrow.mk g₁).hom = (Arrow.mk g₂).hom ≫ (𝟭 V).map β.inv.right
⊢ (α.hom.left ≫ f₂ ≫ g₂) ≫ β.inv.right = f₁ ≫ g₁
[PROOFSTEP]
have eq₂ := α.hom.w
[GOAL]
case w₂
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h : Exact f₁ g₁
w₁ : f₁ ≫ g₁ = 0
i : homology f₁ g₁ w₁ ≅ 0
eq₁ : (𝟭 V).map β.inv.left ≫ (Arrow.mk g₁).hom = (Arrow.mk g₂).hom ≫ (𝟭 V).map β.inv.right
eq₂ : (𝟭 V).map α.hom.left ≫ (Arrow.mk f₂).hom = (Arrow.mk f₁).hom ≫ (𝟭 V).map α.hom.right
⊢ (α.hom.left ≫ f₂ ≫ g₂) ≫ β.inv.right = f₁ ≫ g₁
[PROOFSTEP]
dsimp at eq₁ eq₂
[GOAL]
case w₂
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
h : Exact f₁ g₁
w₁ : f₁ ≫ g₁ = 0
i : homology f₁ g₁ w₁ ≅ 0
eq₁ : β.inv.left ≫ g₁ = g₂ ≫ β.inv.right
eq₂ : α.hom.left ≫ f₂ = f₁ ≫ α.hom.right
⊢ (α.hom.left ≫ f₂ ≫ g₂) ≫ β.inv.right = f₁ ≫ g₁
[PROOFSTEP]
simp only [Category.assoc, Category.assoc, ← eq₁, reassoc_of% eq₂, p, ← reassoc_of% (Arrow.comp_left β.hom β.inv),
β.hom_inv_id, Arrow.id_left, Category.id_comp]
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ α.symm.hom.right = β.symm.hom.left
[PROOFSTEP]
rw [← cancel_mono α.hom.right]
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ α.symm.hom.right ≫ α.hom.right = β.symm.hom.left ≫ α.hom.right
[PROOFSTEP]
simp only [Iso.symm_hom, ← Arrow.comp_right, α.inv_hom_id]
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ (𝟙 (Arrow.mk f₂)).right = β.inv.left ≫ α.hom.right
[PROOFSTEP]
simp only [p, ← Arrow.comp_left, Arrow.id_right, Arrow.id_left, Iso.inv_hom_id]
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
inst✝³ : HasZeroObject V
inst✝² : Preadditive V
inst✝¹ : HasKernels V
inst✝ : HasCokernels V
A₁ B₁ C₁ A₂ B₂ C₂ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ 𝟙 (Arrow.mk f₂).right = 𝟙 (Arrow.mk g₂).left
[PROOFSTEP]
rfl
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
p : imageSubobject f = kernelSubobject g
⊢ f ≫ g = 0
[PROOFSTEP]
suffices Subobject.arrow (imageSubobject f) ≫ g = 0 by
rw [← imageSubobject_arrow_comp f, Category.assoc, this, comp_zero]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
p : imageSubobject f = kernelSubobject g
this : Subobject.arrow (imageSubobject f) ≫ g = 0
⊢ f ≫ g = 0
[PROOFSTEP]
rw [← imageSubobject_arrow_comp f, Category.assoc, this, comp_zero]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
p : imageSubobject f = kernelSubobject g
⊢ Subobject.arrow (imageSubobject f) ≫ g = 0
[PROOFSTEP]
rw [p, kernelSubobject_arrow_comp]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
p : imageSubobject f = kernelSubobject g
⊢ IsIso (imageToKernel f g (_ : f ≫ g = 0))
[PROOFSTEP]
refine' ⟨⟨Subobject.ofLE _ _ p.ge, _⟩⟩
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
p : imageSubobject f = kernelSubobject g
⊢ imageToKernel f g (_ : f ≫ g = 0) ≫
Subobject.ofLE (kernelSubobject g) (imageSubobject f) (_ : kernelSubobject g ≤ imageSubobject f) =
𝟙 (Subobject.underlying.obj (imageSubobject f)) ∧
Subobject.ofLE (kernelSubobject g) (imageSubobject f) (_ : kernelSubobject g ≤ imageSubobject f) ≫
imageToKernel f g (_ : f ≫ g = 0) =
𝟙 (Subobject.underlying.obj (kernelSubobject g))
[PROOFSTEP]
dsimp [imageToKernel]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
p : imageSubobject f = kernelSubobject g
⊢ Subobject.ofLE (imageSubobject f) (kernelSubobject g) (_ : imageSubobject f ≤ kernelSubobject g) ≫
Subobject.ofLE (kernelSubobject g) (imageSubobject f) (_ : kernelSubobject g ≤ imageSubobject f) =
𝟙 (Subobject.underlying.obj (imageSubobject f)) ∧
Subobject.ofLE (kernelSubobject g) (imageSubobject f) (_ : kernelSubobject g ≤ imageSubobject f) ≫
Subobject.ofLE (imageSubobject f) (kernelSubobject g) (_ : imageSubobject f ≤ kernelSubobject g) =
𝟙 (Subobject.underlying.obj (kernelSubobject g))
[PROOFSTEP]
simp only [Subobject.ofLE_comp_ofLE, Subobject.ofLE_refl]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
p : imageSubobject f = kernelSubobject g
⊢ Epi (imageToKernel f g (_ : f ≫ g = 0))
[PROOFSTEP]
haveI := imageToKernel_isIso_of_image_eq_kernel f g p
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A B C : V
f : A ⟶ B
g : B ⟶ C
p : imageSubobject f = kernelSubobject g
this : IsIso (imageToKernel f g (_ : f ≫ g = 0))
⊢ Epi (imageToKernel f g (_ : f ≫ g = 0))
[PROOFSTEP]
infer_instance
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
i : B ≅ D
h : Exact f g
⊢ Exact (f ≫ i.hom) (i.inv ≫ g)
[PROOFSTEP]
refine' ⟨by simp [h.w], _⟩
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
i : B ≅ D
h : Exact f g
⊢ (f ≫ i.hom) ≫ i.inv ≫ g = 0
[PROOFSTEP]
simp [h.w]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
i : B ≅ D
h : Exact f g
⊢ Epi (imageToKernel (f ≫ i.hom) (i.inv ≫ g) (_ : (f ≫ i.hom) ≫ i.inv ≫ g = 0))
[PROOFSTEP]
rw [imageToKernel_comp_hom_inv_comp]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
i : B ≅ D
h : Exact f g
⊢ Epi ((imageSubobjectCompIso f i.hom).hom ≫ imageToKernel f g (_ : f ≫ g = 0) ≫ (kernelSubobjectIsoComp i.inv g).inv)
[PROOFSTEP]
haveI := h.epi
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
i : B ≅ D
h : Exact f g
this : Epi (imageToKernel f g (_ : f ≫ g = 0))
⊢ Epi ((imageSubobjectCompIso f i.hom).hom ≫ imageToKernel f g (_ : f ≫ g = 0) ≫ (kernelSubobjectIsoComp i.inv g).inv)
[PROOFSTEP]
infer_instance
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
i : B ≅ D
h : Exact (f ≫ i.hom) (i.inv ≫ g)
⊢ Exact f g
[PROOFSTEP]
simpa using exact_comp_inv_hom_comp i h
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hgh : Exact g h
inst✝ : Epi f
⊢ Exact (f ≫ g) h
[PROOFSTEP]
refine' ⟨by simp [hgh.w], _⟩
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hgh : Exact g h
inst✝ : Epi f
⊢ (f ≫ g) ≫ h = 0
[PROOFSTEP]
simp [hgh.w]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hgh : Exact g h
inst✝ : Epi f
⊢ Epi (imageToKernel (f ≫ g) h (_ : (f ≫ g) ≫ h = 0))
[PROOFSTEP]
rw [imageToKernel_comp_left]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hgh : Exact g h
inst✝ : Epi f
⊢ Epi
(Subobject.ofLE (imageSubobject (f ≫ g)) (imageSubobject g) (_ : imageSubobject (f ≫ g) ≤ imageSubobject g) ≫
imageToKernel g h ?w)
case w
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hgh : Exact g h
inst✝ : Epi f
⊢ g ≫ h = 0
[PROOFSTEP]
haveI := hgh.epi
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hgh : Exact g h
inst✝ : Epi f
this : Epi (imageToKernel g h (_ : g ≫ h = 0))
⊢ Epi
(Subobject.ofLE (imageSubobject (f ≫ g)) (imageSubobject g) (_ : imageSubobject (f ≫ g) ≤ imageSubobject g) ≫
imageToKernel g h ?w)
case w
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hgh : Exact g h
inst✝ : Epi f
⊢ g ≫ h = 0
[PROOFSTEP]
infer_instance
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : IsIso f
w : Exact (f ≫ g) h
⊢ Exact g h
[PROOFSTEP]
rw [← IsIso.inv_hom_id_assoc f g]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : IsIso f
w : Exact (f ≫ g) h
⊢ Exact (inv f ≫ f ≫ g) h
[PROOFSTEP]
exact exact_epi_comp w
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hfg : Exact f g
inst✝ : Mono h
⊢ Exact f (g ≫ h)
[PROOFSTEP]
refine' ⟨by simp [hfg.w_assoc], _⟩
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hfg : Exact f g
inst✝ : Mono h
⊢ f ≫ g ≫ h = 0
[PROOFSTEP]
simp [hfg.w_assoc]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hfg : Exact f g
inst✝ : Mono h
⊢ Epi (imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0))
[PROOFSTEP]
rw [imageToKernel_comp_right f g h hfg.w]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hfg : Exact f g
inst✝ : Mono h
⊢ Epi
(imageToKernel f g (_ : f ≫ g = 0) ≫
Subobject.ofLE (kernelSubobject g) (kernelSubobject (g ≫ h)) (_ : kernelSubobject g ≤ kernelSubobject (g ≫ h)))
[PROOFSTEP]
haveI := hfg.epi
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
hfg : Exact f g
inst✝ : Mono h
this : Epi (imageToKernel f g (_ : f ≫ g = 0))
⊢ Epi
(imageToKernel f g (_ : f ≫ g = 0) ≫
Subobject.ofLE (kernelSubobject g) (kernelSubobject (g ≫ h)) (_ : kernelSubobject g ≤ kernelSubobject (g ≫ h)))
[PROOFSTEP]
infer_instance
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : Mono h
⊢ Exact f (g ≫ h) ↔ Exact f g
[PROOFSTEP]
refine' ⟨fun hfg => ⟨zero_of_comp_mono h (by rw [Category.assoc, hfg.1]), _⟩, fun h => exact_comp_mono h⟩
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : Mono h
hfg : Exact f (g ≫ h)
⊢ (f ≫ g) ≫ h = 0
[PROOFSTEP]
rw [Category.assoc, hfg.1]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : Mono h
hfg : Exact f (g ≫ h)
⊢ Epi (imageToKernel f g (_ : f ≫ g = 0))
[PROOFSTEP]
rw [← (Iso.eq_comp_inv _).1 (imageToKernel_comp_mono _ _ h hfg.1)]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : Mono h
hfg : Exact f (g ≫ h)
⊢ Epi
(imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0) ≫
(Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g)
(_ : kernelSubobject (g ≫ h) = kernelSubobject g)).hom)
[PROOFSTEP]
haveI := hfg.2
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : Mono h
hfg : Exact f (g ≫ h)
this : Epi (imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0))
⊢ Epi
(imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0) ≫
(Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g)
(_ : kernelSubobject (g ≫ h) = kernelSubobject g)).hom)
[PROOFSTEP]
infer_instance
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
⊢ Exact (Subobject.arrow (kernelSubobject f)) f
[PROOFSTEP]
refine' ⟨by simp, _⟩
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
⊢ Subobject.arrow (kernelSubobject f) ≫ f = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
⊢ Epi (imageToKernel (Subobject.arrow (kernelSubobject f)) f (_ : Subobject.arrow (kernelSubobject f) ≫ f = 0))
[PROOFSTEP]
refine' @IsIso.epi_of_iso _ _ _ _ _ ?_
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
⊢ IsIso (imageToKernel (Subobject.arrow (kernelSubobject f)) f (_ : Subobject.arrow (kernelSubobject f) ≫ f = 0))
[PROOFSTEP]
exact ⟨⟨factorThruImageSubobject _, by aesop_cat, by aesop_cat⟩⟩
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
⊢ imageToKernel (Subobject.arrow (kernelSubobject f)) f (_ : Subobject.arrow (kernelSubobject f) ≫ f = 0) ≫
factorThruImageSubobject (Subobject.arrow (kernelSubobject f)) =
𝟙 (Subobject.underlying.obj (imageSubobject (Subobject.arrow (kernelSubobject f))))
[PROOFSTEP]
aesop_cat
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
⊢ factorThruImageSubobject (Subobject.arrow (kernelSubobject f)) ≫
imageToKernel (Subobject.arrow (kernelSubobject f)) f (_ : Subobject.arrow (kernelSubobject f) ≫ f = 0) =
𝟙 (Subobject.underlying.obj (kernelSubobject f))
[PROOFSTEP]
aesop_cat
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
⊢ Exact (kernel.ι f) f
[PROOFSTEP]
rw [← kernelSubobject_arrow', exact_iso_comp]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
⊢ Exact (Subobject.arrow (kernelSubobject f)) f
[PROOFSTEP]
exact exact_kernelSubobject_arrow
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact f g
⊢ Epi (factorThruKernelSubobject g f (_ : f ≫ g = 0))
[PROOFSTEP]
rw [← factorThruImageSubobject_comp_imageToKernel]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact f g
⊢ Epi (factorThruImageSubobject f ≫ imageToKernel f g (_ : f ≫ g = 0))
[PROOFSTEP]
haveI := h.epi
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact f g
this : Epi (imageToKernel f g (_ : f ≫ g = 0))
⊢ Epi (factorThruImageSubobject f ≫ imageToKernel f g (_ : f ≫ g = 0))
[PROOFSTEP]
apply epi_comp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact f g
⊢ Epi (kernel.lift g f (_ : f ≫ g = 0))
[PROOFSTEP]
rw [← factorThruKernelSubobject_comp_kernelSubobjectIso]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact f g
⊢ Epi (factorThruKernelSubobject g f (_ : f ≫ g = 0) ≫ (kernelSubobjectIso g).hom)
[PROOFSTEP]
haveI := h.epi_factorThruKernelSubobject
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact f g
this : Epi (factorThruKernelSubobject g f (_ : f ≫ g = 0))
⊢ Epi (factorThruKernelSubobject g f (_ : f ≫ g = 0) ≫ (kernelSubobjectIso g).hom)
[PROOFSTEP]
apply epi_comp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact 0 g
⊢ Subobject.arrow (kernelSubobject g) = 0
[PROOFSTEP]
haveI := h.epi
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact 0 g
this : Epi (imageToKernel 0 g (_ : 0 ≫ g = 0))
⊢ Subobject.arrow (kernelSubobject g) = 0
[PROOFSTEP]
rw [← cancel_epi (imageToKernel (0 : A ⟶ B) g h.w), ← cancel_epi (factorThruImageSubobject (0 : A ⟶ B))]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact 0 g
this : Epi (imageToKernel 0 g (_ : 0 ≫ g = 0))
⊢ factorThruImageSubobject 0 ≫ imageToKernel 0 g (_ : 0 ≫ g = 0) ≫ Subobject.arrow (kernelSubobject g) =
factorThruImageSubobject 0 ≫ imageToKernel 0 g (_ : 0 ≫ g = 0) ≫ 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact 0 g
⊢ kernel.ι g = 0
[PROOFSTEP]
rw [← kernelSubobject_arrow']
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝¹ : HasZeroMorphisms V
inst✝ : HasEqualizers V
h : Exact 0 g
⊢ (kernelSubobjectIso g).inv ≫ Subobject.arrow (kernelSubobject g) = 0
[PROOFSTEP]
simp [kernelSubobject_arrow_eq_zero_of_exact_zero_left A h]
[GOAL]
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h : C ⟶ D
inst✝³ : HasZeroMorphisms V
inst✝² : HasEqualizers V
inst✝¹ : HasZeroObject V
inst✝ : Mono g
⊢ 0 ≫ g = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
h : Exact f g
⊢ kernel.ι g ≫ cokernel.π f = 0
[PROOFSTEP]
suffices Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0 by
rw [← kernelSubobject_arrow', Category.assoc, this, comp_zero]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
h : Exact f g
this : Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0
⊢ kernel.ι g ≫ cokernel.π f = 0
[PROOFSTEP]
rw [← kernelSubobject_arrow', Category.assoc, this, comp_zero]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
h : Exact f g
⊢ Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0
[PROOFSTEP]
haveI := h.epi
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
h : Exact f g
this : Epi (imageToKernel f g (_ : f ≫ g = 0))
⊢ Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0
[PROOFSTEP]
apply zero_of_epi_comp (imageToKernel f g h.w) _
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
h : Exact f g
this : Epi (imageToKernel f g (_ : f ≫ g = 0))
⊢ imageToKernel f g (_ : f ≫ g = 0) ≫ Subobject.arrow (kernelSubobject g) ≫ cokernel.π f = 0
[PROOFSTEP]
rw [imageToKernel_arrow_assoc, ← imageSubobject_arrow, Category.assoc, ← Iso.eq_inv_comp]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
h : Exact f g
this : Epi (imageToKernel f g (_ : f ≫ g = 0))
⊢ image.ι f ≫ cokernel.π f = (imageSubobjectIso f).inv ≫ 0
[PROOFSTEP]
aesop_cat
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B C D : V
f : A ⟶ B
g : B ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroMorphisms V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
h : Exact f g
X Y : V
ι : X ⟶ B
hι : ι ≫ g = 0
π : B ⟶ Y
hπ : f ≫ π = 0
⊢ ι ≫ π = 0
[PROOFSTEP]
rw [← kernel.lift_ι _ _ hι, ← cokernel.π_desc _ _ hπ, Category.assoc, kernel_comp_cokernel_assoc _ _ h, zero_comp,
comp_zero]
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B C✝ D : V
f✝ : A✝ ⟶ B
g✝ : B ⟶ C✝
h : C✝ ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A C : V
f : A ⟶ 0
g : 0 ⟶ C
⊢ Exact f g
[PROOFSTEP]
obtain rfl : f = 0 := by ext
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B C✝ D : V
f✝ : A✝ ⟶ B
g✝ : B ⟶ C✝
h : C✝ ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A C : V
f : A ⟶ 0
g : 0 ⟶ C
⊢ f = 0
[PROOFSTEP]
ext
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B C✝ D : V
f : A✝ ⟶ B
g✝ : B ⟶ C✝
h : C✝ ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A C : V
g : 0 ⟶ C
⊢ Exact 0 g
[PROOFSTEP]
obtain rfl : g = 0 := by ext
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B C✝ D : V
f : A✝ ⟶ B
g✝ : B ⟶ C✝
h : C✝ ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A C : V
g : 0 ⟶ C
⊢ g = 0
[PROOFSTEP]
ext
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B C✝ D : V
f : A✝ ⟶ B
g : B ⟶ C✝
h : C✝ ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A C : V
⊢ Exact 0 0
[PROOFSTEP]
fconstructor
[GOAL]
case w
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B C✝ D : V
f : A✝ ⟶ B
g : B ⟶ C✝
h : C✝ ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A C : V
⊢ 0 ≫ 0 = 0
[PROOFSTEP]
simp
[GOAL]
case epi
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B C✝ D : V
f : A✝ ⟶ B
g : B ⟶ C✝
h : C✝ ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasKernels V
A C : V
⊢ Epi (imageToKernel 0 0 (_ : 0 ≫ 0 = 0))
[PROOFSTEP]
exact imageToKernel_epi_of_zero_of_mono 0
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A B✝ C✝ D : V
f✝ : A ⟶ B✝
g : B✝ ⟶ C✝
h✝ : C✝ ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : Preadditive V
inst✝ : HasKernels V
B C : V
f : B ⟶ C
h : Exact 0 f
⊢ Epi 0
[PROOFSTEP]
simpa using h.epi
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B✝ C D : V
f✝ : A✝ ⟶ B✝
g : B✝ ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : Preadditive V
inst✝ : HasEqualizers V
A B : V
f : A ⟶ B
h : Exact f 0
⊢ Epi f
[PROOFSTEP]
have e₁ := h.epi
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B✝ C D : V
f✝ : A✝ ⟶ B✝
g : B✝ ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : Preadditive V
inst✝ : HasEqualizers V
A B : V
f : A ⟶ B
h : Exact f 0
e₁ : Epi (imageToKernel f 0 (_ : f ≫ 0 = 0))
⊢ Epi f
[PROOFSTEP]
rw [imageToKernel_zero_right] at e₁
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B✝ C D : V
f✝ : A✝ ⟶ B✝
g : B✝ ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : Preadditive V
inst✝ : HasEqualizers V
A B : V
f : A ⟶ B
h : Exact f 0
e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0)))
⊢ Epi f
[PROOFSTEP]
have e₂ : Epi (((imageSubobject f).arrow ≫ inv (kernelSubobject 0).arrow) ≫ (kernelSubobject 0).arrow) :=
@epi_comp _ _ _ _ _ _ e₁ _ _
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B✝ C D : V
f✝ : A✝ ⟶ B✝
g : B✝ ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : Preadditive V
inst✝ : HasEqualizers V
A B : V
f : A ⟶ B
h : Exact f 0
e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0)))
e₂ :
Epi
((Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) ≫
Subobject.arrow (kernelSubobject 0))
⊢ Epi f
[PROOFSTEP]
rw [Category.assoc, IsIso.inv_hom_id, Category.comp_id] at e₂
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B✝ C D : V
f✝ : A✝ ⟶ B✝
g : B✝ ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : Preadditive V
inst✝ : HasEqualizers V
A B : V
f : A ⟶ B
h : Exact f 0
e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0)))
e₂ : Epi (Subobject.arrow (imageSubobject f))
⊢ Epi f
[PROOFSTEP]
rw [← imageSubobject_arrow] at e₂
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B✝ C D : V
f✝ : A✝ ⟶ B✝
g : B✝ ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : Preadditive V
inst✝ : HasEqualizers V
A B : V
f : A ⟶ B
h : Exact f 0
e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0)))
e₂ : Epi ((imageSubobjectIso f).hom ≫ image.ι f)
⊢ Epi f
[PROOFSTEP]
haveI : Epi (image.ι f) := epi_of_epi (imageSubobjectIso f).hom (image.ι f)
[GOAL]
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasImages V
A✝ B✝ C D : V
f✝ : A✝ ⟶ B✝
g : B✝ ⟶ C
h✝ : C ⟶ D
inst✝² : HasZeroObject V
inst✝¹ : Preadditive V
inst✝ : HasEqualizers V
A B : V
f : A ⟶ B
h : Exact f 0
e₁ : Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0)))
e₂ : Epi ((imageSubobjectIso f).hom ≫ image.ι f)
this : Epi (image.ι f)
⊢ Epi f
[PROOFSTEP]
apply epi_of_epi_image
| {"mathlib_filename": "Mathlib.Algebra.Homology.Exact", "llama_tokens": 17300} |
[GOAL]
G₁ : Type u_1
G₂ : Type u_2
inst✝¹ : Semigroup G₁
inst✝ : Semigroup G₂
x y : G₁ × G₂
⊢ x ∣ y ↔ x.fst ∣ y.fst ∧ x.snd ∣ y.snd
[PROOFSTEP]
cases x
[GOAL]
case mk
G₁ : Type u_1
G₂ : Type u_2
inst✝¹ : Semigroup G₁
inst✝ : Semigroup G₂
y : G₁ × G₂
fst✝ : G₁
snd✝ : G₂
⊢ (fst✝, snd✝) ∣ y ↔ (fst✝, snd✝).fst ∣ y.fst ∧ (fst✝, snd✝).snd ∣ y.snd
[PROOFSTEP]
cases y
[GOAL]
case mk.mk
G₁ : Type u_1
G₂ : Type u_2
inst✝¹ : Semigroup G₁
inst✝ : Semigroup G₂
fst✝¹ : G₁
snd✝¹ : G₂
fst✝ : G₁
snd✝ : G₂
⊢ (fst✝¹, snd✝¹) ∣ (fst✝, snd✝) ↔ (fst✝¹, snd✝¹).fst ∣ (fst✝, snd✝).fst ∧ (fst✝¹, snd✝¹).snd ∣ (fst✝, snd✝).snd
[PROOFSTEP]
simp only [dvd_def, Prod.exists, Prod.mk_mul_mk, Prod.mk.injEq, exists_and_left, exists_and_right, and_self, true_and]
| {"mathlib_filename": "Mathlib.Algebra.Divisibility.Prod", "llama_tokens": 490} |
[GOAL]
α : Type u_1
inst✝ : Monoid α
a b : α
h : a = b
⊢ a ∣ b
[PROOFSTEP]
rw [h]
[GOAL]
α : Type u_1
inst✝ : CommSemigroup α
a b c✝ c : α
h : c * a = b
⊢ a * ?m.8269 c h = b
[PROOFSTEP]
rw [mul_comm] at h
[GOAL]
α : Type u_1
inst✝ : CommSemigroup α
a b c✝ c : α
h✝ : c * a = b
h : a * c = b
⊢ a * ?m.8269 c h✝ = b
[PROOFSTEP]
apply h
[GOAL]
α : Type u_1
inst✝ : CommSemigroup α
a b c : α
⊢ (∃ c, b = c * a) → a ∣ b
[PROOFSTEP]
rintro ⟨c, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝ : CommSemigroup α
a c✝ c : α
⊢ a ∣ c * a
[PROOFSTEP]
exact ⟨c, mul_comm _ _⟩
[GOAL]
α : Type u_1
inst✝ : CommSemigroup α
a b c✝ : α
h : a ∣ b
c : α
⊢ a ∣ c * b
[PROOFSTEP]
rw [mul_comm]
[GOAL]
α : Type u_1
inst✝ : CommSemigroup α
a b c✝ : α
h : a ∣ b
c : α
⊢ a ∣ b * c
[PROOFSTEP]
exact h.mul_right _
[GOAL]
α : Type u_1
inst✝ : CommSemigroup α
a✝ b c✝ a c e f : α
⊢ a * e * (c * f) = a * c * (e * f)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : CommSemigroup α
a b c : α
h : a * b ∣ c
d : α
ceq : c = a * b * d
⊢ b * (a * d) = c
[PROOFSTEP]
simp [ceq]
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
a✝ b✝ a b : α
h : a ∣ b
⊢ a ^ 0 ∣ b ^ 0
[PROOFSTEP]
rw [pow_zero, pow_zero]
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
a✝ b✝ a b : α
h : a ∣ b
n : ℕ
⊢ a ^ (n + 1) ∣ b ^ (n + 1)
[PROOFSTEP]
rw [pow_succ, pow_succ]
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
a✝ b✝ a b : α
h : a ∣ b
n : ℕ
⊢ a * a ^ n ∣ b * b ^ n
[PROOFSTEP]
exact mul_dvd_mul h (pow_dvd_pow_of_dvd h n)
| {"mathlib_filename": "Mathlib.Algebra.Divisibility.Basic", "llama_tokens": 862} |
[GOAL]
α : Type u_1
inst✝ : Monoid α
a b : α
u : αˣ
⊢ a = ↑u * (↑u⁻¹ * a)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
inst✝ : Monoid α
a b : α
u : αˣ
x✝ : a ∣ b * ↑u
c : α
Eq : b * ↑u = a * c
⊢ b = a * (c * ↑u⁻¹)
[PROOFSTEP]
rw [← mul_assoc, ← Eq, Units.mul_inv_cancel_right]
[GOAL]
α : Type u_1
inst✝ : Monoid α
a b : α
u : αˣ
h : a ∣ b
⊢ a * ↑u * ↑u⁻¹ = a
[PROOFSTEP]
rw [mul_assoc, u.mul_inv, mul_one]
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
a b : α
u : αˣ
⊢ a ∣ ↑u * b ↔ a ∣ b
[PROOFSTEP]
rw [mul_comm]
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
a b : α
u : αˣ
⊢ a ∣ b * ↑u ↔ a ∣ b
[PROOFSTEP]
apply dvd_mul_right
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
a b : α
u : αˣ
⊢ ↑u * a ∣ b ↔ a ∣ b
[PROOFSTEP]
rw [mul_comm]
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
a b : α
u : αˣ
⊢ a * ↑u ∣ b ↔ a ∣ b
[PROOFSTEP]
apply mul_right_dvd
[GOAL]
α : Type u_1
inst✝ : Monoid α
a b u : α
hu : IsUnit u
⊢ u ∣ a
[PROOFSTEP]
rcases hu with ⟨u, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝ : Monoid α
a b : α
u : αˣ
⊢ ↑u ∣ a
[PROOFSTEP]
apply Units.coe_dvd
[GOAL]
α : Type u_1
inst✝ : Monoid α
a b u : α
hu : IsUnit u
⊢ a ∣ b * u ↔ a ∣ b
[PROOFSTEP]
rcases hu with ⟨u, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝ : Monoid α
a b : α
u : αˣ
⊢ a ∣ b * ↑u ↔ a ∣ b
[PROOFSTEP]
apply Units.dvd_mul_right
[GOAL]
α : Type u_1
inst✝ : Monoid α
a b u : α
hu : IsUnit u
⊢ a * u ∣ b ↔ a ∣ b
[PROOFSTEP]
rcases hu with ⟨u, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝ : Monoid α
a b : α
u : αˣ
⊢ a * ↑u ∣ b ↔ a ∣ b
[PROOFSTEP]
apply Units.mul_right_dvd
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
a b u : α
hu : IsUnit u
⊢ a ∣ u * b ↔ a ∣ b
[PROOFSTEP]
rcases hu with ⟨u, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝ : CommMonoid α
a b : α
u : αˣ
⊢ a ∣ ↑u * b ↔ a ∣ b
[PROOFSTEP]
apply Units.dvd_mul_left
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
a b u : α
hu : IsUnit u
⊢ u * a ∣ b ↔ a ∣ b
[PROOFSTEP]
rcases hu with ⟨u, rfl⟩
[GOAL]
case intro
α : Type u_1
inst✝ : CommMonoid α
a b : α
u : αˣ
⊢ ↑u * a ∣ b ↔ a ∣ b
[PROOFSTEP]
apply Units.mul_left_dvd
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
x : α
x✝ : x ∣ 1
y : α
h : 1 = x * y
⊢ y * x = 1
[PROOFSTEP]
rw [h, mul_comm]
| {"mathlib_filename": "Mathlib.Algebra.Divisibility.Units", "llama_tokens": 1235} |
[GOAL]
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A✝ B✝ C✝ A' B' C' : 𝒜
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
χ : C ⟶ B
φ : B ⟶ A
hfg : f ≫ g = 0
H : φ ≫ f + g ≫ χ = 𝟙 B
⊢ Epi (imageToKernel f g hfg)
[PROOFSTEP]
set ψ : (kernelSubobject g : 𝒜) ⟶ imageSubobject f := Subobject.arrow _ ≫ φ ≫ factorThruImageSubobject f
[GOAL]
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A✝ B✝ C✝ A' B' C' : 𝒜
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
χ : C ⟶ B
φ : B ⟶ A
hfg : f ≫ g = 0
H : φ ≫ f + g ≫ χ = 𝟙 B
ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) :=
Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f
⊢ Epi (imageToKernel f g hfg)
[PROOFSTEP]
suffices : ψ ≫ imageToKernel f g hfg = 𝟙 _
[GOAL]
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A✝ B✝ C✝ A' B' C' : 𝒜
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
χ : C ⟶ B
φ : B ⟶ A
hfg : f ≫ g = 0
H : φ ≫ f + g ≫ χ = 𝟙 B
ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) :=
Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f
this : ψ ≫ imageToKernel f g hfg = 𝟙 (Subobject.underlying.obj (kernelSubobject g))
⊢ Epi (imageToKernel f g hfg)
[PROOFSTEP]
exact epi_of_epi_fac this
[GOAL]
case this
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A✝ B✝ C✝ A' B' C' : 𝒜
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
χ : C ⟶ B
φ : B ⟶ A
hfg : f ≫ g = 0
H : φ ≫ f + g ≫ χ = 𝟙 B
ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) :=
Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f
⊢ ψ ≫ imageToKernel f g hfg = 𝟙 (Subobject.underlying.obj (kernelSubobject g))
[PROOFSTEP]
rw [← cancel_mono (Subobject.arrow _)]
[GOAL]
case this
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A✝ B✝ C✝ A' B' C' : 𝒜
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
χ : C ⟶ B
φ : B ⟶ A
hfg : f ≫ g = 0
H : φ ≫ f + g ≫ χ = 𝟙 B
ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) :=
Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f
⊢ (ψ ≫ imageToKernel f g hfg) ≫ Subobject.arrow (kernelSubobject g) =
𝟙 (Subobject.underlying.obj (kernelSubobject g)) ≫ Subobject.arrow (kernelSubobject g)
[PROOFSTEP]
simp only [imageToKernel_arrow, imageSubobject_arrow_comp, Category.id_comp, Category.assoc]
[GOAL]
case this
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A✝ B✝ C✝ A' B' C' : 𝒜
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
χ : C ⟶ B
φ : B ⟶ A
hfg : f ≫ g = 0
H : φ ≫ f + g ≫ χ = 𝟙 B
ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) :=
Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f
⊢ Subobject.arrow (kernelSubobject g) ≫ φ ≫ f = Subobject.arrow (kernelSubobject g)
[PROOFSTEP]
calc
(kernelSubobject g).arrow ≫ φ ≫ f = (kernelSubobject g).arrow ≫ 𝟙 B :=
by
rw [← H, Preadditive.comp_add]
simp only [add_zero, zero_comp, kernelSubobject_arrow_comp_assoc]
_ = (kernelSubobject g).arrow := Category.comp_id _
[GOAL]
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A✝ B✝ C✝ A' B' C' : 𝒜
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
χ : C ⟶ B
φ : B ⟶ A
hfg : f ≫ g = 0
H : φ ≫ f + g ≫ χ = 𝟙 B
ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) :=
Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f
⊢ Subobject.arrow (kernelSubobject g) ≫ φ ≫ f = Subobject.arrow (kernelSubobject g) ≫ 𝟙 B
[PROOFSTEP]
rw [← H, Preadditive.comp_add]
[GOAL]
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A✝ B✝ C✝ A' B' C' : 𝒜
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
χ : C ⟶ B
φ : B ⟶ A
hfg : f ≫ g = 0
H : φ ≫ f + g ≫ χ = 𝟙 B
ψ : Subobject.underlying.obj (kernelSubobject g) ⟶ Subobject.underlying.obj (imageSubobject f) :=
Subobject.arrow (kernelSubobject g) ≫ φ ≫ factorThruImageSubobject f
⊢ Subobject.arrow (kernelSubobject g) ≫ φ ≫ f =
Subobject.arrow (kernelSubobject g) ≫ φ ≫ f + Subobject.arrow (kernelSubobject g) ≫ g ≫ χ
[PROOFSTEP]
simp only [add_zero, zero_comp, kernelSubobject_arrow_comp_assoc]
[GOAL]
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
h : Split f g
⊢ Exact f g
[PROOFSTEP]
obtain ⟨φ, χ, -, -, h1, -, h2⟩ := h
[GOAL]
case mk.intro.intro.intro.intro.intro.intro
𝒜 : Type u_1
inst✝³ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : Preadditive 𝒜
inst✝¹ : HasKernels 𝒜
inst✝ : HasImages 𝒜
φ : B ⟶ A
χ : C ⟶ B
h1 : f ≫ g = 0
h2 : φ ≫ f + g ≫ χ = 𝟙 B
⊢ Exact f g
[PROOFSTEP]
exact exact_of_split h1 h2
[GOAL]
𝒜✝ : Type u_1
inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝
A✝ B✝ C✝ A' B' C' : 𝒜✝
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁷ : Preadditive 𝒜✝
inst✝⁶ : HasKernels 𝒜✝
inst✝⁵ : HasImages 𝒜✝
𝒜 : Type u_2
ℬ : Type u_3
inst✝⁴ : Category.{u_4, u_2} 𝒜
inst✝³ : Preadditive 𝒜
inst✝² : Category.{u_5, u_3} ℬ
inst✝¹ : Preadditive ℬ
F : 𝒜 ⥤ ℬ
inst✝ : Functor.Additive F
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
h : Split f g
⊢ Split (F.map f) (F.map g)
[PROOFSTEP]
obtain ⟨φ, χ, h1, h2, h3, h4, h5⟩ := h
[GOAL]
case mk.intro.intro.intro.intro.intro.intro
𝒜✝ : Type u_1
inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝
A✝ B✝ C✝ A' B' C' : 𝒜✝
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁷ : Preadditive 𝒜✝
inst✝⁶ : HasKernels 𝒜✝
inst✝⁵ : HasImages 𝒜✝
𝒜 : Type u_2
ℬ : Type u_3
inst✝⁴ : Category.{u_4, u_2} 𝒜
inst✝³ : Preadditive 𝒜
inst✝² : Category.{u_5, u_3} ℬ
inst✝¹ : Preadditive ℬ
F : 𝒜 ⥤ ℬ
inst✝ : Functor.Additive F
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
φ : B ⟶ A
χ : C ⟶ B
h1 : f ≫ φ = 𝟙 A
h2 : χ ≫ g = 𝟙 C
h3 : f ≫ g = 0
h4 : χ ≫ φ = 0
h5 : φ ≫ f + g ≫ χ = 𝟙 B
⊢ Split (F.map f) (F.map g)
[PROOFSTEP]
refine ⟨⟨F.map φ, F.map χ, ?_⟩⟩
[GOAL]
case mk.intro.intro.intro.intro.intro.intro
𝒜✝ : Type u_1
inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝
A✝ B✝ C✝ A' B' C' : 𝒜✝
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁷ : Preadditive 𝒜✝
inst✝⁶ : HasKernels 𝒜✝
inst✝⁵ : HasImages 𝒜✝
𝒜 : Type u_2
ℬ : Type u_3
inst✝⁴ : Category.{u_4, u_2} 𝒜
inst✝³ : Preadditive 𝒜
inst✝² : Category.{u_5, u_3} ℬ
inst✝¹ : Preadditive ℬ
F : 𝒜 ⥤ ℬ
inst✝ : Functor.Additive F
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
φ : B ⟶ A
χ : C ⟶ B
h1 : f ≫ φ = 𝟙 A
h2 : χ ≫ g = 𝟙 C
h3 : f ≫ g = 0
h4 : χ ≫ φ = 0
h5 : φ ≫ f + g ≫ χ = 𝟙 B
⊢ F.map f ≫ F.map φ = 𝟙 (F.obj A) ∧
F.map χ ≫ F.map g = 𝟙 (F.obj C) ∧
F.map f ≫ F.map g = 0 ∧ F.map χ ≫ F.map φ = 0 ∧ F.map φ ≫ F.map f + F.map g ≫ F.map χ = 𝟙 (F.obj B)
[PROOFSTEP]
simp only [← F.map_comp, ← F.map_id]
[GOAL]
case mk.intro.intro.intro.intro.intro.intro
𝒜✝ : Type u_1
inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝
A✝ B✝ C✝ A' B' C' : 𝒜✝
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁷ : Preadditive 𝒜✝
inst✝⁶ : HasKernels 𝒜✝
inst✝⁵ : HasImages 𝒜✝
𝒜 : Type u_2
ℬ : Type u_3
inst✝⁴ : Category.{u_4, u_2} 𝒜
inst✝³ : Preadditive 𝒜
inst✝² : Category.{u_5, u_3} ℬ
inst✝¹ : Preadditive ℬ
F : 𝒜 ⥤ ℬ
inst✝ : Functor.Additive F
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
φ : B ⟶ A
χ : C ⟶ B
h1 : f ≫ φ = 𝟙 A
h2 : χ ≫ g = 𝟙 C
h3 : f ≫ g = 0
h4 : χ ≫ φ = 0
h5 : φ ≫ f + g ≫ χ = 𝟙 B
⊢ F.map (f ≫ φ) = F.map (𝟙 A) ∧
F.map (χ ≫ g) = F.map (𝟙 C) ∧ F.map (f ≫ g) = 0 ∧ F.map (χ ≫ φ) = 0 ∧ F.map (φ ≫ f) + F.map (g ≫ χ) = F.map (𝟙 B)
[PROOFSTEP]
rw [← F.map_add]
-- porting note: `simp only` fails to use this lemma
[GOAL]
case mk.intro.intro.intro.intro.intro.intro
𝒜✝ : Type u_1
inst✝⁸ : Category.{?u.22622, u_1} 𝒜✝
A✝ B✝ C✝ A' B' C' : 𝒜✝
f✝ : A✝ ⟶ B✝
g✝ : B✝ ⟶ C✝
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁷ : Preadditive 𝒜✝
inst✝⁶ : HasKernels 𝒜✝
inst✝⁵ : HasImages 𝒜✝
𝒜 : Type u_2
ℬ : Type u_3
inst✝⁴ : Category.{u_4, u_2} 𝒜
inst✝³ : Preadditive 𝒜
inst✝² : Category.{u_5, u_3} ℬ
inst✝¹ : Preadditive ℬ
F : 𝒜 ⥤ ℬ
inst✝ : Functor.Additive F
A B C : 𝒜
f : A ⟶ B
g : B ⟶ C
φ : B ⟶ A
χ : C ⟶ B
h1 : f ≫ φ = 𝟙 A
h2 : χ ≫ g = 𝟙 C
h3 : f ≫ g = 0
h4 : χ ≫ φ = 0
h5 : φ ≫ f + g ≫ χ = 𝟙 B
⊢ F.map (f ≫ φ) = F.map (𝟙 A) ∧
F.map (χ ≫ g) = F.map (𝟙 C) ∧ F.map (f ≫ g) = 0 ∧ F.map (χ ≫ φ) = 0 ∧ F.map (φ ≫ f + g ≫ χ) = F.map (𝟙 B)
[PROOFSTEP]
simp only [F.map_zero, *, true_and]
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ biprod.inl ≫ h.iso.inv = f
[PROOFSTEP]
rw [Iso.comp_inv_eq, h.comp_iso_eq_inl]
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ h.iso.inv ≫ g = biprod.snd
[PROOFSTEP]
rw [Iso.inv_comp_eq, h.iso_comp_snd_eq]
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ section h ≫ g = 𝟙 C
[PROOFSTEP]
simp [Splitting.section]
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ f ≫ retraction h = 𝟙 A
[PROOFSTEP]
simp [retraction]
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ section h ≫ retraction h = 0
[PROOFSTEP]
delta Splitting.section retraction
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ (biprod.inr ≫ h.iso.inv) ≫ h.iso.hom ≫ biprod.fst = 0
[PROOFSTEP]
simp
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{?u.48802, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ f ≫ retraction h = 𝟙 A
[PROOFSTEP]
simp
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{?u.49754, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ section h ≫ g = 𝟙 C
[PROOFSTEP]
simp
[GOAL]
𝒜 : Type u_1
inst✝³ : Category.{?u.54404, u_1} 𝒜
A B C A' B' C' : 𝒜
f✝ : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : HasZeroMorphisms 𝒜
inst✝¹ : HasBinaryBiproducts 𝒜
h : Splitting f✝ g
X Y Z : 𝒜
f : X ⟶ Y
inst✝ : IsIso f
hZ : IsZero Z
⊢ f ≫ ((asIso f).symm ≪≫ isoBiprodZero hZ).hom = biprod.inl
[PROOFSTEP]
simp [hZ.eq_of_tgt _ 0]
[GOAL]
𝒜 : Type u_1
inst✝³ : Category.{?u.54404, u_1} 𝒜
A B C A' B' C' : 𝒜
f✝ : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝² : HasZeroMorphisms 𝒜
inst✝¹ : HasBinaryBiproducts 𝒜
h : Splitting f✝ g
X Y Z : 𝒜
f : X ⟶ Y
inst✝ : IsIso f
hZ : IsZero Z
⊢ ((asIso f).symm ≪≫ isoBiprodZero hZ).hom ≫ biprod.snd = 0
[PROOFSTEP]
simp
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{?u.60340, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ Mono (section h)
[PROOFSTEP]
delta Splitting.section
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{?u.60340, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ Mono (biprod.inr ≫ h.iso.inv)
[PROOFSTEP]
infer_instance
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{?u.61269, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ Epi (retraction h)
[PROOFSTEP]
delta retraction
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{?u.61269, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : HasZeroMorphisms 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ Epi (h.iso.hom ≫ biprod.fst)
[PROOFSTEP]
apply epi_comp
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : Preadditive 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ retraction h ≫ f + g ≫ section h = 𝟙 B
[PROOFSTEP]
delta Splitting.section retraction
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : Preadditive 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ (h.iso.hom ≫ biprod.fst) ≫ f + g ≫ biprod.inr ≫ h.iso.inv = 𝟙 B
[PROOFSTEP]
rw [← cancel_mono h.iso.hom, ← cancel_epi h.iso.inv]
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : Preadditive 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ h.iso.inv ≫ ((h.iso.hom ≫ biprod.fst) ≫ f + g ≫ biprod.inr ≫ h.iso.inv) ≫ h.iso.hom = h.iso.inv ≫ 𝟙 B ≫ h.iso.hom
[PROOFSTEP]
simp only [Category.comp_id, Category.id_comp, Category.assoc, Iso.inv_hom_id_assoc, Iso.inv_hom_id,
Limits.biprod.total, Preadditive.comp_add, Preadditive.add_comp, Splitting.comp_iso_eq_inl,
Splitting.iso_comp_eq_snd_assoc]
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : Preadditive 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h✝ h h' : Splitting f g
⊢ section h' ≫ retraction h = -section h ≫ retraction h'
[PROOFSTEP]
haveI := h.mono
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : Preadditive 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h✝ h h' : Splitting f g
this : Mono f
⊢ section h' ≫ retraction h = -section h ≫ retraction h'
[PROOFSTEP]
rw [← cancel_mono f]
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : Preadditive 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h✝ h h' : Splitting f g
this : Mono f
⊢ (section h' ≫ retraction h) ≫ f = (-section h ≫ retraction h') ≫ f
[PROOFSTEP]
simp [retraction_ι_eq_id_sub]
[GOAL]
𝒜 : Type u_1
inst✝² : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝¹ : Preadditive 𝒜
inst✝ : HasBinaryBiproducts 𝒜
h : Splitting f g
⊢ f ≫ g = 0
[PROOFSTEP]
rw [← h.inl_comp_iso_eq, Category.assoc, h.iso_comp_eq_snd, biprod.inl_snd]
[GOAL]
𝒜 : Type u_1
inst✝⁶ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁵ : Preadditive 𝒜
inst✝⁴ : HasBinaryBiproducts 𝒜
h : Splitting f g
inst✝³ : HasKernels 𝒜
inst✝² : HasImages 𝒜
inst✝¹ : HasZeroObject 𝒜
inst✝ : HasCokernels 𝒜
⊢ Exact f g
[PROOFSTEP]
rw [exact_iff_exact_of_iso f g (biprod.inl : A ⟶ A ⊞ C) (biprod.snd : A ⊞ C ⟶ C) _ _ _]
[GOAL]
𝒜 : Type u_1
inst✝⁶ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁵ : Preadditive 𝒜
inst✝⁴ : HasBinaryBiproducts 𝒜
h : Splitting f g
inst✝³ : HasKernels 𝒜
inst✝² : HasImages 𝒜
inst✝¹ : HasZeroObject 𝒜
inst✝ : HasCokernels 𝒜
⊢ Exact biprod.inl biprod.snd
[PROOFSTEP]
exact exact_inl_snd _ _
[GOAL]
𝒜 : Type u_1
inst✝⁶ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁵ : Preadditive 𝒜
inst✝⁴ : HasBinaryBiproducts 𝒜
h : Splitting f g
inst✝³ : HasKernels 𝒜
inst✝² : HasImages 𝒜
inst✝¹ : HasZeroObject 𝒜
inst✝ : HasCokernels 𝒜
⊢ Arrow.mk f ≅ Arrow.mk biprod.inl
[PROOFSTEP]
refine Arrow.isoMk (Iso.refl _) h.iso ?_
[GOAL]
𝒜 : Type u_1
inst✝⁶ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁵ : Preadditive 𝒜
inst✝⁴ : HasBinaryBiproducts 𝒜
h : Splitting f g
inst✝³ : HasKernels 𝒜
inst✝² : HasImages 𝒜
inst✝¹ : HasZeroObject 𝒜
inst✝ : HasCokernels 𝒜
⊢ (Iso.refl (Arrow.mk f).left).hom ≫ (Arrow.mk biprod.inl).hom = (Arrow.mk f).hom ≫ h.iso.hom
[PROOFSTEP]
simp only [Iso.refl_hom, Arrow.mk_hom, Category.id_comp, comp_iso_eq_inl]
[GOAL]
𝒜 : Type u_1
inst✝⁶ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁵ : Preadditive 𝒜
inst✝⁴ : HasBinaryBiproducts 𝒜
h : Splitting f g
inst✝³ : HasKernels 𝒜
inst✝² : HasImages 𝒜
inst✝¹ : HasZeroObject 𝒜
inst✝ : HasCokernels 𝒜
⊢ biprod.inl = biprod.inl
[PROOFSTEP]
rfl
[GOAL]
𝒜 : Type u_1
inst✝⁶ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁵ : Preadditive 𝒜
inst✝⁴ : HasBinaryBiproducts 𝒜
h : Splitting f g
inst✝³ : HasKernels 𝒜
inst✝² : HasImages 𝒜
inst✝¹ : HasZeroObject 𝒜
inst✝ : HasCokernels 𝒜
⊢ Arrow.mk g ≅ Arrow.mk biprod.snd
[PROOFSTEP]
refine Arrow.isoMk h.iso (Iso.refl _) ?_
[GOAL]
𝒜 : Type u_1
inst✝⁶ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁵ : Preadditive 𝒜
inst✝⁴ : HasBinaryBiproducts 𝒜
h : Splitting f g
inst✝³ : HasKernels 𝒜
inst✝² : HasImages 𝒜
inst✝¹ : HasZeroObject 𝒜
inst✝ : HasCokernels 𝒜
⊢ h.iso.hom ≫ (Arrow.mk biprod.snd).hom = (Arrow.mk g).hom ≫ (Iso.refl (Arrow.mk g).right).hom
[PROOFSTEP]
dsimp
[GOAL]
𝒜 : Type u_1
inst✝⁶ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁵ : Preadditive 𝒜
inst✝⁴ : HasBinaryBiproducts 𝒜
h : Splitting f g
inst✝³ : HasKernels 𝒜
inst✝² : HasImages 𝒜
inst✝¹ : HasZeroObject 𝒜
inst✝ : HasCokernels 𝒜
⊢ h.iso.hom ≫ biprod.snd = g ≫ 𝟙 C
[PROOFSTEP]
simp
[GOAL]
𝒜 : Type u_1
inst✝⁶ : Category.{u_2, u_1} 𝒜
A B C A' B' C' : 𝒜
f : A ⟶ B
g : B ⟶ C
f' : A' ⟶ B'
g' : B' ⟶ C'
inst✝⁵ : Preadditive 𝒜
inst✝⁴ : HasBinaryBiproducts 𝒜
h : Splitting f g
inst✝³ : HasKernels 𝒜
inst✝² : HasImages 𝒜
inst✝¹ : HasZeroObject 𝒜
inst✝ : HasCokernels 𝒜
⊢ (Arrow.isoMk (Iso.refl (Arrow.mk f).left) h.iso).hom.right =
(Arrow.isoMk h.iso (Iso.refl (Arrow.mk g).right)).hom.left
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Homology.ShortExact.Preadditive", "llama_tokens": 11897} |
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : CommMonoid M
inst✝ : AddCommMonoid N
n : ℕ
f : ℕ × ℕ → M
⊢ ∏ p in antidiagonal (n + 1), f p = f (0, n + 1) * ∏ p in antidiagonal n, f (p.fst + 1, p.snd)
[PROOFSTEP]
rw [antidiagonal_succ, prod_cons, prod_map]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : CommMonoid M
inst✝ : AddCommMonoid N
n : ℕ
f : ℕ × ℕ → M
⊢ f (0, n + 1) *
∏ x in antidiagonal n,
f
(↑(Function.Embedding.prodMap { toFun := Nat.succ, inj' := Nat.succ_injective } (Function.Embedding.refl ℕ))
x) =
f (0, n + 1) * ∏ p in antidiagonal n, f (p.fst + 1, p.snd)
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : CommMonoid M
inst✝ : AddCommMonoid N
n : ℕ
f : ℕ × ℕ → M
⊢ ∏ p in antidiagonal n, f (Prod.swap p) = ∏ p in antidiagonal n, f p
[PROOFSTEP]
conv_lhs => rw [← map_swap_antidiagonal, Finset.prod_map]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : CommMonoid M
inst✝ : AddCommMonoid N
n : ℕ
f : ℕ × ℕ → M
| ∏ p in antidiagonal n, f (Prod.swap p)
[PROOFSTEP]
rw [← map_swap_antidiagonal, Finset.prod_map]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : CommMonoid M
inst✝ : AddCommMonoid N
n : ℕ
f : ℕ × ℕ → M
| ∏ p in antidiagonal n, f (Prod.swap p)
[PROOFSTEP]
rw [← map_swap_antidiagonal, Finset.prod_map]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : CommMonoid M
inst✝ : AddCommMonoid N
n : ℕ
f : ℕ × ℕ → M
| ∏ p in antidiagonal n, f (Prod.swap p)
[PROOFSTEP]
rw [← map_swap_antidiagonal, Finset.prod_map]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : CommMonoid M
inst✝ : AddCommMonoid N
n : ℕ
f : ℕ × ℕ → M
⊢ ∏ p in antidiagonal (n + 1), f p = f (n + 1, 0) * ∏ p in antidiagonal n, f (p.fst, p.snd + 1)
[PROOFSTEP]
rw [← prod_antidiagonal_swap, prod_antidiagonal_succ, ← prod_antidiagonal_swap]
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : CommMonoid M
inst✝ : AddCommMonoid N
n : ℕ
f : ℕ × ℕ → M
⊢ f (Prod.swap (0, n + 1)) * ∏ p in antidiagonal n, f (Prod.swap ((Prod.swap p).fst + 1, (Prod.swap p).snd)) =
f (n + 1, 0) * ∏ p in antidiagonal n, f (p.fst, p.snd + 1)
[PROOFSTEP]
rfl
[GOAL]
M : Type u_1
N : Type u_2
inst✝¹ : CommMonoid M
inst✝ : AddCommMonoid N
n : ℕ
f : ℕ × ℕ → ℕ → M
p : ℕ × ℕ
hp : p ∈ antidiagonal n
⊢ f p n = f p (p.fst + p.snd)
[PROOFSTEP]
rw [Nat.mem_antidiagonal.1 hp]
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.NatAntidiagonal", "llama_tokens": 1224} |
[GOAL]
α : Type u_1
M : Type u_2
inst✝ : CommMonoid M
f : Option α → M
s : Finset α
⊢ ∏ x in ↑insertNone s, f x = f none * ∏ x in s, f (some x)
[PROOFSTEP]
simp [insertNone]
[GOAL]
α : Type u_1
M : Type u_2
inst✝ : CommMonoid M
f : α → M
s : Finset (Option α)
⊢ ∏ x in ↑eraseNone s, f x = ∏ x in s, Option.elim' 1 f x
[PROOFSTEP]
classical calc
∏ x in eraseNone s, f x = ∏ x in (eraseNone s).map Embedding.some, Option.elim' 1 f x :=
(prod_map (eraseNone s) Embedding.some <| Option.elim' 1 f).symm
_ = ∏ x in s.erase none, Option.elim' 1 f x := by rw [map_some_eraseNone]
_ = ∏ x in s, Option.elim' 1 f x := prod_erase _ rfl
[GOAL]
α : Type u_1
M : Type u_2
inst✝ : CommMonoid M
f : α → M
s : Finset (Option α)
⊢ ∏ x in ↑eraseNone s, f x = ∏ x in s, Option.elim' 1 f x
[PROOFSTEP]
calc
∏ x in eraseNone s, f x = ∏ x in (eraseNone s).map Embedding.some, Option.elim' 1 f x :=
(prod_map (eraseNone s) Embedding.some <| Option.elim' 1 f).symm
_ = ∏ x in s.erase none, Option.elim' 1 f x := by rw [map_some_eraseNone]
_ = ∏ x in s, Option.elim' 1 f x := prod_erase _ rfl
[GOAL]
α : Type u_1
M : Type u_2
inst✝ : CommMonoid M
f : α → M
s : Finset (Option α)
⊢ ∏ x in map Embedding.some (↑eraseNone s), Option.elim' 1 f x = ∏ x in erase s none, Option.elim' 1 f x
[PROOFSTEP]
rw [map_some_eraseNone]
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Option", "llama_tokens": 665} |
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j =
(s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j
[PROOFSTEP]
have eq₁ := h₁.fac (π₁.mapCone s)
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ NatTrans.app (π₁.mapCone c).π j = NatTrans.app (π₁.mapCone s).π j
⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j =
(s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j
[PROOFSTEP]
have eq₂ := h₂.fac (π₂.mapCone s)
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ NatTrans.app (π₁.mapCone c).π j = NatTrans.app (π₁.mapCone s).π j
eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j
⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j =
(s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j
[PROOFSTEP]
have eq₁₂ := fun j => (c.π.app j).comm₁₂
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ NatTrans.app (π₁.mapCone c).π j = NatTrans.app (π₁.mapCone s).π j
eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j
eq₁₂ :
∀ (j : J), (NatTrans.app c.π j).τ₁ ≫ (F.obj j).f = (((Functor.const J).obj c.pt).obj j).f ≫ (NatTrans.app c.π j).τ₂
⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j =
(s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j
[PROOFSTEP]
have eq₁₂' := fun j => (s.π.app j).comm₁₂
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ NatTrans.app (π₁.mapCone c).π j = NatTrans.app (π₁.mapCone s).π j
eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j
eq₁₂ :
∀ (j : J), (NatTrans.app c.π j).τ₁ ≫ (F.obj j).f = (((Functor.const J).obj c.pt).obj j).f ≫ (NatTrans.app c.π j).τ₂
eq₁₂' :
∀ (j : J), (NatTrans.app s.π j).τ₁ ≫ (F.obj j).f = (((Functor.const J).obj s.pt).obj j).f ≫ (NatTrans.app s.π j).τ₂
⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ NatTrans.app (π₂.mapCone c).π j =
(s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ NatTrans.app (π₂.mapCone c).π j
[PROOFSTEP]
dsimp at eq₁ eq₂ eq₁₂ eq₁₂' ⊢
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₁ : ∀ (j : J), IsLimit.lift h₁ (π₁.mapCone s) ≫ (NatTrans.app c.π j).τ₁ = (NatTrans.app s.π j).τ₁
eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ (NatTrans.app c.π j).τ₂ = (NatTrans.app s.π j).τ₂
eq₁₂ : ∀ (j : J), (NatTrans.app c.π j).τ₁ ≫ (F.obj j).f = c.pt.f ≫ (NatTrans.app c.π j).τ₂
eq₁₂' : ∀ (j : J), (NatTrans.app s.π j).τ₁ ≫ (F.obj j).f = s.pt.f ≫ (NatTrans.app s.π j).τ₂
⊢ (IsLimit.lift h₁ (π₁.mapCone s) ≫ c.pt.f) ≫ (NatTrans.app c.π j).τ₂ =
(s.pt.f ≫ IsLimit.lift h₂ (π₂.mapCone s)) ≫ (NatTrans.app c.π j).τ₂
[PROOFSTEP]
rw [assoc, assoc, ← eq₁₂, reassoc_of% eq₁, eq₂, eq₁₂']
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j =
(s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j
[PROOFSTEP]
have eq₂ := h₂.fac (π₂.mapCone s)
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j
⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j =
(s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j
[PROOFSTEP]
have eq₃ := h₃.fac (π₃.mapCone s)
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j
eq₃ : ∀ (j : J), IsLimit.lift h₃ (π₃.mapCone s) ≫ NatTrans.app (π₃.mapCone c).π j = NatTrans.app (π₃.mapCone s).π j
⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j =
(s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j
[PROOFSTEP]
have eq₂₃ := fun j => (c.π.app j).comm₂₃
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j
eq₃ : ∀ (j : J), IsLimit.lift h₃ (π₃.mapCone s) ≫ NatTrans.app (π₃.mapCone c).π j = NatTrans.app (π₃.mapCone s).π j
eq₂₃ :
∀ (j : J), (NatTrans.app c.π j).τ₂ ≫ (F.obj j).g = (((Functor.const J).obj c.pt).obj j).g ≫ (NatTrans.app c.π j).τ₃
⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j =
(s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j
[PROOFSTEP]
have eq₂₃' := fun j => (s.π.app j).comm₂₃
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ NatTrans.app (π₂.mapCone c).π j = NatTrans.app (π₂.mapCone s).π j
eq₃ : ∀ (j : J), IsLimit.lift h₃ (π₃.mapCone s) ≫ NatTrans.app (π₃.mapCone c).π j = NatTrans.app (π₃.mapCone s).π j
eq₂₃ :
∀ (j : J), (NatTrans.app c.π j).τ₂ ≫ (F.obj j).g = (((Functor.const J).obj c.pt).obj j).g ≫ (NatTrans.app c.π j).τ₃
eq₂₃' :
∀ (j : J), (NatTrans.app s.π j).τ₂ ≫ (F.obj j).g = (((Functor.const J).obj s.pt).obj j).g ≫ (NatTrans.app s.π j).τ₃
⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ NatTrans.app (π₃.mapCone c).π j =
(s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ NatTrans.app (π₃.mapCone c).π j
[PROOFSTEP]
dsimp at eq₂ eq₃ eq₂₃ eq₂₃' ⊢
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
eq₂ : ∀ (j : J), IsLimit.lift h₂ (π₂.mapCone s) ≫ (NatTrans.app c.π j).τ₂ = (NatTrans.app s.π j).τ₂
eq₃ : ∀ (j : J), IsLimit.lift h₃ (π₃.mapCone s) ≫ (NatTrans.app c.π j).τ₃ = (NatTrans.app s.π j).τ₃
eq₂₃ : ∀ (j : J), (NatTrans.app c.π j).τ₂ ≫ (F.obj j).g = c.pt.g ≫ (NatTrans.app c.π j).τ₃
eq₂₃' : ∀ (j : J), (NatTrans.app s.π j).τ₂ ≫ (F.obj j).g = s.pt.g ≫ (NatTrans.app s.π j).τ₃
⊢ (IsLimit.lift h₂ (π₂.mapCone s) ≫ c.pt.g) ≫ (NatTrans.app c.π j).τ₃ =
(s.pt.g ≫ IsLimit.lift h₃ (π₃.mapCone s)) ≫ (NatTrans.app c.π j).τ₃
[PROOFSTEP]
rw [assoc, assoc, ← eq₂₃, reassoc_of% eq₂, eq₃, eq₂₃']
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
⊢ (fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s)))
s ≫
NatTrans.app c.π j =
NatTrans.app s.π j
[PROOFSTEP]
ext
[GOAL]
case h₁
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
⊢ ((fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s)))
s ≫
NatTrans.app c.π j).τ₁ =
(NatTrans.app s.π j).τ₁
[PROOFSTEP]
apply IsLimit.fac
[GOAL]
case h₂
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
⊢ ((fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s)))
s ≫
NatTrans.app c.π j).τ₂ =
(NatTrans.app s.π j).τ₂
[PROOFSTEP]
apply IsLimit.fac
[GOAL]
case h₃
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
j : J
⊢ ((fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s)))
s ≫
NatTrans.app c.π j).τ₃ =
(NatTrans.app s.π j).τ₃
[PROOFSTEP]
apply IsLimit.fac
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
m : s.pt ⟶ c.pt
hm : ∀ (j : J), m ≫ NatTrans.app c.π j = NatTrans.app s.π j
⊢ m =
(fun s => Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s)))
s
[PROOFSTEP]
ext
[GOAL]
case h₁
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
m : s.pt ⟶ c.pt
hm : ∀ (j : J), m ≫ NatTrans.app c.π j = NatTrans.app s.π j
⊢ m.τ₁ =
((fun s =>
Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s)))
s).τ₁
[PROOFSTEP]
exact h₁.uniq (π₁.mapCone s) _ (fun j => π₁.congr_map (hm j))
[GOAL]
case h₂
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
m : s.pt ⟶ c.pt
hm : ∀ (j : J), m ≫ NatTrans.app c.π j = NatTrans.app s.π j
⊢ m.τ₂ =
((fun s =>
Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s)))
s).τ₂
[PROOFSTEP]
exact h₂.uniq (π₂.mapCone s) _ (fun j => π₂.congr_map (hm j))
[GOAL]
case h₃
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.96, u_1} J
inst✝¹ : Category.{?u.100, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cone F
h₁ : IsLimit (π₁.mapCone c)
h₂ : IsLimit (π₂.mapCone c)
h₃ : IsLimit (π₃.mapCone c)
s : Cone F
m : s.pt ⟶ c.pt
hm : ∀ (j : J), m ≫ NatTrans.app c.π j = NatTrans.app s.π j
⊢ m.τ₃ =
((fun s =>
Hom.mk (IsLimit.lift h₁ (π₁.mapCone s)) (IsLimit.lift h₂ (π₂.mapCone s)) (IsLimit.lift h₃ (π₃.mapCone s)))
s).τ₃
[PROOFSTEP]
exact h₃.uniq (π₃.mapCone s) _ (fun j => π₃.congr_map (hm j))
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
⊢ limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
j : J
⊢ limit.π (F ⋙ π₁) j ≫ (F.obj j).f =
(((Functor.const J).obj
(mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃))
(_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).obj
j).f ≫
limit.π (F ⋙ π₂) j
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
j : J
⊢ limit.π (F ⋙ π₂) j ≫ (F.obj j).g =
(((Functor.const J).obj
(mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃))
(_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).obj
j).g ≫
limit.π (F ⋙ π₃) j
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ ((Functor.const J).obj
(mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃))
(_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map
f ≫
(fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝ =
(fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f
[PROOFSTEP]
ext
[GOAL]
case h₁
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (((Functor.const J).obj
(mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃))
(_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map
f ≫
(fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₁ =
((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₁
case h₂
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (((Functor.const J).obj
(mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃))
(_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map
f ≫
(fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₂ =
((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₂
case h₃
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (((Functor.const J).obj
(mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃))
(_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map
f ≫
(fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₃ =
((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₃
[PROOFSTEP]
all_goals
dsimp
erw [id_comp, limit.w]
[GOAL]
case h₁
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (((Functor.const J).obj
(mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃))
(_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map
f ≫
(fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₁ =
((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₁
[PROOFSTEP]
dsimp
[GOAL]
case h₁
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ 𝟙 (limit (F ⋙ π₁)) ≫ limit.π (F ⋙ π₁) x✝ = limit.π (F ⋙ π₁) x✝¹ ≫ (F.map f).τ₁
[PROOFSTEP]
erw [id_comp, limit.w]
[GOAL]
case h₂
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (((Functor.const J).obj
(mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃))
(_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map
f ≫
(fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₂ =
((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₂
[PROOFSTEP]
dsimp
[GOAL]
case h₂
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ 𝟙 (limit (F ⋙ π₂)) ≫ limit.π (F ⋙ π₂) x✝ = limit.π (F ⋙ π₂) x✝¹ ≫ (F.map f).τ₂
[PROOFSTEP]
erw [id_comp, limit.w]
[GOAL]
case h₃
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (((Functor.const J).obj
(mk (limMap (whiskerLeft F π₁Toπ₂)) (limMap (whiskerLeft F π₂Toπ₃))
(_ : limMap (whiskerLeft F π₁Toπ₂) ≫ limMap (whiskerLeft F π₂Toπ₃) = 0))).map
f ≫
(fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝).τ₃ =
((fun j => Hom.mk (limit.π (F ⋙ π₁) j) (limit.π (F ⋙ π₂) j) (limit.π (F ⋙ π₃) j)) x✝¹ ≫ F.map f).τ₃
[PROOFSTEP]
dsimp
[GOAL]
case h₃
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.21982, u_1} J
inst✝⁴ : Category.{?u.21986, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ 𝟙 (limit (F ⋙ π₃)) ≫ limit.π (F ⋙ π₃) x✝ = limit.π (F ⋙ π₃) x✝¹ ≫ (F.map f).τ₃
[PROOFSTEP]
erw [id_comp, limit.w]
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.38492, u_1} J
inst✝⁴ : Category.{?u.38496, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
⊢ ∀ (j : J),
NatTrans.app (limit.cone (F ⋙ π₁)).π j =
(Iso.refl (limit.cone (F ⋙ π₁)).pt).hom ≫ NatTrans.app (π₁.mapCone (limitCone F)).π j
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.44003, u_1} J
inst✝⁴ : Category.{?u.44007, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
⊢ ∀ (j : J),
NatTrans.app (limit.cone (F ⋙ π₂)).π j =
(Iso.refl (limit.cone (F ⋙ π₂)).pt).hom ≫ NatTrans.app (π₂.mapCone (limitCone F)).π j
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.49514, u_1} J
inst✝⁴ : Category.{?u.49518, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasLimit (F ⋙ π₁)
inst✝¹ : HasLimit (F ⋙ π₂)
inst✝ : HasLimit (F ⋙ π₃)
⊢ ∀ (j : J),
NatTrans.app (limit.cone (F ⋙ π₃)).π j =
(Iso.refl (limit.cone (F ⋙ π₃)).pt).hom ≫ NatTrans.app (π₃.mapCone (limitCone F)).π j
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f =
NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s)
[PROOFSTEP]
have eq₁ := h₁.fac (π₁.mapCocone s)
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₁ :
∀ (j : J), NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) = NatTrans.app (π₁.mapCocone s).ι j
⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f =
NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s)
[PROOFSTEP]
have eq₂ := h₂.fac (π₂.mapCocone s)
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₁ :
∀ (j : J), NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) = NatTrans.app (π₁.mapCocone s).ι j
eq₂ :
∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j
⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f =
NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s)
[PROOFSTEP]
have eq₁₂ := fun j => (c.ι.app j).comm₁₂
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₁ :
∀ (j : J), NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) = NatTrans.app (π₁.mapCocone s).ι j
eq₂ :
∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j
eq₁₂ :
∀ (j : J), (NatTrans.app c.ι j).τ₁ ≫ (((Functor.const J).obj c.pt).obj j).f = (F.obj j).f ≫ (NatTrans.app c.ι j).τ₂
⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f =
NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s)
[PROOFSTEP]
have eq₁₂' := fun j => (s.ι.app j).comm₁₂
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₁ :
∀ (j : J), NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) = NatTrans.app (π₁.mapCocone s).ι j
eq₂ :
∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j
eq₁₂ :
∀ (j : J), (NatTrans.app c.ι j).τ₁ ≫ (((Functor.const J).obj c.pt).obj j).f = (F.obj j).f ≫ (NatTrans.app c.ι j).τ₂
eq₁₂' :
∀ (j : J), (NatTrans.app s.ι j).τ₁ ≫ (((Functor.const J).obj s.pt).obj j).f = (F.obj j).f ≫ (NatTrans.app s.ι j).τ₂
⊢ NatTrans.app (π₁.mapCocone c).ι j ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f =
NatTrans.app (π₁.mapCocone c).ι j ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s)
[PROOFSTEP]
dsimp at eq₁ eq₂ eq₁₂ eq₁₂' ⊢
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₁ : ∀ (j : J), (NatTrans.app c.ι j).τ₁ ≫ IsColimit.desc h₁ (π₁.mapCocone s) = (NatTrans.app s.ι j).τ₁
eq₂ : ∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ IsColimit.desc h₂ (π₂.mapCocone s) = (NatTrans.app s.ι j).τ₂
eq₁₂ : ∀ (j : J), (NatTrans.app c.ι j).τ₁ ≫ c.pt.f = (F.obj j).f ≫ (NatTrans.app c.ι j).τ₂
eq₁₂' : ∀ (j : J), (NatTrans.app s.ι j).τ₁ ≫ s.pt.f = (F.obj j).f ≫ (NatTrans.app s.ι j).τ₂
⊢ (NatTrans.app c.ι j).τ₁ ≫ IsColimit.desc h₁ (π₁.mapCocone s) ≫ s.pt.f =
(NatTrans.app c.ι j).τ₁ ≫ c.pt.f ≫ IsColimit.desc h₂ (π₂.mapCocone s)
[PROOFSTEP]
rw [reassoc_of% (eq₁ j), eq₁₂', reassoc_of% eq₁₂, eq₂]
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g =
NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s)
[PROOFSTEP]
have eq₂ := h₂.fac (π₂.mapCocone s)
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₂ :
∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j
⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g =
NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s)
[PROOFSTEP]
have eq₃ := h₃.fac (π₃.mapCocone s)
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₂ :
∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j
eq₃ :
∀ (j : J), NatTrans.app (π₃.mapCocone c).ι j ≫ IsColimit.desc h₃ (π₃.mapCocone s) = NatTrans.app (π₃.mapCocone s).ι j
⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g =
NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s)
[PROOFSTEP]
have eq₂₃ := fun j => (c.ι.app j).comm₂₃
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₂ :
∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j
eq₃ :
∀ (j : J), NatTrans.app (π₃.mapCocone c).ι j ≫ IsColimit.desc h₃ (π₃.mapCocone s) = NatTrans.app (π₃.mapCocone s).ι j
eq₂₃ :
∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ (((Functor.const J).obj c.pt).obj j).g = (F.obj j).g ≫ (NatTrans.app c.ι j).τ₃
⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g =
NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s)
[PROOFSTEP]
have eq₂₃' := fun j => (s.ι.app j).comm₂₃
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₂ :
∀ (j : J), NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) = NatTrans.app (π₂.mapCocone s).ι j
eq₃ :
∀ (j : J), NatTrans.app (π₃.mapCocone c).ι j ≫ IsColimit.desc h₃ (π₃.mapCocone s) = NatTrans.app (π₃.mapCocone s).ι j
eq₂₃ :
∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ (((Functor.const J).obj c.pt).obj j).g = (F.obj j).g ≫ (NatTrans.app c.ι j).τ₃
eq₂₃' :
∀ (j : J), (NatTrans.app s.ι j).τ₂ ≫ (((Functor.const J).obj s.pt).obj j).g = (F.obj j).g ≫ (NatTrans.app s.ι j).τ₃
⊢ NatTrans.app (π₂.mapCocone c).ι j ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g =
NatTrans.app (π₂.mapCocone c).ι j ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s)
[PROOFSTEP]
dsimp at eq₂ eq₃ eq₂₃ eq₂₃' ⊢
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
eq₂ : ∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ IsColimit.desc h₂ (π₂.mapCocone s) = (NatTrans.app s.ι j).τ₂
eq₃ : ∀ (j : J), (NatTrans.app c.ι j).τ₃ ≫ IsColimit.desc h₃ (π₃.mapCocone s) = (NatTrans.app s.ι j).τ₃
eq₂₃ : ∀ (j : J), (NatTrans.app c.ι j).τ₂ ≫ c.pt.g = (F.obj j).g ≫ (NatTrans.app c.ι j).τ₃
eq₂₃' : ∀ (j : J), (NatTrans.app s.ι j).τ₂ ≫ s.pt.g = (F.obj j).g ≫ (NatTrans.app s.ι j).τ₃
⊢ (NatTrans.app c.ι j).τ₂ ≫ IsColimit.desc h₂ (π₂.mapCocone s) ≫ s.pt.g =
(NatTrans.app c.ι j).τ₂ ≫ c.pt.g ≫ IsColimit.desc h₃ (π₃.mapCocone s)
[PROOFSTEP]
rw [reassoc_of% (eq₂ j), eq₂₃', reassoc_of% eq₂₃, eq₃]
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
⊢ NatTrans.app c.ι j ≫
(fun s =>
Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s))
(IsColimit.desc h₃ (π₃.mapCocone s)))
s =
NatTrans.app s.ι j
[PROOFSTEP]
ext
[GOAL]
case h₁
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
⊢ (NatTrans.app c.ι j ≫
(fun s =>
Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s))
(IsColimit.desc h₃ (π₃.mapCocone s)))
s).τ₁ =
(NatTrans.app s.ι j).τ₁
[PROOFSTEP]
apply IsColimit.fac h₁
[GOAL]
case h₂
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
⊢ (NatTrans.app c.ι j ≫
(fun s =>
Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s))
(IsColimit.desc h₃ (π₃.mapCocone s)))
s).τ₂ =
(NatTrans.app s.ι j).τ₂
[PROOFSTEP]
apply IsColimit.fac h₂
[GOAL]
case h₃
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
j : J
⊢ (NatTrans.app c.ι j ≫
(fun s =>
Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s))
(IsColimit.desc h₃ (π₃.mapCocone s)))
s).τ₃ =
(NatTrans.app s.ι j).τ₃
[PROOFSTEP]
apply IsColimit.fac h₃
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
m : c.pt ⟶ s.pt
hm : ∀ (j : J), NatTrans.app c.ι j ≫ m = NatTrans.app s.ι j
⊢ m =
(fun s =>
Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s))
(IsColimit.desc h₃ (π₃.mapCocone s)))
s
[PROOFSTEP]
ext
[GOAL]
case h₁
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
m : c.pt ⟶ s.pt
hm : ∀ (j : J), NatTrans.app c.ι j ≫ m = NatTrans.app s.ι j
⊢ m.τ₁ =
((fun s =>
Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s))
(IsColimit.desc h₃ (π₃.mapCocone s)))
s).τ₁
[PROOFSTEP]
exact h₁.uniq (π₁.mapCocone s) _ (fun j => π₁.congr_map (hm j))
[GOAL]
case h₂
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
m : c.pt ⟶ s.pt
hm : ∀ (j : J), NatTrans.app c.ι j ≫ m = NatTrans.app s.ι j
⊢ m.τ₂ =
((fun s =>
Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s))
(IsColimit.desc h₃ (π₃.mapCocone s)))
s).τ₂
[PROOFSTEP]
exact h₂.uniq (π₂.mapCocone s) _ (fun j => π₂.congr_map (hm j))
[GOAL]
case h₃
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.84519, u_1} J
inst✝¹ : Category.{?u.84523, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
c : Cocone F
h₁ : IsColimit (π₁.mapCocone c)
h₂ : IsColimit (π₂.mapCocone c)
h₃ : IsColimit (π₃.mapCocone c)
s : Cocone F
m : c.pt ⟶ s.pt
hm : ∀ (j : J), NatTrans.app c.ι j ≫ m = NatTrans.app s.ι j
⊢ m.τ₃ =
((fun s =>
Hom.mk (IsColimit.desc h₁ (π₁.mapCocone s)) (IsColimit.desc h₂ (π₂.mapCocone s))
(IsColimit.desc h₃ (π₃.mapCocone s)))
s).τ₃
[PROOFSTEP]
exact h₃.uniq (π₃.mapCocone s) _ (fun j => π₃.congr_map (hm j))
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
⊢ colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
j : J
⊢ colimit.ι (F ⋙ π₁) j ≫
(((Functor.const J).obj
(mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃))
(_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).obj
j).f =
(F.obj j).f ≫ colimit.ι (F ⋙ π₂) j
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
j : J
⊢ colimit.ι (F ⋙ π₂) j ≫
(((Functor.const J).obj
(mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃))
(_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).obj
j).g =
(F.obj j).g ≫ colimit.ι (F ⋙ π₃) j
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ F.map f ≫ (fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝ =
(fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝¹ ≫
((Functor.const J).obj
(mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃))
(_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).map
f
[PROOFSTEP]
ext
[GOAL]
case h₁
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (F.map f ≫ (fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝).τ₁ =
((fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝¹ ≫
((Functor.const J).obj
(mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃))
(_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).map
f).τ₁
[PROOFSTEP]
dsimp
[GOAL]
case h₁
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (F.map f).τ₁ ≫ colimit.ι (F ⋙ π₁) x✝ = colimit.ι (F ⋙ π₁) x✝¹ ≫ 𝟙 (colimit (F ⋙ π₁))
[PROOFSTEP]
erw [comp_id, colimit.w (F ⋙ π₁)]
[GOAL]
case h₂
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (F.map f ≫ (fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝).τ₂ =
((fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝¹ ≫
((Functor.const J).obj
(mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃))
(_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).map
f).τ₂
[PROOFSTEP]
dsimp
[GOAL]
case h₂
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (F.map f).τ₂ ≫ colimit.ι (F ⋙ π₂) x✝ = colimit.ι (F ⋙ π₂) x✝¹ ≫ 𝟙 (colimit (F ⋙ π₂))
[PROOFSTEP]
erw [comp_id, colimit.w (F ⋙ π₂)]
[GOAL]
case h₃
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (F.map f ≫ (fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝).τ₃ =
((fun j => Hom.mk (colimit.ι (F ⋙ π₁) j) (colimit.ι (F ⋙ π₂) j) (colimit.ι (F ⋙ π₃) j)) x✝¹ ≫
((Functor.const J).obj
(mk (colimMap (whiskerLeft F π₁Toπ₂)) (colimMap (whiskerLeft F π₂Toπ₃))
(_ : colimMap (whiskerLeft F π₁Toπ₂) ≫ colimMap (whiskerLeft F π₂Toπ₃) = 0))).map
f).τ₃
[PROOFSTEP]
dsimp
[GOAL]
case h₃
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.105288, u_1} J
inst✝⁴ : Category.{?u.105292, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
x✝¹ x✝ : J
f : x✝¹ ⟶ x✝
⊢ (F.map f).τ₃ ≫ colimit.ι (F ⋙ π₃) x✝ = colimit.ι (F ⋙ π₃) x✝¹ ≫ 𝟙 (colimit (F ⋙ π₃))
[PROOFSTEP]
erw [comp_id, colimit.w (F ⋙ π₃)]
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.123211, u_1} J
inst✝⁴ : Category.{?u.123215, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
⊢ ∀ (j : J),
NatTrans.app (colimit.cocone (F ⋙ π₁)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ π₁)).pt).hom =
NatTrans.app (π₁.mapCocone (colimitCocone F)).ι j
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.128766, u_1} J
inst✝⁴ : Category.{?u.128770, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
⊢ ∀ (j : J),
NatTrans.app (colimit.cocone (F ⋙ π₂)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ π₂)).pt).hom =
NatTrans.app (π₂.mapCocone (colimitCocone F)).ι j
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝⁵ : Category.{?u.134321, u_1} J
inst✝⁴ : Category.{?u.134325, u_2} C
inst✝³ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
inst✝² : HasColimit (F ⋙ π₁)
inst✝¹ : HasColimit (F ⋙ π₂)
inst✝ : HasColimit (F ⋙ π₃)
⊢ ∀ (j : J),
NatTrans.app (colimit.cocone (F ⋙ π₃)).ι j ≫ (Iso.refl (colimit.cocone (F ⋙ π₃)).pt).hom =
NatTrans.app (π₃.mapCocone (colimitCocone F)).ι j
[PROOFSTEP]
aesop_cat
| {"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.Limits", "llama_tokens": 23681} |
[GOAL]
V : Type u_1
inst✝¹ : Category.{?u.28, u_1} V
inst✝ : Abelian V
X Y Z : V
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ g.op ≫ f.op = 0
[PROOFSTEP]
rw [← op_comp, w, op_zero]
[GOAL]
V : Type u_1
inst✝¹ : Category.{?u.28, u_1} V
inst✝ : Abelian V
X Y Z : V
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ f ≫ factorThruImage g = 0
[PROOFSTEP]
rw [← cancel_mono (image.ι g), Category.assoc, image.fac, w, zero_comp]
[GOAL]
V : Type u_1
inst✝¹ : Category.{u_2, u_1} V
inst✝ : Abelian V
X Y Z : V
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ imageToKernel g.op f.op (_ : g.op ≫ f.op = 0) =
(imageSubobjectIso g.op ≪≫ (imageOpOp g).symm).hom ≫
(cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).op ≫
(kernelSubobjectIso f.op ≪≫ kernelOpOp f).inv
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u_1
inst✝¹ : Category.{u_2, u_1} V
inst✝ : Abelian V
X Y Z : V
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ imageToKernel g.op f.op (_ : g.op ≫ f.op = 0) ≫ Subobject.arrow (kernelSubobject f.op) =
((imageSubobjectIso g.op ≪≫ (imageOpOp g).symm).hom ≫
(cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).op ≫
(kernelSubobjectIso f.op ≪≫ kernelOpOp f).inv) ≫
Subobject.arrow (kernelSubobject f.op)
[PROOFSTEP]
simp only [Iso.trans_hom, Iso.symm_hom, Iso.trans_inv, kernelOpOp_inv, Category.assoc, imageToKernel_arrow,
kernelSubobject_arrow', kernel.lift_ι, ← op_comp, cokernel.π_desc, ← imageSubobject_arrow, ←
imageUnopOp_inv_comp_op_factorThruImage g.op]
[GOAL]
case h
V : Type u_1
inst✝¹ : Category.{u_2, u_1} V
inst✝ : Abelian V
X Y Z : V
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ (imageSubobjectIso g.op).hom ≫ (imageUnopOp g.op).inv ≫ (factorThruImage g.op.unop).op =
(imageSubobjectIso g.op).hom ≫ (imageOpOp g).inv ≫ (factorThruImage g).op
[PROOFSTEP]
rfl
[GOAL]
V : Type u_1
inst✝¹ : Category.{?u.7815, u_1} V
inst✝ : Abelian V
X Y Z : Vᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ g.unop ≫ f.unop = 0
[PROOFSTEP]
rw [← unop_comp, w, unop_zero]
[GOAL]
V : Type u_1
inst✝¹ : Category.{?u.7815, u_1} V
inst✝ : Abelian V
X Y Z : Vᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ f ≫ factorThruImage g = 0
[PROOFSTEP]
rw [← cancel_mono (image.ι g), Category.assoc, image.fac, w, zero_comp]
[GOAL]
V : Type u_1
inst✝¹ : Category.{u_2, u_1} V
inst✝ : Abelian V
X Y Z : Vᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ imageToKernel g.unop f.unop (_ : g.unop ≫ f.unop = 0) =
(imageSubobjectIso g.unop ≪≫ (imageUnopUnop g).symm).hom ≫
(cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).unop ≫
(kernelSubobjectIso f.unop ≪≫ kernelUnopUnop f).inv
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u_1
inst✝¹ : Category.{u_2, u_1} V
inst✝ : Abelian V
X Y Z : Vᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ imageToKernel g.unop f.unop (_ : g.unop ≫ f.unop = 0) ≫ Subobject.arrow (kernelSubobject f.unop) =
((imageSubobjectIso g.unop ≪≫ (imageUnopUnop g).symm).hom ≫
(cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).unop ≫
(kernelSubobjectIso f.unop ≪≫ kernelUnopUnop f).inv) ≫
Subobject.arrow (kernelSubobject f.unop)
[PROOFSTEP]
dsimp only [imageUnopUnop]
[GOAL]
case h
V : Type u_1
inst✝¹ : Category.{u_2, u_1} V
inst✝ : Abelian V
X Y Z : Vᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ imageToKernel g.unop f.unop (_ : g.unop ≫ f.unop = 0) ≫ Subobject.arrow (kernelSubobject f.unop) =
((imageSubobjectIso g.unop ≪≫ (Iso.unop (imageUnopOp g)).symm).hom ≫
(cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0)).unop ≫
(kernelSubobjectIso f.unop ≪≫ kernelUnopUnop f).inv) ≫
Subobject.arrow (kernelSubobject f.unop)
[PROOFSTEP]
simp only [Iso.trans_hom, Iso.symm_hom, Iso.trans_inv, kernelUnopUnop_inv, Category.assoc, imageToKernel_arrow,
kernelSubobject_arrow', kernel.lift_ι, cokernel.π_desc, Iso.unop_inv, ← unop_comp,
factorThruImage_comp_imageUnopOp_inv, Quiver.Hom.unop_op, imageSubobject_arrow]
[GOAL]
V : Type u_1
inst✝¹ : Category.{?u.16638, u_1} V
inst✝ : Abelian V
X Y Z : V
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ g.op ≫ f.op = 0
[PROOFSTEP]
rw [← op_comp, w, op_zero]
[GOAL]
V : Type u_1
inst✝¹ : Category.{?u.16638, u_1} V
inst✝ : Abelian V
X Y Z : V
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ cokernel.desc f g w = cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0) ≫ image.ι g
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u_1
inst✝¹ : Category.{?u.16638, u_1} V
inst✝ : Abelian V
X Y Z : V
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ coequalizer.π f 0 ≫ cokernel.desc f g w =
coequalizer.π f 0 ≫ cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0) ≫ image.ι g
[PROOFSTEP]
simp only [image.fac, cokernel.π_desc, cokernel.π_desc_assoc]
[GOAL]
V : Type u_1
inst✝¹ : Category.{?u.28807, u_1} V
inst✝ : Abelian V
X Y Z : Vᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ g.unop ≫ f.unop = 0
[PROOFSTEP]
rw [← unop_comp, w, unop_zero]
[GOAL]
V : Type u_1
inst✝¹ : Category.{?u.28807, u_1} V
inst✝ : Abelian V
X Y Z : Vᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ cokernel.desc f g w = cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0) ≫ image.ι g
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u_1
inst✝¹ : Category.{?u.28807, u_1} V
inst✝ : Abelian V
X Y Z : Vᵒᵖ
f : X ⟶ Y
g : Y ⟶ Z
w : f ≫ g = 0
⊢ coequalizer.π f 0 ≫ cokernel.desc f g w =
coequalizer.π f 0 ≫ cokernel.desc f (factorThruImage g) (_ : f ≫ factorThruImage g = 0) ≫ image.ι g
[PROOFSTEP]
simp only [image.fac, cokernel.π_desc, cokernel.π_desc_assoc]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.40782, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex V c
i j : ι
hij : ¬ComplexShape.Rel (ComplexShape.symm c) i j
⊢ (fun i j => (d X j i).op) i j = 0
[PROOFSTEP]
simp only
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.40782, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex V c
i j : ι
hij : ¬ComplexShape.Rel (ComplexShape.symm c) i j
⊢ (d X j i).op = 0
[PROOFSTEP]
rw [X.shape j i hij, op_zero]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.40782, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex V c
x✝⁴ x✝³ x✝² : ι
x✝¹ : ComplexShape.Rel (ComplexShape.symm c) x✝⁴ x✝³
x✝ : ComplexShape.Rel (ComplexShape.symm c) x✝³ x✝²
⊢ (fun i j => (d X j i).op) x✝⁴ x✝³ ≫ (fun i j => (d X j i).op) x✝³ x✝² = 0
[PROOFSTEP]
rw [← op_comp, X.d_comp_d, op_zero]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.42509, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex V (ComplexShape.symm c)
i j : ι
hij : ¬ComplexShape.Rel c i j
⊢ (fun i j => (d X j i).op) i j = 0
[PROOFSTEP]
simp only
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.42509, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex V (ComplexShape.symm c)
i j : ι
hij : ¬ComplexShape.Rel c i j
⊢ (d X j i).op = 0
[PROOFSTEP]
rw [X.shape j i hij, op_zero]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.42509, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex V (ComplexShape.symm c)
x✝⁴ x✝³ x✝² : ι
x✝¹ : ComplexShape.Rel c x✝⁴ x✝³
x✝ : ComplexShape.Rel c x✝³ x✝²
⊢ (fun i j => (d X j i).op) x✝⁴ x✝³ ≫ (fun i j => (d X j i).op) x✝³ x✝² = 0
[PROOFSTEP]
rw [← op_comp, X.d_comp_d, op_zero]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.44206, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex Vᵒᵖ c
i j : ι
hij : ¬ComplexShape.Rel (ComplexShape.symm c) i j
⊢ (fun i j => (d X j i).unop) i j = 0
[PROOFSTEP]
simp only
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.44206, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex Vᵒᵖ c
i j : ι
hij : ¬ComplexShape.Rel (ComplexShape.symm c) i j
⊢ (d X j i).unop = 0
[PROOFSTEP]
rw [X.shape j i hij, unop_zero]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.44206, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex Vᵒᵖ c
x✝⁴ x✝³ x✝² : ι
x✝¹ : ComplexShape.Rel (ComplexShape.symm c) x✝⁴ x✝³
x✝ : ComplexShape.Rel (ComplexShape.symm c) x✝³ x✝²
⊢ (fun i j => (d X j i).unop) x✝⁴ x✝³ ≫ (fun i j => (d X j i).unop) x✝³ x✝² = 0
[PROOFSTEP]
rw [← unop_comp, X.d_comp_d, unop_zero]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.45915, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex Vᵒᵖ (ComplexShape.symm c)
i j : ι
hij : ¬ComplexShape.Rel c i j
⊢ (fun i j => (d X j i).unop) i j = 0
[PROOFSTEP]
simp only
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.45915, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex Vᵒᵖ (ComplexShape.symm c)
i j : ι
hij : ¬ComplexShape.Rel c i j
⊢ (d X j i).unop = 0
[PROOFSTEP]
rw [X.shape j i hij, unop_zero]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.45915, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : HomologicalComplex Vᵒᵖ (ComplexShape.symm c)
x✝⁴ x✝³ x✝² : ι
x✝¹ : ComplexShape.Rel c x✝⁴ x✝³
x✝ : ComplexShape.Rel c x✝³ x✝²
⊢ (fun i j => (d X j i).unop) x✝⁴ x✝³ ≫ (fun i j => (d X j i).unop) x✝³ x✝² = 0
[PROOFSTEP]
rw [← unop_comp, X.d_comp_d, unop_zero]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.47656, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X✝ Y✝ : (HomologicalComplex V c)ᵒᵖ
f : X✝ ⟶ Y✝
i j : ι
x✝ : ComplexShape.Rel (ComplexShape.symm c) i j
⊢ (fun i => (Hom.f f.unop i).op) i ≫ d ((fun X => HomologicalComplex.op X.unop) Y✝) i j =
d ((fun X => HomologicalComplex.op X.unop) X✝) i j ≫ (fun i => (Hom.f f.unop i).op) j
[PROOFSTEP]
simp only [op_d, ← op_comp, f.unop.comm]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.55812, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X✝ Y✝ : HomologicalComplex Vᵒᵖ (ComplexShape.symm c)
f : X✝ ⟶ Y✝
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ (fun i => (Hom.f f i).unop) i ≫ d (HomologicalComplex.unopSymm X✝) i j =
d (HomologicalComplex.unopSymm Y✝) i j ≫ (fun i => (Hom.f f i).unop) j
[PROOFSTEP]
simp only [unopSymm_d, ← unop_comp, f.comm]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.63659, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : (HomologicalComplex V c)ᵒᵖ
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ ((fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)) i).hom ≫
d X.unop i j =
d (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i j ≫
((fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)) j).hom
[PROOFSTEP]
simp only [Iso.refl_hom, Category.id_comp, unopSymm_d, op_d, Quiver.Hom.unop_op, Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.63659, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
⊢ ∀ {X Y : (HomologicalComplex V c)ᵒᵖ} (f : X ⟶ Y),
(𝟭 (HomologicalComplex V c)ᵒᵖ).map f ≫
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
Y).hom =
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
X).hom ≫
(opFunctor V c ⋙ opInverse V c).map f
[PROOFSTEP]
intro X Y f
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.63659, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X Y : (HomologicalComplex V c)ᵒᵖ
f : X ⟶ Y
⊢ (𝟭 (HomologicalComplex V c)ᵒᵖ).map f ≫
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
Y).hom =
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
X).hom ≫
(opFunctor V c ⋙ opInverse V c).map f
[PROOFSTEP]
refine' Quiver.Hom.unop_inj _
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.63659, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X Y : (HomologicalComplex V c)ᵒᵖ
f : X ⟶ Y
⊢ ((𝟭 (HomologicalComplex V c)ᵒᵖ).map f ≫
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
Y).hom).unop =
(((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
X).hom ≫
(opFunctor V c ⋙ opInverse V c).map f).unop
[PROOFSTEP]
ext x
[GOAL]
case h
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.63659, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X Y : (HomologicalComplex V c)ᵒᵖ
f : X ⟶ Y
x : ι
⊢ Hom.f
((𝟭 (HomologicalComplex V c)ᵒᵖ).map f ≫
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
Y).hom).unop
x =
Hom.f
(((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
X).hom ≫
(opFunctor V c ⋙ opInverse V c).map f).unop
x
[PROOFSTEP]
simp only [Quiver.Hom.unop_op, Functor.id_map, Iso.op_hom, Functor.comp_map, unop_comp, comp_f,
Hom.isoOfComponents_hom_f]
[GOAL]
case h
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.63659, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X Y : (HomologicalComplex V c)ᵒᵖ
f : X ⟶ Y
x : ι
⊢ (Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op Y.unop)) x)).hom ≫
Hom.f f.unop x =
Hom.f ((opInverse V c).map ((opFunctor V c).map f)).unop x ≫
(Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) x)).hom
[PROOFSTEP]
erw [Category.id_comp, Category.comp_id (f.unop.f x)]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.82165, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : (HomologicalComplex V c)ᵒᵖ
⊢ (opFunctor V c).map (NatTrans.app (opUnitIso V c).hom X) ≫
NatTrans.app (opCounitIso V c).hom ((opFunctor V c).obj X) =
𝟙 ((opFunctor V c).obj X)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.82165, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : (HomologicalComplex V c)ᵒᵖ
i✝ : ι
⊢ Hom.f
((opFunctor V c).map (NatTrans.app (opUnitIso V c).hom X) ≫
NatTrans.app (opCounitIso V c).hom ((opFunctor V c).obj X))
i✝ =
Hom.f (𝟙 ((opFunctor V c).obj X)) i✝
[PROOFSTEP]
simp only [opUnitIso, opCounitIso, NatIso.ofComponents_hom_app, Iso.op_hom, comp_f, opFunctor_map_f, Quiver.Hom.unop_op,
Hom.isoOfComponents_hom_f]
[GOAL]
case h
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.82165, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : (HomologicalComplex V c)ᵒᵖ
i✝ : ι
⊢ (Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i✝)).hom.op ≫
(Iso.refl (HomologicalComplex.X ((opInverse V c ⋙ opFunctor V c).obj ((opFunctor V c).obj X)) i✝)).hom =
Hom.f (𝟙 ((opFunctor V c).obj X)) i✝
[PROOFSTEP]
exact Category.comp_id _
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.83999, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X✝ Y✝ : (HomologicalComplex Vᵒᵖ c)ᵒᵖ
f : X✝ ⟶ Y✝
i j : ι
x✝ : ComplexShape.Rel (ComplexShape.symm c) i j
⊢ (fun i => (Hom.f f.unop i).unop) i ≫ d ((fun X => HomologicalComplex.unop X.unop) Y✝) i j =
d ((fun X => HomologicalComplex.unop X.unop) X✝) i j ≫ (fun i => (Hom.f f.unop i).unop) j
[PROOFSTEP]
simp only [unop_d, ← unop_comp, f.unop.comm]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.92175, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X✝ Y✝ : HomologicalComplex V (ComplexShape.symm c)
f : X✝ ⟶ Y✝
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ (fun i => (Hom.f f i).op) i ≫ d (HomologicalComplex.opSymm X✝) i j =
d (HomologicalComplex.opSymm Y✝) i j ≫ (fun i => (Hom.f f i).op) j
[PROOFSTEP]
simp only [opSymm_d, ← op_comp, f.comm]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.100003, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : (HomologicalComplex Vᵒᵖ c)ᵒᵖ
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ ((fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)) i).hom ≫
d X.unop i j =
d (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i j ≫
((fun i => Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)) j).hom
[PROOFSTEP]
simp only [Iso.refl_hom, Category.id_comp, unopSymm_d, op_d, Quiver.Hom.unop_op, Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.100003, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
⊢ ∀ {X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ} (f : X ⟶ Y),
(𝟭 (HomologicalComplex Vᵒᵖ c)ᵒᵖ).map f ≫
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
Y).hom =
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
X).hom ≫
(unopFunctor V c ⋙ unopInverse V c).map f
[PROOFSTEP]
intro X Y f
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.100003, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ
f : X ⟶ Y
⊢ (𝟭 (HomologicalComplex Vᵒᵖ c)ᵒᵖ).map f ≫
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
Y).hom =
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
X).hom ≫
(unopFunctor V c ⋙ unopInverse V c).map f
[PROOFSTEP]
refine' Quiver.Hom.unop_inj _
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.100003, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ
f : X ⟶ Y
⊢ ((𝟭 (HomologicalComplex Vᵒᵖ c)ᵒᵖ).map f ≫
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
Y).hom).unop =
(((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
X).hom ≫
(unopFunctor V c ⋙ unopInverse V c).map f).unop
[PROOFSTEP]
ext x
[GOAL]
case h
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.100003, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ
f : X ⟶ Y
x : ι
⊢ Hom.f
((𝟭 (HomologicalComplex Vᵒᵖ c)ᵒᵖ).map f ≫
((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
Y).hom).unop
x =
Hom.f
(((fun X =>
Iso.op
(Hom.isoOfComponents fun i =>
Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) i)))
X).hom ≫
(unopFunctor V c ⋙ unopInverse V c).map f).unop
x
[PROOFSTEP]
simp only [Quiver.Hom.unop_op, Functor.id_map, Iso.op_hom, Functor.comp_map, unop_comp, comp_f,
Hom.isoOfComponents_hom_f]
[GOAL]
case h
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.100003, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X Y : (HomologicalComplex Vᵒᵖ c)ᵒᵖ
f : X ⟶ Y
x : ι
⊢ (Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op Y.unop)) x)).hom ≫
Hom.f f.unop x =
Hom.f ((unopInverse V c).map ((unopFunctor V c).map f)).unop x ≫
(Iso.refl (HomologicalComplex.X (HomologicalComplex.unopSymm (HomologicalComplex.op X.unop)) x)).hom
[PROOFSTEP]
erw [Category.id_comp, Category.comp_id (f.unop.f x)]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.118561, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : (HomologicalComplex Vᵒᵖ c)ᵒᵖ
⊢ (unopFunctor V c).map (NatTrans.app (unopUnitIso V c).hom X) ≫
NatTrans.app (unopCounitIso V c).hom ((unopFunctor V c).obj X) =
𝟙 ((unopFunctor V c).obj X)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.118561, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : (HomologicalComplex Vᵒᵖ c)ᵒᵖ
i✝ : ι
⊢ Hom.f
((unopFunctor V c).map (NatTrans.app (unopUnitIso V c).hom X) ≫
NatTrans.app (unopCounitIso V c).hom ((unopFunctor V c).obj X))
i✝ =
Hom.f (𝟙 ((unopFunctor V c).obj X)) i✝
[PROOFSTEP]
simp only [opUnitIso, opCounitIso, NatIso.ofComponents_hom_app, Iso.op_hom, comp_f, opFunctor_map_f, Quiver.Hom.unop_op,
Hom.isoOfComponents_hom_f]
[GOAL]
case h
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.118561, u_2} V
c : ComplexShape ι
inst✝ : Preadditive V
X : (HomologicalComplex Vᵒᵖ c)ᵒᵖ
i✝ : ι
⊢ Hom.f ((unopFunctor V c).map (NatTrans.app (unopUnitIso V c).hom X)) i✝ ≫
Hom.f (NatTrans.app (unopCounitIso V c).hom ((unopFunctor V c).obj X)) i✝ =
Hom.f (𝟙 ((unopFunctor V c).obj X)) i✝
[PROOFSTEP]
exact Category.comp_id _
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.125717, u_2} V
c : ComplexShape ι
inst✝ : Abelian V
C : HomologicalComplex V c
i : ι
⊢ (dFrom C i).op ≫ (dTo C i).op = 0
[PROOFSTEP]
rw [← op_comp, C.dTo_comp_dFrom i, op_zero]
[GOAL]
ι : Type u_1
V : Type u_2
inst✝¹ : Category.{?u.129295, u_2} V
c : ComplexShape ι
inst✝ : Abelian V
C✝ : HomologicalComplex V c
i : ι
C : HomologicalComplex Vᵒᵖ c
⊢ (dFrom C i).unop ≫ (dTo C i).unop = 0
[PROOFSTEP]
rw [← unop_comp, C.dTo_comp_dFrom i, unop_zero]
| {"mathlib_filename": "Mathlib.Algebra.Homology.Opposite", "llama_tokens": 10879} |
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹ : HasImage f
g : B ⟶ C
inst✝ : HasKernel g
w : f ≫ g = 0
⊢ kernel.lift g f w ≫ kernel.ι g = f
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹ : HasImage f
g : B ⟶ C
inst✝ : HasKernel g
w : f ≫ g = 0
⊢ Mono (imageToKernel f g w)
[PROOFSTEP]
dsimp only [imageToKernel]
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹ : HasImage f
g : B ⟶ C
inst✝ : HasKernel g
w : f ≫ g = 0
⊢ Mono (Subobject.ofLE (imageSubobject f) (kernelSubobject g) (_ : imageSubobject f ≤ kernelSubobject g))
[PROOFSTEP]
infer_instance
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹ : HasImage f
g : B ⟶ C
inst✝ : HasKernel g
w : f ≫ g = 0
⊢ imageToKernel f g w ≫ Subobject.arrow (kernelSubobject g) = Subobject.arrow (imageSubobject f)
[PROOFSTEP]
simp [imageToKernel]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝² : HasImage f
g : B ⟶ C
inst✝¹ : HasKernel g
inst✝ : ConcreteCategory V
w : f ≫ g = 0
x : (forget V).obj (Subobject.underlying.obj (imageSubobject f))
⊢ ↑(Subobject.arrow (kernelSubobject g)) (↑(imageToKernel f g w) x) = ↑(Subobject.arrow (imageSubobject f)) x
[PROOFSTEP]
rw [← comp_apply, imageToKernel_arrow]
-- This is less useful as a `simp` lemma than it initially appears,
-- as it "loses" the information the morphism factors through the image.
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹ : HasImage f
g : B ⟶ C
inst✝ : HasKernel g
w : f ≫ g = 0
⊢ factorThruImageSubobject f ≫ imageToKernel f g w = factorThruKernelSubobject g f w
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹ : HasImage f
g : B ⟶ C
inst✝ : HasKernel g
w : f ≫ g = 0
⊢ (factorThruImageSubobject f ≫ imageToKernel f g w) ≫ Subobject.arrow (kernelSubobject g) =
factorThruKernelSubobject g f w ≫ Subobject.arrow (kernelSubobject g)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasKernels V
inst✝ : HasZeroObject V
w : 0 ≫ g = 0
⊢ imageToKernel 0 g w = 0
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasKernels V
inst✝ : HasZeroObject V
w : 0 ≫ g = 0
⊢ imageToKernel 0 g w ≫ Subobject.arrow (kernelSubobject g) = 0 ≫ Subobject.arrow (kernelSubobject g)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝ : HasImages V
w : f ≫ 0 = 0
⊢ imageToKernel f 0 w = Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝ : HasImages V
w : f ≫ 0 = 0
⊢ imageToKernel f 0 w ≫ Subobject.arrow (kernelSubobject 0) =
(Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0))) ≫
Subobject.arrow (kernelSubobject 0)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasKernels V
inst✝ : HasImages V
D : V
h : C ⟶ D
w : f ≫ g = 0
⊢ f ≫ g ≫ h = 0
[PROOFSTEP]
simp [reassoc_of% w]
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasKernels V
inst✝ : HasImages V
D : V
h : C ⟶ D
w : f ≫ g = 0
⊢ imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0) =
imageToKernel f g w ≫
Subobject.ofLE (kernelSubobject g) (kernelSubobject (g ≫ h)) (_ : kernelSubobject g ≤ kernelSubobject (g ≫ h))
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasKernels V
inst✝ : HasImages V
D : V
h : C ⟶ D
w : f ≫ g = 0
⊢ imageToKernel f (g ≫ h) (_ : f ≫ g ≫ h = 0) ≫ Subobject.arrow (kernelSubobject (g ≫ h)) =
(imageToKernel f g w ≫
Subobject.ofLE (kernelSubobject g) (kernelSubobject (g ≫ h))
(_ : kernelSubobject g ≤ kernelSubobject (g ≫ h))) ≫
Subobject.arrow (kernelSubobject (g ≫ h))
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasKernels V
inst✝ : HasImages V
Z : V
h : Z ⟶ A
w : f ≫ g = 0
⊢ (h ≫ f) ≫ g = 0
[PROOFSTEP]
simp [w]
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasKernels V
inst✝ : HasImages V
Z : V
h : Z ⟶ A
w : f ≫ g = 0
⊢ imageToKernel (h ≫ f) g (_ : (h ≫ f) ≫ g = 0) =
Subobject.ofLE (imageSubobject (h ≫ f)) (imageSubobject f) (_ : imageSubobject (h ≫ f) ≤ imageSubobject f) ≫
imageToKernel f g w
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasKernels V
inst✝ : HasImages V
Z : V
h : Z ⟶ A
w : f ≫ g = 0
⊢ imageToKernel (h ≫ f) g (_ : (h ≫ f) ≫ g = 0) ≫ Subobject.arrow (kernelSubobject g) =
(Subobject.ofLE (imageSubobject (h ≫ f)) (imageSubobject f) (_ : imageSubobject (h ≫ f) ≤ imageSubobject f) ≫
imageToKernel f g w) ≫
Subobject.arrow (kernelSubobject g)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝² : HasKernels V
inst✝¹ : HasImages V
D : V
h : C ⟶ D
inst✝ : Mono h
w : f ≫ g ≫ h = 0
⊢ (f ≫ g) ≫ h = 0 ≫ h
[PROOFSTEP]
simpa using w
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝² : HasKernels V
inst✝¹ : HasImages V
D : V
h : C ⟶ D
inst✝ : Mono h
w : f ≫ g ≫ h = 0
⊢ imageToKernel f (g ≫ h) w =
imageToKernel f g (_ : f ≫ g = 0) ≫
(Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g)
(_ : kernelSubobject (g ≫ h) = kernelSubobject g)).inv
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝² : HasKernels V
inst✝¹ : HasImages V
D : V
h : C ⟶ D
inst✝ : Mono h
w : f ≫ g ≫ h = 0
⊢ imageToKernel f (g ≫ h) w ≫ Subobject.arrow (kernelSubobject (g ≫ h)) =
(imageToKernel f g (_ : f ≫ g = 0) ≫
(Subobject.isoOfEq (kernelSubobject (g ≫ h)) (kernelSubobject g)
(_ : kernelSubobject (g ≫ h) = kernelSubobject g)).inv) ≫
Subobject.arrow (kernelSubobject (g ≫ h))
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝² : HasKernels V
inst✝¹ : HasImages V
Z : V
h : Z ⟶ A
inst✝ : Epi h
w : (h ≫ f) ≫ g = 0
⊢ h ≫ f ≫ g = h ≫ 0
[PROOFSTEP]
simpa using w
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝² : HasKernels V
inst✝¹ : HasImages V
Z : V
h : Z ⟶ A
inst✝ : Epi h
w : (h ≫ f) ≫ g = 0
⊢ imageToKernel (h ≫ f) g w =
Subobject.ofLE (imageSubobject (h ≫ f)) (imageSubobject f) (_ : imageSubobject (h ≫ f) ≤ imageSubobject f) ≫
imageToKernel f g (_ : f ≫ g = 0)
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝² : HasKernels V
inst✝¹ : HasImages V
Z : V
h : Z ⟶ A
inst✝ : Epi h
w : (h ≫ f) ≫ g = 0
⊢ imageToKernel (h ≫ f) g w ≫ Subobject.arrow (kernelSubobject g) =
(Subobject.ofLE (imageSubobject (h ≫ f)) (imageSubobject f) (_ : imageSubobject (h ≫ f) ≤ imageSubobject f) ≫
imageToKernel f g (_ : f ≫ g = 0)) ≫
Subobject.arrow (kernelSubobject g)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasEqualizers V
inst✝ : HasImages V
Z : V
i : B ≅ Z
w : (f ≫ i.hom) ≫ i.inv ≫ g = 0
⊢ f ≫ g = 0
[PROOFSTEP]
simpa using w
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasEqualizers V
inst✝ : HasImages V
Z : V
i : B ≅ Z
w : (f ≫ i.hom) ≫ i.inv ≫ g = 0
⊢ imageToKernel (f ≫ i.hom) (i.inv ≫ g) w =
(imageSubobjectCompIso f i.hom).hom ≫ imageToKernel f g (_ : f ≫ g = 0) ≫ (kernelSubobjectIsoComp i.inv g).inv
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasEqualizers V
inst✝ : HasImages V
Z : V
i : B ≅ Z
w : (f ≫ i.hom) ≫ i.inv ≫ g = 0
⊢ imageToKernel (f ≫ i.hom) (i.inv ≫ g) w ≫ Subobject.arrow (kernelSubobject (i.inv ≫ g)) =
((imageSubobjectCompIso f i.hom).hom ≫ imageToKernel f g (_ : f ≫ g = 0) ≫ (kernelSubobjectIsoComp i.inv g).inv) ≫
Subobject.arrow (kernelSubobject (i.inv ≫ g))
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝² : HasKernels V
inst✝¹ : HasZeroObject V
inst✝ : Mono g
⊢ 0 ≫ g = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasImages V
inst✝ : Epi f
⊢ f ≫ 0 = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasImages V
inst✝ : Epi f
⊢ Epi (imageToKernel f 0 (_ : f ≫ 0 = 0))
[PROOFSTEP]
simp only [imageToKernel_zero_right]
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasImages V
inst✝ : Epi f
⊢ Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0)))
[PROOFSTEP]
haveI := epi_image_of_epi f
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasImages V
inst✝ : Epi f
this : Epi (image.ι f)
⊢ Epi (Subobject.arrow (imageSubobject f) ≫ inv (Subobject.arrow (kernelSubobject 0)))
[PROOFSTEP]
rw [← imageSubobject_arrow]
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
inst✝¹ : HasImages V
inst✝ : Epi f
this : Epi (image.ι f)
⊢ Epi (((imageSubobjectIso f).hom ≫ image.ι f) ≫ inv (Subobject.arrow (kernelSubobject 0)))
[PROOFSTEP]
refine' @epi_comp _ _ _ _ _ _ (epi_comp _ _) _ _
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝² : HasImage f
g : B ⟶ C
inst✝¹ : HasKernel g
w : f ≫ g = 0
inst✝ : HasCokernel (imageToKernel f g w)
D : V
k : Subobject.underlying.obj (kernelSubobject g) ⟶ D
p : imageToKernel f g w ≫ k = 0
⊢ π f g w ≫ desc f g w k p = k
[PROOFSTEP]
simp [homology.π, homology.desc]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁸ : Category.{v, u} V
inst✝⁷ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝⁶ : HasImage f
g : B ⟶ C
inst✝⁵ : HasKernel g
w : f ≫ g = 0
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f 0 (_ : f ≫ 0 = 0))
inst✝² : HasCokernel f
inst✝¹ : HasCokernel (image.ι f)
inst✝ : Epi (factorThruImage f)
⊢ imageToKernel f 0 (_ : f ≫ 0 = 0) ≫ (kernelSubobjectIso 0 ≪≫ kernelZeroIsoSource).hom =
(imageSubobjectIso f).hom ≫ image.ι f
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁷ : Category.{v, u} V
inst✝⁶ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝⁵ : HasImage f
g : B ⟶ C
inst✝⁴ : HasKernel g
w : f ≫ g = 0
inst✝³ : HasCokernel (imageToKernel f g w)
inst✝² : HasZeroObject V
inst✝¹ : HasImage 0
inst✝ : HasCokernel (imageToKernel 0 0 (_ : 0 ≫ 0 = 0))
⊢ imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁴ : Category.{v, u} V
inst✝¹³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹² : HasImage f
g : B ⟶ C
inst✝¹¹ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁰ : HasImage f'
g' : B' ⟶ C'
inst✝⁹ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝⁸ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝⁷ : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝⁶ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝⁵ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁴ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝³ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝² : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝¹ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
p : α.right = β.left
⊢ imageToKernel f g w ≫ kernelSubobjectMap β = imageSubobjectMap α ≫ imageToKernel f' g' w'
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹⁴ : Category.{v, u} V
inst✝¹³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹² : HasImage f
g : B ⟶ C
inst✝¹¹ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁰ : HasImage f'
g' : B' ⟶ C'
inst✝⁹ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝⁸ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝⁷ : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝⁶ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝⁵ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁴ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝³ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝² : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝¹ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
p : α.right = β.left
⊢ (imageToKernel f g w ≫ kernelSubobjectMap β) ≫ Subobject.arrow (kernelSubobject g') =
(imageSubobjectMap α ≫ imageToKernel f' g' w') ≫ Subobject.arrow (kernelSubobject g')
[PROOFSTEP]
simp [p]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
p : α.right = β.left
⊢ imageToKernel f g w ≫ kernelSubobjectMap β ≫ cokernel.π (imageToKernel f' g' w') = 0
[PROOFSTEP]
rw [imageSubobjectMap_comp_imageToKernel_assoc w w' α β p]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
p : α.right = β.left
⊢ imageSubobjectMap α ≫ imageToKernel f' g' w' ≫ cokernel.π (imageToKernel f' g' w') = 0
[PROOFSTEP]
simp only [cokernel.condition, comp_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
p : α.right = β.left
⊢ π f g w ≫ map w w' α β p = kernelSubobjectMap β ≫ π f' g' w'
[PROOFSTEP]
simp only [homology.π, homology.map, cokernel.π_desc]
[GOAL]
ι : Type u_1
V : Type u
inst✝²⁰ : Category.{v, u} V
inst✝¹⁹ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁸ : HasImage f
g : B ⟶ C
inst✝¹⁷ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁶ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁵ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹⁴ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹³ : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹² : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹¹ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝¹⁰ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁹ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁸ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁷ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁶ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁵ : HasCokernel (imageToKernel f g w)
inst✝⁴ : HasCokernel (imageToKernel f' g' w')
inst✝³ : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝² : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝¹ : HasCokernel (imageToKernel f₃ g₃ w₃)
inst✝ : ConcreteCategory V
p : α.right = β.left
x : (forget V).obj (Subobject.underlying.obj (kernelSubobject g))
⊢ ↑(map w w' α β p) (↑(π f g w) x) = ↑(π f' g' w') (↑(kernelSubobjectMap β) x)
[PROOFSTEP]
simp only [← comp_apply, homology.π_map w w' α β p]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
p : α.right = β.left
D : V
k : Subobject.underlying.obj (kernelSubobject g') ⟶ D
z : imageToKernel f' g' w' ≫ k = 0
⊢ imageToKernel f g w ≫ kernelSubobjectMap β ≫ k = 0
[PROOFSTEP]
simp only [imageSubobjectMap_comp_imageToKernel_assoc w w' α β p, z, comp_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
p : α.right = β.left
D : V
k : Subobject.underlying.obj (kernelSubobject g') ⟶ D
z : imageToKernel f' g' w' ≫ k = 0
⊢ map w w' α β p ≫ desc f' g' w' k z =
desc f g w (kernelSubobjectMap β ≫ k) (_ : imageToKernel f g w ≫ kernelSubobjectMap β ≫ k = 0)
[PROOFSTEP]
ext
[GOAL]
case p
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
p : α.right = β.left
D : V
k : Subobject.underlying.obj (kernelSubobject g') ⟶ D
z : imageToKernel f' g' w' ≫ k = 0
⊢ π f g w ≫ map w w' α β p ≫ desc f' g' w' k z =
π f g w ≫ desc f g w (kernelSubobjectMap β ≫ k) (_ : imageToKernel f g w ≫ kernelSubobjectMap β ≫ k = 0)
[PROOFSTEP]
simp only [homology.π_desc, homology.π_map_assoc]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
⊢ map w w (𝟙 (Arrow.mk f)) (𝟙 (Arrow.mk g)) (_ : (𝟙 (Arrow.mk f)).right = (𝟙 (Arrow.mk f)).right) = 𝟙 (homology f g w)
[PROOFSTEP]
ext
[GOAL]
case p
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
⊢ π f g w ≫ map w w (𝟙 (Arrow.mk f)) (𝟙 (Arrow.mk g)) (_ : (𝟙 (Arrow.mk f)).right = (𝟙 (Arrow.mk f)).right) =
π f g w ≫ 𝟙 (homology f g w)
[PROOFSTEP]
simp only [homology.π_map, kernelSubobjectMap_id, Category.id_comp, Category.comp_id]
[GOAL]
ι : Type u_1
V✝ : Type u
inst✝²⁰ : Category.{v, u} V✝
inst✝¹⁹ : HasZeroMorphisms V✝
A B C : V✝
f : A ⟶ B
inst✝¹⁸ : HasImage f
g : B ⟶ C
inst✝¹⁷ : HasKernel g
w : f ≫ g = 0
A' B' C' : V✝
f' : A' ⟶ B'
inst✝¹⁶ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁵ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹⁴ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁✝ B₁✝ C₁✝ : V✝
f₁✝ : A₁✝ ⟶ B₁✝
inst✝¹³ : HasImage f₁✝
g₁✝ : B₁✝ ⟶ C₁✝
inst✝¹² : HasKernel g₁✝
w₁ : f₁✝ ≫ g₁✝ = 0
A₂✝ B₂✝ C₂✝ : V✝
f₂✝ : A₂✝ ⟶ B₂✝
inst✝¹¹ : HasImage f₂✝
g₂✝ : B₂✝ ⟶ C₂✝
inst✝¹⁰ : HasKernel g₂✝
w₂ : f₂✝ ≫ g₂✝ = 0
A₃✝ B₃✝ C₃✝ : V✝
f₃✝ : A₃✝ ⟶ B₃✝
inst✝⁹ : HasImage f₃✝
g₃✝ : B₃✝ ⟶ C₃✝
inst✝⁸ : HasKernel g₃✝
w₃ : f₃✝ ≫ g₃✝ = 0
α₁✝ : Arrow.mk f₁✝ ⟶ Arrow.mk f₂✝
inst✝⁷ : HasImageMap α₁✝
β₁✝ : Arrow.mk g₁✝ ⟶ Arrow.mk g₂✝
α₂✝ : Arrow.mk f₂✝ ⟶ Arrow.mk f₃✝
inst✝⁶ : HasImageMap α₂✝
β₂✝ : Arrow.mk g₂✝ ⟶ Arrow.mk g₃✝
inst✝⁵ : HasCokernel (imageToKernel f g w)
inst✝⁴ : HasCokernel (imageToKernel f' g' w')
inst✝³ : HasCokernel (imageToKernel f₁✝ g₁✝ w₁)
inst✝² : HasCokernel (imageToKernel f₂✝ g₂✝ w₂)
inst✝¹ : HasCokernel (imageToKernel f₃✝ g₃✝ w₃)
V : Type u_2
inst✝ : Category.{u_3, u_2} V
A₁ B₁ C₁ A₂ B₂ C₂ A₃ B₃ C₃ : V
f₁ : A₁ ⟶ B₁
g₁ : B₁ ⟶ C₁
f₂ : A₂ ⟶ B₂
g₂ : B₂ ⟶ C₂
f₃ : A₃ ⟶ B₃
g₃ : B₃ ⟶ C₃
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
p₁ : α₁.right = β₁.left
p₂ : α₂.right = β₂.left
⊢ (α₁ ≫ α₂).right = (β₁ ≫ β₂).left
[PROOFSTEP]
simp only [Arrow.comp_left, Arrow.comp_right, p₁, p₂]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
p₁ : α₁.right = β₁.left
p₂ : α₂.right = β₂.left
⊢ map w₁ w₂ α₁ β₁ p₁ ≫ map w₂ w₃ α₂ β₂ p₂ = map w₁ w₃ (α₁ ≫ α₂) (β₁ ≫ β₂) (_ : (α₁ ≫ α₂).right = (β₁ ≫ β₂).left)
[PROOFSTEP]
ext
[GOAL]
case p
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α
β : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
p₁ : α₁.right = β₁.left
p₂ : α₂.right = β₂.left
⊢ π f₁ g₁ w₁ ≫ map w₁ w₂ α₁ β₁ p₁ ≫ map w₂ w₃ α₂ β₂ p₂ =
π f₁ g₁ w₁ ≫ map w₁ w₃ (α₁ ≫ α₂) (β₁ ≫ β₂) (_ : (α₁ ≫ α₂).right = (β₁ ≫ β₂).left)
[PROOFSTEP]
simp only [kernelSubobjectMap_comp, homology.π_map_assoc, homology.π_map, Category.assoc]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ α.inv.right = β.inv.left
[PROOFSTEP]
rw [← cancel_mono α.hom.right, ← Comma.comp_right, α.inv_hom_id, Comma.id_right, p, ← Comma.comp_left, β.inv_hom_id,
Comma.id_left]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ 𝟙 (Arrow.mk f₂).right = 𝟙 (Arrow.mk g₂).left
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ map w₁ w₂ α.hom β.hom p ≫ map w₂ w₁ α.inv β.inv (_ : α.inv.right = β.inv.left) = 𝟙 (homology f₁ g₁ w₁)
[PROOFSTEP]
rw [homology.map_comp, ← homology.map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ map w₁ w₁ (α.hom ≫ α.inv) (β.hom ≫ β.inv) (_ : (α.hom ≫ α.inv).right = (β.hom ≫ β.inv).left) =
map w₁ w₁ (𝟙 (Arrow.mk f₁)) (𝟙 (Arrow.mk g₁)) (_ : (𝟙 (Arrow.mk f₁)).right = (𝟙 (Arrow.mk f₁)).right)
[PROOFSTEP]
congr
[GOAL]
case e_α
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ α.hom ≫ α.inv = 𝟙 (Arrow.mk f₁)
[PROOFSTEP]
simp only [Iso.hom_inv_id]
[GOAL]
case e_β
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ β.hom ≫ β.inv = 𝟙 (Arrow.mk g₁)
[PROOFSTEP]
simp only [Iso.hom_inv_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ map w₂ w₁ α.inv β.inv (_ : α.inv.right = β.inv.left) ≫ map w₁ w₂ α.hom β.hom p = 𝟙 (homology f₂ g₂ w₂)
[PROOFSTEP]
rw [homology.map_comp, ← homology.map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ map w₂ w₂ (α.inv ≫ α.hom) (β.inv ≫ β.hom) (_ : (α.inv ≫ α.hom).right = (β.inv ≫ β.hom).left) =
map w₂ w₂ (𝟙 (Arrow.mk f₂)) (𝟙 (Arrow.mk g₂)) (_ : (𝟙 (Arrow.mk f₂)).right = (𝟙 (Arrow.mk f₂)).right)
[PROOFSTEP]
congr
[GOAL]
case e_α
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ α.inv ≫ α.hom = 𝟙 (Arrow.mk f₂)
[PROOFSTEP]
simp only [Iso.inv_hom_id]
[GOAL]
case e_β
ι : Type u_1
V : Type u
inst✝¹⁹ : Category.{v, u} V
inst✝¹⁸ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
inst✝¹⁷ : HasImage f
g : B ⟶ C
inst✝¹⁶ : HasKernel g
w : f ≫ g = 0
A' B' C' : V
f' : A' ⟶ B'
inst✝¹⁵ : HasImage f'
g' : B' ⟶ C'
inst✝¹⁴ : HasKernel g'
w' : f' ≫ g' = 0
α✝ : Arrow.mk f ⟶ Arrow.mk f'
inst✝¹³ : HasImageMap α✝
β✝ : Arrow.mk g ⟶ Arrow.mk g'
A₁ B₁ C₁ : V
f₁ : A₁ ⟶ B₁
inst✝¹² : HasImage f₁
g₁ : B₁ ⟶ C₁
inst✝¹¹ : HasKernel g₁
w₁ : f₁ ≫ g₁ = 0
A₂ B₂ C₂ : V
f₂ : A₂ ⟶ B₂
inst✝¹⁰ : HasImage f₂
g₂ : B₂ ⟶ C₂
inst✝⁹ : HasKernel g₂
w₂ : f₂ ≫ g₂ = 0
A₃ B₃ C₃ : V
f₃ : A₃ ⟶ B₃
inst✝⁸ : HasImage f₃
g₃ : B₃ ⟶ C₃
inst✝⁷ : HasKernel g₃
w₃ : f₃ ≫ g₃ = 0
α₁ : Arrow.mk f₁ ⟶ Arrow.mk f₂
inst✝⁶ : HasImageMap α₁
β₁ : Arrow.mk g₁ ⟶ Arrow.mk g₂
α₂ : Arrow.mk f₂ ⟶ Arrow.mk f₃
inst✝⁵ : HasImageMap α₂
β₂ : Arrow.mk g₂ ⟶ Arrow.mk g₃
inst✝⁴ : HasCokernel (imageToKernel f g w)
inst✝³ : HasCokernel (imageToKernel f' g' w')
inst✝² : HasCokernel (imageToKernel f₁ g₁ w₁)
inst✝¹ : HasCokernel (imageToKernel f₂ g₂ w₂)
inst✝ : HasCokernel (imageToKernel f₃ g₃ w₃)
α : Arrow.mk f₁ ≅ Arrow.mk f₂
β : Arrow.mk g₁ ≅ Arrow.mk g₂
p : α.hom.right = β.hom.left
⊢ β.inv ≫ β.hom = 𝟙 (Arrow.mk g₂)
[PROOFSTEP]
simp only [Iso.inv_hom_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
f' : A ⟶ B
g' : B ⟶ C
w' : f' ≫ g' = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
pf : f = f'
pg : g = g'
⊢ (𝟭 V).map (𝟙 (Arrow.mk f).left) ≫ (Arrow.mk f').hom = (Arrow.mk f).hom ≫ (𝟭 V).map (𝟙 (Arrow.mk f).right)
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
f' : A ⟶ B
g' : B ⟶ C
w' : f' ≫ g' = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
pf : f = f'
pg : g = g'
⊢ (𝟭 V).map (𝟙 (Arrow.mk g).left) ≫ (Arrow.mk g').hom = (Arrow.mk g).hom ≫ (𝟭 V).map (𝟙 (Arrow.mk g).right)
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
f' : A ⟶ B
g' : B ⟶ C
w' : f' ≫ g' = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
pf : f = f'
pg : g = g'
⊢ (𝟭 V).map (𝟙 (Arrow.mk f').left) ≫ (Arrow.mk f).hom = (Arrow.mk f').hom ≫ (𝟭 V).map (𝟙 (Arrow.mk f').right)
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
f' : A ⟶ B
g' : B ⟶ C
w' : f' ≫ g' = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
pf : f = f'
pg : g = g'
⊢ (𝟭 V).map (𝟙 (Arrow.mk g').left) ≫ (Arrow.mk g).hom = (Arrow.mk g').hom ≫ (𝟭 V).map (𝟙 (Arrow.mk g').right)
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
f' : A ⟶ B
g' : B ⟶ C
w' : f' ≫ g' = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
pf : f = f'
pg : g = g'
⊢ map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫
map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right))
(CommaMorphism.mk (𝟙 (Arrow.mk g').left) (𝟙 (Arrow.mk g').right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)).right) =
𝟙 (homology f g w)
[PROOFSTEP]
obtain rfl := pf
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
g' : B ⟶ C
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
pg : g = g'
w' : f ≫ g' = 0
⊢ map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫
map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g').left) (𝟙 (Arrow.mk g').right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) =
𝟙 (homology f g w)
[PROOFSTEP]
obtain rfl := pg
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
w' : f ≫ g = 0
⊢ map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫
map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) =
𝟙 (homology f g w)
[PROOFSTEP]
rw [homology.map_comp, ← homology.map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
w' : f ≫ g = 0
⊢ map w w
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)).left) =
map w w (𝟙 (Arrow.mk f)) (𝟙 (Arrow.mk g)) (_ : (𝟙 (Arrow.mk f)).right = (𝟙 (Arrow.mk f)).right)
[PROOFSTEP]
congr
[GOAL]
case e_α
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
w' : f ≫ g = 0
⊢ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) =
𝟙 (Arrow.mk f)
[PROOFSTEP]
aesop_cat
[GOAL]
case e_β
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
w' : f ≫ g = 0
⊢ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) =
𝟙 (Arrow.mk g)
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
f' : A ⟶ B
g' : B ⟶ C
w' : f' ≫ g' = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
pf : f = f'
pg : g = g'
⊢ map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right))
(CommaMorphism.mk (𝟙 (Arrow.mk g').left) (𝟙 (Arrow.mk g').right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f').left) (𝟙 (Arrow.mk f').right)).right) ≫
map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) =
𝟙 (homology f' g' w')
[PROOFSTEP]
obtain rfl := pf
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
g' : B ⟶ C
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
pg : g = g'
w' : f ≫ g' = 0
⊢ map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g').left) (𝟙 (Arrow.mk g').right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫
map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) =
𝟙 (homology f g' w')
[PROOFSTEP]
obtain rfl := pg
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
w' : f ≫ g = 0
⊢ map w' w (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) ≫
map w w' (CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right) =
𝟙 (homology f g w')
[PROOFSTEP]
rw [homology.map_comp, ← homology.map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
w' : f ≫ g = 0
⊢ map w' w'
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right))
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right)).left) =
map w' w' (𝟙 (Arrow.mk f)) (𝟙 (Arrow.mk g)) (_ : (𝟙 (Arrow.mk f)).right = (𝟙 (Arrow.mk f)).right)
[PROOFSTEP]
congr
[GOAL]
case e_α
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
w' : f ≫ g = 0
⊢ CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk f).left) (𝟙 (Arrow.mk f).right) =
𝟙 (Arrow.mk f)
[PROOFSTEP]
aesop_cat
[GOAL]
case e_β
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
w' : f ≫ g = 0
⊢ CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) ≫
CommaMorphism.mk (𝟙 (Arrow.mk g).left) (𝟙 (Arrow.mk g).right) =
𝟙 (Arrow.mk g)
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝¹ : HasKernels V
inst✝ : HasImages V
w : f ≫ g = 0
⊢ image.ι f ≫ g = 0
[PROOFSTEP]
ext
[GOAL]
case w
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝¹ : HasKernels V
inst✝ : HasImages V
w : f ≫ g = 0
⊢ factorThruImage f ≫ image.ι f ≫ g = factorThruImage f ≫ 0
[PROOFSTEP]
simpa using w
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝¹ : HasKernels V
inst✝ : HasImages V
w : f ≫ g = 0
⊢ (imageSubobjectIso f).hom ≫ imageToKernel' f g w = imageToKernel f g w ≫ (kernelSubobjectIso g).hom
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝¹ : HasKernels V
inst✝ : HasImages V
w : f ≫ g = 0
⊢ ((imageSubobjectIso f).hom ≫ imageToKernel' f g w) ≫ equalizer.ι g 0 =
(imageToKernel f g w ≫ (kernelSubobjectIso g).hom) ≫ equalizer.ι g 0
[PROOFSTEP]
simp [imageToKernel']
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝¹ : HasKernels V
inst✝ : HasImages V
w : f ≫ g = 0
⊢ imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝¹ : HasKernels V
inst✝ : HasImages V
w : f ≫ g = 0
⊢ (imageToKernel' f g w ≫ (kernelSubobjectIso g).inv) ≫ Subobject.arrow (kernelSubobject g) =
((imageSubobjectIso f).inv ≫ imageToKernel f g w) ≫ Subobject.arrow (kernelSubobject g)
[PROOFSTEP]
simp [imageToKernel']
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
w : f ≫ g = 0
⊢ imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w
[PROOFSTEP]
simp only [imageSubobjectIso_imageToKernel']
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
w : f ≫ g = 0
⊢ imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w
[PROOFSTEP]
simp only [imageToKernel'_kernelSubobjectIso]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
w : f ≫ g = 0
⊢ cokernel.map (imageToKernel f g w) (imageToKernel' f g w) (imageSubobjectIso f).hom (kernelSubobjectIso g).hom
(_ : imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w) ≫
cokernel.map (imageToKernel' f g w) (imageToKernel f g w) (imageSubobjectIso f).inv (kernelSubobjectIso g).inv
(_ : imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w) =
𝟙 (homology f g w)
[PROOFSTEP]
apply coequalizer.hom_ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
w : f ≫ g = 0
⊢ coequalizer.π (imageToKernel f g w) 0 ≫
cokernel.map (imageToKernel f g w) (imageToKernel' f g w) (imageSubobjectIso f).hom (kernelSubobjectIso g).hom
(_ : imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w) ≫
cokernel.map (imageToKernel' f g w) (imageToKernel f g w) (imageSubobjectIso f).inv (kernelSubobjectIso g).inv
(_ : imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w) =
coequalizer.π (imageToKernel f g w) 0 ≫ 𝟙 (homology f g w)
[PROOFSTEP]
simp only [Iso.hom_inv_id_assoc, cokernel.π_desc, cokernel.π_desc_assoc, Category.assoc, coequalizer_as_cokernel]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
w : f ≫ g = 0
⊢ cokernel.π (imageToKernel f g w) = cokernel.π (imageToKernel f g w) ≫ 𝟙 (homology f g w)
[PROOFSTEP]
exact (Category.comp_id _).symm
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
w : f ≫ g = 0
⊢ cokernel.map (imageToKernel' f g w) (imageToKernel f g w) (imageSubobjectIso f).inv (kernelSubobjectIso g).inv
(_ : imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w) ≫
cokernel.map (imageToKernel f g w) (imageToKernel' f g w) (imageSubobjectIso f).hom (kernelSubobjectIso g).hom
(_ : imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w) =
𝟙 (cokernel (imageToKernel' f g w))
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝² : HasKernels V
inst✝¹ : HasImages V
inst✝ : HasCokernels V
w : f ≫ g = 0
⊢ coequalizer.π (imageToKernel' f g w) 0 ≫
cokernel.map (imageToKernel' f g w) (imageToKernel f g w) (imageSubobjectIso f).inv (kernelSubobjectIso g).inv
(_ : imageToKernel' f g w ≫ (kernelSubobjectIso g).inv = (imageSubobjectIso f).inv ≫ imageToKernel f g w) ≫
cokernel.map (imageToKernel f g w) (imageToKernel' f g w) (imageSubobjectIso f).hom (kernelSubobjectIso g).hom
(_ : imageToKernel f g w ≫ (kernelSubobjectIso g).hom = (imageSubobjectIso f).hom ≫ imageToKernel' f g w) =
coequalizer.π (imageToKernel' f g w) 0 ≫ 𝟙 (cokernel (imageToKernel' f g w))
[PROOFSTEP]
simp only [Iso.inv_hom_id_assoc, cokernel.π_desc, Category.comp_id, cokernel.π_desc_assoc, Category.assoc]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasImages V
inst✝¹ : HasCokernels V
inst✝ : HasEqualizers V
w : f ≫ g = 0
⊢ homology f g w ≅ cokernel (kernel.lift g f w)
[PROOFSTEP]
refine' homologyIsoCokernelImageToKernel' f g w ≪≫ _
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasImages V
inst✝¹ : HasCokernels V
inst✝ : HasEqualizers V
w : f ≫ g = 0
⊢ cokernel (imageToKernel' f g w) ≅ cokernel (kernel.lift g f w)
[PROOFSTEP]
have p : factorThruImage f ≫ imageToKernel' f g w = kernel.lift g f w :=
by
ext
simp [imageToKernel']
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasImages V
inst✝¹ : HasCokernels V
inst✝ : HasEqualizers V
w : f ≫ g = 0
⊢ factorThruImage f ≫ imageToKernel' f g w = kernel.lift g f w
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasImages V
inst✝¹ : HasCokernels V
inst✝ : HasEqualizers V
w : f ≫ g = 0
⊢ (factorThruImage f ≫ imageToKernel' f g w) ≫ equalizer.ι g 0 = kernel.lift g f w ≫ equalizer.ι g 0
[PROOFSTEP]
simp [imageToKernel']
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : HasZeroMorphisms V
A B C : V
f : A ⟶ B
g : B ⟶ C
w✝ : f ≫ g = 0
inst✝³ : HasKernels V
inst✝² : HasImages V
inst✝¹ : HasCokernels V
inst✝ : HasEqualizers V
w : f ≫ g = 0
p : factorThruImage f ≫ imageToKernel' f g w = kernel.lift g f w
⊢ cokernel (imageToKernel' f g w) ≅ cokernel (kernel.lift g f w)
[PROOFSTEP]
exact (cokernelEpiComp _ _).symm ≪≫ cokernelIsoOfEq p
| {"mathlib_filename": "Mathlib.Algebra.Homology.ImageToKernel", "llama_tokens": 33702} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoidWithZero α
p : α
hp : Prime p
s✝ : Multiset α
a : α
s : Multiset α
ih : p ∣ Multiset.prod s → ∃ a, a ∈ s ∧ p ∣ a
h : p ∣ Multiset.prod (a ::ₘ s)
⊢ p ∣ a * Multiset.prod s
[PROOFSTEP]
simpa using h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoidWithZero α
p : α
hp : Prime p
s : Multiset β
f : β → α
h : p ∣ Multiset.prod (Multiset.map f s)
⊢ ∃ a, a ∈ s ∧ p ∣ f a
[PROOFSTEP]
simpa only [exists_prop, Multiset.mem_map, exists_exists_and_eq_and] using hp.exists_mem_multiset_dvd h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CancelCommMonoidWithZero α
p : α
hp : Prime p
s : Multiset α
⊢ (∀ (r : α), r ∈ 0 → Prime r) → p ∣ Multiset.prod 0 → ∃ q, q ∈ 0 ∧ p ~ᵤ q
[PROOFSTEP]
simp [mt isUnit_iff_dvd_one.2 hp.not_unit]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CancelCommMonoidWithZero α
p : α
hp : Prime p
s✝ : Multiset α
a : α
s : Multiset α
ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q
hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r
hps : p ∣ Multiset.prod (a ::ₘ s)
⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q
[PROOFSTEP]
rw [Multiset.prod_cons] at hps
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CancelCommMonoidWithZero α
p : α
hp : Prime p
s✝ : Multiset α
a : α
s : Multiset α
ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q
hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r
hps : p ∣ a * Multiset.prod s
⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q
[PROOFSTEP]
cases' hp.dvd_or_dvd hps with h h
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CancelCommMonoidWithZero α
p : α
hp : Prime p
s✝ : Multiset α
a : α
s : Multiset α
ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q
hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r
hps : p ∣ a * Multiset.prod s
h : p ∣ a
⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q
[PROOFSTEP]
have hap := hs a (Multiset.mem_cons.2 (Or.inl rfl))
[GOAL]
case inl
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CancelCommMonoidWithZero α
p : α
hp : Prime p
s✝ : Multiset α
a : α
s : Multiset α
ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q
hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r
hps : p ∣ a * Multiset.prod s
h : p ∣ a
hap : Prime a
⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q
[PROOFSTEP]
exact ⟨a, Multiset.mem_cons_self a _, hp.associated_of_dvd hap h⟩
[GOAL]
case inr
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CancelCommMonoidWithZero α
p : α
hp : Prime p
s✝ : Multiset α
a : α
s : Multiset α
ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q
hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r
hps : p ∣ a * Multiset.prod s
h : p ∣ Multiset.prod s
⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q
[PROOFSTEP]
rcases ih (fun r hr => hs _ (Multiset.mem_cons.2 (Or.inr hr))) h with ⟨q, hq₁, hq₂⟩
[GOAL]
case inr.intro.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CancelCommMonoidWithZero α
p : α
hp : Prime p
s✝ : Multiset α
a : α
s : Multiset α
ih : (∀ (r : α), r ∈ s → Prime r) → p ∣ Multiset.prod s → ∃ q, q ∈ s ∧ p ~ᵤ q
hs : ∀ (r : α), r ∈ a ::ₘ s → Prime r
hps : p ∣ a * Multiset.prod s
h : p ∣ Multiset.prod s
q : α
hq₁ : q ∈ s
hq₂ : p ~ᵤ q
⊢ ∃ q, q ∈ a ::ₘ s ∧ p ~ᵤ q
[PROOFSTEP]
exact ⟨q, Multiset.mem_cons.2 (Or.inr hq₁), hq₂⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s : Multiset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
uniq : ∀ (a : α), countp (Associated a) s ≤ 1
⊢ prod s ∣ n
[PROOFSTEP]
induction' s using Multiset.induction_on with a s induct n primes divs generalizing n
[GOAL]
case empty
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s : Multiset α
n✝ : α
h✝ : ∀ (a : α), a ∈ s → Prime a
div✝ : ∀ (a : α), a ∈ s → a ∣ n✝
uniq✝ : ∀ (a : α), countp (Associated a) s ≤ 1
n : α
h : ∀ (a : α), a ∈ 0 → Prime a
div : ∀ (a : α), a ∈ 0 → a ∣ n
uniq : ∀ (a : α), countp (Associated a) 0 ≤ 1
⊢ prod 0 ∣ n
[PROOFSTEP]
simp only [Multiset.prod_zero, one_dvd]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n✝ : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n✝
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
n : α
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ n
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
⊢ prod (a ::ₘ s) ∣ n
[PROOFSTEP]
rw [Multiset.prod_cons]
[GOAL]
case cons
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n✝ : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n✝
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
n : α
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ n
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
⊢ a * prod s ∣ n
[PROOFSTEP]
obtain ⟨k, rfl⟩ : a ∣ n := div a (Multiset.mem_cons_self a s)
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
⊢ a * prod s ∣ a * k
[PROOFSTEP]
apply mul_dvd_mul_left a
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
⊢ prod s ∣ k
[PROOFSTEP]
refine
induct _ (fun a ha => h a (Multiset.mem_cons_of_mem ha)) (fun b b_in_s => ?_) fun a =>
(Multiset.countp_le_of_le _ (Multiset.le_cons_self _ _)).trans (uniq a)
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
b : α
b_in_s : b ∈ s
⊢ b ∣ k
[PROOFSTEP]
have b_div_n := div b (Multiset.mem_cons_of_mem b_in_s)
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
b : α
b_in_s : b ∈ s
b_div_n : b ∣ a * k
⊢ b ∣ k
[PROOFSTEP]
have a_prime := h a (Multiset.mem_cons_self a s)
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
b : α
b_in_s : b ∈ s
b_div_n : b ∣ a * k
a_prime : Prime a
⊢ b ∣ k
[PROOFSTEP]
have b_prime := h b (Multiset.mem_cons_of_mem b_in_s)
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
b : α
b_in_s : b ∈ s
b_div_n : b ∣ a * k
a_prime : Prime a
b_prime : Prime b
⊢ b ∣ k
[PROOFSTEP]
refine' (b_prime.dvd_or_dvd b_div_n).resolve_left fun b_div_a => _
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
b : α
b_in_s : b ∈ s
b_div_n : b ∣ a * k
a_prime : Prime a
b_prime : Prime b
b_div_a : b ∣ a
⊢ False
[PROOFSTEP]
have assoc := b_prime.associated_of_dvd a_prime b_div_a
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
b : α
b_in_s : b ∈ s
b_div_n : b ∣ a * k
a_prime : Prime a
b_prime : Prime b
b_div_a : b ∣ a
assoc : b ~ᵤ a
⊢ False
[PROOFSTEP]
have := uniq a
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
b : α
b_in_s : b ∈ s
b_div_n : b ∣ a * k
a_prime : Prime a
b_prime : Prime b
b_div_a : b ∣ a
assoc : b ~ᵤ a
this : countp (Associated a) (a ::ₘ s) ≤ 1
⊢ False
[PROOFSTEP]
rw [Multiset.countp_cons_of_pos _ (Associated.refl _), Nat.succ_le_succ_iff, ← not_lt, Multiset.countp_pos] at this
[GOAL]
case cons.intro
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : (a : α) → DecidablePred (Associated a)
s✝ : Multiset α
n : α
h✝ : ∀ (a : α), a ∈ s✝ → Prime a
div✝ : ∀ (a : α), a ∈ s✝ → a ∣ n
uniq✝ : ∀ (a : α), countp (Associated a) s✝ ≤ 1
a : α
s : Multiset α
induct :
∀ (n : α),
(∀ (a : α), a ∈ s → Prime a) → (∀ (a : α), a ∈ s → a ∣ n) → (∀ (a : α), countp (Associated a) s ≤ 1) → prod s ∣ n
h : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → Prime a_1
uniq : ∀ (a_1 : α), countp (Associated a_1) (a ::ₘ s) ≤ 1
k : α
div : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → a_1 ∣ a * k
b : α
b_in_s : b ∈ s
b_div_n : b ∣ a * k
a_prime : Prime a
b_prime : Prime b
b_div_a : b ∣ a
assoc : b ~ᵤ a
this : ¬∃ a_1, a_1 ∈ s ∧ a ~ᵤ a_1
⊢ False
[PROOFSTEP]
exact this ⟨b, b_in_s, assoc.symm⟩
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
⊢ ∏ p in s, p ∣ n
[PROOFSTEP]
classical exact
Multiset.prod_primes_dvd n (by simpa only [Multiset.map_id', Finset.mem_def] using h)
(by simpa only [Multiset.map_id', Finset.mem_def] using div)
(by
-- POrting note: was
-- `simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter, ←
-- Multiset.count_eq_card_filter_eq, ← Multiset.nodup_iff_count_le_one, s.nodup]`
intro a
simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter]
change Multiset.card (Multiset.filter (fun b => a = b) s.val) ≤ 1
apply le_of_eq_of_le (Multiset.count_eq_card_filter_eq _ _).symm
apply Multiset.nodup_iff_count_le_one.mp
exact s.nodup)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
⊢ ∏ p in s, p ∣ n
[PROOFSTEP]
exact
Multiset.prod_primes_dvd n (by simpa only [Multiset.map_id', Finset.mem_def] using h)
(by simpa only [Multiset.map_id', Finset.mem_def] using div)
(by
-- POrting note: was
-- `simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter, ←
-- Multiset.count_eq_card_filter_eq, ← Multiset.nodup_iff_count_le_one, s.nodup]`
intro a
simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter]
change Multiset.card (Multiset.filter (fun b => a = b) s.val) ≤ 1
apply le_of_eq_of_le (Multiset.count_eq_card_filter_eq _ _).symm
apply Multiset.nodup_iff_count_le_one.mp
exact s.nodup)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
⊢ ∀ (a : α), a ∈ Multiset.map (fun p => p) s.val → Prime a
[PROOFSTEP]
simpa only [Multiset.map_id', Finset.mem_def] using h
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
⊢ ∀ (a : α), a ∈ Multiset.map (fun p => p) s.val → a ∣ n
[PROOFSTEP]
simpa only [Multiset.map_id', Finset.mem_def] using div
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
⊢ ∀ (a : α), Multiset.countp (Associated a) (Multiset.map (fun p => p) s.val) ≤ 1
[PROOFSTEP]
intro a
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
a : α
⊢ Multiset.countp (Associated a) (Multiset.map (fun p => p) s.val) ≤ 1
[PROOFSTEP]
simp only [Multiset.map_id', associated_eq_eq, Multiset.countp_eq_card_filter]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
a : α
⊢ ↑Multiset.card (Multiset.filter (Eq a) s.val) ≤ 1
[PROOFSTEP]
change Multiset.card (Multiset.filter (fun b => a = b) s.val) ≤ 1
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
a : α
⊢ ↑Multiset.card (Multiset.filter (fun b => a = b) s.val) ≤ 1
[PROOFSTEP]
apply le_of_eq_of_le (Multiset.count_eq_card_filter_eq _ _).symm
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
a : α
⊢ Multiset.count a s.val ≤ 1
[PROOFSTEP]
apply Multiset.nodup_iff_count_le_one.mp
[GOAL]
case a
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝¹ : CancelCommMonoidWithZero α
inst✝ : Unique αˣ
s : Finset α
n : α
h : ∀ (a : α), a ∈ s → Prime a
div : ∀ (a : α), a ∈ s → a ∣ n
a : α
⊢ Multiset.Nodup s.val
[PROOFSTEP]
exact s.nodup
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p : Multiset α
⊢ Multiset.prod (Multiset.map Associates.mk 0) = Associates.mk (Multiset.prod 0)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p : Multiset α
a : α
s : Multiset α
ih : Multiset.prod (Multiset.map Associates.mk s) = Associates.mk (Multiset.prod s)
⊢ Multiset.prod (Multiset.map Associates.mk (a ::ₘ s)) = Associates.mk (Multiset.prod (a ::ₘ s))
[PROOFSTEP]
simp [ih, Associates.mk_mul_mk]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p : Finset β
f : β → α
⊢ ∏ i in p, Associates.mk (f i) = Associates.mk (∏ i in p, f i)
[PROOFSTEP]
have : (fun i => Associates.mk (f i)) = Associates.mk ∘ f := funext <| fun x => Function.comp_apply
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p : Finset β
f : β → α
this : (fun i => Associates.mk (f i)) = Associates.mk ∘ f
⊢ ∏ i in p, Associates.mk (f i) = Associates.mk (∏ i in p, f i)
[PROOFSTEP]
rw [Finset.prod_eq_multiset_prod, this, ← Multiset.map_map, prod_mk, ← Finset.prod_eq_multiset_prod]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p q : Multiset α
⊢ Multiset.Rel Associated p q ↔ Multiset.map Associates.mk p = Multiset.map Associates.mk q
[PROOFSTEP]
rw [← Multiset.rel_eq, Multiset.rel_map]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p q : Multiset α
⊢ Multiset.Rel Associated p q ↔ Multiset.Rel (fun a b => Associates.mk a = Associates.mk b) p q
[PROOFSTEP]
simp only [mk_eq_mk_iff_associated]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p : Multiset (Associates α)
⊢ Multiset.prod 0 = 1 ↔ ∀ (a : Associates α), a ∈ 0 → a = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p : Multiset (Associates α)
⊢ ∀ ⦃a : Associates α⦄ {s : Multiset (Associates α)},
(Multiset.prod s = 1 ↔ ∀ (a : Associates α), a ∈ s → a = 1) →
(Multiset.prod (a ::ₘ s) = 1 ↔ ∀ (a_2 : Associates α), a_2 ∈ a ::ₘ s → a_2 = 1)
[PROOFSTEP]
simp (config := { contextual := true }) [mul_eq_one_iff, or_imp, forall_and]
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p q : Multiset (Associates α)
h : p ≤ q
⊢ Multiset.prod p ≤ Multiset.prod q
[PROOFSTEP]
haveI := Classical.decEq (Associates α)
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p q : Multiset (Associates α)
h : p ≤ q
this : DecidableEq (Associates α)
⊢ Multiset.prod p ≤ Multiset.prod q
[PROOFSTEP]
haveI := Classical.decEq α
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p q : Multiset (Associates α)
h : p ≤ q
this✝ : DecidableEq (Associates α)
this : DecidableEq α
⊢ Multiset.prod p ≤ Multiset.prod q
[PROOFSTEP]
suffices p.prod ≤ (p + (q - p)).prod by rwa [add_tsub_cancel_of_le h] at this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p q : Multiset (Associates α)
h : p ≤ q
this✝¹ : DecidableEq (Associates α)
this✝ : DecidableEq α
this : Multiset.prod p ≤ Multiset.prod (p + (q - p))
⊢ Multiset.prod p ≤ Multiset.prod q
[PROOFSTEP]
rwa [add_tsub_cancel_of_le h] at this
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p q : Multiset (Associates α)
h : p ≤ q
this✝ : DecidableEq (Associates α)
this : DecidableEq α
⊢ Multiset.prod p ≤ Multiset.prod (p + (q - p))
[PROOFSTEP]
suffices p.prod * 1 ≤ p.prod * (q - p).prod by simpa
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p q : Multiset (Associates α)
h : p ≤ q
this✝¹ : DecidableEq (Associates α)
this✝ : DecidableEq α
this : Multiset.prod p * 1 ≤ Multiset.prod p * Multiset.prod (q - p)
⊢ Multiset.prod p ≤ Multiset.prod (p + (q - p))
[PROOFSTEP]
simpa
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CommMonoid α
p q : Multiset (Associates α)
h : p ≤ q
this✝ : DecidableEq (Associates α)
this : DecidableEq α
⊢ Multiset.prod p * 1 ≤ Multiset.prod p * Multiset.prod (q - p)
[PROOFSTEP]
exact mul_mono (le_refl p.prod) one_le
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
δ : Type u_4
inst✝ : CancelCommMonoidWithZero α
s✝ : Multiset (Associates α)
p : Associates α
hp : Prime p
a : Associates α
s : Multiset (Associates α)
ih : p ≤ Multiset.prod s → ∃ a, a ∈ s ∧ p ≤ a
h : p ≤ Multiset.prod (a ::ₘ s)
⊢ p ≤ a * Multiset.prod s
[PROOFSTEP]
simpa using h
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Associated", "llama_tokens": 11698} |
[GOAL]
C : Type u_1
D : Type u_2
inst✝² : Category.{u_3, u_1} C
inst✝¹ : Category.{?u.33371, u_2} D
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
⊢ π₁Toπ₂ ≫ π₂Toπ₃ = 0
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
D : Type u_2
inst✝⁴ : Category.{?u.36094, u_1} C
inst✝³ : Category.{?u.36098, u_2} D
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasZeroMorphisms D
F : C ⥤ D
inst✝ : Functor.PreservesZeroMorphisms F
⊢ F.map S.f ≫ F.map S.g = 0
[PROOFSTEP]
rw [← F.map_comp, S.zero, F.map_zero]
[GOAL]
C : Type u_1
D : Type u_2
inst✝⁴ : Category.{?u.44556, u_1} C
inst✝³ : Category.{?u.44560, u_2} D
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasZeroMorphisms D
F : C ⥤ D
inst✝ : Functor.PreservesZeroMorphisms F
X✝ Y✝ : ShortComplex C
φ : X✝ ⟶ Y✝
⊢ F.map φ.τ₁ ≫ ((fun S => map S F) Y✝).f = ((fun S => map S F) X✝).f ≫ F.map φ.τ₂
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
D : Type u_2
inst✝⁴ : Category.{?u.44556, u_1} C
inst✝³ : Category.{?u.44560, u_2} D
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasZeroMorphisms D
F : C ⥤ D
inst✝ : Functor.PreservesZeroMorphisms F
X✝ Y✝ : ShortComplex C
φ : X✝ ⟶ Y✝
⊢ F.map φ.τ₁ ≫ F.map Y✝.f = F.map X✝.f ≫ F.map φ.τ₂
[PROOFSTEP]
simp only [← F.map_comp, φ.comm₁₂]
[GOAL]
C : Type u_1
D : Type u_2
inst✝⁴ : Category.{?u.44556, u_1} C
inst✝³ : Category.{?u.44560, u_2} D
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasZeroMorphisms D
F : C ⥤ D
inst✝ : Functor.PreservesZeroMorphisms F
X✝ Y✝ : ShortComplex C
φ : X✝ ⟶ Y✝
⊢ F.map φ.τ₂ ≫ ((fun S => map S F) Y✝).g = ((fun S => map S F) X✝).g ≫ F.map φ.τ₃
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
D : Type u_2
inst✝⁴ : Category.{?u.44556, u_1} C
inst✝³ : Category.{?u.44560, u_2} D
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasZeroMorphisms D
F : C ⥤ D
inst✝ : Functor.PreservesZeroMorphisms F
X✝ Y✝ : ShortComplex C
φ : X✝ ⟶ Y✝
⊢ F.map φ.τ₂ ≫ F.map Y✝.g = F.map X✝.g ≫ F.map φ.τ₃
[PROOFSTEP]
simp only [← F.map_comp, φ.comm₂₃]
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.52069, u_1} C
inst✝² : Category.{?u.52073, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
e₁ : S₁.X₁ ≅ S₂.X₁
e₂ : S₁.X₂ ≅ S₂.X₂
e₃ : S₁.X₃ ≅ S₂.X₃
comm₁₂ : autoParam (e₁.hom ≫ S₂.f = S₁.f ≫ e₂.hom) _auto✝
comm₂₃ : autoParam (e₂.hom ≫ S₂.g = S₁.g ≫ e₃.hom) _auto✝
⊢ e₁.inv ≫ S₁.f = S₂.f ≫ e₂.inv
[PROOFSTEP]
rw [← cancel_mono e₂.hom, assoc, assoc, e₂.inv_hom_id, comp_id, ← comm₁₂, e₁.inv_hom_id_assoc]
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.52069, u_1} C
inst✝² : Category.{?u.52073, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
e₁ : S₁.X₁ ≅ S₂.X₁
e₂ : S₁.X₂ ≅ S₂.X₂
e₃ : S₁.X₃ ≅ S₂.X₃
comm₁₂ : autoParam (e₁.hom ≫ S₂.f = S₁.f ≫ e₂.hom) _auto✝
comm₂₃ : autoParam (e₂.hom ≫ S₂.g = S₁.g ≫ e₃.hom) _auto✝
⊢ e₂.inv ≫ S₁.g = S₂.g ≫ e₃.inv
[PROOFSTEP]
rw [← cancel_mono e₃.hom, assoc, assoc, e₃.inv_hom_id, comp_id, ← comm₂₃, e₂.inv_hom_id_assoc]
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.62853, u_1} C
inst✝² : Category.{?u.62857, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
⊢ S.g.op ≫ S.f.op = 0
[PROOFSTEP]
simp only [← op_comp, S.zero]
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.62853, u_1} C
inst✝² : Category.{?u.62857, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
⊢ 0.op = 0
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.63553, u_1} C
inst✝² : Category.{?u.63557, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
φ : S₁ ⟶ S₂
⊢ φ.τ₃.op ≫ (op S₁).f = (op S₂).f ≫ φ.τ₂.op
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.63553, u_1} C
inst✝² : Category.{?u.63557, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
φ : S₁ ⟶ S₂
⊢ φ.τ₃.op ≫ S₁.g.op = S₂.g.op ≫ φ.τ₂.op
[PROOFSTEP]
simp only [← op_comp, φ.comm₂₃]
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.63553, u_1} C
inst✝² : Category.{?u.63557, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
φ : S₁ ⟶ S₂
⊢ φ.τ₂.op ≫ (op S₁).g = (op S₂).g ≫ φ.τ₁.op
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.63553, u_1} C
inst✝² : Category.{?u.63557, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
φ : S₁ ⟶ S₂
⊢ φ.τ₂.op ≫ S₁.f.op = S₂.f.op ≫ φ.τ₁.op
[PROOFSTEP]
simp only [← op_comp, φ.comm₁₂]
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.64969, u_1} C
inst✝² : Category.{?u.64973, u_2} D
inst✝¹ : HasZeroMorphisms C
S✝ S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
S : ShortComplex Cᵒᵖ
⊢ S.g.unop ≫ S.f.unop = 0
[PROOFSTEP]
simp only [← unop_comp, S.zero]
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.64969, u_1} C
inst✝² : Category.{?u.64973, u_2} D
inst✝¹ : HasZeroMorphisms C
S✝ S₁ S₂ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
S : ShortComplex Cᵒᵖ
⊢ 0.unop = 0
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.65733, u_1} C
inst✝² : Category.{?u.65737, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
⊢ φ.τ₃.unop ≫ (unop S₁).f = (unop S₂).f ≫ φ.τ₂.unop
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.65733, u_1} C
inst✝² : Category.{?u.65737, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
⊢ φ.τ₃.unop ≫ S₁.g.unop = S₂.g.unop ≫ φ.τ₂.unop
[PROOFSTEP]
simp only [← unop_comp, φ.comm₂₃]
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.65733, u_1} C
inst✝² : Category.{?u.65737, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
⊢ φ.τ₂.unop ≫ (unop S₁).g = (unop S₂).g ≫ φ.τ₁.unop
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
D : Type u_2
inst✝³ : Category.{?u.65733, u_1} C
inst✝² : Category.{?u.65737, u_2} D
inst✝¹ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
inst✝ : HasZeroMorphisms D
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
⊢ φ.τ₂.unop ≫ S₁.f.unop = S₂.f.unop ≫ φ.τ₁.unop
[PROOFSTEP]
simp only [← unop_comp, φ.comm₁₂]
| {"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.Basic", "llama_tokens": 3769} |
{"mathlib_filename": "Mathlib.Algebra.BigOperators.RingEquiv", "llama_tokens": 0} |
|
[GOAL]
α : Type u_1
inst✝ : CommMonoid α
s : Multiset α
a✝ : α
l : List α
a : α
h : a ∈ Quotient.mk (List.isSetoid α) l
⊢ a ∣ prod (Quotient.mk (List.isSetoid α) l)
[PROOFSTEP]
simpa using List.dvd_prod h
[GOAL]
α : Type u_1
inst✝ : CanonicallyOrderedMonoid α
m : Multiset α
l : List α
⊢ prod (Quotient.mk (List.isSetoid α) l) = 1 ↔ ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) l → x = 1
[PROOFSTEP]
simpa using List.prod_eq_one_iff l
[GOAL]
α : Type u_1
R : Type u_2
inst✝¹ : CanonicallyOrderedCommSemiring R
inst✝ : Nontrivial R
m : Multiset R
⊢ 0 < Multiset.prod m ↔ ∀ (x : R), x ∈ m → 0 < x
[PROOFSTEP]
rcases m with ⟨l⟩
[GOAL]
case mk
α : Type u_1
R : Type u_2
inst✝¹ : CanonicallyOrderedCommSemiring R
inst✝ : Nontrivial R
m : Multiset R
l : List R
⊢ 0 < Multiset.prod (Quot.mk Setoid.r l) ↔ ∀ (x : R), x ∈ Quot.mk Setoid.r l → 0 < x
[PROOFSTEP]
rw [Multiset.quot_mk_to_coe'', Multiset.coe_prod]
[GOAL]
case mk
α : Type u_1
R : Type u_2
inst✝¹ : CanonicallyOrderedCommSemiring R
inst✝ : Nontrivial R
m : Multiset R
l : List R
⊢ 0 < List.prod l ↔ ∀ (x : R), x ∈ ↑l → 0 < x
[PROOFSTEP]
exact CanonicallyOrderedCommSemiring.list_prod_pos
[GOAL]
α : Type u_1
inst✝ : NonUnitalNonAssocSemiring α
s : Multiset α
a : α
h : ∀ (b : α), b ∈ s → Commute a b
⊢ Commute a (sum s)
[PROOFSTEP]
induction s using Quotient.inductionOn
[GOAL]
case h
α : Type u_1
inst✝ : NonUnitalNonAssocSemiring α
s : Multiset α
a : α
a✝ : List α
h : ∀ (b : α), b ∈ Quotient.mk (List.isSetoid α) a✝ → Commute a b
⊢ Commute a (sum (Quotient.mk (List.isSetoid α) a✝))
[PROOFSTEP]
rw [quot_mk_to_coe, coe_sum]
[GOAL]
case h
α : Type u_1
inst✝ : NonUnitalNonAssocSemiring α
s : Multiset α
a : α
a✝ : List α
h : ∀ (b : α), b ∈ Quotient.mk (List.isSetoid α) a✝ → Commute a b
⊢ Commute a (List.sum a✝)
[PROOFSTEP]
exact Commute.list_sum_right _ _ h
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Multiset.Lemmas", "llama_tokens": 907} |
[GOAL]
α : Type u_1
β : Type u_2
γ : Type u_3
inst✝¹ : CommMonoid α
inst✝ : CommMonoid β
s : Finset γ
f : γ → α
g : γ → β
this : DecidableEq γ
⊢ ∀ ⦃a : γ⦄ {s : Finset γ},
¬a ∈ s →
(∏ x in s, f x, ∏ x in s, g x) = ∏ x in s, (f x, g x) →
(∏ x in insert a s, f x, ∏ x in insert a s, g x) = ∏ x in insert a s, (f x, g x)
[PROOFSTEP]
simp (config := { contextual := true }) [Prod.ext_iff]
[GOAL]
I : Type u_1
inst✝² : DecidableEq I
Z : I → Type u_2
inst✝¹ : (i : I) → CommMonoid (Z i)
inst✝ : Fintype I
f : (i : I) → Z i
⊢ ∏ i : I, Pi.mulSingle i (f i) = f
[PROOFSTEP]
ext a
[GOAL]
case h
I : Type u_1
inst✝² : DecidableEq I
Z : I → Type u_2
inst✝¹ : (i : I) → CommMonoid (Z i)
inst✝ : Fintype I
f : (i : I) → Z i
a : I
⊢ Finset.prod univ (fun i => Pi.mulSingle i (f i)) a = f a
[PROOFSTEP]
simp
[GOAL]
I : Type u_1
inst✝³ : DecidableEq I
Z : I → Type u_2
inst✝² : (i : I) → CommMonoid (Z i)
inst✝¹ : Finite I
G : Type u_3
inst✝ : CommMonoid G
g h : ((i : I) → Z i) →* G
H : ∀ (i : I) (x : Z i), ↑g (Pi.mulSingle i x) = ↑h (Pi.mulSingle i x)
⊢ g = h
[PROOFSTEP]
cases nonempty_fintype I
[GOAL]
case intro
I : Type u_1
inst✝³ : DecidableEq I
Z : I → Type u_2
inst✝² : (i : I) → CommMonoid (Z i)
inst✝¹ : Finite I
G : Type u_3
inst✝ : CommMonoid G
g h : ((i : I) → Z i) →* G
H : ∀ (i : I) (x : Z i), ↑g (Pi.mulSingle i x) = ↑h (Pi.mulSingle i x)
val✝ : Fintype I
⊢ g = h
[PROOFSTEP]
ext k
[GOAL]
case intro.h
I : Type u_1
inst✝³ : DecidableEq I
Z : I → Type u_2
inst✝² : (i : I) → CommMonoid (Z i)
inst✝¹ : Finite I
G : Type u_3
inst✝ : CommMonoid G
g h : ((i : I) → Z i) →* G
H : ∀ (i : I) (x : Z i), ↑g (Pi.mulSingle i x) = ↑h (Pi.mulSingle i x)
val✝ : Fintype I
k : (i : I) → Z i
⊢ ↑g k = ↑h k
[PROOFSTEP]
rw [← Finset.univ_prod_mulSingle k, g.map_prod, h.map_prod]
[GOAL]
case intro.h
I : Type u_1
inst✝³ : DecidableEq I
Z : I → Type u_2
inst✝² : (i : I) → CommMonoid (Z i)
inst✝¹ : Finite I
G : Type u_3
inst✝ : CommMonoid G
g h : ((i : I) → Z i) →* G
H : ∀ (i : I) (x : Z i), ↑g (Pi.mulSingle i x) = ↑h (Pi.mulSingle i x)
val✝ : Fintype I
k : (i : I) → Z i
⊢ ∏ x : I, ↑g (Pi.mulSingle x (k x)) = ∏ x : I, ↑h (Pi.mulSingle x (k x))
[PROOFSTEP]
simp only [H]
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Pi", "llama_tokens": 1200} |
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝³ : CommMonoid β
inst✝² : OrderedCancelAddCommMonoid α
inst✝¹ : ExistsAddOfLE α
inst✝ : LocallyFiniteOrder α
f : α → β
a b c : α
⊢ ∏ x in Ico a b, f (x + c) = ∏ x in Ico (a + c) (b + c), f x
[PROOFSTEP]
rw [← map_add_right_Ico, prod_map]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝³ : CommMonoid β
inst✝² : OrderedCancelAddCommMonoid α
inst✝¹ : ExistsAddOfLE α
inst✝ : LocallyFiniteOrder α
f : α → β
a b c : α
⊢ ∏ x in Ico a b, f (x + c) = ∏ x in Ico a b, f (↑(addRightEmbedding c) x)
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝³ : CommMonoid β
inst✝² : OrderedCancelAddCommMonoid α
inst✝¹ : ExistsAddOfLE α
inst✝ : LocallyFiniteOrder α
f : α → β
a b c : α
⊢ ∏ x in Ico a b, f (c + x) = ∏ x in Ico (a + c) (b + c), f x
[PROOFSTEP]
convert prod_Ico_add' f a b c using 2
[GOAL]
case h.e'_2.a
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝³ : CommMonoid β
inst✝² : OrderedCancelAddCommMonoid α
inst✝¹ : ExistsAddOfLE α
inst✝ : LocallyFiniteOrder α
f : α → β
a b c x✝ : α
a✝ : x✝ ∈ Ico a b
⊢ f (c + x✝) = f (x✝ + c)
[PROOFSTEP]
rw [add_comm]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝ : CommMonoid β
a b : ℕ
hab : a ≤ b
f : ℕ → β
⊢ ∏ k in Ico a (b + 1), f k = (∏ k in Ico a b, f k) * f b
[PROOFSTEP]
rw [Nat.Ico_succ_right_eq_insert_Ico hab, prod_insert right_not_mem_Ico, mul_comm]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝ : CommMonoid β
a b : ℕ
hab : a < b
f : ℕ → β
⊢ ∏ k in Ico a b, f k = f a * ∏ k in Ico (a + 1) b, f k
[PROOFSTEP]
have ha : a ∉ Ico (a + 1) b := by simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝ : CommMonoid β
a b : ℕ
hab : a < b
f : ℕ → β
⊢ ¬a ∈ Ico (a + 1) b
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝ : CommMonoid β
a b : ℕ
hab : a < b
f : ℕ → β
ha : ¬a ∈ Ico (a + 1) b
⊢ ∏ k in Ico a b, f k = f a * ∏ k in Ico (a + 1) b, f k
[PROOFSTEP]
rw [← prod_insert ha, Nat.Ico_insert_succ_left hab]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
m n k : ℕ
hmn : m ≤ n
hnk : n ≤ k
⊢ (∏ i in Ioc m n, f i) * ∏ i in Ioc n k, f i = ∏ i in Ioc m k, f i
[PROOFSTEP]
rw [← Ioc_union_Ioc_eq_Ioc hmn hnk, prod_union]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
m n k : ℕ
hmn : m ≤ n
hnk : n ≤ k
⊢ Disjoint (Ioc m n) (Ioc n k)
[PROOFSTEP]
apply disjoint_left.2 fun x hx h'x => _
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
m n k : ℕ
hmn : m ≤ n
hnk : n ≤ k
⊢ ∀ (x : ℕ), x ∈ Ioc m n → x ∈ Ioc n k → False
[PROOFSTEP]
intros x hx h'x
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
m n k : ℕ
hmn : m ≤ n
hnk : n ≤ k
x : ℕ
hx : x ∈ Ioc m n
h'x : x ∈ Ioc n k
⊢ False
[PROOFSTEP]
exact lt_irrefl _ ((mem_Ioc.1 h'x).1.trans_le (mem_Ioc.1 hx).2)
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝ : CommMonoid β
a b : ℕ
hab : a ≤ b
f : ℕ → β
⊢ ∏ k in Ioc a (b + 1), f k = (∏ k in Ioc a b, f k) * f (b + 1)
[PROOFSTEP]
rw [← prod_Ioc_consecutive _ hab (Nat.le_succ b), Nat.Ioc_succ_singleton, prod_singleton]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝¹ : CommMonoid β
δ : Type u_1
inst✝ : CommGroup δ
f : ℕ → δ
m n : ℕ
h : m ≤ n
⊢ (∏ k in Ico m n, f k) * ∏ k in range m, f k = ∏ k in range n, f k
[PROOFSTEP]
rw [mul_comm]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝¹ : CommMonoid β
δ : Type u_1
inst✝ : CommGroup δ
f : ℕ → δ
m n : ℕ
h : m ≤ n
⊢ (∏ k in range m, f k) * ∏ k in Ico m n, f k = ∏ k in range n, f k
[PROOFSTEP]
exact prod_range_mul_prod_Ico f h
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝¹ : CommMonoid β
δ : Type u_1
inst✝ : CommGroup δ
f : ℕ → δ
m n : ℕ
h : m ≤ n
⊢ ∏ k in Ico m n, f k = (∏ k in range n, f k) / ∏ k in range m, f k
[PROOFSTEP]
simpa only [div_eq_mul_inv] using prod_Ico_eq_mul_inv f h
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α✝
a : α✝
g f✝ : α✝ → β
inst✝¹ : CommMonoid β
α : Type u_1
inst✝ : CommGroup α
f : ℕ → α
n m : ℕ
hnm : n ≤ m
⊢ (∏ k in range m, f k) / ∏ k in range n, f k = ∏ k in filter (fun k => n ≤ k) (range m), f k
[PROOFSTEP]
rw [← prod_Ico_eq_div f hnm]
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α✝
a : α✝
g f✝ : α✝ → β
inst✝¹ : CommMonoid β
α : Type u_1
inst✝ : CommGroup α
f : ℕ → α
n m : ℕ
hnm : n ≤ m
⊢ ∏ k in Ico n m, f k = ∏ k in filter (fun k => n ≤ k) (range m), f k
[PROOFSTEP]
congr
[GOAL]
case e_s
α✝ : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α✝
a : α✝
g f✝ : α✝ → β
inst✝¹ : CommMonoid β
α : Type u_1
inst✝ : CommGroup α
f : ℕ → α
n m : ℕ
hnm : n ≤ m
⊢ Ico n m = filter (fun k => n ≤ k) (range m)
[PROOFSTEP]
apply Finset.ext
[GOAL]
case e_s.a
α✝ : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α✝
a : α✝
g f✝ : α✝ → β
inst✝¹ : CommMonoid β
α : Type u_1
inst✝ : CommGroup α
f : ℕ → α
n m : ℕ
hnm : n ≤ m
⊢ ∀ (a : ℕ), a ∈ Ico n m ↔ a ∈ filter (fun k => n ≤ k) (range m)
[PROOFSTEP]
simp only [mem_Ico, mem_filter, mem_range, *]
[GOAL]
case e_s.a
α✝ : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α✝
a : α✝
g f✝ : α✝ → β
inst✝¹ : CommMonoid β
α : Type u_1
inst✝ : CommGroup α
f : ℕ → α
n m : ℕ
hnm : n ≤ m
⊢ ∀ (a : ℕ), n ≤ a ∧ a < m ↔ a < m ∧ n ≤ a
[PROOFSTEP]
tauto
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
⊢ ∑ i in Ico a b, ∑ j in Ico i b, f i j = ∑ j in Ico a b, ∑ i in Ico a (j + 1), f i j
[PROOFSTEP]
rw [Finset.sum_sigma', Finset.sum_sigma']
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
⊢ ∑ x in Finset.sigma (Ico a b) fun i => Ico i b, f x.fst x.snd =
∑ x in Finset.sigma (Ico a b) fun j => Ico a (j + 1), f x.snd x.fst
[PROOFSTEP]
refine'
Finset.sum_bij' (fun (x : Σ _ : ℕ, ℕ) _ => (⟨x.2, x.1⟩ : Σ _ : ℕ, ℕ)) _ (fun _ _ => rfl)
(fun (x : Σ _ : ℕ, ℕ) _ => (⟨x.2, x.1⟩ : Σ _ : ℕ, ℕ)) _ (by (rintro ⟨⟩ _; rfl)) (by (rintro ⟨⟩ _; rfl))
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
⊢ ∀ (a_1 : (_ : ℕ) × ℕ) (ha : a_1 ∈ Finset.sigma (Ico a b) fun i => Ico i b),
(fun x x_1 => { fst := x.snd, snd := x.fst }) ((fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha)
(_ : (fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha ∈ ?m.28850) =
a_1
[PROOFSTEP]
rintro ⟨⟩ _
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
fst✝ snd✝ : ℕ
ha✝ : { fst := fst✝, snd := snd✝ } ∈ Finset.sigma (Ico a b) fun i => Ico i b
⊢ (fun x x_1 => { fst := x.snd, snd := x.fst })
((fun x x_1 => { fst := x.snd, snd := x.fst }) { fst := fst✝, snd := snd✝ } ha✝)
(_ : (fun x x_1 => { fst := x.snd, snd := x.fst }) { fst := fst✝, snd := snd✝ } ha✝ ∈ ?m.28850) =
{ fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
⊢ ∀ (a_1 : (_ : ℕ) × ℕ) (ha : a_1 ∈ Finset.sigma (Ico a b) fun j => Ico a (j + 1)),
(fun x x_1 => { fst := x.snd, snd := x.fst }) ((fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha)
(_ : (fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha ∈ ?m.28849) =
a_1
[PROOFSTEP]
rintro ⟨⟩ _
[GOAL]
case mk
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
fst✝ snd✝ : ℕ
ha✝ : { fst := fst✝, snd := snd✝ } ∈ Finset.sigma (Ico a b) fun j => Ico a (j + 1)
⊢ (fun x x_1 => { fst := x.snd, snd := x.fst })
((fun x x_1 => { fst := x.snd, snd := x.fst }) { fst := fst✝, snd := snd✝ } ha✝)
(_ : (fun x x_1 => { fst := x.snd, snd := x.fst }) { fst := fst✝, snd := snd✝ } ha✝ ∈ ?m.28849) =
{ fst := fst✝, snd := snd✝ }
[PROOFSTEP]
rfl
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
⊢ ∀ (a_1 : (_ : ℕ) × ℕ) (ha : a_1 ∈ Finset.sigma (Ico a b) fun i => Ico i b),
(fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha ∈ Finset.sigma (Ico a b) fun j => Ico a (j + 1)
[PROOFSTEP]
simp only [Finset.mem_Ico, Sigma.forall, Finset.mem_sigma]
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
⊢ ∀ (a_1 : (_ : ℕ) × ℕ) (ha : a_1 ∈ Finset.sigma (Ico a b) fun j => Ico a (j + 1)),
(fun x x_1 => { fst := x.snd, snd := x.fst }) a_1 ha ∈ Finset.sigma (Ico a b) fun i => Ico i b
[PROOFSTEP]
simp only [Finset.mem_Ico, Sigma.forall, Finset.mem_sigma]
[GOAL]
case refine'_1
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
⊢ ∀ (a_1 b_1 : ℕ), (a ≤ a_1 ∧ a_1 < b) ∧ a_1 ≤ b_1 ∧ b_1 < b → (a ≤ b_1 ∧ b_1 < b) ∧ a ≤ a_1 ∧ a_1 < b_1 + 1
[PROOFSTEP]
rintro a b ⟨⟨h₁, h₂⟩, ⟨h₃, h₄⟩⟩
[GOAL]
case refine'_2
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a b : ℕ
f : ℕ → ℕ → M
⊢ ∀ (a_1 b_1 : ℕ), (a ≤ a_1 ∧ a_1 < b) ∧ a ≤ b_1 ∧ b_1 < a_1 + 1 → (a ≤ b_1 ∧ b_1 < b) ∧ b_1 ≤ a_1 ∧ a_1 < b
[PROOFSTEP]
rintro a b ⟨⟨h₁, h₂⟩, ⟨h₃, h₄⟩⟩
[GOAL]
case refine'_1.intro.intro.intro
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a ≤ b
h₄ : b < b✝
⊢ (a✝ ≤ b ∧ b < b✝) ∧ a✝ ≤ a ∧ a < b + 1
[PROOFSTEP]
refine' ⟨⟨_, _⟩, ⟨_, _⟩⟩
[GOAL]
case refine'_2.intro.intro.intro
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a✝ ≤ b
h₄ : b < a + 1
⊢ (a✝ ≤ b ∧ b < b✝) ∧ b ≤ a ∧ a < b✝
[PROOFSTEP]
refine' ⟨⟨_, _⟩, ⟨_, _⟩⟩
[GOAL]
case refine'_1.intro.intro.intro.refine'_1
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a ≤ b
h₄ : b < b✝
⊢ a✝ ≤ b
[PROOFSTEP]
linarith
[GOAL]
case refine'_1.intro.intro.intro.refine'_2
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a ≤ b
h₄ : b < b✝
⊢ b < b✝
[PROOFSTEP]
linarith
[GOAL]
case refine'_1.intro.intro.intro.refine'_3
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a ≤ b
h₄ : b < b✝
⊢ a✝ ≤ a
[PROOFSTEP]
linarith
[GOAL]
case refine'_1.intro.intro.intro.refine'_4
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a ≤ b
h₄ : b < b✝
⊢ a < b + 1
[PROOFSTEP]
linarith
[GOAL]
case refine'_2.intro.intro.intro.refine'_1
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a✝ ≤ b
h₄ : b < a + 1
⊢ a✝ ≤ b
[PROOFSTEP]
linarith
[GOAL]
case refine'_2.intro.intro.intro.refine'_2
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a✝ ≤ b
h₄ : b < a + 1
⊢ b < b✝
[PROOFSTEP]
linarith
[GOAL]
case refine'_2.intro.intro.intro.refine'_3
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a✝ ≤ b
h₄ : b < a + 1
⊢ b ≤ a
[PROOFSTEP]
linarith
[GOAL]
case refine'_2.intro.intro.intro.refine'_4
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a✝¹ : α
g f✝ : α → β
inst✝¹ : CommMonoid β
M : Type u_1
inst✝ : AddCommMonoid M
a✝ b✝ : ℕ
f : ℕ → ℕ → M
a b : ℕ
h₁ : a✝ ≤ a
h₂ : a < b✝
h₃ : a✝ ≤ b
h₄ : b < a + 1
⊢ a < b✝
[PROOFSTEP]
linarith
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
m n : ℕ
⊢ ∏ k in Ico m n, f k = ∏ k in range (n - m), f (m + k)
[PROOFSTEP]
by_cases h : m ≤ n
[GOAL]
case pos
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
m n : ℕ
h : m ≤ n
⊢ ∏ k in Ico m n, f k = ∏ k in range (n - m), f (m + k)
[PROOFSTEP]
rw [← Nat.Ico_zero_eq_range, prod_Ico_add, zero_add, tsub_add_cancel_of_le h]
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
m n : ℕ
h : ¬m ≤ n
⊢ ∏ k in Ico m n, f k = ∏ k in range (n - m), f (m + k)
[PROOFSTEP]
replace h : n ≤ m := le_of_not_ge h
[GOAL]
case neg
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
m n : ℕ
h : n ≤ m
⊢ ∏ k in Ico m n, f k = ∏ k in range (n - m), f (m + k)
[PROOFSTEP]
rw [Ico_eq_empty_of_le h, tsub_eq_zero_iff_le.mpr h, range_zero, prod_empty, prod_empty]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j
[PROOFSTEP]
have : ∀ i < m, i ≤ n := by
intro i hi
exact (add_le_add_iff_right 1).1 (le_trans (Nat.lt_iff_add_one_le.1 hi) h)
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
⊢ ∀ (i : ℕ), i < m → i ≤ n
[PROOFSTEP]
intro i hi
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
i : ℕ
hi : i < m
⊢ i ≤ n
[PROOFSTEP]
exact (add_le_add_iff_right 1).1 (le_trans (Nat.lt_iff_add_one_le.1 hi) h)
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this : ∀ (i : ℕ), i < m → i ≤ n
⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j
[PROOFSTEP]
cases' lt_or_le k m with hkm hkm
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this : ∀ (i : ℕ), i < m → i ≤ n
hkm : k < m
⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j
[PROOFSTEP]
rw [← Nat.Ico_image_const_sub_eq_Ico (this _ hkm)]
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this : ∀ (i : ℕ), i < m → i ≤ n
hkm : k < m
⊢ ∏ j in Ico k m, f (n - j) = ∏ j in image (fun x => n - x) (Ico k m), f j
[PROOFSTEP]
refine' (prod_image _).symm
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this : ∀ (i : ℕ), i < m → i ≤ n
hkm : k < m
⊢ ∀ (x : ℕ), x ∈ Ico k m → ∀ (y : ℕ), y ∈ Ico k m → n - x = n - y → x = y
[PROOFSTEP]
simp only [mem_Ico]
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this : ∀ (i : ℕ), i < m → i ≤ n
hkm : k < m
⊢ ∀ (x : ℕ), k ≤ x ∧ x < m → ∀ (y : ℕ), k ≤ y ∧ y < m → n - x = n - y → x = y
[PROOFSTEP]
rintro i ⟨_, im⟩ j ⟨_, jm⟩ Hij
[GOAL]
case inl.intro.intro
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this : ∀ (i : ℕ), i < m → i ≤ n
hkm : k < m
i : ℕ
left✝¹ : k ≤ i
im : i < m
j : ℕ
left✝ : k ≤ j
jm : j < m
Hij : n - i = n - j
⊢ i = j
[PROOFSTEP]
rw [← tsub_tsub_cancel_of_le (this _ im), Hij, tsub_tsub_cancel_of_le (this _ jm)]
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this : ∀ (i : ℕ), i < m → i ≤ n
hkm : m ≤ k
⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j
[PROOFSTEP]
have : n + 1 - k ≤ n + 1 - m := by
rw [tsub_le_tsub_iff_left h]
exact hkm
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this : ∀ (i : ℕ), i < m → i ≤ n
hkm : m ≤ k
⊢ n + 1 - k ≤ n + 1 - m
[PROOFSTEP]
rw [tsub_le_tsub_iff_left h]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this : ∀ (i : ℕ), i < m → i ≤ n
hkm : m ≤ k
⊢ m ≤ k
[PROOFSTEP]
exact hkm
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
k m n : ℕ
h : m ≤ n + 1
this✝ : ∀ (i : ℕ), i < m → i ≤ n
hkm : m ≤ k
this : n + 1 - k ≤ n + 1 - m
⊢ ∏ j in Ico k m, f (n - j) = ∏ j in Ico (n + 1 - m) (n + 1 - k), f j
[PROOFSTEP]
simp only [ge_iff_le, hkm, Ico_eq_empty_of_le, prod_empty, tsub_le_iff_right, Ico_eq_empty_of_le this]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
n : ℕ
⊢ ∏ j in range n, f (n - 1 - j) = ∏ j in range n, f j
[PROOFSTEP]
cases n
[GOAL]
case zero
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
⊢ ∏ j in range zero, f (zero - 1 - j) = ∏ j in range zero, f j
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
n✝ : ℕ
⊢ ∏ j in range (succ n✝), f (succ n✝ - 1 - j) = ∏ j in range (succ n✝), f j
[PROOFSTEP]
simp only [← Nat.Ico_zero_eq_range, Nat.succ_sub_succ_eq_sub, tsub_zero]
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
n✝ : ℕ
⊢ ∏ x in Ico 0 (succ n✝), f (n✝ - x) = ∏ x in Ico 0 (succ n✝), f x
[PROOFSTEP]
rw [prod_Ico_reflect _ _ le_rfl]
[GOAL]
case succ
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f✝ : α → β
inst✝ : CommMonoid β
f : ℕ → β
n✝ : ℕ
⊢ ∏ j in Ico (n✝ + 1 - (n✝ + 1)) (n✝ + 1 - 0), f j = ∏ x in Ico 0 (succ n✝), f x
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f : α → β
inst✝ : CommMonoid β
n : ℕ
⊢ ∏ x in Ico 1 (n + 1 + 1), x = (n + 1)!
[PROOFSTEP]
rw [prod_Ico_succ_top <| Nat.succ_le_succ <| Nat.zero_le n, Nat.factorial_succ, prod_Ico_id_eq_factorial n,
Nat.succ_eq_add_one, mul_comm]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f : α → β
inst✝ : CommMonoid β
n : ℕ
⊢ ∏ x in range (n + 1), (x + 1) = (n + 1)!
[PROOFSTEP]
simp [Finset.range_succ, prod_range_add_one_eq_factorial n]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f : α → β
inst✝ : CommMonoid β
n : ℕ
⊢ (∑ i in range n, i) * 2 = ∑ i in range n, i + ∑ i in range n, (n - 1 - i)
[PROOFSTEP]
rw [sum_range_reflect (fun i => i) n, mul_two]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f : α → β
inst✝ : CommMonoid β
n : ℕ
⊢ ∑ i in range n, (n - 1) = n * (n - 1)
[PROOFSTEP]
rw [sum_const, card_range, Nat.nsmul_eq_mul]
[GOAL]
α : Type u
β : Type v
γ : Type w
s₂ s₁ s : Finset α
a : α
g f : α → β
inst✝ : CommMonoid β
n : ℕ
⊢ ∑ i in range n, i = n * (n - 1) / 2
[PROOFSTEP]
rw [← sum_range_id_mul_two n, Nat.mul_div_cancel _ zero_lt_two]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
⊢ ∑ i in Ico m n, f i • g i =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
have h₁ : (∑ i in Ico (m + 1) n, f i • G i) = ∑ i in Ico m (n - 1), f (i + 1) • G (i + 1) :=
by
rw [← Nat.sub_add_cancel (Nat.one_le_of_lt hmn), ← sum_Ico_add']
simp only [ge_iff_le, tsub_le_iff_right, add_le_iff_nonpos_left, nonpos_iff_eq_zero, tsub_eq_zero_iff_le,
add_tsub_cancel_right]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
⊢ ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
[PROOFSTEP]
rw [← Nat.sub_add_cancel (Nat.one_le_of_lt hmn), ← sum_Ico_add']
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
⊢ ∑ x in Ico m (n - 1), f (x + 1) • ∑ i in range (x + 1), g i =
∑ i in Ico m (n - 1 + 1 - 1), f (i + 1) • ∑ i in range (i + 1), g i
[PROOFSTEP]
simp only [ge_iff_le, tsub_le_iff_right, add_le_iff_nonpos_left, nonpos_iff_eq_zero, tsub_eq_zero_iff_le,
add_tsub_cancel_right]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
⊢ ∑ i in Ico m n, f i • g i =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
have h₂ :
(∑ i in Ico (m + 1) n, f i • G (i + 1)) =
(∑ i in Ico m (n - 1), f i • G (i + 1)) + f (n - 1) • G n - f m • G (m + 1) :=
by
rw [← sum_Ico_sub_bot _ hmn, ← sum_Ico_succ_sub_top _ (Nat.le_pred_of_lt hmn), Nat.sub_add_cancel (pos_of_gt hmn),
sub_add_cancel]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
⊢ ∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
[PROOFSTEP]
rw [← sum_Ico_sub_bot _ hmn, ← sum_Ico_succ_sub_top _ (Nat.le_pred_of_lt hmn), Nat.sub_add_cancel (pos_of_gt hmn),
sub_add_cancel]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
⊢ ∑ i in Ico m n, f i • g i =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
rw [sum_eq_sum_Ico_succ_bot hmn]
-- porting note: the following used to be done with `conv`
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
⊢ f m • g m + ∑ k in Ico (m + 1) n, f k • g k =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
have h₃ :
(Finset.sum (Ico (m + 1) n) fun i => f i • g i) =
(Finset.sum (Ico (m + 1) n) fun i =>
f i • ((Finset.sum (Finset.range (i + 1)) g) - (Finset.sum (Finset.range i) g))) :=
by congr; funext; rw [← sum_range_succ_sub_sum g]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
⊢ ∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
[PROOFSTEP]
congr
[GOAL]
case e_f
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
⊢ (fun i => f i • g i) = fun i => f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
[PROOFSTEP]
funext
[GOAL]
case e_f.h
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
x✝ : ℕ
⊢ f x✝ • g x✝ = f x✝ • (Finset.sum (range (x✝ + 1)) g - Finset.sum (range x✝) g)
[PROOFSTEP]
rw [← sum_range_succ_sub_sum g]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
⊢ f m • g m + ∑ k in Ico (m + 1) n, f k • g k =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
rw [h₃]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
⊢ f m • g m + ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g) =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
simp_rw [smul_sub, sum_sub_distrib, h₂, h₁]
-- porting note: the following used to be done with `conv`
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
⊢ f m • g m +
(∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i) =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
have h₄ :
((((Finset.sum (Ico m (n - 1)) fun i => f i • Finset.sum (range (i + 1)) fun i => g i) +
f (n - 1) • Finset.sum (range n) fun i => g i) -
f m • Finset.sum (range (m + 1)) fun i => g i) -
Finset.sum (Ico m (n - 1)) fun i => f (i + 1) • Finset.sum (range (i + 1)) fun i => g i) =
f (n - 1) • (range n).sum g - f m • (range (m + 1)).sum g +
Finset.sum (Ico m (n - 1)) (fun i => f i • (range (i + 1)).sum g - f (i + 1) • (range (i + 1)).sum g) :=
by rw [← add_sub, add_comm, ← add_sub, ← sum_sub_distrib]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
⊢ ∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
[PROOFSTEP]
rw [← add_sub, add_comm, ← add_sub, ← sum_sub_distrib]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
h₄ :
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
⊢ f m • g m +
(∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i) =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
rw [h₄]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
h₄ :
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
⊢ f m • g m +
(f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)) =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
have : ∀ i, f i • G (i + 1) - f (i + 1) • G (i + 1) = -((f (i + 1) - f i) • G (i + 1)) :=
by
intro i
rw [sub_smul]
abel
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
h₄ :
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
⊢ ∀ (i : ℕ),
f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i =
-((f (i + 1) - f i) • ∑ i in range (i + 1), g i)
[PROOFSTEP]
intro i
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
h₄ :
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
i : ℕ
⊢ f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i =
-((f (i + 1) - f i) • ∑ i in range (i + 1), g i)
[PROOFSTEP]
rw [sub_smul]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
h₄ :
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
i : ℕ
⊢ f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i =
-(f (i + 1) • ∑ i in range (i + 1), g i - f i • ∑ i in range (i + 1), g i)
[PROOFSTEP]
abel
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
h₄ :
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
i : ℕ
⊢ f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i =
-(f (i + 1) • ∑ i in range (i + 1), g i - f i • ∑ i in range (i + 1), g i)
[PROOFSTEP]
abel
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
h₄ :
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
this :
∀ (i : ℕ),
f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i =
-((f (i + 1) - f i) • ∑ i in range (i + 1), g i)
⊢ f m • g m +
(f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)) =
f (n - 1) • ∑ i in range n, g i - f m • ∑ i in range m, g i -
∑ i in Ico m (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
simp_rw [this, sum_neg_distrib, sum_range_succ, smul_add]
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
h₄ :
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
this :
∀ (i : ℕ),
f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i =
-((f (i + 1) - f i) • ∑ i in range (i + 1), g i)
⊢ f m • g m +
(f (n - 1) • Finset.sum (range n) g - (f m • ∑ x in range m, g x + f m • g m) +
-∑ x in Ico m (n - 1), ((f (x + 1) - f x) • ∑ x in range x, g x + (f (x + 1) - f x) • g x)) =
f (n - 1) • ∑ x in range n, g x - f m • ∑ x in range m, g x -
∑ x in Ico m (n - 1), ((f (x + 1) - f x) • ∑ x in range x, g x + (f (x + 1) - f x) • g x)
[PROOFSTEP]
abel
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hmn : m < n
h₁ : ∑ i in Ico (m + 1) n, f i • ∑ i in range i, g i = ∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i
h₂ :
∑ i in Ico (m + 1) n, f i • ∑ i in range (i + 1), g i =
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i
h₃ :
∑ i in Ico (m + 1) n, f i • g i = ∑ i in Ico (m + 1) n, f i • (Finset.sum (range (i + 1)) g - Finset.sum (range i) g)
h₄ :
∑ i in Ico m (n - 1), f i • ∑ i in range (i + 1), g i + f (n - 1) • ∑ i in range n, g i -
f m • ∑ i in range (m + 1), g i -
∑ i in Ico m (n - 1), f (i + 1) • ∑ i in range (i + 1), g i =
f (n - 1) • Finset.sum (range n) g - f m • Finset.sum (range (m + 1)) g +
∑ i in Ico m (n - 1), (f i • Finset.sum (range (i + 1)) g - f (i + 1) • Finset.sum (range (i + 1)) g)
this :
∀ (i : ℕ),
f i • ∑ i in range (i + 1), g i - f (i + 1) • ∑ i in range (i + 1), g i =
-((f (i + 1) - f i) • ∑ i in range (i + 1), g i)
⊢ f m • g m +
(f (n - 1) • Finset.sum (range n) g - (f m • ∑ x in range m, g x + f m • g m) +
-∑ x in Ico m (n - 1), ((f (x + 1) - f x) • ∑ x in range x, g x + (f (x + 1) - f x) • g x)) =
f (n - 1) • ∑ x in range n, g x - f m • ∑ x in range m, g x -
∑ x in Ico m (n - 1), ((f (x + 1) - f x) • ∑ x in range x, g x + (f (x + 1) - f x) • g x)
[PROOFSTEP]
abel
[GOAL]
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
⊢ ∑ i in range n, f i • g i =
f (n - 1) • ∑ i in range n, g i - ∑ i in range (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
by_cases hn : n = 0
[GOAL]
case pos
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hn : n = 0
⊢ ∑ i in range n, f i • g i =
f (n - 1) • ∑ i in range n, g i - ∑ i in range (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
simp [hn]
[GOAL]
case neg
R : Type u_1
M : Type u_2
inst✝² : Ring R
inst✝¹ : AddCommGroup M
inst✝ : Module R M
f : ℕ → R
g : ℕ → M
m n : ℕ
hn : ¬n = 0
⊢ ∑ i in range n, f i • g i =
f (n - 1) • ∑ i in range n, g i - ∑ i in range (n - 1), (f (i + 1) - f i) • ∑ i in range (i + 1), g i
[PROOFSTEP]
rw [range_eq_Ico, sum_Ico_by_parts f g (Nat.pos_of_ne_zero hn), sum_range_zero, smul_zero, sub_zero, range_eq_Ico]
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Intervals", "llama_tokens": 24217} |
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : AddMonoid R
l : List R
⊢ trop (sum l) = prod (map trop l)
[PROOFSTEP]
induction' l with hd tl IH
[GOAL]
case nil
R : Type u_1
S : Type u_2
inst✝ : AddMonoid R
⊢ trop (sum []) = prod (map trop [])
[PROOFSTEP]
simp
[GOAL]
case cons
R : Type u_1
S : Type u_2
inst✝ : AddMonoid R
hd : R
tl : List R
IH : trop (sum tl) = prod (map trop tl)
⊢ trop (sum (hd :: tl)) = prod (map trop (hd :: tl))
[PROOFSTEP]
simp [← IH]
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : AddCommMonoid R
s : Multiset R
⊢ ∀ (a : List R), trop (sum (Quotient.mk (List.isSetoid R) a)) = prod (map trop (Quotient.mk (List.isSetoid R) a))
[PROOFSTEP]
simpa using List.trop_sum
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : AddCommMonoid R
s : Finset S
f : S → R
⊢ trop (∑ i in s, f i) = ∏ i in s, trop (f i)
[PROOFSTEP]
convert Multiset.trop_sum (s.val.map f)
[GOAL]
case h.e'_3
R : Type u_1
S : Type u_2
inst✝ : AddCommMonoid R
s : Finset S
f : S → R
⊢ ∏ i in s, trop (f i) = Multiset.prod (Multiset.map trop (Multiset.map f s.val))
[PROOFSTEP]
simp only [Multiset.map_map, Function.comp_apply]
[GOAL]
case h.e'_3
R : Type u_1
S : Type u_2
inst✝ : AddCommMonoid R
s : Finset S
f : S → R
⊢ ∏ i in s, trop (f i) = Multiset.prod (Multiset.map (fun i => trop (f i)) s.val)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : AddMonoid R
l : List (Tropical R)
⊢ untrop (prod l) = sum (map untrop l)
[PROOFSTEP]
induction' l with hd tl IH
[GOAL]
case nil
R : Type u_1
S : Type u_2
inst✝ : AddMonoid R
⊢ untrop (prod []) = sum (map untrop [])
[PROOFSTEP]
simp
[GOAL]
case cons
R : Type u_1
S : Type u_2
inst✝ : AddMonoid R
hd : Tropical R
tl : List (Tropical R)
IH : untrop (prod tl) = sum (map untrop tl)
⊢ untrop (prod (hd :: tl)) = sum (map untrop (hd :: tl))
[PROOFSTEP]
simp [← IH]
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : AddCommMonoid R
s : Multiset (Tropical R)
⊢ ∀ (a : List (Tropical R)),
untrop (prod (Quotient.mk (List.isSetoid (Tropical R)) a)) =
sum (map untrop (Quotient.mk (List.isSetoid (Tropical R)) a))
[PROOFSTEP]
simpa using List.untrop_prod
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : AddCommMonoid R
s : Finset S
f : S → Tropical R
⊢ untrop (∏ i in s, f i) = ∑ i in s, untrop (f i)
[PROOFSTEP]
convert Multiset.untrop_prod (s.val.map f)
[GOAL]
case h.e'_3
R : Type u_1
S : Type u_2
inst✝ : AddCommMonoid R
s : Finset S
f : S → Tropical R
⊢ ∑ i in s, untrop (f i) = Multiset.sum (Multiset.map untrop (Multiset.map f s.val))
[PROOFSTEP]
simp only [Multiset.map_map, Function.comp_apply]
[GOAL]
case h.e'_3
R : Type u_1
S : Type u_2
inst✝ : AddCommMonoid R
s : Finset S
f : S → Tropical R
⊢ ∑ i in s, untrop (f i) = Multiset.sum (Multiset.map (fun i => untrop (f i)) s.val)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : LinearOrder R
l : List R
⊢ trop (minimum l) = sum (map (trop ∘ WithTop.some) l)
[PROOFSTEP]
induction' l with hd tl IH
[GOAL]
case nil
R : Type u_1
S : Type u_2
inst✝ : LinearOrder R
⊢ trop (minimum []) = sum (map (trop ∘ WithTop.some) [])
[PROOFSTEP]
simp
[GOAL]
case cons
R : Type u_1
S : Type u_2
inst✝ : LinearOrder R
hd : R
tl : List R
IH : trop (minimum tl) = sum (map (trop ∘ WithTop.some) tl)
⊢ trop (minimum (hd :: tl)) = sum (map (trop ∘ WithTop.some) (hd :: tl))
[PROOFSTEP]
simp [List.minimum_cons, ← IH]
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Multiset R
⊢ trop (inf s) = sum (map trop s)
[PROOFSTEP]
induction' s using Multiset.induction with s x IH
[GOAL]
case empty
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
⊢ trop (inf 0) = sum (map trop 0)
[PROOFSTEP]
simp
[GOAL]
case cons
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : R
x : Multiset R
IH : trop (inf x) = sum (map trop x)
⊢ trop (inf (s ::ₘ x)) = sum (map trop (s ::ₘ x))
[PROOFSTEP]
simp [← IH]
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Finset S
f : S → R
⊢ trop (inf s f) = ∑ i in s, trop (f i)
[PROOFSTEP]
convert Multiset.trop_inf (s.val.map f)
[GOAL]
case h.e'_3
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Finset S
f : S → R
⊢ ∑ i in s, trop (f i) = Multiset.sum (Multiset.map trop (Multiset.map f s.val))
[PROOFSTEP]
simp only [Multiset.map_map, Function.comp_apply]
[GOAL]
case h.e'_3
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Finset S
f : S → R
⊢ ∑ i in s, trop (f i) = Multiset.sum (Multiset.map (fun i => trop (f i)) s.val)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
s : Finset S
f : S → WithTop R
⊢ trop (sInf (f '' ↑s)) = ∑ i in s, trop (f i)
[PROOFSTEP]
rcases s.eq_empty_or_nonempty with (rfl | h)
[GOAL]
case inl
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
f : S → WithTop R
⊢ trop (sInf (f '' ↑∅)) = ∑ i in ∅, trop (f i)
[PROOFSTEP]
simp only [Set.image_empty, coe_empty, sum_empty, WithTop.sInf_empty, trop_top]
[GOAL]
case inr
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
s : Finset S
f : S → WithTop R
h : Finset.Nonempty s
⊢ trop (sInf (f '' ↑s)) = ∑ i in s, trop (f i)
[PROOFSTEP]
rw [← inf'_eq_csInf_image _ h, inf'_eq_inf, s.trop_inf]
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹ : ConditionallyCompleteLinearOrder R
inst✝ : Fintype S
f : S → WithTop R
⊢ trop (⨅ (i : S), f i) = ∑ i : S, trop (f i)
[PROOFSTEP]
rw [iInf, ← Set.image_univ, ← coe_univ, trop_sInf_image]
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Multiset (Tropical R)
⊢ untrop (sum s) = inf (map untrop s)
[PROOFSTEP]
induction' s using Multiset.induction with s x IH
[GOAL]
case empty
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
⊢ untrop (sum 0) = inf (map untrop 0)
[PROOFSTEP]
simp
[GOAL]
case cons
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Tropical R
x : Multiset (Tropical R)
IH : untrop (sum x) = inf (map untrop x)
⊢ untrop (sum (s ::ₘ x)) = inf (map untrop (s ::ₘ x))
[PROOFSTEP]
simp only [sum_cons, ge_iff_le, untrop_add, untrop_le_iff, map_cons, inf_cons, ← IH]
[GOAL]
case cons
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Tropical R
x : Multiset (Tropical R)
IH : untrop (sum x) = inf (map untrop x)
⊢ min (untrop s) (untrop (sum x)) = untrop s ⊓ untrop (sum x)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Finset S
f : S → Tropical R
⊢ untrop (∑ i in s, f i) = inf s (untrop ∘ f)
[PROOFSTEP]
convert Multiset.untrop_sum (s.val.map f)
[GOAL]
case h.e'_3
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Finset S
f : S → Tropical R
⊢ inf s (untrop ∘ f) = Multiset.inf (Multiset.map untrop (Multiset.map f s.val))
[PROOFSTEP]
simp only [Multiset.map_map, Function.comp_apply]
[GOAL]
case h.e'_3
R : Type u_1
S : Type u_2
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
s : Finset S
f : S → Tropical R
⊢ inf s (untrop ∘ f) = Multiset.inf (Multiset.map (fun x => untrop (f x)) s.val)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
s : Finset S
f : S → Tropical (WithTop R)
⊢ untrop (∑ i in s, f i) = sInf (untrop ∘ f '' ↑s)
[PROOFSTEP]
rcases s.eq_empty_or_nonempty with (rfl | h)
[GOAL]
case inl
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
f : S → Tropical (WithTop R)
⊢ untrop (∑ i in ∅, f i) = sInf (untrop ∘ f '' ↑∅)
[PROOFSTEP]
simp only [Set.image_empty, coe_empty, sum_empty, WithTop.sInf_empty, untrop_zero]
[GOAL]
case inr
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
s : Finset S
f : S → Tropical (WithTop R)
h : Finset.Nonempty s
⊢ untrop (∑ i in s, f i) = sInf (untrop ∘ f '' ↑s)
[PROOFSTEP]
rw [← inf'_eq_csInf_image _ h, inf'_eq_inf, Finset.untrop_sum']
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹ : ConditionallyCompleteLinearOrder R
inst✝ : Fintype S
f : S → Tropical (WithTop R)
⊢ untrop (∑ i : S, f i) = ⨅ (i : S), untrop (f i)
[PROOFSTEP]
rw [iInf, ← Set.image_univ, ← coe_univ, untrop_sum_eq_sInf_image]
[GOAL]
R : Type u_1
S : Type u_2
inst✝¹ : ConditionallyCompleteLinearOrder R
inst✝ : Fintype S
f : S → Tropical (WithTop R)
⊢ sInf ((untrop ∘ fun i => f i) '' ↑univ) = sInf ((fun i => untrop (f i)) '' ↑univ)
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
s : Finset S
f : S → Tropical (WithTop R)
⊢ untrop (∑ i in s, f i) = ⨅ (i : { x // x ∈ s }), untrop (f ↑i)
[PROOFSTEP]
simpa [← _root_.untrop_sum] using sum_attach.symm
| {"mathlib_filename": "Mathlib.Algebra.Tropical.BigOperators", "llama_tokens": 4070} |
[GOAL]
R : Type u
inst✝ : LinearOrder R
src✝ : PartialOrder (Tropical R) := instPartialOrderTropical
a b : Tropical R
⊢ untrop (min a b) = untrop (if a ≤ b then a else b)
[PROOFSTEP]
simp [min_def]
[GOAL]
R : Type u
inst✝ : LinearOrder R
src✝ : PartialOrder (Tropical R) := instPartialOrderTropical
a b : Tropical R
⊢ (if a ≤ b then untrop a else untrop b) = untrop (if a ≤ b then a else b)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u
inst✝ : LinearOrder R
src✝ : PartialOrder (Tropical R) := instPartialOrderTropical
a b : Tropical R
h✝ : a ≤ b
⊢ untrop a = untrop a
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u
inst✝ : LinearOrder R
src✝ : PartialOrder (Tropical R) := instPartialOrderTropical
a b : Tropical R
h✝ : ¬a ≤ b
⊢ untrop b = untrop b
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : LinearOrder R
src✝ : PartialOrder (Tropical R) := instPartialOrderTropical
a b : Tropical R
⊢ untrop (max a b) = untrop (if a ≤ b then b else a)
[PROOFSTEP]
simp [max_def]
[GOAL]
R : Type u
inst✝ : LinearOrder R
src✝ : PartialOrder (Tropical R) := instPartialOrderTropical
a b : Tropical R
⊢ (if a ≤ b then untrop b else untrop a) = untrop (if a ≤ b then b else a)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
R : Type u
inst✝ : LinearOrder R
src✝ : PartialOrder (Tropical R) := instPartialOrderTropical
a b : Tropical R
h✝ : a ≤ b
⊢ untrop b = untrop b
[PROOFSTEP]
simp
[GOAL]
case neg
R : Type u
inst✝ : LinearOrder R
src✝ : PartialOrder (Tropical R) := instPartialOrderTropical
a b : Tropical R
h✝ : ¬a ≤ b
⊢ untrop a = untrop a
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : LinearOrder R
x y : Tropical R
h : x ≤ y
⊢ untrop (x + y) = untrop x
[PROOFSTEP]
simpa using h
[GOAL]
R : Type u
inst✝ : LinearOrder R
x y : Tropical R
h : y ≤ x
⊢ untrop (x + y) = untrop y
[PROOFSTEP]
simpa using h
[GOAL]
R : Type u
inst✝ : LinearOrder R
x y : Tropical R
⊢ x + y = x ↔ x ≤ y
[PROOFSTEP]
rw [trop_add_def, trop_eq_iff_eq_untrop, ← untrop_le_iff, min_eq_left_iff]
[GOAL]
R : Type u
inst✝ : LinearOrder R
x y : Tropical R
⊢ x + y = y ↔ y ≤ x
[PROOFSTEP]
rw [trop_add_def, trop_eq_iff_eq_untrop, ← untrop_le_iff, min_eq_right_iff]
[GOAL]
R : Type u
inst✝ : LinearOrder R
x y z : Tropical R
⊢ x + y = z ↔ x = z ∧ x ≤ y ∨ y = z ∧ y ≤ x
[PROOFSTEP]
rw [trop_add_def, trop_eq_iff_eq_untrop]
[GOAL]
R : Type u
inst✝ : LinearOrder R
x y z : Tropical R
⊢ min (untrop x) (untrop y) = untrop z ↔ x = z ∧ x ≤ y ∨ y = z ∧ y ≤ x
[PROOFSTEP]
simp [min_eq_iff]
[GOAL]
R : Type u
inst✝ : LinearOrder R
a b : Tropical (WithTop R)
⊢ a + b = 0 ↔ a = 0 ∧ b = 0
[PROOFSTEP]
rw [add_eq_iff]
[GOAL]
R : Type u
inst✝ : LinearOrder R
a b : Tropical (WithTop R)
⊢ a = 0 ∧ a ≤ b ∨ b = 0 ∧ b ≤ a ↔ a = 0 ∧ b = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u
inst✝ : LinearOrder R
a b : Tropical (WithTop R)
⊢ a = 0 ∧ a ≤ b ∨ b = 0 ∧ b ≤ a → a = 0 ∧ b = 0
[PROOFSTEP]
rintro (⟨rfl, h⟩ | ⟨rfl, h⟩)
[GOAL]
case mp.inl.intro
R : Type u
inst✝ : LinearOrder R
b : Tropical (WithTop R)
h : 0 ≤ b
⊢ 0 = 0 ∧ b = 0
[PROOFSTEP]
exact ⟨rfl, le_antisymm (le_zero _) h⟩
[GOAL]
case mp.inr.intro
R : Type u
inst✝ : LinearOrder R
a : Tropical (WithTop R)
h : 0 ≤ a
⊢ a = 0 ∧ 0 = 0
[PROOFSTEP]
exact ⟨le_antisymm (le_zero _) h, rfl⟩
[GOAL]
case mpr
R : Type u
inst✝ : LinearOrder R
a b : Tropical (WithTop R)
⊢ a = 0 ∧ b = 0 → a = 0 ∧ a ≤ b ∨ b = 0 ∧ b ≤ a
[PROOFSTEP]
rintro ⟨rfl, rfl⟩
[GOAL]
case mpr.intro
R : Type u
inst✝ : LinearOrder R
⊢ 0 = 0 ∧ 0 ≤ 0 ∨ 0 = 0 ∧ 0 ≤ 0
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝² : LinearOrder R
inst✝¹ : OrderTop R
inst✝ : Zero R
src✝¹ : One (Tropical R) := instOneTropical
src✝ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical
n : ℕ
⊢ untrop (NatCast.natCast (n + 1)) = untrop (NatCast.natCast n + 1)
[PROOFSTEP]
cases n
[GOAL]
case zero
R : Type u
inst✝² : LinearOrder R
inst✝¹ : OrderTop R
inst✝ : Zero R
src✝¹ : One (Tropical R) := instOneTropical
src✝ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical
⊢ untrop (NatCast.natCast (Nat.zero + 1)) = untrop (NatCast.natCast Nat.zero + 1)
[PROOFSTEP]
simp [Nat.cast]
[GOAL]
case succ
R : Type u
inst✝² : LinearOrder R
inst✝¹ : OrderTop R
inst✝ : Zero R
src✝¹ : One (Tropical R) := instOneTropical
src✝ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical
n✝ : ℕ
⊢ untrop (NatCast.natCast (Nat.succ n✝ + 1)) = untrop (NatCast.natCast (Nat.succ n✝) + 1)
[PROOFSTEP]
simp [Nat.cast]
[GOAL]
R : Type u
inst✝ : AddMonoid R
src✝¹ : MulOneClass (Tropical R) := instMulOneClassTropical
src✝ : Semigroup (Tropical R) := instSemigroupTropical
x✝ : Tropical R
⊢ untrop ((fun n x => x ^ n) 0 x✝) = untrop 1
[PROOFSTEP]
simp
[GOAL]
R : Type u
inst✝ : AddGroup R
src✝ : Monoid (Tropical R) := instMonoidTropical
x✝¹ x✝ : Tropical R
⊢ untrop (x✝¹ / x✝) = untrop (x✝¹ * x✝⁻¹)
[PROOFSTEP]
simp [sub_eq_add_neg]
[GOAL]
R : Type u
inst✝ : LinearOrder R
x y z : Tropical R
h : y ≤ z
⊢ x + y ≤ x + z
[PROOFSTEP]
cases' le_total x y with hx hy
[GOAL]
case inl
R : Type u
inst✝ : LinearOrder R
x y z : Tropical R
h : y ≤ z
hx : x ≤ y
⊢ x + y ≤ x + z
[PROOFSTEP]
rw [add_eq_left hx, add_eq_left (hx.trans h)]
[GOAL]
case inr
R : Type u
inst✝ : LinearOrder R
x y z : Tropical R
h : y ≤ z
hy : y ≤ x
⊢ x + y ≤ x + z
[PROOFSTEP]
rw [add_eq_right hy]
[GOAL]
case inr
R : Type u
inst✝ : LinearOrder R
x y z : Tropical R
h : y ≤ z
hy : y ≤ x
⊢ y ≤ x + z
[PROOFSTEP]
cases' le_total x z with hx hx
[GOAL]
case inr.inl
R : Type u
inst✝ : LinearOrder R
x y z : Tropical R
h : y ≤ z
hy : y ≤ x
hx : x ≤ z
⊢ y ≤ x + z
[PROOFSTEP]
rwa [add_eq_left hx]
[GOAL]
case inr.inr
R : Type u
inst✝ : LinearOrder R
x y z : Tropical R
h : y ≤ z
hy : y ≤ x
hx : z ≤ x
⊢ y ≤ x + z
[PROOFSTEP]
rwa [add_eq_right hx]
[GOAL]
R : Type u
inst✝³ : LinearOrder R
inst✝² : AddMonoid R
inst✝¹ : CovariantClass R R (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass R R (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
x y : Tropical R
n : ℕ
⊢ (x + y) ^ n = x ^ n + y ^ n
[PROOFSTEP]
cases' le_total x y with h h
[GOAL]
case inl
R : Type u
inst✝³ : LinearOrder R
inst✝² : AddMonoid R
inst✝¹ : CovariantClass R R (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass R R (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
x y : Tropical R
n : ℕ
h : x ≤ y
⊢ (x + y) ^ n = x ^ n + y ^ n
[PROOFSTEP]
rw [add_eq_left h, add_eq_left (pow_le_pow_of_le_left' h _)]
[GOAL]
case inr
R : Type u
inst✝³ : LinearOrder R
inst✝² : AddMonoid R
inst✝¹ : CovariantClass R R (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
inst✝ : CovariantClass R R (Function.swap fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
x y : Tropical R
n : ℕ
h : y ≤ x
⊢ (x + y) ^ n = x ^ n + y ^ n
[PROOFSTEP]
rw [add_eq_right h, add_eq_right (pow_le_pow_of_le_left' h _)]
[GOAL]
R : Type u
inst✝ : LinearOrderedAddCommMonoidWithTop R
src✝³ : AddMonoidWithOne (Tropical R) := instAddMonoidWithOneTropical
src✝² : Distrib (Tropical R) := instDistribTropical
src✝¹ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical
src✝ : CommMonoid (Tropical R) := instCommMonoidTropical
x✝ : Tropical R
⊢ untrop (0 * x✝) = untrop 0
[PROOFSTEP]
simp [top_add]
[GOAL]
R : Type u
inst✝ : LinearOrderedAddCommMonoidWithTop R
src✝³ : AddMonoidWithOne (Tropical R) := instAddMonoidWithOneTropical
src✝² : Distrib (Tropical R) := instDistribTropical
src✝¹ : AddCommMonoid (Tropical R) := instAddCommMonoidTropical
src✝ : CommMonoid (Tropical R) := instCommMonoidTropical
x✝ : Tropical R
⊢ untrop (x✝ * 0) = untrop 0
[PROOFSTEP]
simp [add_top]
[GOAL]
R✝ : Type u
inst✝² : LinearOrderedAddCommMonoidWithTop R✝
R : Type u_1
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
x : Tropical R
n : ℕ
⊢ (n + 1) • x = x
[PROOFSTEP]
induction' n with n IH
[GOAL]
case zero
R✝ : Type u
inst✝² : LinearOrderedAddCommMonoidWithTop R✝
R : Type u_1
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
x : Tropical R
⊢ (Nat.zero + 1) • x = x
[PROOFSTEP]
simp
[GOAL]
case succ
R✝ : Type u
inst✝² : LinearOrderedAddCommMonoidWithTop R✝
R : Type u_1
inst✝¹ : LinearOrder R
inst✝ : OrderTop R
x : Tropical R
n : ℕ
IH : (n + 1) • x = x
⊢ (Nat.succ n + 1) • x = x
[PROOFSTEP]
rw [add_nsmul, IH, one_nsmul, add_self]
[GOAL]
R✝ : Type u
inst✝¹ : LinearOrderedAddCommMonoidWithTop R✝
R : Type u_1
inst✝ : LinearOrderedAddCommMonoid R
a b : Tropical (WithTop R)
⊢ a * b = 0 ↔ a = 0 ∨ b = 0
[PROOFSTEP]
simp [← untrop_inj_iff, WithTop.add_eq_top]
| {"mathlib_filename": "Mathlib.Algebra.Tropical.Basic", "llama_tokens": 4154} |
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
p : M → Prop
h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y
hp_mul : ∀ (x y : M), p x → p y → p (x * y)
g : ι → M
s : Finset ι
hs_nonempty : Finset.Nonempty s
hs : ∀ (i : ι), i ∈ s → p (g i)
⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i)
[PROOFSTEP]
refine' le_trans (Multiset.le_prod_nonempty_of_submultiplicative_on_pred f p h_mul hp_mul _ _ _) _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
p : M → Prop
h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y
hp_mul : ∀ (x y : M), p x → p y → p (x * y)
g : ι → M
s : Finset ι
hs_nonempty : Finset.Nonempty s
hs : ∀ (i : ι), i ∈ s → p (g i)
⊢ Multiset.map (fun i => g i) s.val ≠ ∅
[PROOFSTEP]
simp [hs_nonempty.ne_empty]
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
p : M → Prop
h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y
hp_mul : ∀ (x y : M), p x → p y → p (x * y)
g : ι → M
s : Finset ι
hs_nonempty : Finset.Nonempty s
hs : ∀ (i : ι), i ∈ s → p (g i)
⊢ ∀ (a : M), a ∈ Multiset.map (fun i => g i) s.val → p a
[PROOFSTEP]
exact Multiset.forall_mem_map_iff.mpr hs
[GOAL]
case refine'_3
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
p : M → Prop
h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y
hp_mul : ∀ (x y : M), p x → p y → p (x * y)
g : ι → M
s : Finset ι
hs_nonempty : Finset.Nonempty s
hs : ∀ (i : ι), i ∈ s → p (g i)
⊢ Multiset.prod (Multiset.map f (Multiset.map (fun i => g i) s.val)) ≤ ∏ i in s, f (g i)
[PROOFSTEP]
rw [Multiset.map_map]
[GOAL]
case refine'_3
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
p : M → Prop
h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y
hp_mul : ∀ (x y : M), p x → p y → p (x * y)
g : ι → M
s : Finset ι
hs_nonempty : Finset.Nonempty s
hs : ∀ (i : ι), i ∈ s → p (g i)
⊢ Multiset.prod (Multiset.map (f ∘ fun i => g i) s.val) ≤ ∏ i in s, f (g i)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
p : M → Prop
h_one : f 1 = 1
h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y
hp_mul : ∀ (x y : M), p x → p y → p (x * y)
g : ι → M
s : Finset ι
hs : ∀ (i : ι), i ∈ s → p (g i)
⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i)
[PROOFSTEP]
rcases eq_empty_or_nonempty s with (rfl | hs_nonempty)
[GOAL]
case inl
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
p : M → Prop
h_one : f 1 = 1
h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y
hp_mul : ∀ (x y : M), p x → p y → p (x * y)
g : ι → M
hs : ∀ (i : ι), i ∈ ∅ → p (g i)
⊢ f (∏ i in ∅, g i) ≤ ∏ i in ∅, f (g i)
[PROOFSTEP]
simp [h_one]
[GOAL]
case inr
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
p : M → Prop
h_one : f 1 = 1
h_mul : ∀ (x y : M), p x → p y → f (x * y) ≤ f x * f y
hp_mul : ∀ (x y : M), p x → p y → p (x * y)
g : ι → M
s : Finset ι
hs : ∀ (i : ι), i ∈ s → p (g i)
hs_nonempty : Finset.Nonempty s
⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i)
[PROOFSTEP]
exact le_prod_nonempty_of_submultiplicative_on_pred f p h_mul hp_mul g s hs_nonempty hs
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
h_one : f 1 = 1
h_mul : ∀ (x y : M), f (x * y) ≤ f x * f y
s : Finset ι
g : ι → M
⊢ f (∏ i in s, g i) ≤ ∏ i in s, f (g i)
[PROOFSTEP]
refine' le_trans (Multiset.le_prod_of_submultiplicative f h_one h_mul _) _
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
h_one : f 1 = 1
h_mul : ∀ (x y : M), f (x * y) ≤ f x * f y
s : Finset ι
g : ι → M
⊢ Multiset.prod (Multiset.map f (Multiset.map (fun i => g i) s.val)) ≤ ∏ i in s, f (g i)
[PROOFSTEP]
rw [Multiset.map_map]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f : M → N
h_one : f 1 = 1
h_mul : ∀ (x y : M), f (x * y) ≤ f x * f y
s : Finset ι
g : ι → M
⊢ Multiset.prod (Multiset.map (f ∘ fun i => g i) s.val) ≤ ∏ i in s, f (g i)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s t : Finset ι
h : ∀ (i : ι), i ∈ s → 1 ≤ f i
⊢ 1 ≤ ∏ i in s, 1
[PROOFSTEP]
rw [prod_const_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s t : Finset ι
h : ∀ (i : ι), i ∈ s → f i ≤ 1
⊢ ∏ i in s, 1 = 1
[PROOFSTEP]
rw [prod_const_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s t : Finset ι
h : s ⊆ t
hf : ∀ (i : ι), i ∈ t → ¬i ∈ s → 1 ≤ f i
⊢ ∏ i in s, f i ≤ ∏ i in t, f i
[PROOFSTEP]
classical calc
∏ i in s, f i ≤ (∏ i in t \ s, f i) * ∏ i in s, f i :=
le_mul_of_one_le_left' <| one_le_prod' <| by simpa only [mem_sdiff, and_imp]
_ = ∏ i in t \ s ∪ s, f i := (prod_union sdiff_disjoint).symm
_ = ∏ i in t, f i := by rw [sdiff_union_of_subset h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s t : Finset ι
h : s ⊆ t
hf : ∀ (i : ι), i ∈ t → ¬i ∈ s → 1 ≤ f i
⊢ ∏ i in s, f i ≤ ∏ i in t, f i
[PROOFSTEP]
calc
∏ i in s, f i ≤ (∏ i in t \ s, f i) * ∏ i in s, f i :=
le_mul_of_one_le_left' <| one_le_prod' <| by simpa only [mem_sdiff, and_imp]
_ = ∏ i in t \ s ∪ s, f i := (prod_union sdiff_disjoint).symm
_ = ∏ i in t, f i := by rw [sdiff_union_of_subset h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s t : Finset ι
h : s ⊆ t
hf : ∀ (i : ι), i ∈ t → ¬i ∈ s → 1 ≤ f i
⊢ ∀ (i : ι), i ∈ t \ s → 1 ≤ f i
[PROOFSTEP]
simpa only [mem_sdiff, and_imp]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s t : Finset ι
h : s ⊆ t
hf : ∀ (i : ι), i ∈ t → ¬i ∈ s → 1 ≤ f i
⊢ ∏ i in t \ s ∪ s, f i = ∏ i in t, f i
[PROOFSTEP]
rw [sdiff_union_of_subset h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s t : Finset ι
⊢ (∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1)
[PROOFSTEP]
classical
refine Finset.induction_on s (fun _ ↦ ⟨fun _ _ h ↦ False.elim (Finset.not_mem_empty _ h), fun _ ↦ rfl⟩) ?_
intro a s ha ih H
have : ∀ i ∈ s, 1 ≤ f i := fun _ ↦ H _ ∘ mem_insert_of_mem
rw [prod_insert ha, mul_eq_one_iff' (H _ <| mem_insert_self _ _) (one_le_prod' this), forall_mem_insert, ih this]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s t : Finset ι
⊢ (∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1)
[PROOFSTEP]
refine Finset.induction_on s (fun _ ↦ ⟨fun _ _ h ↦ False.elim (Finset.not_mem_empty _ h), fun _ ↦ rfl⟩) ?_
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s t : Finset ι
⊢ ∀ ⦃a : ι⦄ {s : Finset ι},
¬a ∈ s →
((∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1)) →
(∀ (i : ι), i ∈ insert a s → 1 ≤ f i) → (∏ i in insert a s, f i = 1 ↔ ∀ (i : ι), i ∈ insert a s → f i = 1)
[PROOFSTEP]
intro a s ha ih H
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s✝ t : Finset ι
a : ι
s : Finset ι
ha : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1)
H : ∀ (i : ι), i ∈ insert a s → 1 ≤ f i
⊢ ∏ i in insert a s, f i = 1 ↔ ∀ (i : ι), i ∈ insert a s → f i = 1
[PROOFSTEP]
have : ∀ i ∈ s, 1 ≤ f i := fun _ ↦ H _ ∘ mem_insert_of_mem
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f g : ι → N
s✝ t : Finset ι
a : ι
s : Finset ι
ha : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 1 ≤ f i) → (∏ i in s, f i = 1 ↔ ∀ (i : ι), i ∈ s → f i = 1)
H : ∀ (i : ι), i ∈ insert a s → 1 ≤ f i
this : ∀ (i : ι), i ∈ s → 1 ≤ f i
⊢ ∏ i in insert a s, f i = 1 ↔ ∀ (i : ι), i ∈ insert a s → f i = 1
[PROOFSTEP]
rw [prod_insert ha, mul_eq_one_iff' (H _ <| mem_insert_self _ _) (one_le_prod' this), forall_mem_insert, ih this]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f✝ g : ι → N
s✝ t s : Finset ι
f : ι → N
n : N
h : ∀ (x : ι), x ∈ s → f x ≤ n
⊢ Finset.prod s f ≤ n ^ card s
[PROOFSTEP]
refine' (Multiset.prod_le_pow_card (s.val.map f) n _).trans _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f✝ g : ι → N
s✝ t s : Finset ι
f : ι → N
n : N
h : ∀ (x : ι), x ∈ s → f x ≤ n
⊢ ∀ (x : N), x ∈ Multiset.map f s.val → x ≤ n
[PROOFSTEP]
simpa using h
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f✝ g : ι → N
s✝ t s : Finset ι
f : ι → N
n : N
h : ∀ (x : ι), x ∈ s → f x ≤ n
⊢ n ^ ↑Multiset.card (Multiset.map f s.val) ≤ n ^ card s
[PROOFSTEP]
simp
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : CommMonoid M
inst✝ : OrderedCommMonoid N
f✝ g : ι → N
s✝ t s : Finset ι
f : ι → N
n : N
h : ∀ (x : ι), x ∈ s → f x ≤ n
⊢ n ^ ↑Multiset.card s.val ≤ n ^ card s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G✝ : Type u_6
k : Type u_7
R : Type u_8
G : Type u_9
inst✝ : LinearOrderedAddCommGroup G
f : ι → G
s : Finset ι
hf : ∀ (i : ι), i ∈ s → 0 ≤ f i
⊢ |∑ i in s, f i| = ∑ i in s, f i
[PROOFSTEP]
rw [abs_of_nonneg (Finset.sum_nonneg hf)]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G✝ : Type u_6
k : Type u_7
R : Type u_8
G : Type u_9
inst✝ : LinearOrderedAddCommGroup G
f : ι → G
s : Finset ι
hf : ∀ (i : ι), 0 ≤ f i
⊢ |∑ i in s, f i| = ∑ i in s, f i
[PROOFSTEP]
rw [abs_of_nonneg (Finset.sum_nonneg' hf)]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq β
f : α → β
s : Finset α
t : Finset β
Hf : ∀ (a : α), a ∈ s → f a ∈ t
n : ℕ
hn : ∀ (a : β), a ∈ t → card (filter (fun x => f x = a) s) ≤ n
⊢ ∑ _a in t, n = n * card t
[PROOFSTEP]
simp [mul_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq β
f : α → β
s : Finset α
t : Finset β
Hf : ∀ (a : α), a ∈ s → f a ∈ t
n : ℕ
hn : ∀ (a : β), a ∈ t → n ≤ card (filter (fun x => f x = a) s)
⊢ n * card t = ∑ _a in t, n
[PROOFSTEP]
simp [mul_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq β
f : α → β
s : Finset α
t : Finset β
Hf : ∀ (a : α), a ∈ s → f a ∈ t
n : ℕ
hn : ∀ (a : β), a ∈ t → n ≤ card (filter (fun x => f x = a) s)
⊢ ∑ a in t, card (filter (fun x => f x = a) s) = card s
[PROOFSTEP]
rw [← card_eq_sum_card_fiberwise Hf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s : Finset α
B : Finset (Finset α)
n : ℕ
h : ∀ (a : α), a ∈ s → card (filter ((fun x x_1 => x ∈ x_1) a) B) ≤ n
⊢ ∑ t in B, card (s ∩ t) ≤ card s * n
[PROOFSTEP]
refine' le_trans _ (s.sum_le_card_nsmul _ _ h)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s : Finset α
B : Finset (Finset α)
n : ℕ
h : ∀ (a : α), a ∈ s → card (filter ((fun x x_1 => x ∈ x_1) a) B) ≤ n
⊢ ∑ t in B, card (s ∩ t) ≤ ∑ x in s, card (filter ((fun x x_1 => x ∈ x_1) x) B)
[PROOFSTEP]
simp_rw [← filter_mem_eq_inter, card_eq_sum_ones, sum_filter]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s : Finset α
B : Finset (Finset α)
n : ℕ
h : ∀ (a : α), a ∈ s → card (filter ((fun x x_1 => x ∈ x_1) a) B) ≤ n
⊢ (∑ x in B, ∑ a in s, if a ∈ x then 1 else 0) ≤ ∑ x in s, ∑ a in B, if x ∈ a then 1 else 0
[PROOFSTEP]
exact sum_comm.le
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : DecidableEq α
s : Finset α
B : Finset (Finset α)
n : ℕ
inst✝ : Fintype α
h : ∀ (a : α), card (filter ((fun x x_1 => x ∈ x_1) a) B) ≤ n
⊢ ∑ s in B, card s = ∑ s in B, card (univ ∩ s)
[PROOFSTEP]
simp_rw [univ_inter]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s : Finset α
B : Finset (Finset α)
n : ℕ
h : ∀ (a : α), a ∈ s → n ≤ card (filter ((fun x x_1 => x ∈ x_1) a) B)
⊢ card s * n ≤ ∑ t in B, card (s ∩ t)
[PROOFSTEP]
apply (s.card_nsmul_le_sum _ _ h).trans
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s : Finset α
B : Finset (Finset α)
n : ℕ
h : ∀ (a : α), a ∈ s → n ≤ card (filter ((fun x x_1 => x ∈ x_1) a) B)
⊢ ∑ x in s, card (filter ((fun x x_1 => x ∈ x_1) x) B) ≤ ∑ t in B, card (s ∩ t)
[PROOFSTEP]
simp_rw [← filter_mem_eq_inter, card_eq_sum_ones, sum_filter]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s : Finset α
B : Finset (Finset α)
n : ℕ
h : ∀ (a : α), a ∈ s → n ≤ card (filter ((fun x x_1 => x ∈ x_1) a) B)
⊢ (∑ x in s, ∑ a in B, if x ∈ a then 1 else 0) ≤ ∑ x in B, ∑ a in s, if a ∈ x then 1 else 0
[PROOFSTEP]
exact sum_comm.le
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : DecidableEq α
s : Finset α
B : Finset (Finset α)
n : ℕ
inst✝ : Fintype α
h : ∀ (a : α), n ≤ card (filter ((fun x x_1 => x ∈ x_1) a) B)
⊢ ∑ s in B, card (univ ∩ s) = ∑ s in B, card s
[PROOFSTEP]
simp_rw [univ_inter]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : DecidableEq α
s : Finset α
B : Finset (Finset α)
n : ℕ
inst✝ : Fintype α
h : ∀ (a : α), card (filter ((fun x x_1 => x ∈ x_1) a) B) = n
⊢ ∑ s in B, card s = Fintype.card α * n
[PROOFSTEP]
simp_rw [Fintype.card, ← sum_card_inter fun a _ ↦ h a, univ_inter]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s✝ : Finset α
B : Finset (Finset α)
n : ℕ
s : Finset ι
f : ι → Finset α
hs : Set.PairwiseDisjoint (↑s) f
hf : ∀ (i : ι), i ∈ s → Finset.Nonempty (f i)
⊢ card s ≤ card (Finset.biUnion s f)
[PROOFSTEP]
rw [card_biUnion hs, card_eq_sum_ones]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s✝ : Finset α
B : Finset (Finset α)
n : ℕ
s : Finset ι
f : ι → Finset α
hs : Set.PairwiseDisjoint (↑s) f
hf : ∀ (i : ι), i ∈ s → Finset.Nonempty (f i)
⊢ ∑ x in s, 1 ≤ ∑ u in s, card (f u)
[PROOFSTEP]
exact sum_le_sum fun i hi ↦ (hf i hi).card_pos
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s✝ : Finset α
B : Finset (Finset α)
n : ℕ
s : Finset ι
f : ι → Finset α
hs : Set.PairwiseDisjoint (↑s) f
⊢ card s ≤ card (Finset.biUnion s f) + card (filter (fun i => f i = ∅) s)
[PROOFSTEP]
rw [← Finset.filter_card_add_filter_neg_card_eq_card fun i ↦ f i = ∅, add_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : DecidableEq α
s✝ : Finset α
B : Finset (Finset α)
n : ℕ
s : Finset ι
f : ι → Finset α
hs : Set.PairwiseDisjoint (↑s) f
⊢ card (filter (fun a => ¬f a = ∅) s) + card (filter (fun i => f i = ∅) s) ≤
card (Finset.biUnion s f) + card (filter (fun i => f i = ∅) s)
[PROOFSTEP]
exact
add_le_add_right
((card_le_card_biUnion (hs.subset <| filter_subset _ _) fun i hi ↦
nonempty_of_ne_empty <| (mem_filter.1 hi).2).trans <|
card_le_of_subset <| biUnion_subset_biUnion_of_subset_left _ <| filter_subset _ _)
_
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedMonoid M
f : ι → M
s t : Finset ι
h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t
⊢ ∏ x in s, f x ≤ ∏ x in t, f x
[PROOFSTEP]
classical calc
∏ x in s, f x = (∏ x in s.filter fun x ↦ f x = 1, f x) * ∏ x in s.filter fun x ↦ f x ≠ 1, f x :=
by
rw [← prod_union, filter_union_filter_neg_eq]
exact disjoint_filter.2 fun _ _ h n_h ↦ n_h h
_ ≤ ∏ x in t, f x :=
mul_le_of_le_one_of_le (prod_le_one' <| by simp only [mem_filter, and_imp]; exact fun _ _ ↦ le_of_eq)
(prod_le_prod_of_subset' <| by simpa only [subset_iff, mem_filter, and_imp])
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedMonoid M
f : ι → M
s t : Finset ι
h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t
⊢ ∏ x in s, f x ≤ ∏ x in t, f x
[PROOFSTEP]
calc
∏ x in s, f x = (∏ x in s.filter fun x ↦ f x = 1, f x) * ∏ x in s.filter fun x ↦ f x ≠ 1, f x :=
by
rw [← prod_union, filter_union_filter_neg_eq]
exact disjoint_filter.2 fun _ _ h n_h ↦ n_h h
_ ≤ ∏ x in t, f x :=
mul_le_of_le_one_of_le (prod_le_one' <| by simp only [mem_filter, and_imp]; exact fun _ _ ↦ le_of_eq)
(prod_le_prod_of_subset' <| by simpa only [subset_iff, mem_filter, and_imp])
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedMonoid M
f : ι → M
s t : Finset ι
h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t
⊢ ∏ x in s, f x = (∏ x in filter (fun x => f x = 1) s, f x) * ∏ x in filter (fun x => f x ≠ 1) s, f x
[PROOFSTEP]
rw [← prod_union, filter_union_filter_neg_eq]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedMonoid M
f : ι → M
s t : Finset ι
h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t
⊢ Disjoint (filter (fun x => f x = 1) s) (filter (fun x => f x ≠ 1) s)
[PROOFSTEP]
exact disjoint_filter.2 fun _ _ h n_h ↦ n_h h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedMonoid M
f : ι → M
s t : Finset ι
h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t
⊢ ∀ (i : ι), i ∈ filter (fun x => f x = 1) s → f i ≤ 1
[PROOFSTEP]
simp only [mem_filter, and_imp]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedMonoid M
f : ι → M
s t : Finset ι
h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t
⊢ ∀ (i : ι), i ∈ s → f i = 1 → f i ≤ 1
[PROOFSTEP]
exact fun _ _ ↦ le_of_eq
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedMonoid M
f : ι → M
s t : Finset ι
h : ∀ (x : ι), x ∈ s → f x ≠ 1 → x ∈ t
⊢ filter (fun x => f x ≠ 1) s ⊆ t
[PROOFSTEP]
simpa only [subset_iff, mem_filter, and_imp]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
Hle : ∀ (i : ι), i ∈ s → f i ≤ g i
Hlt : ∃ i, i ∈ s ∧ f i < g i
⊢ ∏ i in s, f i < ∏ i in s, g i
[PROOFSTEP]
classical
rcases Hlt with ⟨i, hi, hlt⟩
rw [← insert_erase hi, prod_insert (not_mem_erase _ _), prod_insert (not_mem_erase _ _)]
exact mul_lt_mul_of_lt_of_le hlt (prod_le_prod' fun j hj ↦ Hle j <| mem_of_mem_erase hj)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
Hle : ∀ (i : ι), i ∈ s → f i ≤ g i
Hlt : ∃ i, i ∈ s ∧ f i < g i
⊢ ∏ i in s, f i < ∏ i in s, g i
[PROOFSTEP]
rcases Hlt with ⟨i, hi, hlt⟩
[GOAL]
case intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
Hle : ∀ (i : ι), i ∈ s → f i ≤ g i
i : ι
hi : i ∈ s
hlt : f i < g i
⊢ ∏ i in s, f i < ∏ i in s, g i
[PROOFSTEP]
rw [← insert_erase hi, prod_insert (not_mem_erase _ _), prod_insert (not_mem_erase _ _)]
[GOAL]
case intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
Hle : ∀ (i : ι), i ∈ s → f i ≤ g i
i : ι
hi : i ∈ s
hlt : f i < g i
⊢ f i * ∏ x in erase s i, f x < g i * ∏ x in erase s i, g x
[PROOFSTEP]
exact mul_lt_mul_of_lt_of_le hlt (prod_le_prod' fun j hj ↦ Hle j <| mem_of_mem_erase hj)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
hs : Finset.Nonempty s
Hlt : ∀ (i : ι), i ∈ s → f i < g i
⊢ ∏ i in s, f i < ∏ i in s, g i
[PROOFSTEP]
apply prod_lt_prod'
[GOAL]
case Hle
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
hs : Finset.Nonempty s
Hlt : ∀ (i : ι), i ∈ s → f i < g i
⊢ ∀ (i : ι), i ∈ s → f i ≤ g i
[PROOFSTEP]
intro i hi
[GOAL]
case Hle
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
hs : Finset.Nonempty s
Hlt : ∀ (i : ι), i ∈ s → f i < g i
i : ι
hi : i ∈ s
⊢ f i ≤ g i
[PROOFSTEP]
apply le_of_lt (Hlt i hi)
[GOAL]
case Hlt
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
hs : Finset.Nonempty s
Hlt : ∀ (i : ι), i ∈ s → f i < g i
⊢ ∃ i, i ∈ s ∧ f i < g i
[PROOFSTEP]
cases' hs with i hi
[GOAL]
case Hlt.intro
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
Hlt : ∀ (i : ι), i ∈ s → f i < g i
i : ι
hi : i ∈ s
⊢ ∃ i, i ∈ s ∧ f i < g i
[PROOFSTEP]
exact ⟨i, hi, Hlt i hi⟩
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : s ⊆ t
i : ι
ht : i ∈ t
hs : ¬i ∈ s
hlt : 1 < f i
hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j
⊢ ∏ j in s, f j < ∏ j in t, f j
[PROOFSTEP]
classical calc
∏ j in s, f j < ∏ j in insert i s, f j := by
rw [prod_insert hs]
exact lt_mul_of_one_lt_left' (∏ j in s, f j) hlt
_ ≤ ∏ j in t, f j := by
apply prod_le_prod_of_subset_of_one_le'
· simp [Finset.insert_subset_iff, h, ht]
· intro x hx h'x
simp only [mem_insert, not_or] at h'x
exact hle x hx h'x.2
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : s ⊆ t
i : ι
ht : i ∈ t
hs : ¬i ∈ s
hlt : 1 < f i
hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j
⊢ ∏ j in s, f j < ∏ j in t, f j
[PROOFSTEP]
calc
∏ j in s, f j < ∏ j in insert i s, f j := by
rw [prod_insert hs]
exact lt_mul_of_one_lt_left' (∏ j in s, f j) hlt
_ ≤ ∏ j in t, f j := by
apply prod_le_prod_of_subset_of_one_le'
· simp [Finset.insert_subset_iff, h, ht]
· intro x hx h'x
simp only [mem_insert, not_or] at h'x
exact hle x hx h'x.2
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : s ⊆ t
i : ι
ht : i ∈ t
hs : ¬i ∈ s
hlt : 1 < f i
hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j
⊢ ∏ j in s, f j < ∏ j in insert i s, f j
[PROOFSTEP]
rw [prod_insert hs]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : s ⊆ t
i : ι
ht : i ∈ t
hs : ¬i ∈ s
hlt : 1 < f i
hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j
⊢ ∏ j in s, f j < f i * ∏ x in s, f x
[PROOFSTEP]
exact lt_mul_of_one_lt_left' (∏ j in s, f j) hlt
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : s ⊆ t
i : ι
ht : i ∈ t
hs : ¬i ∈ s
hlt : 1 < f i
hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j
⊢ ∏ j in insert i s, f j ≤ ∏ j in t, f j
[PROOFSTEP]
apply prod_le_prod_of_subset_of_one_le'
[GOAL]
case h
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : s ⊆ t
i : ι
ht : i ∈ t
hs : ¬i ∈ s
hlt : 1 < f i
hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j
⊢ insert i s ⊆ t
[PROOFSTEP]
simp [Finset.insert_subset_iff, h, ht]
[GOAL]
case hf
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : s ⊆ t
i : ι
ht : i ∈ t
hs : ¬i ∈ s
hlt : 1 < f i
hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j
⊢ ∀ (i_1 : ι), i_1 ∈ t → ¬i_1 ∈ insert i s → 1 ≤ f i_1
[PROOFSTEP]
intro x hx h'x
[GOAL]
case hf
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : s ⊆ t
i : ι
ht : i ∈ t
hs : ¬i ∈ s
hlt : 1 < f i
hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j
x : ι
hx : x ∈ t
h'x : ¬x ∈ insert i s
⊢ 1 ≤ f x
[PROOFSTEP]
simp only [mem_insert, not_or] at h'x
[GOAL]
case hf
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : s ⊆ t
i : ι
ht : i ∈ t
hs : ¬i ∈ s
hlt : 1 < f i
hle : ∀ (j : ι), j ∈ t → ¬j ∈ s → 1 ≤ f j
x : ι
hx : x ∈ t
h'x : ¬x = i ∧ ¬x ∈ s
⊢ 1 ≤ f x
[PROOFSTEP]
exact hle x hx h'x.2
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : ∀ (i : ι), i ∈ s → 1 < f i
hs : Finset.Nonempty s
⊢ 1 ≤ ∏ i in s, 1
[PROOFSTEP]
rw [prod_const_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
h : ∀ (i : ι), i ∈ s → f i < 1
hs : Finset.Nonempty s
⊢ ∏ i in s, 1 ≤ 1
[PROOFSTEP]
rw [prod_const_one]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f✝ g✝ : ι → M
s t : Finset ι
f g : ι → M
h : ∀ (i : ι), i ∈ s → f i ≤ g i
⊢ ∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i
[PROOFSTEP]
classical
revert h
refine
Finset.induction_on s (fun _ ↦ ⟨fun _ _ h ↦ False.elim (Finset.not_mem_empty _ h), fun _ ↦ rfl⟩) fun a s ha ih H ↦ ?_
specialize ih fun i ↦ H i ∘ Finset.mem_insert_of_mem
rw [Finset.prod_insert ha, Finset.prod_insert ha, Finset.forall_mem_insert, ← ih]
exact mul_eq_mul_iff_eq_and_eq (H a (s.mem_insert_self a)) (Finset.prod_le_prod' fun i ↦ H i ∘ Finset.mem_insert_of_mem)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f✝ g✝ : ι → M
s t : Finset ι
f g : ι → M
h : ∀ (i : ι), i ∈ s → f i ≤ g i
⊢ ∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i
[PROOFSTEP]
revert h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f✝ g✝ : ι → M
s t : Finset ι
f g : ι → M
⊢ (∀ (i : ι), i ∈ s → f i ≤ g i) → (∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i)
[PROOFSTEP]
refine
Finset.induction_on s (fun _ ↦ ⟨fun _ _ h ↦ False.elim (Finset.not_mem_empty _ h), fun _ ↦ rfl⟩) fun a s ha ih H ↦ ?_
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f✝ g✝ : ι → M
s✝ t : Finset ι
f g : ι → M
a : ι
s : Finset ι
ha : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → f i ≤ g i) → (∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i)
H : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
⊢ ∏ i in insert a s, f i = ∏ i in insert a s, g i ↔ ∀ (i : ι), i ∈ insert a s → f i = g i
[PROOFSTEP]
specialize ih fun i ↦ H i ∘ Finset.mem_insert_of_mem
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f✝ g✝ : ι → M
s✝ t : Finset ι
f g : ι → M
a : ι
s : Finset ι
ha : ¬a ∈ s
H : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
ih : ∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i
⊢ ∏ i in insert a s, f i = ∏ i in insert a s, g i ↔ ∀ (i : ι), i ∈ insert a s → f i = g i
[PROOFSTEP]
rw [Finset.prod_insert ha, Finset.prod_insert ha, Finset.forall_mem_insert, ← ih]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCancelCommMonoid M
f✝ g✝ : ι → M
s✝ t : Finset ι
f g : ι → M
a : ι
s : Finset ι
ha : ¬a ∈ s
H : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
ih : ∏ i in s, f i = ∏ i in s, g i ↔ ∀ (i : ι), i ∈ s → f i = g i
⊢ f a * ∏ x in s, f x = g a * ∏ x in s, g x ↔ f a = g a ∧ ∏ i in s, f i = ∏ i in s, g i
[PROOFSTEP]
exact mul_eq_mul_iff_eq_and_eq (H a (s.mem_insert_self a)) (Finset.prod_le_prod' fun i ↦ H i ∘ Finset.mem_insert_of_mem)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : LinearOrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
Hlt : ∏ i in s, f i < ∏ i in s, g i
⊢ ∃ i, i ∈ s ∧ f i < g i
[PROOFSTEP]
contrapose! Hlt with Hle
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : LinearOrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
Hle : ∀ (i : ι), i ∈ s → g i ≤ f i
⊢ ∏ i in s, g i ≤ ∏ i in s, f i
[PROOFSTEP]
exact prod_le_prod' Hle
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : LinearOrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
hs : Finset.Nonempty s
Hle : ∏ i in s, f i ≤ ∏ i in s, g i
⊢ ∃ i, i ∈ s ∧ f i ≤ g i
[PROOFSTEP]
contrapose! Hle with Hlt
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : LinearOrderedCancelCommMonoid M
f g : ι → M
s t : Finset ι
hs : Finset.Nonempty s
Hlt : ∀ (i : ι), i ∈ s → g i < f i
⊢ ∏ i in s, g i < ∏ i in s, f i
[PROOFSTEP]
exact prod_lt_prod_of_nonempty' hs Hlt
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : LinearOrderedCancelCommMonoid M
f✝ g : ι → M
s t : Finset ι
f : ι → M
h₁ : ∏ i in s, f i = 1
h₂ : ∃ i, i ∈ s ∧ f i ≠ 1
⊢ ∃ i, i ∈ s ∧ 1 < f i
[PROOFSTEP]
contrapose! h₁
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : LinearOrderedCancelCommMonoid M
f✝ g : ι → M
s t : Finset ι
f : ι → M
h₂ : ∃ i, i ∈ s ∧ f i ≠ 1
h₁ : ∀ (i : ι), i ∈ s → f i ≤ 1
⊢ ∏ i in s, f i ≠ 1
[PROOFSTEP]
obtain ⟨i, m, i_ne⟩ : ∃ i ∈ s, f i ≠ 1 := h₂
[GOAL]
case intro.intro
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : LinearOrderedCancelCommMonoid M
f✝ g : ι → M
s t : Finset ι
f : ι → M
h₁ : ∀ (i : ι), i ∈ s → f i ≤ 1
i : ι
m : i ∈ s
i_ne : f i ≠ 1
⊢ ∏ i in s, f i ≠ 1
[PROOFSTEP]
apply ne_of_lt
[GOAL]
case intro.intro.h
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : LinearOrderedCancelCommMonoid M
f✝ g : ι → M
s t : Finset ι
f : ι → M
h₁ : ∀ (i : ι), i ∈ s → f i ≤ 1
i : ι
m : i ∈ s
i_ne : f i ≠ 1
⊢ ∏ i in s, f i < 1
[PROOFSTEP]
calc
∏ j in s, f j < ∏ j in s, 1 := prod_lt_prod' h₁ ⟨i, m, (h₁ i m).lt_of_ne i_ne⟩
_ = 1 := prod_const_one
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s t : Finset ι
h0 : ∀ (i : ι), i ∈ s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ s → f i ≤ g i
⊢ ∏ i in s, f i ≤ ∏ i in s, g i
[PROOFSTEP]
induction' s using Finset.induction with a s has ih h
[GOAL]
case empty
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s t : Finset ι
h0✝ : ∀ (i : ι), i ∈ s → 0 ≤ f i
h1✝ : ∀ (i : ι), i ∈ s → f i ≤ g i
h0 : ∀ (i : ι), i ∈ ∅ → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ ∅ → f i ≤ g i
⊢ ∏ i in ∅, f i ≤ ∏ i in ∅, g i
[PROOFSTEP]
simp
[GOAL]
case insert
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s✝ t : Finset ι
h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i
h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i
h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
⊢ ∏ i in insert a s, f i ≤ ∏ i in insert a s, g i
[PROOFSTEP]
simp only [prod_insert has]
[GOAL]
case insert
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s✝ t : Finset ι
h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i
h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i
h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
⊢ f a * ∏ i in s, f i ≤ g a * ∏ i in s, g i
[PROOFSTEP]
apply mul_le_mul
[GOAL]
case insert.h₁
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s✝ t : Finset ι
h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i
h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i
h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
⊢ f a ≤ g a
[PROOFSTEP]
exact h1 a (mem_insert_self a s)
[GOAL]
case insert.h₂
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s✝ t : Finset ι
h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i
h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i
h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
⊢ ∏ i in s, f i ≤ ∏ i in s, g i
[PROOFSTEP]
refine ih (fun x H ↦ h0 _ ?_) (fun x H ↦ h1 _ ?_)
[GOAL]
case insert.h₂.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s✝ t : Finset ι
h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i
h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i
h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
x : ι
H : x ∈ s
⊢ x ∈ insert a s
[PROOFSTEP]
exact mem_insert_of_mem H
[GOAL]
case insert.h₂.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s✝ t : Finset ι
h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i
h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i
h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
x : ι
H : x ∈ s
⊢ x ∈ insert a s
[PROOFSTEP]
exact mem_insert_of_mem H
[GOAL]
case insert.c0
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s✝ t : Finset ι
h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i
h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i
h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
⊢ 0 ≤ ∏ i in s, f i
[PROOFSTEP]
apply prod_nonneg fun x H ↦ h0 x (mem_insert_of_mem H)
[GOAL]
case insert.b0
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s✝ t : Finset ι
h0✝ : ∀ (i : ι), i ∈ s✝ → 0 ≤ f i
h1✝ : ∀ (i : ι), i ∈ s✝ → f i ≤ g i
a : ι
s : Finset ι
has : ¬a ∈ s
ih : (∀ (i : ι), i ∈ s → 0 ≤ f i) → (∀ (i : ι), i ∈ s → f i ≤ g i) → ∏ i in s, f i ≤ ∏ i in s, g i
h0 : ∀ (i : ι), i ∈ insert a s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ insert a s → f i ≤ g i
⊢ 0 ≤ g a
[PROOFSTEP]
apply le_trans (h0 a (mem_insert_self a s)) (h1 a (mem_insert_self a s))
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s t : Finset ι
h0 : ∀ (i : ι), i ∈ s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ s → f i ≤ 1
⊢ ∏ i in s, f i ≤ 1
[PROOFSTEP]
convert ← prod_le_prod h0 h1
[GOAL]
case h.e'_4
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f g : ι → R
s t : Finset ι
h0 : ∀ (i : ι), i ∈ s → 0 ≤ f i
h1 : ∀ (i : ι), i ∈ s → f i ≤ 1
⊢ ∏ i in s, 1 = 1
[PROOFSTEP]
exact Finset.prod_const_one
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ ∏ i in s, g i + ∏ i in s, h i ≤ ∏ i in s, f i
[PROOFSTEP]
simp_rw [prod_eq_mul_prod_diff_singleton hi]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ f i * ∏ i in s \ {i}, f i
[PROOFSTEP]
refine le_trans ?_ (mul_le_mul_of_nonneg_right h2i ?_)
[GOAL]
case refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ (g i + h i) * ∏ i in s \ {i}, f i
[PROOFSTEP]
rw [right_distrib]
[GOAL]
case refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ g i * ∏ i in s \ {i}, f i + h i * ∏ i in s \ {i}, f i
[PROOFSTEP]
refine add_le_add ?_ ?_
[GOAL]
case refine_1.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ g i * ∏ i in s \ {i}, g i ≤ g i * ∏ i in s \ {i}, f i
[PROOFSTEP]
refine mul_le_mul_of_nonneg_left ?_ ?_
[GOAL]
case refine_1.refine_1.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ ∏ i in s \ {i}, g i ≤ ∏ i in s \ {i}, f i
[PROOFSTEP]
refine prod_le_prod ?_ ?_
[GOAL]
case refine_1.refine_1.refine_1.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → 0 ≤ g i_1
[PROOFSTEP]
simp (config := { contextual := true }) [*]
[GOAL]
case refine_1.refine_1.refine_1.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → g i_1 ≤ f i_1
[PROOFSTEP]
simp (config := { contextual := true }) [*]
[GOAL]
case refine_1.refine_1.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ 0 ≤ g i
[PROOFSTEP]
try apply_assumption
[GOAL]
case refine_1.refine_1.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ 0 ≤ g i
[PROOFSTEP]
apply_assumption
[GOAL]
case refine_1.refine_1.refine_2.a
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ i ∈ s
[PROOFSTEP]
try assumption
[GOAL]
case refine_1.refine_1.refine_2.a
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ i ∈ s
[PROOFSTEP]
assumption
[GOAL]
case refine_1.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ h i * ∏ i in s \ {i}, h i ≤ h i * ∏ i in s \ {i}, f i
[PROOFSTEP]
refine mul_le_mul_of_nonneg_left ?_ ?_
[GOAL]
case refine_1.refine_2.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ ∏ i in s \ {i}, h i ≤ ∏ i in s \ {i}, f i
[PROOFSTEP]
refine prod_le_prod ?_ ?_
[GOAL]
case refine_1.refine_2.refine_1.refine_1
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → 0 ≤ h i_1
[PROOFSTEP]
simp (config := { contextual := true }) [*]
[GOAL]
case refine_1.refine_2.refine_1.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → h i_1 ≤ f i_1
[PROOFSTEP]
simp (config := { contextual := true }) [*]
[GOAL]
case refine_1.refine_2.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ 0 ≤ h i
[PROOFSTEP]
try apply_assumption
[GOAL]
case refine_1.refine_2.refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ 0 ≤ h i
[PROOFSTEP]
apply_assumption
[GOAL]
case refine_1.refine_2.refine_2.a
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ i ∈ s
[PROOFSTEP]
try assumption
[GOAL]
case refine_1.refine_2.refine_2.a
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ i ∈ s
[PROOFSTEP]
assumption
[GOAL]
case refine_2
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ 0 ≤ ∏ i in s \ {i}, f i
[PROOFSTEP]
apply prod_nonneg
[GOAL]
case refine_2.h0
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → 0 ≤ f i_1
[PROOFSTEP]
simp only [and_imp, mem_sdiff, mem_singleton]
[GOAL]
case refine_2.h0
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
⊢ ∀ (i_1 : ι), i_1 ∈ s → ¬i_1 = i → 0 ≤ f i_1
[PROOFSTEP]
intro j h1j h2j
[GOAL]
case refine_2.h0
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : OrderedCommSemiring R
f✝ g✝ : ι → R
s t : Finset ι
i : ι
f g h : ι → R
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
hg : ∀ (i : ι), i ∈ s → 0 ≤ g i
hh : ∀ (i : ι), i ∈ s → 0 ≤ h i
j : ι
h1j : j ∈ s
h2j : ¬j = i
⊢ 0 ≤ f j
[PROOFSTEP]
exact le_trans (hg j h1j) (hgf j h1j h2j)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ ∏ i in s, g i + ∏ i in s, h i ≤ ∏ i in s, f i
[PROOFSTEP]
classical
simp_rw [prod_eq_mul_prod_diff_singleton hi]
refine' le_trans _ (mul_le_mul_right' h2i _)
rw [right_distrib]
apply add_le_add <;> apply mul_le_mul_left' <;> apply prod_le_prod' <;>
simp only [and_imp, mem_sdiff, mem_singleton] <;>
intros <;>
apply_assumption <;>
assumption
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ ∏ i in s, g i + ∏ i in s, h i ≤ ∏ i in s, f i
[PROOFSTEP]
simp_rw [prod_eq_mul_prod_diff_singleton hi]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ f i * ∏ i in s \ {i}, f i
[PROOFSTEP]
refine' le_trans _ (mul_le_mul_right' h2i _)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ (g i + h i) * ∏ i in s \ {i}, f i
[PROOFSTEP]
rw [right_distrib]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i ≤ g i * ∏ i in s \ {i}, f i + h i * ∏ i in s \ {i}, f i
[PROOFSTEP]
apply add_le_add
[GOAL]
case h₁
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ g i * ∏ i in s \ {i}, g i ≤ g i * ∏ i in s \ {i}, f i
[PROOFSTEP]
apply mul_le_mul_left'
[GOAL]
case h₂
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ h i * ∏ i in s \ {i}, h i ≤ h i * ∏ i in s \ {i}, f i
[PROOFSTEP]
apply mul_le_mul_left'
[GOAL]
case h₁.bc
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ ∏ i in s \ {i}, g i ≤ ∏ i in s \ {i}, f i
[PROOFSTEP]
apply prod_le_prod'
[GOAL]
case h₂.bc
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ ∏ i in s \ {i}, h i ≤ ∏ i in s \ {i}, f i
[PROOFSTEP]
apply prod_le_prod'
[GOAL]
case h₁.bc.h
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → g i_1 ≤ f i_1
[PROOFSTEP]
simp only [and_imp, mem_sdiff, mem_singleton]
[GOAL]
case h₂.bc.h
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ ∀ (i_1 : ι), i_1 ∈ s \ {i} → h i_1 ≤ f i_1
[PROOFSTEP]
simp only [and_imp, mem_sdiff, mem_singleton]
[GOAL]
case h₁.bc.h
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ ∀ (i_1 : ι), i_1 ∈ s → ¬i_1 = i → g i_1 ≤ f i_1
[PROOFSTEP]
intros
[GOAL]
case h₂.bc.h
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
⊢ ∀ (i_1 : ι), i_1 ∈ s → ¬i_1 = i → h i_1 ≤ f i_1
[PROOFSTEP]
intros
[GOAL]
case h₁.bc.h
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
i✝ : ι
a✝¹ : i✝ ∈ s
a✝ : ¬i✝ = i
⊢ g i✝ ≤ f i✝
[PROOFSTEP]
apply_assumption
[GOAL]
case h₂.bc.h
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
i✝ : ι
a✝¹ : i✝ ∈ s
a✝ : ¬i✝ = i
⊢ h i✝ ≤ f i✝
[PROOFSTEP]
apply_assumption
[GOAL]
case h₁.bc.h.a
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
i✝ : ι
a✝¹ : i✝ ∈ s
a✝ : ¬i✝ = i
⊢ i✝ ∈ s
[PROOFSTEP]
assumption
[GOAL]
case h₁.bc.h.a
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
i✝ : ι
a✝¹ : i✝ ∈ s
a✝ : ¬i✝ = i
⊢ i✝ ≠ i
[PROOFSTEP]
assumption
[GOAL]
case h₂.bc.h.a
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
i✝ : ι
a✝¹ : i✝ ∈ s
a✝ : ¬i✝ = i
⊢ i✝ ∈ s
[PROOFSTEP]
assumption
[GOAL]
case h₂.bc.h.a
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : CanonicallyOrderedCommSemiring R
f g h : ι → R
s : Finset ι
i : ι
hi : i ∈ s
h2i : g i + h i ≤ f i
hgf : ∀ (j : ι), j ∈ s → j ≠ i → g j ≤ f j
hhf : ∀ (j : ι), j ∈ s → j ≠ i → h j ≤ f j
i✝ : ι
a✝¹ : i✝ ∈ s
a✝ : ¬i✝ = i
⊢ i✝ ≠ i
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : AddCommMonoid M
s : Finset ι
f : ι → WithTop M
⊢ ∑ i in s, f i = ⊤ ↔ ∃ i, i ∈ s ∧ f i = ⊤
[PROOFSTEP]
induction s using Finset.cons_induction
[GOAL]
case empty
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : AddCommMonoid M
f : ι → WithTop M
⊢ ∑ i in ∅, f i = ⊤ ↔ ∃ i, i ∈ ∅ ∧ f i = ⊤
[PROOFSTEP]
simp [*]
[GOAL]
case cons
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝ : AddCommMonoid M
f : ι → WithTop M
a✝¹ : ι
s✝ : Finset ι
h✝ : ¬a✝¹ ∈ s✝
a✝ : ∑ i in s✝, f i = ⊤ ↔ ∃ i, i ∈ s✝ ∧ f i = ⊤
⊢ ∑ i in cons a✝¹ s✝ h✝, f i = ⊤ ↔ ∃ i, i ∈ cons a✝¹ s✝ h✝ ∧ f i = ⊤
[PROOFSTEP]
simp [*]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
M : Type u_4
N : Type u_5
G : Type u_6
k : Type u_7
R : Type u_8
inst✝¹ : AddCommMonoid M
inst✝ : LT M
s : Finset ι
f : ι → WithTop M
⊢ ∑ i in s, f i < ⊤ ↔ ∀ (i : ι), i ∈ s → f i < ⊤
[PROOFSTEP]
simp only [WithTop.lt_top_iff_ne_top, ne_eq, sum_eq_top_iff, not_exists, not_and]
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Order", "llama_tokens": 34395} |
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
⊢ ∀ (s : Set (Tropical R)), ¬BddAbove s → sSup s = sSup Set.univ
[PROOFSTEP]
intro s hs
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
hs : ¬BddAbove s
⊢ sSup s = sSup Set.univ
[PROOFSTEP]
have : Set.range untrop = (Set.univ : Set R) := Equiv.range_eq_univ tropEquiv.symm
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
hs : ¬BddAbove s
this : Set.range untrop = Set.univ
⊢ sSup s = sSup Set.univ
[PROOFSTEP]
simp [sSup, this]
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
hs : ¬BddAbove s
this : Set.range untrop = Set.univ
⊢ sSup (untrop '' s) = sSup Set.univ
[PROOFSTEP]
apply csSup_of_not_bddAbove
[GOAL]
case hs
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
hs : ¬BddAbove s
this : Set.range untrop = Set.univ
⊢ ¬BddAbove (untrop '' s)
[PROOFSTEP]
contrapose! hs
[GOAL]
case hs
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
this : Set.range untrop = Set.univ
hs : BddAbove (untrop '' s)
⊢ BddAbove s
[PROOFSTEP]
change BddAbove (tropOrderIso.symm '' s) at hs
[GOAL]
case hs
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
this : Set.range untrop = Set.univ
hs : BddAbove (↑(OrderIso.symm tropOrderIso) '' s)
⊢ BddAbove s
[PROOFSTEP]
exact tropOrderIso.symm.bddAbove_image.1 hs
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
⊢ ∀ (s : Set (Tropical R)), ¬BddBelow s → sInf s = sInf Set.univ
[PROOFSTEP]
intro s hs
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
hs : ¬BddBelow s
⊢ sInf s = sInf Set.univ
[PROOFSTEP]
have : Set.range untrop = (Set.univ : Set R) := Equiv.range_eq_univ tropEquiv.symm
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
hs : ¬BddBelow s
this : Set.range untrop = Set.univ
⊢ sInf s = sInf Set.univ
[PROOFSTEP]
simp [sInf, this]
[GOAL]
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
hs : ¬BddBelow s
this : Set.range untrop = Set.univ
⊢ sInf (untrop '' s) = sInf Set.univ
[PROOFSTEP]
apply csInf_of_not_bddBelow
[GOAL]
case hs
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
hs : ¬BddBelow s
this : Set.range untrop = Set.univ
⊢ ¬BddBelow (untrop '' s)
[PROOFSTEP]
contrapose! hs
[GOAL]
case hs
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
this : Set.range untrop = Set.univ
hs : BddBelow (untrop '' s)
⊢ BddBelow s
[PROOFSTEP]
change BddBelow (tropOrderIso.symm '' s) at hs
[GOAL]
case hs
R : Type u_1
S : Type u_2
inst✝ : ConditionallyCompleteLinearOrder R
src✝¹ : ConditionallyCompleteLattice (Tropical R) := instConditionallyCompleteLatticeTropical
src✝ : LinearOrder (Tropical R) := instLinearOrderTropical
s : Set (Tropical R)
this : Set.range untrop = Set.univ
hs : BddBelow (↑(OrderIso.symm tropOrderIso) '' s)
⊢ BddBelow s
[PROOFSTEP]
exact tropOrderIso.symm.bddBelow_image.1 hs
| {"mathlib_filename": "Mathlib.Algebra.Tropical.Lattice", "llama_tokens": 2090} |
[GOAL]
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
L M N K : ModuleCat R
f : L ⟶ M
g : M ⟶ N
w✝ : f ≫ g = 0
h k : _root_.homology f g w✝ ⟶ K
w :
∀ (x : { x // x ∈ LinearMap.ker g }),
↑h (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x)) =
↑k (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x))
⊢ h = k
[PROOFSTEP]
refine'
cokernel_funext fun n =>
_
-- porting note: as `equiv_rw` was not ported, it was replaced by `Equiv.surjective`
-- Gosh it would be nice if `equiv_rw` could directly use an isomorphism, or an enriched `≃`.
[GOAL]
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
L M N K : ModuleCat R
f : L ⟶ M
g : M ⟶ N
w✝ : f ≫ g = 0
h k : _root_.homology f g w✝ ⟶ K
w :
∀ (x : { x // x ∈ LinearMap.ker g }),
↑h (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x)) =
↑k (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x))
n : (CategoryTheory.forget (ModuleCat R)).obj (Subobject.underlying.obj (kernelSubobject g))
⊢ ↑h (↑(cokernel.π (imageToKernel f g w✝)) n) = ↑k (↑(cokernel.π (imageToKernel f g w✝)) n)
[PROOFSTEP]
obtain ⟨n, rfl⟩ := (kernelSubobjectIso g ≪≫ ModuleCat.kernelIsoKer g).toLinearEquiv.toEquiv.symm.surjective n
[GOAL]
case intro
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
L M N K : ModuleCat R
f : L ⟶ M
g : M ⟶ N
w✝ : f ≫ g = 0
h k : _root_.homology f g w✝ ⟶ K
w :
∀ (x : { x // x ∈ LinearMap.ker g }),
↑h (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x)) =
↑k (↑(cokernel.π (imageToKernel f g w✝)) (↑toKernelSubobject x))
n : ↑(of R { x // x ∈ LinearMap.ker g })
⊢ ↑h
(↑(cokernel.π (imageToKernel f g w✝))
(↑(LinearEquiv.toEquiv (Iso.toLinearEquiv (kernelSubobjectIso g ≪≫ kernelIsoKer g))).symm n)) =
↑k
(↑(cokernel.π (imageToKernel f g w✝))
(↑(LinearEquiv.toEquiv (Iso.toLinearEquiv (kernelSubobjectIso g ≪≫ kernelIsoKer g))).symm n))
[PROOFSTEP]
exact w n
[GOAL]
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C✝ D C : HomologicalComplex (ModuleCat R) c
i : ι
x y : ↑(Subobject.underlying.obj (cycles C i))
w : ↑(Subobject.arrow (cycles C i)) x = ↑(Subobject.arrow (cycles C i)) y
⊢ x = y
[PROOFSTEP]
apply_fun (C.cycles i).arrow using (ModuleCat.mono_iff_injective _).mp (cycles C i).arrow_mono
[GOAL]
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C✝ D C : HomologicalComplex (ModuleCat R) c
i : ι
x y : ↑(Subobject.underlying.obj (cycles C i))
w : ↑(Subobject.arrow (cycles C i)) x = ↑(Subobject.arrow (cycles C i)) y
⊢ ↑(Subobject.arrow (cycles C i)) x = ↑(Subobject.arrow (cycles C i)) y
[PROOFSTEP]
exact w
[GOAL]
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f : C ⟶ D
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ ↑(Hom.f f i) ↑x ∈ LinearMap.ker (dFrom D i)
[PROOFSTEP]
rw [LinearMap.mem_ker, Hom.comm_from_apply, x.2, map_zero]
[GOAL]
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f : C ⟶ D
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ ↑(cyclesMap f i) (toCycles x) =
toCycles { val := ↑(Hom.f f i) ↑x, property := (_ : ↑(Hom.f f i) ↑x ∈ LinearMap.ker (dFrom D i)) }
[PROOFSTEP]
ext
[GOAL]
case w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f : C ⟶ D
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ ↑(Subobject.arrow (cycles D i)) (↑(cyclesMap f i) (toCycles x)) =
↑(Subobject.arrow (cycles D i))
(toCycles { val := ↑(Hom.f f i) ↑x, property := (_ : ↑(Hom.f f i) ↑x ∈ LinearMap.ker (dFrom D i)) })
[PROOFSTEP]
rw [cyclesMap_arrow_apply, toKernelSubobject_arrow, toKernelSubobject_arrow]
[GOAL]
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
⊢ (homologyFunctor (ModuleCat R) c i).map f = (homologyFunctor (ModuleCat R) c i).map g
[PROOFSTEP]
apply homology_ext
[GOAL]
case w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
⊢ ∀ (x : { x // x ∈ LinearMap.ker (dFrom C i) }),
↑((homologyFunctor (ModuleCat R) c i).map f)
(↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x)) =
↑((homologyFunctor (ModuleCat R) c i).map g)
(↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x))
[PROOFSTEP]
intro x
[GOAL]
case w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ ↑((homologyFunctor (ModuleCat R) c i).map f)
(↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x)) =
↑((homologyFunctor (ModuleCat R) c i).map g)
(↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x))
[PROOFSTEP]
simp only [homologyFunctor_map]
[GOAL]
case w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ ↑(homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo f i) (Hom.sqFrom f i)
(_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right))
(↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x)) =
↑(homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo g i) (Hom.sqFrom g i)
(_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right))
(↑(cokernel.π (imageToKernel (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0))) (↑toKernelSubobject x))
[PROOFSTEP]
erw [homology.π_map_apply, homology.π_map_apply]
-- To check that two elements are equal mod boundaries, it suffices to exhibit a boundary:
[GOAL]
case w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ ↑(homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0))
(↑(kernelSubobjectMap (Hom.sqFrom f i)) (↑toKernelSubobject x)) =
↑(homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0))
(↑(kernelSubobjectMap (Hom.sqFrom g i)) (↑toKernelSubobject x))
[PROOFSTEP]
refine'
cokernel_π_imageSubobject_ext _ _ ((toPrev i h.hom) x.1)
_
-- Moreover, to check that two cycles are equal, it suffices to check their underlying elements:
[GOAL]
case w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ ↑(kernelSubobjectMap (Hom.sqFrom f i)) (↑toKernelSubobject x) =
↑(kernelSubobjectMap (Hom.sqFrom g i)) (↑toKernelSubobject x) +
↑(imageToKernel (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0))
(↑(factorThruImageSubobject (dTo D i)) (↑(↑(toPrev i) h.hom) ↑x))
[PROOFSTEP]
ext
[GOAL]
case w.w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ ↑(Subobject.arrow (cycles D i)) (↑(kernelSubobjectMap (Hom.sqFrom f i)) (↑toKernelSubobject x)) =
↑(Subobject.arrow (cycles D i))
(↑(kernelSubobjectMap (Hom.sqFrom g i)) (↑toKernelSubobject x) +
↑(imageToKernel (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0))
(↑(factorThruImageSubobject (dTo D i)) (↑(↑(toPrev i) h.hom) ↑x)))
[PROOFSTEP]
erw [map_add, CategoryTheory.Limits.kernelSubobjectMap_arrow_apply,
CategoryTheory.Limits.kernelSubobjectMap_arrow_apply, ModuleCat.toKernelSubobject_arrow, imageToKernel_arrow_apply,
imageSubobject_arrow_comp_apply]
[GOAL]
case w.w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ ↑(Hom.sqFrom f i).left ↑x = ↑(Hom.sqFrom g i).left ↑x + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x)
[PROOFSTEP]
rw [Hom.sqFrom_left, Hom.sqFrom_left, h.comm i, LinearMap.add_apply, LinearMap.add_apply, prevD_eq_toPrev_dTo,
dNext_eq_dFrom_fromNext, comp_apply, comp_apply, x.2, map_zero]
[GOAL]
case w.w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ 0 + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) + ↑(Hom.f g i) ↑x = ↑(Hom.f g i) ↑x + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x)
[PROOFSTEP]
dsimp
[GOAL]
case w.w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ 0 + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) + ↑(Hom.f g i) ↑x = ↑(Hom.f g i) ↑x + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x)
[PROOFSTEP]
abel
[GOAL]
case w.w
R : Type v
inst✝ : Ring R
ι : Type u_1
c : ComplexShape ι
C D : HomologicalComplex (ModuleCat R) c
f g : C ⟶ D
h : Homotopy f g
i : ι
x : { x // x ∈ LinearMap.ker (dFrom C i) }
⊢ 0 + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x) + ↑(Hom.f g i) ↑x = ↑(Hom.f g i) ↑x + ↑(dTo D i) (↑(↑(toPrev i) h.hom) ↑x)
[PROOFSTEP]
abel
| {"mathlib_filename": "Mathlib.Algebra.Homology.ModuleCat", "llama_tokens": 4418} |
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a : α
m : Multiset ι
f g : ι → α
x y z : α
⊢ (fun x x_1 => x * x_1) x ((fun x x_1 => x * x_1) y z) = (fun x x_1 => x * x_1) y ((fun x x_1 => x * x_1) x z)
[PROOFSTEP]
simp [mul_left_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
s : Multiset α
x y z : α
⊢ (fun x x_1 => x * x_1) x ((fun x x_1 => x * x_1) y z) = (fun x x_1 => x * x_1) y ((fun x x_1 => x * x_1) x z)
[PROOFSTEP]
simp [mul_left_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
s : Multiset α
x y z : α
⊢ (fun x x_1 => x * x_1) ((fun x x_1 => x * x_1) x y) z = (fun x x_1 => x * x_1) ((fun x x_1 => x * x_1) x z) y
[PROOFSTEP]
simp [mul_right_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
s : Multiset α
⊢ foldl (fun x y => y * x) (_ : ∀ (_x _y _z : α), _z * (_y * _x) = _y * (_z * _x)) 1 s =
foldl (fun x x_1 => x * x_1) (_ : ∀ (x y z : α), x * y * z = x * z * y) 1 s
[PROOFSTEP]
simp [mul_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
s : Multiset α
⊢ List.prod (toList s) = prod s
[PROOFSTEP]
conv_rhs => rw [← coe_toList s]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
s : Multiset α
| prod s
[PROOFSTEP]
rw [← coe_toList s]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
s : Multiset α
| prod s
[PROOFSTEP]
rw [← coe_toList s]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
s : Multiset α
| prod s
[PROOFSTEP]
rw [← coe_toList s]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
s : Multiset α
⊢ List.prod (toList s) = prod ↑(toList s)
[PROOFSTEP]
rw [coe_prod]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
s t : Multiset α
a : α
m : Multiset ι
f g : ι → α
inst✝ : DecidableEq α
h : a ∈ s
⊢ a * prod (erase s a) = prod s
[PROOFSTEP]
rw [← s.coe_toList, coe_erase, coe_prod, coe_prod, List.prod_erase (mem_toList.2 h)]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
s t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
inst✝ : DecidableEq ι
a : ι
h : a ∈ m
⊢ f a * prod (map f (erase m a)) = prod (map f m)
[PROOFSTEP]
rw [← m.coe_toList, coe_erase, coe_map, coe_map, coe_prod, coe_prod, List.prod_map_erase f (mem_toList.2 h)]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
a : α
⊢ prod {a} = a
[PROOFSTEP]
simp only [mul_one, prod_cons, ← cons_zero, eq_self_iff_true, prod_zero]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
a b : α
⊢ prod {a, b} = a * b
[PROOFSTEP]
rw [insert_eq_cons, prod_cons, prod_singleton]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t✝ : Multiset α
a : α
m : Multiset ι
f g : ι → α
s t : Multiset α
l₁ l₂ : List α
⊢ prod (Quotient.mk (List.isSetoid α) l₁ + Quotient.mk (List.isSetoid α) l₂) =
prod (Quotient.mk (List.isSetoid α) l₁) * prod (Quotient.mk (List.isSetoid α) l₂)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a : α
m✝ : Multiset ι
f g : ι → α
m : Multiset α
⊢ prod (0 • m) = prod m ^ 0
[PROOFSTEP]
rw [zero_nsmul, pow_zero]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a : α
m✝ : Multiset ι
f g : ι → α
m : Multiset α
⊢ prod 0 = 1
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a : α
m✝ : Multiset ι
f g : ι → α
m : Multiset α
n : ℕ
⊢ prod ((n + 1) • m) = prod m ^ (n + 1)
[PROOFSTEP]
rw [add_nsmul, one_nsmul, pow_add, pow_one, prod_add, prod_nsmul m n]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
n : ℕ
a : α
⊢ prod (replicate n a) = a ^ n
[PROOFSTEP]
simp [replicate, List.prod_replicate]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
s t : Multiset α
a : α
m : Multiset ι
f g : ι → α
inst✝ : DecidableEq ι
i : ι
hf : ∀ (i' : ι), i' ≠ i → i' ∈ m → f i' = 1
⊢ prod (map f m) = f i ^ count i m
[PROOFSTEP]
induction' m using Quotient.inductionOn with l
[GOAL]
case h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
s t : Multiset α
a : α
m : Multiset ι
f g : ι → α
inst✝ : DecidableEq ι
i : ι
hf✝ : ∀ (i' : ι), i' ≠ i → i' ∈ m → f i' = 1
l : List ι
hf : ∀ (i' : ι), i' ≠ i → i' ∈ Quotient.mk (List.isSetoid ι) l → f i' = 1
⊢ prod (map f (Quotient.mk (List.isSetoid ι) l)) = f i ^ count i (Quotient.mk (List.isSetoid ι) l)
[PROOFSTEP]
simp [List.prod_map_eq_pow_single i f hf]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
s t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
inst✝ : DecidableEq α
a : α
h : ∀ (a' : α), a' ≠ a → a' ∈ s → a' = 1
⊢ prod s = a ^ count a s
[PROOFSTEP]
induction' s using Quotient.inductionOn with l
[GOAL]
case h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
s t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
inst✝ : DecidableEq α
a : α
h✝ : ∀ (a' : α), a' ≠ a → a' ∈ s → a' = 1
l : List α
h : ∀ (a' : α), a' ≠ a → a' ∈ Quotient.mk (List.isSetoid α) l → a' = 1
⊢ prod (Quotient.mk (List.isSetoid α) l) = a ^ count a (Quotient.mk (List.isSetoid α) l)
[PROOFSTEP]
simp [List.prod_eq_pow_single a h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
s t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
inst✝ : DecidableEq α
a : α
⊢ a ^ count a s = prod (filter (Eq a) s)
[PROOFSTEP]
rw [filter_eq, prod_replicate]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝² : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f✝ g : ι → α
inst✝¹ : CommMonoid β
s : Multiset α
F : Type u_5
inst✝ : MonoidHomClass F α β
f : F
l : List α
⊢ prod (map (↑f) (Quotient.mk (List.isSetoid α) l)) = ↑f (prod (Quotient.mk (List.isSetoid α) l))
[PROOFSTEP]
simp only [l.prod_hom f, quot_mk_to_coe, coe_map, coe_prod]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝² : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f✝ g✝ : ι → α
inst✝¹ : CommMonoid β
s : Multiset ι
F : Type u_5
inst✝ : MonoidHomClass F α β
f : F
g : ι → α
⊢ prod (map (fun i => ↑f (g i)) s) = ↑f (prod (map g s))
[PROOFSTEP]
convert (s.map g).prod_hom f
[GOAL]
case h.e'_2.h.e'_3
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝² : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f✝ g✝ : ι → α
inst✝¹ : CommMonoid β
s : Multiset ι
F : Type u_5
inst✝ : MonoidHomClass F α β
f : F
g : ι → α
⊢ map (fun i => ↑f (g i)) s = map (↑f) (map g s)
[PROOFSTEP]
exact (map_map _ _ _).symm
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝² : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f✝ g : ι → α
inst✝¹ : CommMonoid β
inst✝ : CommMonoid γ
s : Multiset ι
f : α → β → γ
hf : ∀ (a b : α) (c d : β), f (a * b) (c * d) = f a c * f b d
hf' : f 1 1 = 1
f₁ : ι → α
f₂ : ι → β
l : List ι
⊢ prod (map (fun i => f (f₁ i) (f₂ i)) (Quotient.mk (List.isSetoid ι) l)) =
f (prod (map f₁ (Quotient.mk (List.isSetoid ι) l))) (prod (map f₂ (Quotient.mk (List.isSetoid ι) l)))
[PROOFSTEP]
simp only [l.prod_hom₂ f hf hf', quot_mk_to_coe, coe_map, coe_prod]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f✝ g✝ : ι → α
inst✝ : CommMonoid β
s : Multiset ι
r : α → β → Prop
f : ι → α
g : ι → β
h₁ : r 1 1
h₂ : ∀ ⦃a : ι⦄ ⦃b : α⦄ ⦃c : β⦄, r b c → r (f a * b) (g a * c)
l : List ι
⊢ r (prod (map f (Quotient.mk (List.isSetoid ι) l))) (prod (map g (Quotient.mk (List.isSetoid ι) l)))
[PROOFSTEP]
simp only [l.prod_hom_rel h₁ h₂, quot_mk_to_coe, coe_map, coe_prod]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a : α
m : Multiset ι
f g : ι → α
⊢ prod (map (fun x => 1) m) = 1
[PROOFSTEP]
rw [map_const', prod_replicate, one_pow]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
inst✝ : HasDistribNeg α
s : Multiset α
⊢ ∀ (a : List α),
prod (map Neg.neg (Quotient.mk (List.isSetoid α) a)) =
(-1) ^ ↑card (Quotient.mk (List.isSetoid α) a) * prod (Quotient.mk (List.isSetoid α) a)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a : α
m✝ : Multiset ι
f✝ g : ι → α
m : Multiset β
n : Multiset γ
f : β → γ → α
⊢ prod (map (fun a => prod (map (fun b => f a b) n)) 0) = prod (map (fun b => prod (map (fun a => f a b) 0)) n)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a✝ : α
m✝¹ : Multiset ι
f✝ g : ι → α
m✝ : Multiset β
n : Multiset γ
f : β → γ → α
a : β
m : Multiset β
ih : prod (map (fun a => prod (map (fun b => f a b) n)) m) = prod (map (fun b => prod (map (fun a => f a b) m)) n)
⊢ prod (map (fun a => prod (map (fun b => f a b) n)) (a ::ₘ m)) =
prod (map (fun b => prod (map (fun a => f a b) (a ::ₘ m))) n)
[PROOFSTEP]
simp [ih]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
p : α → Prop
s : Multiset α
p_mul : ∀ (a b : α), p a → p b → p (a * b)
p_one : p 1
p_s : ∀ (a : α), a ∈ s → p a
⊢ p (prod s)
[PROOFSTEP]
rw [prod_eq_foldr]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
p : α → Prop
s : Multiset α
p_mul : ∀ (a b : α), p a → p b → p (a * b)
p_one : p 1
p_s : ∀ (a : α), a ∈ s → p a
⊢ p (foldr (fun x x_1 => x * x_1) (_ : ∀ (x y z : α), x * (y * z) = y * (x * z)) 1 s)
[PROOFSTEP]
exact foldr_induction (· * ·) (fun x y z => by simp [mul_left_comm]) 1 p s p_mul p_one p_s
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a : α
m : Multiset ι
f g : ι → α
p : α → Prop
s : Multiset α
p_mul : ∀ (a b : α), p a → p b → p (a * b)
p_one : p 1
p_s : ∀ (a : α), a ∈ s → p a
x y z : α
⊢ (fun x x_1 => x * x_1) x ((fun x x_1 => x * x_1) y z) = (fun x x_1 => x * x_1) y ((fun x x_1 => x * x_1) x z)
[PROOFSTEP]
simp [mul_left_comm]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a : α
m : Multiset ι
f g : ι → α
p : α → Prop
p_mul : ∀ (a b : α), p a → p b → p (a * b)
hs : s ≠ ∅
p_s : ∀ (a : α), a ∈ s → p a
⊢ p (prod s)
[PROOFSTEP]
induction' s using Multiset.induction_on with a s hsa
[GOAL]
case empty
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a : α
m : Multiset ι
f g : ι → α
p : α → Prop
p_mul : ∀ (a b : α), p a → p b → p (a * b)
hs✝ : s ≠ ∅
p_s✝ : ∀ (a : α), a ∈ s → p a
hs : 0 ≠ ∅
p_s : ∀ (a : α), a ∈ 0 → p a
⊢ p (prod 0)
[PROOFSTEP]
simp at hs
[GOAL]
case cons
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
p : α → Prop
p_mul : ∀ (a b : α), p a → p b → p (a * b)
hs✝ : s✝ ≠ ∅
p_s✝ : ∀ (a : α), a ∈ s✝ → p a
a : α
s : Multiset α
hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s)
hs : a ::ₘ s ≠ ∅
p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
⊢ p (prod (a ::ₘ s))
[PROOFSTEP]
rw [prod_cons]
[GOAL]
case cons
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
p : α → Prop
p_mul : ∀ (a b : α), p a → p b → p (a * b)
hs✝ : s✝ ≠ ∅
p_s✝ : ∀ (a : α), a ∈ s✝ → p a
a : α
s : Multiset α
hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s)
hs : a ::ₘ s ≠ ∅
p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
⊢ p (a * prod s)
[PROOFSTEP]
by_cases hs_empty : s = ∅
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
p : α → Prop
p_mul : ∀ (a b : α), p a → p b → p (a * b)
hs✝ : s✝ ≠ ∅
p_s✝ : ∀ (a : α), a ∈ s✝ → p a
a : α
s : Multiset α
hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s)
hs : a ::ₘ s ≠ ∅
p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hs_empty : s = ∅
⊢ p (a * prod s)
[PROOFSTEP]
simp [hs_empty, p_s a]
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
p : α → Prop
p_mul : ∀ (a b : α), p a → p b → p (a * b)
hs✝ : s✝ ≠ ∅
p_s✝ : ∀ (a : α), a ∈ s✝ → p a
a : α
s : Multiset α
hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s)
hs : a ::ₘ s ≠ ∅
p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hs_empty : ¬s = ∅
⊢ p (a * prod s)
[PROOFSTEP]
have hps : ∀ x, x ∈ s → p x := fun x hxs => p_s x (mem_cons_of_mem hxs)
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s✝ t : Multiset α
a✝ : α
m : Multiset ι
f g : ι → α
p : α → Prop
p_mul : ∀ (a b : α), p a → p b → p (a * b)
hs✝ : s✝ ≠ ∅
p_s✝ : ∀ (a : α), a ∈ s✝ → p a
a : α
s : Multiset α
hsa : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → p (prod s)
hs : a ::ₘ s ≠ ∅
p_s : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hs_empty : ¬s = ∅
hps : ∀ (x : α), x ∈ s → p x
⊢ p (a * prod s)
[PROOFSTEP]
exact p_mul a s.prod (p_s a (mem_cons_self a s)) (hsa hs_empty hps)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s t : Multiset α
a : α
m : Multiset ι
f g : ι → α
h : s ≤ t
⊢ prod s ∣ prod t
[PROOFSTEP]
obtain ⟨z, rfl⟩ := exists_add_of_le h
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
s : Multiset α
a : α
m : Multiset ι
f g : ι → α
z : Multiset α
h : s ≤ s + z
⊢ prod s ∣ prod (s + z)
[PROOFSTEP]
simp only [prod_add, dvd_mul_right]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid β
S : Multiset α
g1 g2 : α → β
h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a
⊢ prod (map g1 S) ∣ prod (map g2 S)
[PROOFSTEP]
apply Multiset.induction_on' S
[GOAL]
case h₁
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid β
S : Multiset α
g1 g2 : α → β
h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a
⊢ prod (map g1 0) ∣ prod (map g2 0)
[PROOFSTEP]
simp
[GOAL]
case h₂
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid β
S : Multiset α
g1 g2 : α → β
h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a
⊢ ∀ {a : α} {s : Multiset α},
a ∈ S → s ⊆ S → prod (map g1 s) ∣ prod (map g2 s) → prod (map g1 (insert a s)) ∣ prod (map g2 (insert a s))
[PROOFSTEP]
intro a T haS _ IH
[GOAL]
case h₂
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid β
S : Multiset α
g1 g2 : α → β
h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a
a : α
T : Multiset α
haS : a ∈ S
a✝ : T ⊆ S
IH : prod (map g1 T) ∣ prod (map g2 T)
⊢ prod (map g1 (insert a T)) ∣ prod (map g2 (insert a T))
[PROOFSTEP]
simp [mul_dvd_mul (h a haS) IH]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoidWithZero α
s : Multiset α
h : 0 ∈ s
⊢ prod s = 0
[PROOFSTEP]
rcases Multiset.exists_cons_of_mem h with ⟨s', hs'⟩
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoidWithZero α
s : Multiset α
h : 0 ∈ s
s' : Multiset α
hs' : s = 0 ::ₘ s'
⊢ prod s = 0
[PROOFSTEP]
simp [hs', Multiset.prod_cons]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝² : CommMonoidWithZero α
inst✝¹ : NoZeroDivisors α
inst✝ : Nontrivial α
s : Multiset α
l : List α
⊢ prod (Quotient.mk (List.isSetoid α) l) = 0 ↔ 0 ∈ Quotient.mk (List.isSetoid α) l
[PROOFSTEP]
rw [quot_mk_to_coe, coe_prod]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝² : CommMonoidWithZero α
inst✝¹ : NoZeroDivisors α
inst✝ : Nontrivial α
s : Multiset α
l : List α
⊢ List.prod l = 0 ↔ 0 ∈ ↑l
[PROOFSTEP]
exact List.prod_eq_zero_iff
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : DivisionCommMonoid α
m : Multiset ι
f g : ι → α
⊢ prod (map (fun i => (f i)⁻¹) m) = (prod (map f m))⁻¹
[PROOFSTEP]
simp_rw [← (m.map f).prod_map_inv', map_map, Function.comp_apply]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : DivisionCommMonoid α
m : Multiset ι
f g : ι → α
n : ℤ
⊢ prod (map (fun i => f i ^ n) m) = prod (map f m) ^ n
[PROOFSTEP]
convert (m.map f).prod_hom (zpowGroupHom n : α →* α)
[GOAL]
case h.e'_2.h.e'_3
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : DivisionCommMonoid α
m : Multiset ι
f g : ι → α
n : ℤ
⊢ map (fun i => f i ^ n) m = map (↑(zpowGroupHom n)) (map f m)
[PROOFSTEP]
simp only [map_map, Function.comp_apply, zpowGroupHom_apply]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : NonUnitalNonAssocSemiring α
a : α
s : Multiset ι
f : ι → α
⊢ sum (map (fun i => a * f i) 0) = a * sum (map f 0)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : NonUnitalNonAssocSemiring α
a : α
s✝ : Multiset ι
f : ι → α
i : ι
s : Multiset ι
ih : sum (map (fun i => a * f i) s) = a * sum (map f s)
⊢ sum (map (fun i => a * f i) (i ::ₘ s)) = a * sum (map f (i ::ₘ s))
[PROOFSTEP]
simp [ih, mul_add]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : NonUnitalNonAssocSemiring α
a : α
s : Multiset ι
f : ι → α
⊢ sum (map (fun i => f i * a) 0) = sum (map f 0) * a
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : NonUnitalNonAssocSemiring α
a✝ : α
s✝ : Multiset ι
f : ι → α
a : ι
s : Multiset ι
ih : sum (map (fun i => f i * a✝) s) = sum (map f s) * a✝
⊢ sum (map (fun i => f i * a✝) (a ::ₘ s)) = sum (map f (a ::ₘ s)) * a✝
[PROOFSTEP]
simp [ih, add_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : Semiring α
a : α
s✝ : Multiset α
x : α
s : Multiset α
ih : (∀ (x : α), x ∈ s → a ∣ x) → a ∣ sum s
h : ∀ (x_1 : α), x_1 ∈ x ::ₘ s → a ∣ x_1
⊢ a ∣ sum (x ::ₘ s)
[PROOFSTEP]
rw [sum_cons]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : Semiring α
a : α
s✝ : Multiset α
x : α
s : Multiset α
ih : (∀ (x : α), x ∈ s → a ∣ x) → a ∣ sum s
h : ∀ (x_1 : α), x_1 ∈ x ::ₘ s → a ∣ x_1
⊢ a ∣ x + sum s
[PROOFSTEP]
exact dvd_add (h _ (mem_cons_self _ _)) (ih fun y hy => h _ <| mem_cons.2 <| Or.inr hy)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a : α
l : List α
hl : ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) l → 1 ≤ x
⊢ 1 ≤ prod (Quotient.mk (List.isSetoid α) l)
[PROOFSTEP]
simpa using List.one_le_prod_of_one_le hl
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a : α
l : List α
hl : ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) l → 1 ≤ x
x : α
hx : x ∈ Quotient.mk (List.isSetoid α) l
⊢ x ≤ prod (Quotient.mk (List.isSetoid α) l)
[PROOFSTEP]
simpa using List.single_le_prod hl x hx
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s✝ t : Multiset α
a : α
s : Multiset α
n : α
h : ∀ (x : α), x ∈ s → x ≤ n
⊢ prod s ≤ n ^ ↑card s
[PROOFSTEP]
induction s using Quotient.inductionOn
[GOAL]
case h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a n : α
a✝ : List α
h : ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) a✝ → x ≤ n
⊢ prod (Quotient.mk (List.isSetoid α) a✝) ≤ n ^ ↑card (Quotient.mk (List.isSetoid α) a✝)
[PROOFSTEP]
simpa using List.prod_le_pow_card _ _ h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a : α
⊢ ∀ (a : List α),
(∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) a → 1 ≤ x) →
prod (Quotient.mk (List.isSetoid α) a) = 1 → ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) a → x = 1
[PROOFSTEP]
simp only [quot_mk_to_coe, coe_prod, mem_coe]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a : α
⊢ ∀ (a : List α), (∀ (x : α), x ∈ a → 1 ≤ x) → List.prod a = 1 → ∀ (x : α), x ∈ a → x = 1
[PROOFSTEP]
exact fun l => List.all_one_of_le_one_le_of_prod_eq_one
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a : α
h : Rel (fun x x_1 => x ≤ x_1) s t
⊢ prod s ≤ prod t
[PROOFSTEP]
induction' h with _ _ _ _ rh _ rt
[GOAL]
case zero
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a : α
⊢ prod 0 ≤ prod 0
[PROOFSTEP]
rfl
[GOAL]
case cons
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a a✝¹ b✝ : α
as✝ bs✝ : Multiset α
rh : a✝¹ ≤ b✝
a✝ : Rel (fun x x_1 => x ≤ x_1) as✝ bs✝
rt : prod as✝ ≤ prod bs✝
⊢ prod (a✝¹ ::ₘ as✝) ≤ prod (b✝ ::ₘ bs✝)
[PROOFSTEP]
rw [prod_cons, prod_cons]
[GOAL]
case cons
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a a✝¹ b✝ : α
as✝ bs✝ : Multiset α
rh : a✝¹ ≤ b✝
a✝ : Rel (fun x x_1 => x ≤ x_1) as✝ bs✝
rt : prod as✝ ≤ prod bs✝
⊢ a✝¹ * prod as✝ ≤ b✝ * prod bs✝
[PROOFSTEP]
exact mul_le_mul' rh rt
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a : α
h : ∀ (x : α), x ∈ s → a ≤ x
⊢ a ^ ↑card s ≤ prod s
[PROOFSTEP]
rw [← Multiset.prod_replicate, ← Multiset.map_const]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommMonoid α
s t : Multiset α
a : α
h : ∀ (x : α), x ∈ s → a ≤ x
⊢ prod (map (Function.const α a) s) ≤ prod s
[PROOFSTEP]
exact prod_map_le_prod _ h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommSemiring α
m : Multiset α
h : ∀ (a : α), a ∈ m → 0 ≤ a
⊢ 0 ≤ prod m
[PROOFSTEP]
revert h
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommSemiring α
m : Multiset α
⊢ (∀ (a : α), a ∈ m → 0 ≤ a) → 0 ≤ prod m
[PROOFSTEP]
refine' m.induction_on _ _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommSemiring α
m : Multiset α
⊢ (∀ (a : α), a ∈ 0 → 0 ≤ a) → 0 ≤ prod 0
[PROOFSTEP]
rintro -
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommSemiring α
m : Multiset α
⊢ 0 ≤ prod 0
[PROOFSTEP]
rw [prod_zero]
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommSemiring α
m : Multiset α
⊢ 0 ≤ 1
[PROOFSTEP]
exact zero_le_one
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommSemiring α
m : Multiset α
⊢ ∀ ⦃a : α⦄ {s : Multiset α},
((∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s) → (∀ (a_2 : α), a_2 ∈ a ::ₘ s → 0 ≤ a_2) → 0 ≤ prod (a ::ₘ s)
[PROOFSTEP]
intro a s hs ih
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommSemiring α
m : Multiset α
a : α
s : Multiset α
hs : (∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s
ih : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → 0 ≤ a_1
⊢ 0 ≤ prod (a ::ₘ s)
[PROOFSTEP]
rw [prod_cons]
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : OrderedCommSemiring α
m : Multiset α
a : α
s : Multiset α
hs : (∀ (a : α), a ∈ s → 0 ≤ a) → 0 ≤ prod s
ih : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → 0 ≤ a_1
⊢ 0 ≤ a * prod s
[PROOFSTEP]
exact mul_nonneg (ih _ <| mem_cons_self _ _) (hs fun a ha => ih _ <| mem_cons_of_mem ha)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
m : Multiset α
h : ∀ (x : α), x ∈ m → x = 1
⊢ prod m = 1
[PROOFSTEP]
induction' m using Quotient.inductionOn with l
[GOAL]
case h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CommMonoid α
m : Multiset α
h✝ : ∀ (x : α), x ∈ m → x = 1
l : List α
h : ∀ (x : α), x ∈ Quotient.mk (List.isSetoid α) l → x = 1
⊢ prod (Quotient.mk (List.isSetoid α) l) = 1
[PROOFSTEP]
simp [List.prod_eq_one h]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CanonicallyOrderedMonoid α
m : Multiset α
a : α
h : a ∈ m
⊢ a ≤ prod m
[PROOFSTEP]
obtain ⟨m', rfl⟩ := exists_cons_of_mem h
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CanonicallyOrderedMonoid α
a : α
m' : Multiset α
h : a ∈ a ::ₘ m'
⊢ a ≤ prod (a ::ₘ m')
[PROOFSTEP]
rw [prod_cons]
[GOAL]
case intro
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝ : CanonicallyOrderedMonoid α
a : α
m' : Multiset α
h : a ∈ a ::ₘ m'
⊢ a ≤ a * prod m'
[PROOFSTEP]
exact _root_.le_mul_right (le_refl a)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_one : f 1 = 1
hp_one : p 1
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
s : Multiset α
hps : ∀ (a : α), a ∈ s → p a
⊢ f (prod s) ≤ prod (map f s)
[PROOFSTEP]
revert s
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_one : f 1 = 1
hp_one : p 1
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
⊢ ∀ (s : Multiset α), (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
[PROOFSTEP]
refine' Multiset.induction _ _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_one : f 1 = 1
hp_one : p 1
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
⊢ (∀ (a : α), a ∈ 0 → p a) → f (prod 0) ≤ prod (map f 0)
[PROOFSTEP]
simp [le_of_eq h_one]
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_one : f 1 = 1
hp_one : p 1
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
⊢ ∀ ⦃a : α⦄ {s : Multiset α},
((∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)) →
(∀ (a_2 : α), a_2 ∈ a ::ₘ s → p a_2) → f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s))
[PROOFSTEP]
intro a s hs hpsa
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_one : f 1 = 1
hp_one : p 1
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hpsa : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
⊢ f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s))
[PROOFSTEP]
have hps : ∀ x, x ∈ s → p x := fun x hx => hpsa x (mem_cons_of_mem hx)
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_one : f 1 = 1
hp_one : p 1
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hpsa : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hps : ∀ (x : α), x ∈ s → p x
⊢ f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s))
[PROOFSTEP]
have hp_prod : p s.prod := prod_induction p s hp_mul hp_one hps
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_one : f 1 = 1
hp_one : p 1
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hpsa : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hps : ∀ (x : α), x ∈ s → p x
hp_prod : p (prod s)
⊢ f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s))
[PROOFSTEP]
rw [prod_cons, map_cons, prod_cons]
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_one : f 1 = 1
hp_one : p 1
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hpsa : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hps : ∀ (x : α), x ∈ s → p x
hp_prod : p (prod s)
⊢ f (a * prod s) ≤ f a * prod (map f s)
[PROOFSTEP]
exact (h_mul a s.prod (hpsa a (mem_cons_self a s)) hp_prod).trans (mul_le_mul_left' (hs hps) _)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
h_one : f 1 = 1
h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b
s : Multiset α
⊢ ∀ (a b : α), (fun x => True) a → (fun x => True) b → (fun x => True) (a * b)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
h_one : f 1 = 1
h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b
s : Multiset α
⊢ ∀ (a : α), a ∈ s → (fun x => True) a
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
s : Multiset α
hs_nonempty : s ≠ ∅
hs : ∀ (a : α), a ∈ s → p a
⊢ f (prod s) ≤ prod (map f s)
[PROOFSTEP]
revert s
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
⊢ ∀ (s : Multiset α), s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
[PROOFSTEP]
refine' Multiset.induction _ _
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
⊢ 0 ≠ ∅ → (∀ (a : α), a ∈ 0 → p a) → f (prod 0) ≤ prod (map f 0)
[PROOFSTEP]
intro h
[GOAL]
case refine'_1
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
h : 0 ≠ ∅
⊢ (∀ (a : α), a ∈ 0 → p a) → f (prod 0) ≤ prod (map f 0)
[PROOFSTEP]
exfalso
[GOAL]
case refine'_1.h
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
h : 0 ≠ ∅
⊢ False
[PROOFSTEP]
exact h rfl
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
⊢ ∀ ⦃a : α⦄ {s : Multiset α},
(s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)) →
a ::ₘ s ≠ ∅ → (∀ (a_2 : α), a_2 ∈ a ::ₘ s → p a_2) → f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s))
[PROOFSTEP]
rintro a s hs - hsa_prop
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
⊢ f (prod (a ::ₘ s)) ≤ prod (map f (a ::ₘ s))
[PROOFSTEP]
rw [prod_cons, map_cons, prod_cons]
[GOAL]
case refine'_2
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
⊢ f (a * prod s) ≤ f a * prod (map f s)
[PROOFSTEP]
by_cases hs_empty : s = ∅
[GOAL]
case pos
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hs_empty : s = ∅
⊢ f (a * prod s) ≤ f a * prod (map f s)
[PROOFSTEP]
simp [hs_empty]
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hs_empty : ¬s = ∅
⊢ f (a * prod s) ≤ f a * prod (map f s)
[PROOFSTEP]
have hsa_restrict : ∀ x, x ∈ s → p x := fun x hx => hsa_prop x (mem_cons_of_mem hx)
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hs_empty : ¬s = ∅
hsa_restrict : ∀ (x : α), x ∈ s → p x
⊢ f (a * prod s) ≤ f a * prod (map f s)
[PROOFSTEP]
have hp_sup : p s.prod := prod_induction_nonempty p hp_mul hs_empty hsa_restrict
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hs_empty : ¬s = ∅
hsa_restrict : ∀ (x : α), x ∈ s → p x
hp_sup : p (prod s)
⊢ f (a * prod s) ≤ f a * prod (map f s)
[PROOFSTEP]
have hp_a : p a := hsa_prop a (mem_cons_self a s)
[GOAL]
case neg
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
p : α → Prop
h_mul : ∀ (a b : α), p a → p b → f (a * b) ≤ f a * f b
hp_mul : ∀ (a b : α), p a → p b → p (a * b)
a : α
s : Multiset α
hs : s ≠ ∅ → (∀ (a : α), a ∈ s → p a) → f (prod s) ≤ prod (map f s)
hsa_prop : ∀ (a_1 : α), a_1 ∈ a ::ₘ s → p a_1
hs_empty : ¬s = ∅
hsa_restrict : ∀ (x : α), x ∈ s → p x
hp_sup : p (prod s)
hp_a : p a
⊢ f (a * prod s) ≤ f a * prod (map f s)
[PROOFSTEP]
exact (h_mul a _ hp_a hp_sup).trans (mul_le_mul_left' (hs hs_empty hsa_restrict) _)
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b
s : Multiset α
hs_nonempty : s ≠ ∅
⊢ ∀ (a b : α), (fun x => True) a → (fun x => True) b → f (a * b) ≤ f a * f b
[PROOFSTEP]
simp [h_mul]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b
s : Multiset α
hs_nonempty : s ≠ ∅
⊢ ∀ (a b : α), (fun x => True) a → (fun x => True) b → (fun x => True) (a * b)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
inst✝¹ : CommMonoid α
inst✝ : OrderedCommMonoid β
f : α → β
h_mul : ∀ (a b : α), f (a * b) ≤ f a * f b
s : Multiset α
hs_nonempty : s ≠ ∅
⊢ ∀ (a : α), a ∈ s → (fun x => True) a
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
s : Multiset α
⊢ sum (map (fun a => {a}) 0) = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
s : Multiset α
⊢ ∀ ⦃a : α⦄ {s : Multiset α}, sum (map (fun a => {a}) s) = s → sum (map (fun a => {a}) (a ::ₘ s)) = a ::ₘ s
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
s : Multiset ℕ
n : ℕ
⊢ sum s % n = sum (map (fun x => x % n) s) % n
[PROOFSTEP]
induction s using Multiset.induction
[GOAL]
case empty
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
n : ℕ
⊢ sum 0 % n = sum (map (fun x => x % n) 0) % n
[PROOFSTEP]
simp [Nat.add_mod, *]
[GOAL]
case cons
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
n a✝¹ : ℕ
s✝ : Multiset ℕ
a✝ : sum s✝ % n = sum (map (fun x => x % n) s✝) % n
⊢ sum (a✝¹ ::ₘ s✝) % n = sum (map (fun x => x % n) (a✝¹ ::ₘ s✝)) % n
[PROOFSTEP]
simp [Nat.add_mod, *]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
s : Multiset ℕ
n : ℕ
⊢ prod s % n = prod (map (fun x => x % n) s) % n
[PROOFSTEP]
induction s using Multiset.induction
[GOAL]
case empty
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
n : ℕ
⊢ prod 0 % n = prod (map (fun x => x % n) 0) % n
[PROOFSTEP]
simp [Nat.mul_mod, *]
[GOAL]
case cons
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
n a✝¹ : ℕ
s✝ : Multiset ℕ
a✝ : prod s✝ % n = prod (map (fun x => x % n) s✝) % n
⊢ prod (a✝¹ ::ₘ s✝) % n = prod (map (fun x => x % n) (a✝¹ ::ₘ s✝)) % n
[PROOFSTEP]
simp [Nat.mul_mod, *]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
s : Multiset ℤ
n : ℤ
⊢ sum s % n = sum (map (fun x => x % n) s) % n
[PROOFSTEP]
induction s using Multiset.induction
[GOAL]
case empty
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
n : ℤ
⊢ sum 0 % n = sum (map (fun x => x % n) 0) % n
[PROOFSTEP]
simp [Int.add_emod, *]
[GOAL]
case cons
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
n a✝¹ : ℤ
s✝ : Multiset ℤ
a✝ : sum s✝ % n = sum (map (fun x => x % n) s✝) % n
⊢ sum (a✝¹ ::ₘ s✝) % n = sum (map (fun x => x % n) (a✝¹ ::ₘ s✝)) % n
[PROOFSTEP]
simp [Int.add_emod, *]
[GOAL]
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
s : Multiset ℤ
n : ℤ
⊢ prod s % n = prod (map (fun x => x % n) s) % n
[PROOFSTEP]
induction s using Multiset.induction
[GOAL]
case empty
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
n : ℤ
⊢ prod 0 % n = prod (map (fun x => x % n) 0) % n
[PROOFSTEP]
simp [Int.mul_emod, *]
[GOAL]
case cons
ι : Type u_1
α : Type u_2
β : Type u_3
γ : Type u_4
n a✝¹ : ℤ
s✝ : Multiset ℤ
a✝ : prod s✝ % n = prod (map (fun x => x % n) s✝) % n
⊢ prod (a✝¹ ::ₘ s✝) % n = prod (map (fun x => x % n) (a✝¹ ::ₘ s✝)) % n
[PROOFSTEP]
simp [Int.mul_emod, *]
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Multiset.Basic", "llama_tokens": 21093} |
[GOAL]
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝ : CommMonoid β
x : β
f : α → ℕ
⊢ ∀ {s : Finset α}, ∏ i in s, x ^ f i = x ^ ∑ x in s, f x
[PROOFSTEP]
apply Finset.induction
[GOAL]
case empty
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝ : CommMonoid β
x : β
f : α → ℕ
⊢ ∏ i in ∅, x ^ f i = x ^ ∑ x in ∅, f x
[PROOFSTEP]
simp
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝ : CommMonoid β
x : β
f : α → ℕ
⊢ ∀ ⦃a : α⦄ {s : Finset α},
¬a ∈ s → ∏ i in s, x ^ f i = x ^ ∑ x in s, f x → ∏ i in insert a s, x ^ f i = x ^ ∑ x in insert a s, f x
[PROOFSTEP]
intro a s has H
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g : α → β
inst✝ : CommMonoid β
x : β
f : α → ℕ
a : α
s : Finset α
has : ¬a ∈ s
H : ∏ i in s, x ^ f i = x ^ ∑ x in s, f x
⊢ ∏ i in insert a s, x ^ f i = x ^ ∑ x in insert a s, f x
[PROOFSTEP]
rw [Finset.prod_insert has, Finset.sum_insert has, pow_add, H]
[GOAL]
α : Type u
β : Type v
γ : Type w
s s₁✝ s₂✝ : Finset α
a : α
b : β
f g : α → β
inst✝ : NonUnitalNonAssocSemiring β
ι₁ : Type u_1
ι₂ : Type u_2
s₁ : Finset ι₁
s₂ : Finset ι₂
f₁ : ι₁ → β
f₂ : ι₂ → β
⊢ (∑ x₁ in s₁, f₁ x₁) * ∑ x₂ in s₂, f₂ x₂ = ∑ p in s₁ ×ˢ s₂, f₁ p.fst * f₂ p.snd
[PROOFSTEP]
rw [sum_product, sum_mul, sum_congr rfl]
[GOAL]
α : Type u
β : Type v
γ : Type w
s s₁✝ s₂✝ : Finset α
a : α
b : β
f g : α → β
inst✝ : NonUnitalNonAssocSemiring β
ι₁ : Type u_1
ι₂ : Type u_2
s₁ : Finset ι₁
s₂ : Finset ι₂
f₁ : ι₁ → β
f₂ : ι₂ → β
⊢ ∀ (x : ι₁), x ∈ s₁ → f₁ x * ∑ x₂ in s₂, f₂ x₂ = ∑ y in s₂, f₁ (x, y).fst * f₂ (x, y).snd
[PROOFSTEP]
intros
[GOAL]
α : Type u
β : Type v
γ : Type w
s s₁✝ s₂✝ : Finset α
a : α
b : β
f g : α → β
inst✝ : NonUnitalNonAssocSemiring β
ι₁ : Type u_1
ι₂ : Type u_2
s₁ : Finset ι₁
s₂ : Finset ι₂
f₁ : ι₁ → β
f₂ : ι₂ → β
x✝ : ι₁
a✝ : x✝ ∈ s₁
⊢ f₁ x✝ * ∑ x₂ in s₂, f₂ x₂ = ∑ y in s₂, f₁ (x✝, y).fst * f₂ (x✝, y).snd
[PROOFSTEP]
rw [mul_sum]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g : α → β
inst✝¹ : NonAssocSemiring β
inst✝ : DecidableEq α
s : Finset α
f : α → β
a : α
⊢ (∑ x in s, f x * if a = x then 1 else 0) = if a ∈ s then f a else 0
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g : α → β
inst✝¹ : NonAssocSemiring β
inst✝ : DecidableEq α
s : Finset α
f : α → β
a : α
⊢ ∑ x in s, (if a = x then 1 else 0) * f x = if a ∈ s then f a else 0
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b✝ : β
f✝ g : α → β
inst✝ : DivisionSemiring β
s : Finset α
f : α → β
b : β
⊢ (∑ x in s, f x) / b = ∑ x in s, f x / b
[PROOFSTEP]
simp only [div_eq_mul_inv, sum_mul]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
s : Finset α
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
⊢ ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
[PROOFSTEP]
induction' s using Finset.induction with a s ha ih
[GOAL]
case empty
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
⊢ ∏ a in ∅, ∑ b in t a, f a b = ∑ p in pi ∅ t, ∏ x in attach ∅, f (↑x) (p ↑x (_ : ↑x ∈ ∅))
[PROOFSTEP]
rw [pi_empty, sum_singleton]
[GOAL]
case empty
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
⊢ ∏ a in ∅, ∑ b in t a, f a b = ∏ x in attach ∅, f (↑x) (Pi.empty (fun a => δ a) ↑x (_ : ↑x ∈ ∅))
[PROOFSTEP]
rfl
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
⊢ ∏ a in insert a s, ∑ b in t a, f a b =
∑ p in pi (insert a s) t, ∏ x in attach (insert a s), f (↑x) (p ↑x (_ : ↑x ∈ insert a s))
[PROOFSTEP]
have h₁ : ∀ x ∈ t a, ∀ y ∈ t a, x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t)) :=
by
intro x _ y _ h
simp only [disjoint_iff_ne, mem_image]
rintro _ ⟨p₂, _, eq₂⟩ _ ⟨p₃, _, eq₃⟩ eq
have : Pi.cons s a x p₂ a (mem_insert_self _ _) = Pi.cons s a y p₃ a (mem_insert_self _ _) := by rw [eq₂, eq₃, eq]
rw [Pi.cons_same, Pi.cons_same] at this
exact h this
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
⊢ ∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
[PROOFSTEP]
intro x _ y _ h
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝² : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
x : δ a
a✝¹ : x ∈ t a
y : δ a
a✝ : y ∈ t a
h : x ≠ y
⊢ Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
[PROOFSTEP]
simp only [disjoint_iff_ne, mem_image]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝² : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
x : δ a
a✝¹ : x ∈ t a
y : δ a
a✝ : y ∈ t a
h : x ≠ y
⊢ ∀ (a_1 : (a' : α) → a' ∈ insert a s → δ a'),
(∃ a_2, a_2 ∈ pi s t ∧ Pi.cons s a x a_2 = a_1) →
∀ (b : (a' : α) → a' ∈ insert a s → δ a'), (∃ a_3, a_3 ∈ pi s t ∧ Pi.cons s a y a_3 = b) → a_1 ≠ b
[PROOFSTEP]
rintro _ ⟨p₂, _, eq₂⟩ _ ⟨p₃, _, eq₃⟩ eq
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝³ : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
x : δ a
a✝² : x ∈ t a
y : δ a
a✝¹ : y ∈ t a
h : x ≠ y
a✝ : (a' : α) → a' ∈ insert a s → δ a'
p₂ : (a : α) → a ∈ s → δ a
left✝¹ : p₂ ∈ pi s t
eq₂ : Pi.cons s a x p₂ = a✝
b✝ : (a' : α) → a' ∈ insert a s → δ a'
p₃ : (a : α) → a ∈ s → δ a
left✝ : p₃ ∈ pi s t
eq₃ : Pi.cons s a y p₃ = b✝
eq : a✝ = b✝
⊢ False
[PROOFSTEP]
have : Pi.cons s a x p₂ a (mem_insert_self _ _) = Pi.cons s a y p₃ a (mem_insert_self _ _) := by rw [eq₂, eq₃, eq]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝³ : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
x : δ a
a✝² : x ∈ t a
y : δ a
a✝¹ : y ∈ t a
h : x ≠ y
a✝ : (a' : α) → a' ∈ insert a s → δ a'
p₂ : (a : α) → a ∈ s → δ a
left✝¹ : p₂ ∈ pi s t
eq₂ : Pi.cons s a x p₂ = a✝
b✝ : (a' : α) → a' ∈ insert a s → δ a'
p₃ : (a : α) → a ∈ s → δ a
left✝ : p₃ ∈ pi s t
eq₃ : Pi.cons s a y p₃ = b✝
eq : a✝ = b✝
⊢ Pi.cons s a x p₂ a (_ : a ∈ insert a s) = Pi.cons s a y p₃ a (_ : a ∈ insert a s)
[PROOFSTEP]
rw [eq₂, eq₃, eq]
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝³ : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
x : δ a
a✝² : x ∈ t a
y : δ a
a✝¹ : y ∈ t a
h : x ≠ y
a✝ : (a' : α) → a' ∈ insert a s → δ a'
p₂ : (a : α) → a ∈ s → δ a
left✝¹ : p₂ ∈ pi s t
eq₂ : Pi.cons s a x p₂ = a✝
b✝ : (a' : α) → a' ∈ insert a s → δ a'
p₃ : (a : α) → a ∈ s → δ a
left✝ : p₃ ∈ pi s t
eq₃ : Pi.cons s a y p₃ = b✝
eq : a✝ = b✝
this : Pi.cons s a x p₂ a (_ : a ∈ insert a s) = Pi.cons s a y p₃ a (_ : a ∈ insert a s)
⊢ False
[PROOFSTEP]
rw [Pi.cons_same, Pi.cons_same] at this
[GOAL]
case intro.intro.intro.intro
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝³ : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
x : δ a
a✝² : x ∈ t a
y : δ a
a✝¹ : y ∈ t a
h : x ≠ y
a✝ : (a' : α) → a' ∈ insert a s → δ a'
p₂ : (a : α) → a ∈ s → δ a
left✝¹ : p₂ ∈ pi s t
eq₂ : Pi.cons s a x p₂ = a✝
b✝ : (a' : α) → a' ∈ insert a s → δ a'
p₃ : (a : α) → a ∈ s → δ a
left✝ : p₃ ∈ pi s t
eq₃ : Pi.cons s a y p₃ = b✝
eq : a✝ = b✝
this : x = y
⊢ False
[PROOFSTEP]
exact h this
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
⊢ ∏ a in insert a s, ∑ b in t a, f a b =
∑ p in pi (insert a s) t, ∏ x in attach (insert a s), f (↑x) (p ↑x (_ : ↑x ∈ insert a s))
[PROOFSTEP]
rw [prod_insert ha, pi_insert ha, ih, sum_mul, sum_biUnion h₁]
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
⊢ ∑ x in t a, f a x * ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) =
∑ x in t a, ∑ i in image (Pi.cons s a x) (pi s t), ∏ x in attach (insert a s), f (↑x) (i ↑x (_ : ↑x ∈ insert a s))
[PROOFSTEP]
refine' sum_congr rfl fun b _ => _
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝ : b ∈ t a
⊢ f a b * ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) =
∑ i in image (Pi.cons s a b) (pi s t), ∏ x in attach (insert a s), f (↑x) (i ↑x (_ : ↑x ∈ insert a s))
[PROOFSTEP]
have h₂ : ∀ p₁ ∈ pi s t, ∀ p₂ ∈ pi s t, Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂ := fun p₁ _ p₂ _ eq =>
Pi.cons_injective ha eq
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
⊢ f a b * ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s)) =
∑ i in image (Pi.cons s a b) (pi s t), ∏ x in attach (insert a s), f (↑x) (i ↑x (_ : ↑x ∈ insert a s))
[PROOFSTEP]
rw [sum_image h₂, mul_sum]
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
⊢ ∑ x in pi s t, f a b * ∏ x_1 in attach s, f (↑x_1) (x ↑x_1 (_ : ↑x_1 ∈ s)) =
∑ x in pi s t, ∏ x_1 in attach (insert a s), f (↑x_1) (Pi.cons s a b x ↑x_1 (_ : ↑x_1 ∈ insert a s))
[PROOFSTEP]
refine' sum_congr rfl fun g _ => _
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝¹ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
g : (a : α) → a ∈ s → δ a
x✝ : g ∈ pi s t
⊢ f a b * ∏ x in attach s, f (↑x) (g ↑x (_ : ↑x ∈ s)) =
∏ x in attach (insert a s), f (↑x) (Pi.cons s a b g ↑x (_ : ↑x ∈ insert a s))
[PROOFSTEP]
rw [attach_insert, prod_insert, prod_image]
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝¹ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
g : (a : α) → a ∈ s → δ a
x✝ : g ∈ pi s t
⊢ f a b * ∏ x in attach s, f (↑x) (g ↑x (_ : ↑x ∈ s)) =
f (↑{ val := a, property := (_ : a ∈ insert a s) })
(Pi.cons s a b g ↑{ val := a, property := (_ : a ∈ insert a s) }
(_ : ↑{ val := a, property := (_ : a ∈ insert a s) } ∈ insert a s)) *
∏ x in attach s,
f (↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) })
(Pi.cons s a b g ↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) }
(_ : ↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) } ∈ insert a s))
[PROOFSTEP]
simp only [Pi.cons_same]
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝¹ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
g : (a : α) → a ∈ s → δ a
x✝ : g ∈ pi s t
⊢ f a b * ∏ x in attach s, f (↑x) (g ↑x (_ : ↑x ∈ s)) =
f a b *
∏ x in attach s,
f (↑x)
(Pi.cons s a b g ↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) }
(_ : ↑{ val := ↑x, property := (_ : ↑x ∈ insert a s) } ∈ insert a s))
[PROOFSTEP]
congr with ⟨v, hv⟩
[GOAL]
case insert.e_a.e_f.h.mk
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝¹ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
g : (a : α) → a ∈ s → δ a
x✝ : g ∈ pi s t
v : α
hv : v ∈ s
⊢ f (↑{ val := v, property := hv }) (g ↑{ val := v, property := hv } (_ : ↑{ val := v, property := hv } ∈ s)) =
f (↑{ val := v, property := hv })
(Pi.cons s a b g
↑{ val := ↑{ val := v, property := hv }, property := (_ : ↑{ val := v, property := hv } ∈ insert a s) }
(_ :
↑{ val := ↑{ val := v, property := hv }, property := (_ : ↑{ val := v, property := hv } ∈ insert a s) } ∈
insert a s))
[PROOFSTEP]
congr
[GOAL]
case insert.e_a.e_f.h.mk.e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝¹ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
g : (a : α) → a ∈ s → δ a
x✝ : g ∈ pi s t
v : α
hv : v ∈ s
⊢ g ↑{ val := v, property := hv } (_ : ↑{ val := v, property := hv } ∈ s) =
Pi.cons s a b g
↑{ val := ↑{ val := v, property := hv }, property := (_ : ↑{ val := v, property := hv } ∈ insert a s) }
(_ :
↑{ val := ↑{ val := v, property := hv }, property := (_ : ↑{ val := v, property := hv } ∈ insert a s) } ∈
insert a s)
[PROOFSTEP]
exact (Pi.cons_ne (by rintro rfl; exact ha hv)).symm
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝¹ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
g : (a : α) → a ∈ s → δ a
x✝ : g ∈ pi s t
v : α
hv : v ∈ s
⊢ a ≠ ↑{ val := v, property := hv }
[PROOFSTEP]
rintro rfl
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝¹ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
g : (a : α) → a ∈ s → δ a
x✝ : g ∈ pi s t
hv : a ∈ s
⊢ False
[PROOFSTEP]
exact ha hv
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝¹ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
g : (a : α) → a ∈ s → δ a
x✝ : g ∈ pi s t
⊢ ∀ (x : { x // x ∈ s }),
x ∈ attach s →
∀ (y : { x // x ∈ s }),
y ∈ attach s →
{ val := ↑x, property := (_ : ↑x ∈ insert a s) } = { val := ↑y, property := (_ : ↑y ∈ insert a s) } → x = y
[PROOFSTEP]
exact fun _ _ _ _ => Subtype.eq ∘ Subtype.mk.inj
[GOAL]
case insert
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b✝ : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
δ : α → Type u_1
inst✝¹ : DecidableEq α
inst✝ : (a : α) → DecidableEq (δ a)
t : (a : α) → Finset (δ a)
f : (a : α) → δ a → β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ a in s, ∑ b in t a, f a b = ∑ p in pi s t, ∏ x in attach s, f (↑x) (p ↑x (_ : ↑x ∈ s))
h₁ :
∀ (x : δ a),
x ∈ t a → ∀ (y : δ a), y ∈ t a → x ≠ y → Disjoint (image (Pi.cons s a x) (pi s t)) (image (Pi.cons s a y) (pi s t))
b : δ a
x✝¹ : b ∈ t a
h₂ :
∀ (p₁ : (a : α) → a ∈ s → δ a),
p₁ ∈ pi s t → ∀ (p₂ : (a : α) → a ∈ s → δ a), p₂ ∈ pi s t → Pi.cons s a b p₁ = Pi.cons s a b p₂ → p₁ = p₂
g : (a : α) → a ∈ s → δ a
x✝ : g ∈ pi s t
⊢ ¬{ val := a, property := (_ : a ∈ insert a s) } ∈
image (fun x => { val := ↑x, property := (_ : ↑x ∈ insert a s) }) (attach s)
[PROOFSTEP]
simpa only [mem_image, mem_attach, Subtype.mk.injEq, true_and, Subtype.exists, exists_prop, exists_eq_right] using ha
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
⊢ ∏ a in s, (f a + g a) = ∑ t in powerset s, (∏ a in t, f a) * ∏ a in s \ t, g a
[PROOFSTEP]
classical calc
∏ a in s, (f a + g a) = ∏ a in s, ∑ p in ({ True, False } : Finset Prop), if p then f a else g a := by simp
_ =
∑ p in (s.pi fun _ => { True, False } : Finset (∀ a ∈ s, Prop)),
∏ a in s.attach, if p a.1 a.2 then f a.1 else g a.1 :=
prod_sum
_ = ∑ t in s.powerset, (∏ a in t, f a) * ∏ a in s \ t, g a :=
sum_bij' (fun f _ => s.filter (fun a => ∀ h : a ∈ s, f a h)) (by simp)
(fun a _ => by
rw [prod_ite]
congr 1
exact
prod_bij' (fun a _ => a.1) (by simp; tauto) (by simp) (fun a ha => ⟨a, (mem_filter.1 ha).1⟩)
(fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp)
exact
prod_bij' (fun a _ => a.1) (by simp) (by simp) (fun a ha => ⟨a, (mem_sdiff.1 ha).1⟩)
(fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp))
(fun t _ a _ => a ∈ t) (by simp [Classical.em])
(by simp_rw [mem_filter, Function.funext_iff, eq_iff_iff, mem_pi, mem_insert]; tauto)
(by simp_rw [ext_iff, @mem_filter _ _ (id _), mem_powerset]; tauto)
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
⊢ ∏ a in s, (f a + g a) = ∑ t in powerset s, (∏ a in t, f a) * ∏ a in s \ t, g a
[PROOFSTEP]
calc
∏ a in s, (f a + g a) = ∏ a in s, ∑ p in ({ True, False } : Finset Prop), if p then f a else g a := by simp
_ =
∑ p in (s.pi fun _ => { True, False } : Finset (∀ a ∈ s, Prop)),
∏ a in s.attach, if p a.1 a.2 then f a.1 else g a.1 :=
prod_sum
_ = ∑ t in s.powerset, (∏ a in t, f a) * ∏ a in s \ t, g a :=
sum_bij' (fun f _ => s.filter (fun a => ∀ h : a ∈ s, f a h)) (by simp)
(fun a _ => by
rw [prod_ite]
congr 1
exact
prod_bij' (fun a _ => a.1) (by simp; tauto) (by simp) (fun a ha => ⟨a, (mem_filter.1 ha).1⟩)
(fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp)
exact
prod_bij' (fun a _ => a.1) (by simp) (by simp) (fun a ha => ⟨a, (mem_sdiff.1 ha).1⟩)
(fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp))
(fun t _ a _ => a ∈ t) (by simp [Classical.em])
(by simp_rw [mem_filter, Function.funext_iff, eq_iff_iff, mem_pi, mem_insert]; tauto)
(by simp_rw [ext_iff, @mem_filter _ _ (id _), mem_powerset]; tauto)
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
⊢ ∏ a in s, (f a + g a) = ∏ a in s, ∑ p in {True, False}, if p then f a else g a
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
⊢ ∀ (a : (a : α) → a ∈ s → Prop) (ha : a ∈ pi s fun x => {True, False}),
(fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a ha ∈ powerset s
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ (∏ a_1 in attach s, if a ↑a_1 (_ : ↑a_1 ∈ s) then f ↑a_1 else g ↑a_1) =
(∏ a in (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, f a) *
∏ a in s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, g a
[PROOFSTEP]
rw [prod_ite]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ (∏ x in filter (fun a_1 => a ↑a_1 (_ : ↑a_1 ∈ s)) (attach s), f ↑x) *
∏ x in filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s), g ↑x =
(∏ a in (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, f a) *
∏ a in s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, g a
[PROOFSTEP]
congr 1
[GOAL]
case e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∏ x in filter (fun a_1 => a ↑a_1 (_ : ↑a_1 ∈ s)) (attach s), f ↑x =
∏ a in (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, f a
case e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∏ x in filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s), g ↑x =
∏ a in s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, g a
[PROOFSTEP]
exact
prod_bij' (fun a _ => a.1) (by simp; tauto) (by simp) (fun a ha => ⟨a, (mem_filter.1 ha).1⟩)
(fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp)
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun a_2 => a ↑a_2 (_ : ↑a_2 ∈ s)) (attach s)),
(fun a_2 x => ↑a_2) a_1 ha ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∀ (a_1 : α) (b : a_1 ∈ s),
a a_1 (_ : ↑{ val := a_1, property := b } ∈ s) → ∀ (h : ↑{ val := a_1, property := b } ∈ s), a a_1 h
[PROOFSTEP]
tauto
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun a_2 => a ↑a_2 (_ : ↑a_2 ∈ s)) (attach s)),
f ↑a_1 = f ((fun a_2 x => ↑a_2) a_1 ha)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a✝ : (a : α) → a ∈ s → Prop
x✝ : a✝ ∈ pi s fun x => {True, False}
a : α
ha : a ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝
⊢ (fun a ha => { val := a, property := (_ : a ∈ s) }) a ha ∈ filter (fun a => a✝ ↑a (_ : ↑a ∈ s)) (attach s)
[PROOFSTEP]
simp at ha
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a✝ : (a : α) → a ∈ s → Prop
x✝ : a✝ ∈ pi s fun x => {True, False}
a : α
ha✝ : a ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝
ha : a ∈ s ∧ ∀ (h : a ∈ s), a✝ a h
⊢ (fun a ha => { val := a, property := (_ : a ∈ s) }) a ha✝ ∈ filter (fun a => a✝ ↑a (_ : ↑a ∈ s)) (attach s)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a✝ : (a : α) → a ∈ s → Prop
x✝ : a✝ ∈ pi s fun x => {True, False}
a : α
ha✝ : a ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝
ha : a ∈ s ∧ ∀ (h : a ∈ s), a✝ a h
⊢ a✝ a (_ : ↑{ val := a, property := (_ : a ∈ s) } ∈ s)
[PROOFSTEP]
tauto
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun a_2 => a ↑a_2 (_ : ↑a_2 ∈ s)) (attach s)),
(fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) ((fun a_2 x => ↑a_2) a_1 ha)
(_ : (fun a_2 x => ↑a_2) a_1 ha ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝) =
a_1
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∀ (a_1 : α) (ha : a_1 ∈ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝),
(fun a_2 x => ↑a_2) ((fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) a_1 ha)
(_ :
(fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) a_1 ha ∈
filter (fun a_2 => a ↑a_2 (_ : ↑a_2 ∈ s)) (attach s)) =
a_1
[PROOFSTEP]
simp
[GOAL]
case e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∏ x in filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s), g ↑x =
∏ a in s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝, g a
[PROOFSTEP]
exact
prod_bij' (fun a _ => a.1) (by simp) (by simp) (fun a ha => ⟨a, (mem_sdiff.1 ha).1⟩)
(fun a ha => by simp at ha ; simp; tauto) (by simp) (by simp)
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s)),
(fun a_2 x => ↑a_2) a_1 ha ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s)),
g ↑a_1 = g ((fun a_2 x => ↑a_2) a_1 ha)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a✝ : (a : α) → a ∈ s → Prop
x✝ : a✝ ∈ pi s fun x => {True, False}
a : α
ha : a ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝
⊢ (fun a ha => { val := a, property := (_ : a ∈ s) }) a ha ∈ filter (fun x => ¬a✝ ↑x (_ : ↑x ∈ s)) (attach s)
[PROOFSTEP]
simp at ha
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a✝ : (a : α) → a ∈ s → Prop
x✝ : a✝ ∈ pi s fun x => {True, False}
a : α
ha✝ : a ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝
ha : a ∈ s ∧ (a ∈ s → ∃ x, ¬a✝ a x)
⊢ (fun a ha => { val := a, property := (_ : a ∈ s) }) a ha✝ ∈ filter (fun x => ¬a✝ ↑x (_ : ↑x ∈ s)) (attach s)
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a✝ : (a : α) → a ∈ s → Prop
x✝ : a✝ ∈ pi s fun x => {True, False}
a : α
ha✝ : a ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a✝ x✝
ha : a ∈ s ∧ (a ∈ s → ∃ x, ¬a✝ a x)
⊢ ¬a✝ a (_ : ↑{ val := a, property := (_ : a ∈ s) } ∈ s)
[PROOFSTEP]
tauto
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∀ (a_1 : { x // x ∈ s }) (ha : a_1 ∈ filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s)),
(fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) ((fun a_2 x => ↑a_2) a_1 ha)
(_ : ↑a_1 ∈ s \ filter (fun a_2 => ∀ (h : a_2 ∈ s), a a_2 h) s) =
a_1
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
a : (a : α) → a ∈ s → Prop
x✝ : a ∈ pi s fun x => {True, False}
⊢ ∀ (a_1 : α) (ha : a_1 ∈ s \ (fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a x✝),
(fun a_2 x => ↑a_2) ((fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) a_1 ha)
(_ :
(fun a_2 ha => { val := a_2, property := (_ : a_2 ∈ s) }) a_1 ha ∈
filter (fun x => ¬a ↑x (_ : ↑x ∈ s)) (attach s)) =
a_1
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
⊢ ∀ (a : Finset α) (ha : a ∈ powerset s), (fun t x a x => a ∈ t) a ha ∈ pi s fun x => {True, False}
[PROOFSTEP]
simp [Classical.em]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
⊢ ∀ (a : (a : α) → a ∈ s → Prop) (ha : a ∈ pi s fun x => {True, False}),
(fun t x a x => a ∈ t) ((fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) a ha)
(_ : filter (fun a_1 => ∀ (h : a_1 ∈ s), a a_1 h) s ∈ powerset s) =
a
[PROOFSTEP]
simp_rw [mem_filter, Function.funext_iff, eq_iff_iff, mem_pi, mem_insert]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
⊢ ∀ (a : (a : α) → a ∈ s → Prop),
(∀ (a_1 : α) (h : a_1 ∈ s), a a_1 h = True ∨ a a_1 h ∈ {False}) →
∀ (a_1 : α) (a_2 : a_1 ∈ s), (a_1 ∈ s ∧ ∀ (h : a_1 ∈ s), a a_1 h) ↔ a a_1 a_2
[PROOFSTEP]
tauto
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
⊢ ∀ (a : Finset α) (ha : a ∈ powerset s),
(fun f x => filter (fun a => ∀ (h : a ∈ s), f a h) s) ((fun t x a x => a ∈ t) a ha)
(_ : (fun a_1 x => a_1 ∈ a) ∈ pi s fun x => {True, False}) =
a
[PROOFSTEP]
simp_rw [ext_iff, @mem_filter _ _ (id _), mem_powerset]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝¹ : CommSemiring β
inst✝ : DecidableEq α
f g : α → β
s : Finset α
⊢ ∀ (a : Finset α), a ⊆ s → ∀ (a_1 : α), a_1 ∈ s ∧ (a_1 ∈ s → a_1 ∈ a) ↔ a_1 ∈ a
[PROOFSTEP]
tauto
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
s : Finset ι
f g : ι → R
⊢ ∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
[PROOFSTEP]
refine' Finset.induction_on_max s (by simp) _
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
s : Finset ι
f g : ι → R
⊢ ∏ i in ∅, (f i + g i) =
∏ i in ∅, f i +
∑ i in ∅, (g i * ∏ j in filter (fun x => x < i) ∅, (f j + g j)) * ∏ j in filter (fun j => i < j) ∅, f j
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
s : Finset ι
f g : ι → R
⊢ ∀ (a : ι) (s : Finset ι),
(∀ (x : ι), x ∈ s → x < a) →
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j →
∏ i in insert a s, (f i + g i) =
∏ i in insert a s, f i +
∑ i in insert a s,
(g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) *
∏ j in filter (fun j => i < j) (insert a s), f j
[PROOFSTEP]
clear s
[GOAL]
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
⊢ ∀ (a : ι) (s : Finset ι),
(∀ (x : ι), x ∈ s → x < a) →
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j →
∏ i in insert a s, (f i + g i) =
∏ i in insert a s, f i +
∑ i in insert a s,
(g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) *
∏ j in filter (fun j => i < j) (insert a s), f j
[PROOFSTEP]
intro a s ha ihs
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
⊢ ∏ i in insert a s, (f i + g i) =
∏ i in insert a s, f i +
∑ i in insert a s,
(g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) *
∏ j in filter (fun j => i < j) (insert a s), f j
[PROOFSTEP]
have ha' : a ∉ s := fun ha' => lt_irrefl a (ha a ha')
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
⊢ ∏ i in insert a s, (f i + g i) =
∏ i in insert a s, f i +
∑ i in insert a s,
(g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) *
∏ j in filter (fun j => i < j) (insert a s), f j
[PROOFSTEP]
rw [prod_insert ha', prod_insert ha', sum_insert ha', filter_insert, if_neg (lt_irrefl a), filter_true_of_mem ha, ihs,
add_mul, mul_add, mul_add, add_assoc]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
⊢ f a * ∏ i in s, f i +
(f a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j +
(g a * ∏ i in s, f i +
g a *
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j)) =
f a * ∏ x in s, f x +
((g a * ∏ i in s, f i +
g a *
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) *
∏ j in filter (fun j => a < j) (insert a s), f j +
∑ x in s,
(g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) *
∏ j in filter (fun j => x < j) (insert a s), f j)
[PROOFSTEP]
congr 1
[GOAL]
case e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
⊢ f a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j +
(g a * ∏ i in s, f i +
g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) =
(g a * ∏ i in s, f i +
g a *
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) *
∏ j in filter (fun j => a < j) (insert a s), f j +
∑ x in s,
(g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) *
∏ j in filter (fun j => x < j) (insert a s), f j
[PROOFSTEP]
rw [add_comm]
[GOAL]
case e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
⊢ g a * ∏ i in s, f i +
g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j +
f a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j =
(g a * ∏ i in s, f i +
g a *
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) *
∏ j in filter (fun j => a < j) (insert a s), f j +
∑ x in s,
(g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) *
∏ j in filter (fun j => x < j) (insert a s), f j
[PROOFSTEP]
congr 1
[GOAL]
case e_a.e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
⊢ g a * ∏ i in s, f i +
g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j =
(g a * ∏ i in s, f i +
g a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) *
∏ j in filter (fun j => a < j) (insert a s), f j
[PROOFSTEP]
rw [filter_false_of_mem, prod_empty, mul_one]
[GOAL]
case e_a.e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
⊢ ∀ (x : ι), x ∈ insert a s → ¬a < x
[PROOFSTEP]
exact (forall_mem_insert _ _ _).2 ⟨lt_irrefl a, fun i hi => (ha i hi).not_lt⟩
[GOAL]
case e_a.e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
⊢ f a * ∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j =
∑ x in s,
(g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) *
∏ j in filter (fun j => x < j) (insert a s), f j
[PROOFSTEP]
rw [mul_sum]
[GOAL]
case e_a.e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
⊢ ∑ x in s, f a * ((g x * ∏ j in filter (fun x_1 => x_1 < x) s, (f j + g j)) * ∏ j in filter (fun j => x < j) s, f j) =
∑ x in s,
(g x * ∏ j in filter (fun x_1 => x_1 < x) (insert a s), (f j + g j)) *
∏ j in filter (fun j => x < j) (insert a s), f j
[PROOFSTEP]
refine' sum_congr rfl fun i hi => _
[GOAL]
case e_a.e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
i : ι
hi : i ∈ s
⊢ f a * ((g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j) =
(g i * ∏ j in filter (fun x => x < i) (insert a s), (f j + g j)) * ∏ j in filter (fun j => i < j) (insert a s), f j
[PROOFSTEP]
rw [filter_insert, if_neg (ha i hi).not_lt, filter_insert, if_pos (ha i hi), prod_insert, mul_left_comm]
[GOAL]
case e_a.e_a
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommSemiring R
inst✝ : LinearOrder ι
f g : ι → R
a : ι
s : Finset ι
ha : ∀ (x : ι), x ∈ s → x < a
ihs :
∏ i in s, (f i + g i) =
∏ i in s, f i +
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j + g j)) * ∏ j in filter (fun j => i < j) s, f j
ha' : ¬a ∈ s
i : ι
hi : i ∈ s
⊢ ¬a ∈ filter (fun j => i < j) s
[PROOFSTEP]
exact mt (fun ha => (mem_filter.1 ha).1) ha'
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LinearOrder ι
s : Finset ι
f g : ι → R
⊢ ∏ i in s, (f i - g i) =
∏ i in s, f i -
∑ i in s, (g i * ∏ j in filter (fun x => x < i) s, (f j - g j)) * ∏ j in filter (fun j => i < j) s, f j
[PROOFSTEP]
simp only [sub_eq_add_neg]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LinearOrder ι
s : Finset ι
f g : ι → R
⊢ ∏ x in s, (f x + -g x) =
∏ i in s, f i +
-∑ x in s, (g x * ∏ x in filter (fun x_1 => x_1 < x) s, (f x + -g x)) * ∏ i in filter (fun j => x < j) s, f i
[PROOFSTEP]
convert prod_add_ordered s f fun i => -g i
[GOAL]
case h.e'_3.h.e'_6
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LinearOrder ι
s : Finset ι
f g : ι → R
⊢ -∑ x in s, (g x * ∏ x in filter (fun x_1 => x_1 < x) s, (f x + -g x)) * ∏ i in filter (fun j => x < j) s, f i =
∑ i in s, (-g i * ∏ j in filter (fun x => x < i) s, (f j + -g j)) * ∏ j in filter (fun j => i < j) s, f j
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LinearOrder ι
s : Finset ι
f : ι → R
⊢ ∏ i in s, (1 - f i) = 1 - ∑ i in s, f i * ∏ j in filter (fun x => x < i) s, (1 - f j)
[PROOFSTEP]
rw [prod_sub_ordered]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝² : CommSemiring β
ι : Type u_1
R : Type u_2
inst✝¹ : CommRing R
inst✝ : LinearOrder ι
s : Finset ι
f : ι → R
⊢ ∏ i in s, 1 - ∑ i in s, (f i * ∏ j in filter (fun x => x < i) s, (1 - f j)) * ∏ j in filter (fun j => i < j) s, 1 =
1 - ∑ i in s, f i * ∏ j in filter (fun x => x < i) s, (1 - f j)
[PROOFSTEP]
simp
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a✝ : α✝
b✝ : β
f g : α✝ → β
inst✝¹ : CommSemiring β
α : Type u_1
R : Type u_2
inst✝ : CommSemiring R
a b : R
s : Finset α
⊢ ∑ t in powerset s, a ^ card t * b ^ (card s - card t) = (a + b) ^ card s
[PROOFSTEP]
classical
rw [← prod_const, prod_add]
refine' Finset.sum_congr rfl fun t ht => _
rw [prod_const, prod_const, ← card_sdiff (mem_powerset.1 ht)]
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a✝ : α✝
b✝ : β
f g : α✝ → β
inst✝¹ : CommSemiring β
α : Type u_1
R : Type u_2
inst✝ : CommSemiring R
a b : R
s : Finset α
⊢ ∑ t in powerset s, a ^ card t * b ^ (card s - card t) = (a + b) ^ card s
[PROOFSTEP]
rw [← prod_const, prod_add]
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a✝ : α✝
b✝ : β
f g : α✝ → β
inst✝¹ : CommSemiring β
α : Type u_1
R : Type u_2
inst✝ : CommSemiring R
a b : R
s : Finset α
⊢ ∑ t in powerset s, a ^ card t * b ^ (card s - card t) = ∑ t in powerset s, (∏ a_1 in t, a) * ∏ a in s \ t, b
[PROOFSTEP]
refine' Finset.sum_congr rfl fun t ht => _
[GOAL]
α✝ : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a✝ : α✝
b✝ : β
f g : α✝ → β
inst✝¹ : CommSemiring β
α : Type u_1
R : Type u_2
inst✝ : CommSemiring R
a b : R
s t : Finset α
ht : t ∈ powerset s
⊢ a ^ card t * b ^ (card s - card t) = (∏ a_1 in t, a) * ∏ a in s \ t, b
[PROOFSTEP]
rw [prod_const, prod_const, ← card_sdiff (mem_powerset.1 ht)]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b✝ : β
f✝ g : α → β
inst✝ : CommSemiring β
b : β
s : Finset α
f : α → β
h : ∀ (x : α), x ∈ s → b ∣ f x
y : β
hy : y ∈ Multiset.map (fun x => f x) s.val
⊢ b ∣ y
[PROOFSTEP]
rcases Multiset.mem_map.1 hy with ⟨x, hx, rfl⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b✝ : β
f✝ g : α → β
inst✝ : CommSemiring β
b : β
s : Finset α
f : α → β
h : ∀ (x : α), x ∈ s → b ∣ f x
x : α
hx : x ∈ s.val
hy : f x ∈ Multiset.map (fun x => f x) s.val
⊢ b ∣ f x
[PROOFSTEP]
exact h x hx
[GOAL]
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f g : α → β
R : Type u_1
inst✝ : CommRing R
n k : ℕ
⊢ ∏ i in range k, (↑n - ↑i) = ↑(∏ i in range k, (n - i))
[PROOFSTEP]
rw [prod_natCast]
[GOAL]
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f g : α → β
R : Type u_1
inst✝ : CommRing R
n k : ℕ
⊢ ∏ i in range k, (↑n - ↑i) = ∏ x in range k, ↑(n - x)
[PROOFSTEP]
cases' le_or_lt k n with hkn hnk
[GOAL]
case inl
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f g : α → β
R : Type u_1
inst✝ : CommRing R
n k : ℕ
hkn : k ≤ n
⊢ ∏ i in range k, (↑n - ↑i) = ∏ x in range k, ↑(n - x)
[PROOFSTEP]
exact prod_congr rfl fun i hi => (Nat.cast_sub <| (mem_range.1 hi).le.trans hkn).symm
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f g : α → β
R : Type u_1
inst✝ : CommRing R
n k : ℕ
hnk : n < k
⊢ ∏ i in range k, (↑n - ↑i) = ∏ x in range k, ↑(n - x)
[PROOFSTEP]
rw [← mem_range] at hnk
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f g : α → β
R : Type u_1
inst✝ : CommRing R
n k : ℕ
hnk : n ∈ range k
⊢ ∏ i in range k, (↑n - ↑i) = ∏ x in range k, ↑(n - x)
[PROOFSTEP]
rw [prod_eq_zero hnk, prod_eq_zero hnk]
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f g : α → β
R : Type u_1
inst✝ : CommRing R
n k : ℕ
hnk : n ∈ range k
⊢ ↑(n - n) = 0
[PROOFSTEP]
simp
[GOAL]
case inr
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f g : α → β
R : Type u_1
inst✝ : CommRing R
n k : ℕ
hnk : n ∈ range k
⊢ ↑n - ↑n = 0
[PROOFSTEP]
simp
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid β
s : Finset α
x : α
h : ¬x ∈ s
f : Finset α → β
⊢ ∏ a in powerset (insert x s), f a = (∏ a in powerset s, f a) * ∏ t in powerset s, f (insert x t)
[PROOFSTEP]
rw [powerset_insert, Finset.prod_union, Finset.prod_image]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid β
s : Finset α
x : α
h : ¬x ∈ s
f : Finset α → β
⊢ ∀ (x_1 : Finset α), x_1 ∈ powerset s → ∀ (y : Finset α), y ∈ powerset s → insert x x_1 = insert x y → x_1 = y
[PROOFSTEP]
intro t₁ h₁ t₂ h₂ heq
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid β
s : Finset α
x : α
h : ¬x ∈ s
f : Finset α → β
t₁ : Finset α
h₁ : t₁ ∈ powerset s
t₂ : Finset α
h₂ : t₂ ∈ powerset s
heq : insert x t₁ = insert x t₂
⊢ t₁ = t₂
[PROOFSTEP]
rw [← Finset.erase_insert (not_mem_of_mem_powerset_of_not_mem h₁ h), ←
Finset.erase_insert (not_mem_of_mem_powerset_of_not_mem h₂ h), heq]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid β
s : Finset α
x : α
h : ¬x ∈ s
f : Finset α → β
⊢ Disjoint (powerset s) (image (insert x) (powerset s))
[PROOFSTEP]
rw [Finset.disjoint_iff_ne]
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid β
s : Finset α
x : α
h : ¬x ∈ s
f : Finset α → β
⊢ ∀ (a : Finset α), a ∈ powerset s → ∀ (b : Finset α), b ∈ image (insert x) (powerset s) → a ≠ b
[PROOFSTEP]
intro t₁ h₁ t₂ h₂
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid β
s : Finset α
x : α
h : ¬x ∈ s
f : Finset α → β
t₁ : Finset α
h₁ : t₁ ∈ powerset s
t₂ : Finset α
h₂ : t₂ ∈ image (insert x) (powerset s)
⊢ t₁ ≠ t₂
[PROOFSTEP]
rcases Finset.mem_image.1 h₂ with ⟨t₃, _h₃, H₃₂⟩
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid β
s : Finset α
x : α
h : ¬x ∈ s
f : Finset α → β
t₁ : Finset α
h₁ : t₁ ∈ powerset s
t₂ : Finset α
h₂ : t₂ ∈ image (insert x) (powerset s)
t₃ : Finset α
_h₃ : t₃ ∈ powerset s
H₃₂ : insert x t₃ = t₂
⊢ t₁ ≠ t₂
[PROOFSTEP]
rw [← H₃₂]
[GOAL]
case intro.intro
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid β
s : Finset α
x : α
h : ¬x ∈ s
f : Finset α → β
t₁ : Finset α
h₁ : t₁ ∈ powerset s
t₂ : Finset α
h₂ : t₂ ∈ image (insert x) (powerset s)
t₃ : Finset α
_h₃ : t₃ ∈ powerset s
H₃₂ : insert x t₃ = t₂
⊢ t₁ ≠ insert x t₃
[PROOFSTEP]
exact ne_insert_of_not_mem _ _ (not_mem_of_mem_powerset_of_not_mem h₁ h)
[GOAL]
α : Type u
β : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
b : β
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : Finset α → β
⊢ ∏ t in powerset s, f t = ∏ j in range (card s + 1), ∏ t in powersetLen j s, f t
[PROOFSTEP]
rw [powerset_card_disjiUnion, prod_disjiUnion]
[GOAL]
α : Type u
β : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
b : β
f✝ g✝ : α → β
inst✝ : NonUnitalNonAssocSemiring β
n k : ℕ
f g : ℕ → β
⊢ (∑ i in range (n + 1), f i) * ∑ i in range (k + 1), g i =
(∑ i in range n, f i) * ∑ i in range k, g i + f n * ∑ i in range k, g i + (∑ i in range n, f i) * g k + f n * g k
[PROOFSTEP]
simp only [add_mul, mul_add, add_assoc, sum_range_succ]
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Ring", "llama_tokens": 31883} |
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.11751, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
x : A ⟶ S.X₁
hx : k = x ≫ S.f
⊢ k ≫ S.g = 0
[PROOFSTEP]
rw [hx, assoc, S.zero, comp_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
x : A ⟶ S.X₁
hx : k = x ≫ S.f
⊢ liftK h k (_ : k ≫ S.g = 0) ≫ h.π = 0
[PROOFSTEP]
rw [show 0 = (x ≫ h.f') ≫ h.π by simp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
x : A ⟶ S.X₁
hx : k = x ≫ S.f
⊢ 0 = (x ≫ f' h) ≫ h.π
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
x : A ⟶ S.X₁
hx : k = x ≫ S.f
⊢ liftK h k (_ : k ≫ S.g = 0) ≫ h.π = (x ≫ f' h) ≫ h.π
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
x : A ⟶ S.X₁
hx : k = x ≫ S.f
⊢ liftK h k (_ : k ≫ S.g = 0) = x ≫ f' h
[PROOFSTEP]
simp only [← cancel_mono h.i, hx, liftK_i, assoc, f'_i]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hg : S.g = 0
⊢ 𝟙 S.X₂ ≫ S.g = 0
[PROOFSTEP]
rw [hg, id_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hg : S.g = 0
⊢ h.i ≫ liftK h (𝟙 S.X₂) (_ : 𝟙 S.X₂ ≫ S.g = 0) = 𝟙 h.K
[PROOFSTEP]
simp only [← cancel_mono h.i, id_comp, assoc, liftK_i, comp_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
⊢ IsIso h.π
[PROOFSTEP]
have ⟨φ, hφ⟩ := CokernelCofork.IsColimit.desc' h.hπ' (𝟙 _) (by rw [← cancel_mono h.i, comp_id, f'_i, zero_comp, hf])
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
⊢ f' h ≫ 𝟙 h.K = 0
[PROOFSTEP]
rw [← cancel_mono h.i, comp_id, f'_i, zero_comp, hf]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
φ : (CokernelCofork.ofπ h.π (_ : f' h ≫ h.π = 0)).pt ⟶ h.K
hφ : Cofork.π (CokernelCofork.ofπ h.π (_ : f' h ≫ h.π = 0)) ≫ φ = 𝟙 h.K
⊢ IsIso h.π
[PROOFSTEP]
dsimp at hφ
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
φ : (CokernelCofork.ofπ h.π (_ : f' h ≫ h.π = 0)).pt ⟶ h.K
hφ : h.π ≫ φ = 𝟙 h.K
⊢ IsIso h.π
[PROOFSTEP]
exact ⟨φ, hφ, by rw [← cancel_epi h.π, reassoc_of% hφ, comp_id]⟩
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
φ : (CokernelCofork.ofπ h.π (_ : f' h ≫ h.π = 0)).pt ⟶ h.K
hφ : h.π ≫ φ = 𝟙 h.K
⊢ φ ≫ h.π = 𝟙 h.H
[PROOFSTEP]
rw [← cancel_epi h.π, reassoc_of% hφ, comp_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.20415, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hg : S.g = 0
c : CokernelCofork S.f
hc : IsColimit c
⊢ 𝟙 S.X₂ ≫ S.g = 0
[PROOFSTEP]
rw [id_comp, hg]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hg : S.g = 0
c : CokernelCofork S.f
hc : IsColimit c
⊢ f' (ofIsColimitCokernelCofork S hg c hc) = S.f
[PROOFSTEP]
rw [← cancel_mono (ofIsColimitCokernelCofork S hg c hc).i, f'_i, ofIsColimitCokernelCofork_i]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hg : S.g = 0
c : CokernelCofork S.f
hc : IsColimit c
⊢ S.f = S.f ≫ 𝟙 S.X₂
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hg : S.g = 0
c : CokernelCofork S.f
hc : IsColimit c
⊢ S.f = S.f ≫ 𝟙 S.X₂
[PROOFSTEP]
rw [comp_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.25743, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
c : KernelFork S.g
hc : IsLimit c
⊢ (IsLimit.lift (IsLimit.ofIsoLimit hc (Fork.ext (Iso.refl c.pt))) (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ 𝟙 c.pt) ≫
Fork.ι c =
0 ≫ Fork.ι c
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.25743, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
c : KernelFork S.g
hc : IsLimit c
⊢ ((IsLimit.lift hc (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ 𝟙 c.pt) ≫ 𝟙 c.pt) ≫ Fork.ι c = 0 ≫ Fork.ι c
[PROOFSTEP]
simp only [comp_id, zero_comp, Fork.IsLimit.lift_ι, Fork.ι_ofι, hf]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.25743, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
c : KernelFork S.g
hc : IsLimit c
⊢ IsLimit.lift (IsLimit.ofIsoLimit hc (Fork.ext (Iso.refl c.pt))) (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ Fork.ι c =
0 ≫ Fork.ι c
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.25743, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
c : KernelFork S.g
hc : IsLimit c
⊢ (IsLimit.lift hc (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ 𝟙 c.pt) ≫ Fork.ι c = 0 ≫ Fork.ι c
[PROOFSTEP]
simp only [comp_id, zero_comp, Fork.IsLimit.lift_ι, Fork.ι_ofι, hf]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
c : KernelFork S.g
hc : IsLimit c
⊢ f' (ofIsLimitKernelFork S hf c hc) = 0
[PROOFSTEP]
rw [← cancel_mono (ofIsLimitKernelFork S hf c hc).i, f'_i, hf, zero_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.30745, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
hg : S.g = 0
⊢ 𝟙 S.X₂ ≫ S.g = 0
[PROOFSTEP]
rw [id_comp, hg]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.30745, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
hg : S.g = 0
⊢ IsLimit.lift (KernelFork.IsLimit.ofId S.g hg) (KernelFork.ofι S.f (_ : S.f ≫ S.g = 0)) ≫ 𝟙 S.X₂ = 0
[PROOFSTEP]
change S.f ≫ 𝟙 _ = 0
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.30745, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
hg : S.g = 0
⊢ S.f ≫ 𝟙 S.X₂ = 0
[PROOFSTEP]
simp only [hf, zero_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
hf : S.f = 0
hg : S.g = 0
⊢ f' (ofZeros S hf hg) = 0
[PROOFSTEP]
rw [← cancel_mono ((ofZeros S hf hg).i), zero_comp, f'_i, hf]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.51232, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂
⊢ ψ₁ = ψ₂
[PROOFSTEP]
have hK : ψ₁.φK = ψ₂.φK := by rw [← cancel_mono h₂.i, commi, commi]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.51232, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂
⊢ ψ₁.φK = ψ₂.φK
[PROOFSTEP]
rw [← cancel_mono h₂.i, commi, commi]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.51232, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂
hK : ψ₁.φK = ψ₂.φK
⊢ ψ₁ = ψ₂
[PROOFSTEP]
have hH : ψ₁.φH = ψ₂.φH := by rw [← cancel_epi h₁.π, commπ, commπ, hK]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.51232, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂
hK : ψ₁.φK = ψ₂.φK
⊢ ψ₁.φH = ψ₂.φH
[PROOFSTEP]
rw [← cancel_epi h₁.π, commπ, commπ, hK]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.51232, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ₁ ψ₂ : LeftHomologyMapData φ h₁ h₂
hK : ψ₁.φK = ψ₂.φK
hH : ψ₁.φH = ψ₂.φH
⊢ ψ₁ = ψ₂
[PROOFSTEP]
cases ψ₁
[GOAL]
case mk
C : Type u_1
inst✝¹ : Category.{?u.51232, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ₂ : LeftHomologyMapData φ h₁ h₂
φK✝ : h₁.K ⟶ h₂.K
φH✝ : h₁.H ⟶ h₂.H
commi✝ : φK✝ ≫ h₂.i = h₁.i ≫ φ.τ₂
commf'✝ : LeftHomologyData.f' h₁ ≫ φK✝ = φ.τ₁ ≫ LeftHomologyData.f' h₂
commπ✝ : h₁.π ≫ φH✝ = φK✝ ≫ h₂.π
hK : (mk φK✝ φH✝).φK = ψ₂.φK
hH : (mk φK✝ φH✝).φH = ψ₂.φH
⊢ mk φK✝ φH✝ = ψ₂
[PROOFSTEP]
cases ψ₂
[GOAL]
case mk.mk
C : Type u_1
inst✝¹ : Category.{?u.51232, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
φK✝¹ : h₁.K ⟶ h₂.K
φH✝¹ : h₁.H ⟶ h₂.H
commi✝¹ : φK✝¹ ≫ h₂.i = h₁.i ≫ φ.τ₂
commf'✝¹ : LeftHomologyData.f' h₁ ≫ φK✝¹ = φ.τ₁ ≫ LeftHomologyData.f' h₂
commπ✝¹ : h₁.π ≫ φH✝¹ = φK✝¹ ≫ h₂.π
φK✝ : h₁.K ⟶ h₂.K
φH✝ : h₁.H ⟶ h₂.H
commi✝ : φK✝ ≫ h₂.i = h₁.i ≫ φ.τ₂
commf'✝ : LeftHomologyData.f' h₁ ≫ φK✝ = φ.τ₁ ≫ LeftHomologyData.f' h₂
commπ✝ : h₁.π ≫ φH✝ = φK✝ ≫ h₂.π
hK : (mk φK✝¹ φH✝¹).φK = (mk φK✝ φH✝).φK
hH : (mk φK✝¹ φH✝¹).φH = (mk φK✝ φH✝).φH
⊢ mk φK✝¹ φH✝¹ = mk φK✝ φH✝
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.53678, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ LeftHomologyMapData φ h₁ h₂
[PROOFSTEP]
let φK : h₁.K ⟶ h₂.K := h₂.liftK (h₁.i ≫ φ.τ₂) (by rw [assoc, φ.comm₂₃, h₁.wi_assoc, zero_comp])
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.53678, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0
[PROOFSTEP]
rw [assoc, φ.comm₂₃, h₁.wi_assoc, zero_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.53678, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0)
⊢ LeftHomologyMapData φ h₁ h₂
[PROOFSTEP]
have commf' : h₁.f' ≫ φK = φ.τ₁ ≫ h₂.f' := by
rw [← cancel_mono h₂.i, assoc, assoc, LeftHomologyData.liftK_i, LeftHomologyData.f'_i_assoc, LeftHomologyData.f'_i,
φ.comm₁₂]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.53678, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0)
⊢ LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂
[PROOFSTEP]
rw [← cancel_mono h₂.i, assoc, assoc, LeftHomologyData.liftK_i, LeftHomologyData.f'_i_assoc, LeftHomologyData.f'_i,
φ.comm₁₂]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.53678, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0)
commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂
⊢ LeftHomologyMapData φ h₁ h₂
[PROOFSTEP]
let φH : h₁.H ⟶ h₂.H := h₁.descH (φK ≫ h₂.π) (by rw [reassoc_of% commf', h₂.f'_π, comp_zero])
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.53678, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0)
commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂
⊢ LeftHomologyData.f' h₁ ≫ φK ≫ h₂.π = 0
[PROOFSTEP]
rw [reassoc_of% commf', h₂.f'_π, comp_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.53678, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0)
commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂
φH : h₁.H ⟶ h₂.H := LeftHomologyData.descH h₁ (φK ≫ h₂.π) (_ : LeftHomologyData.f' h₁ ≫ φK ≫ h₂.π = 0)
⊢ LeftHomologyMapData φ h₁ h₂
[PROOFSTEP]
exact ⟨φK, φH, by simp, commf', by simp⟩
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.53678, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0)
commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂
φH : h₁.H ⟶ h₂.H := LeftHomologyData.descH h₁ (φK ≫ h₂.π) (_ : LeftHomologyData.f' h₁ ≫ φK ≫ h₂.π = 0)
⊢ φK ≫ h₂.i = h₁.i ≫ φ.τ₂
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.53678, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
φK : h₁.K ⟶ h₂.K := LeftHomologyData.liftK h₂ (h₁.i ≫ φ.τ₂) (_ : (h₁.i ≫ φ.τ₂) ≫ S₂.g = 0)
commf' : LeftHomologyData.f' h₁ ≫ φK = φ.τ₁ ≫ LeftHomologyData.f' h₂
φH : h₁.H ⟶ h₂.H := LeftHomologyData.descH h₁ (φK ≫ h₂.π) (_ : LeftHomologyData.f' h₁ ≫ φK ≫ h₂.π = 0)
⊢ h₁.π ≫ φH = φK ≫ h₂.π
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ₁ γ₂ : LeftHomologyMapData φ h₁ h₂
eq : γ₁ = γ₂
⊢ γ₁.φH = γ₂.φH
[PROOFSTEP]
rw [eq]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ₁ γ₂ : LeftHomologyMapData φ h₁ h₂
eq : γ₁ = γ₂
⊢ γ₁.φK = γ₂.φK
[PROOFSTEP]
rw [eq]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.62763, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ✝ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
φ : S₁ ⟶ S₂
hg₁ : S₁.g = 0
c₁ : CokernelCofork S₁.f
hc₁ : IsColimit c₁
hg₂ : S₂.g = 0
c₂ : CokernelCofork S₂.f
hc₂ : IsColimit c₂
f : c₁.pt ⟶ c₂.pt
comm : φ.τ₂ ≫ Cofork.π c₂ = Cofork.π c₁ ≫ f
⊢ LeftHomologyData.f' (LeftHomologyData.ofIsColimitCokernelCofork S₁ hg₁ c₁ hc₁) ≫ φ.τ₂ =
φ.τ₁ ≫ LeftHomologyData.f' (LeftHomologyData.ofIsColimitCokernelCofork S₂ hg₂ c₂ hc₂)
[PROOFSTEP]
simp only [LeftHomologyData.ofIsColimitCokernelCofork_f', φ.comm₁₂]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.82184, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
⊢ Mono (iCycles S)
[PROOFSTEP]
dsimp only [iCycles]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.82184, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
⊢ Mono (leftHomologyData S).i
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝² : Category.{?u.82564, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
⊢ Epi (leftHomologyπ S)
[PROOFSTEP]
dsimp only [leftHomologyπ]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.82564, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
⊢ Epi (leftHomologyData S).π
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
A : C
f₁ f₂ : leftHomology S ⟶ A
⊢ f₁ = f₂ ↔ leftHomologyπ S ≫ f₁ = leftHomologyπ S ≫ f₂
[PROOFSTEP]
rw [cancel_epi]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
A : C
f₁ f₂ : leftHomology S ⟶ A
h : leftHomologyπ S ≫ f₁ = leftHomologyπ S ≫ f₂
⊢ f₁ = f₂
[PROOFSTEP]
simpa only [leftHomology_ext_iff] using h
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
A : C
f₁ f₂ : A ⟶ cycles S
⊢ f₁ = f₂ ↔ f₁ ≫ iCycles S = f₂ ≫ iCycles S
[PROOFSTEP]
rw [cancel_mono]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
A : C
f₁ f₂ : A ⟶ cycles S
h : f₁ ≫ iCycles S = f₂ ≫ iCycles S
⊢ f₁ = f₂
[PROOFSTEP]
simpa only [cycles_ext_iff] using h
[GOAL]
C : Type u_1
inst✝² : Category.{?u.86307, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
hg : S.g = 0
⊢ cycles S ≅ S.X₂
[PROOFSTEP]
have := S.isIso_iCycles hg
[GOAL]
C : Type u_1
inst✝² : Category.{?u.86307, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
hg : S.g = 0
this : IsIso (iCycles S)
⊢ cycles S ≅ S.X₂
[PROOFSTEP]
exact asIso S.iCycles
[GOAL]
C : Type u_1
inst✝² : Category.{?u.89230, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
hf : S.f = 0
⊢ cycles S ≅ leftHomology S
[PROOFSTEP]
have := S.isIso_leftHomologyπ hf
[GOAL]
C : Type u_1
inst✝² : Category.{?u.89230, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasLeftHomology S
hf : S.f = 0
this : IsIso (leftHomologyπ S)
⊢ cycles S ≅ leftHomology S
[PROOFSTEP]
exact asIso S.leftHomologyπ
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ LeftHomologyData.f' h₁ ≫ cyclesMap' φ h₁ h₂ = φ.τ₁ ≫ LeftHomologyData.f' h₂
[PROOFSTEP]
simp only [← cancel_mono h₂.i, assoc, φ.comm₁₂, cyclesMap'_i, LeftHomologyData.f'_i_assoc, LeftHomologyData.f'_i]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
h₃ : LeftHomologyData S₃
⊢ leftHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = leftHomologyMap' φ₁ h₁ h₂ ≫ leftHomologyMap' φ₂ h₂ h₃
[PROOFSTEP]
let γ₁ := leftHomologyMapData φ₁ h₁ h₂
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
h₃ : LeftHomologyData S₃
γ₁ : LeftHomologyMapData φ₁ h₁ h₂ := leftHomologyMapData φ₁ h₁ h₂
⊢ leftHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = leftHomologyMap' φ₁ h₁ h₂ ≫ leftHomologyMap' φ₂ h₂ h₃
[PROOFSTEP]
let γ₂ := leftHomologyMapData φ₂ h₂ h₃
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
h₃ : LeftHomologyData S₃
γ₁ : LeftHomologyMapData φ₁ h₁ h₂ := leftHomologyMapData φ₁ h₁ h₂
γ₂ : LeftHomologyMapData φ₂ h₂ h₃ := leftHomologyMapData φ₂ h₂ h₃
⊢ leftHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = leftHomologyMap' φ₁ h₁ h₂ ≫ leftHomologyMap' φ₂ h₂ h₃
[PROOFSTEP]
rw [γ₁.leftHomologyMap'_eq, γ₂.leftHomologyMap'_eq, (γ₁.comp γ₂).leftHomologyMap'_eq, LeftHomologyMapData.comp_φH]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
h₃ : LeftHomologyData S₃
⊢ cyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = cyclesMap' φ₁ h₁ h₂ ≫ cyclesMap' φ₂ h₂ h₃
[PROOFSTEP]
let γ₁ := leftHomologyMapData φ₁ h₁ h₂
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
h₃ : LeftHomologyData S₃
γ₁ : LeftHomologyMapData φ₁ h₁ h₂ := leftHomologyMapData φ₁ h₁ h₂
⊢ cyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = cyclesMap' φ₁ h₁ h₂ ≫ cyclesMap' φ₂ h₂ h₃
[PROOFSTEP]
let γ₂ := leftHomologyMapData φ₂ h₂ h₃
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
h₃ : LeftHomologyData S₃
γ₁ : LeftHomologyMapData φ₁ h₁ h₂ := leftHomologyMapData φ₁ h₁ h₂
γ₂ : LeftHomologyMapData φ₂ h₂ h₃ := leftHomologyMapData φ₂ h₂ h₃
⊢ cyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = cyclesMap' φ₁ h₁ h₂ ≫ cyclesMap' φ₂ h₂ h₃
[PROOFSTEP]
rw [γ₁.cyclesMap'_eq, γ₂.cyclesMap'_eq, (γ₁.comp γ₂).cyclesMap'_eq, LeftHomologyMapData.comp_φK]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.116872, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ leftHomologyMap' e.hom h₁ h₂ ≫ leftHomologyMap' e.inv h₂ h₁ = 𝟙 h₁.H
[PROOFSTEP]
rw [← leftHomologyMap'_comp, e.hom_inv_id, leftHomologyMap'_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.116872, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ leftHomologyMap' e.inv h₂ h₁ ≫ leftHomologyMap' e.hom h₁ h₂ = 𝟙 h₂.H
[PROOFSTEP]
rw [← leftHomologyMap'_comp, e.inv_hom_id, leftHomologyMap'_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.119499, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ cyclesMap' e.hom h₁ h₂ ≫ cyclesMap' e.inv h₂ h₁ = 𝟙 h₁.K
[PROOFSTEP]
rw [← cyclesMap'_comp, e.hom_inv_id, cyclesMap'_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.119499, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ cyclesMap' e.inv h₂ h₁ ≫ cyclesMap' e.hom h₁ h₂ = 𝟙 h₂.K
[PROOFSTEP]
rw [← cyclesMap'_comp, e.inv_hom_id, cyclesMap'_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.122110, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ leftHomologyMap e.hom ≫ leftHomologyMap e.inv = 𝟙 (leftHomology S₁)
[PROOFSTEP]
rw [← leftHomologyMap_comp, e.hom_inv_id, leftHomologyMap_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.122110, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ leftHomologyMap e.inv ≫ leftHomologyMap e.hom = 𝟙 (leftHomology S₂)
[PROOFSTEP]
rw [← leftHomologyMap_comp, e.inv_hom_id, leftHomologyMap_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.125711, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ cyclesMap e.hom ≫ cyclesMap e.inv = 𝟙 (cycles S₁)
[PROOFSTEP]
rw [← cyclesMap_comp, e.hom_inv_id, cyclesMap_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.125711, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ cyclesMap e.inv ≫ cyclesMap e.hom = 𝟙 (cycles S₂)
[PROOFSTEP]
rw [← cyclesMap_comp, e.inv_hom_id, cyclesMap_id]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
inst✝ : HasLeftHomology S
⊢ (cyclesIso h).hom ≫ h.i = iCycles S
[PROOFSTEP]
dsimp [iCycles, LeftHomologyData.cyclesIso]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
inst✝ : HasLeftHomology S
⊢ cyclesMap' (𝟙 S) (leftHomologyData S) h ≫ h.i = (leftHomologyData S).i
[PROOFSTEP]
simp only [cyclesMap'_i, id_τ₂, comp_id]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
inst✝ : HasLeftHomology S
⊢ (cyclesIso h).inv ≫ iCycles S = h.i
[PROOFSTEP]
simp only [← h.cyclesIso_hom_comp_i, Iso.inv_hom_id_assoc]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
inst✝ : HasLeftHomology S
⊢ leftHomologyπ S ≫ (leftHomologyIso h).hom = (cyclesIso h).hom ≫ h.π
[PROOFSTEP]
dsimp only [leftHomologyπ, leftHomologyIso, cyclesIso, leftHomologyMapIso', cyclesMapIso', Iso.refl]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
inst✝ : HasLeftHomology S
⊢ (leftHomologyData S).π ≫ leftHomologyMap' (𝟙 S) (leftHomologyData S) h = cyclesMap' (𝟙 S) (leftHomologyData S) h ≫ h.π
[PROOFSTEP]
rw [← leftHomologyπ_naturality']
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
inst✝ : HasLeftHomology S
⊢ h.π ≫ (leftHomologyIso h).inv = (cyclesIso h).inv ≫ leftHomologyπ S
[PROOFSTEP]
simp only [← cancel_epi h.cyclesIso.hom, ← cancel_mono h.leftHomologyIso.hom, assoc, Iso.inv_hom_id, comp_id,
Iso.hom_inv_id_assoc, LeftHomologyData.leftHomologyπ_comp_leftHomologyIso_hom]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ : LeftHomologyMapData φ h₁ h₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ leftHomologyMap φ = (LeftHomologyData.leftHomologyIso h₁).hom ≫ γ.φH ≫ (LeftHomologyData.leftHomologyIso h₂).inv
[PROOFSTEP]
dsimp [LeftHomologyData.leftHomologyIso, leftHomologyMapIso']
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ : LeftHomologyMapData φ h₁ h₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ leftHomologyMap φ =
leftHomologyMap' (𝟙 S₁) (leftHomologyData S₁) h₁ ≫ γ.φH ≫ leftHomologyMap' (𝟙 S₂) h₂ (leftHomologyData S₂)
[PROOFSTEP]
rw [← γ.leftHomologyMap'_eq, ← leftHomologyMap'_comp, ← leftHomologyMap'_comp, id_comp, comp_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ : LeftHomologyMapData φ h₁ h₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ leftHomologyMap φ = leftHomologyMap' φ (leftHomologyData S₁) (leftHomologyData S₂)
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ : LeftHomologyMapData φ h₁ h₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ cyclesMap φ = (LeftHomologyData.cyclesIso h₁).hom ≫ γ.φK ≫ (LeftHomologyData.cyclesIso h₂).inv
[PROOFSTEP]
dsimp [LeftHomologyData.cyclesIso, cyclesMapIso']
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ : LeftHomologyMapData φ h₁ h₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ cyclesMap φ = cyclesMap' (𝟙 S₁) (leftHomologyData S₁) h₁ ≫ γ.φK ≫ cyclesMap' (𝟙 S₂) h₂ (leftHomologyData S₂)
[PROOFSTEP]
rw [← γ.cyclesMap'_eq, ← cyclesMap'_comp, ← cyclesMap'_comp, id_comp, comp_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ : LeftHomologyMapData φ h₁ h₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ cyclesMap φ = cyclesMap' φ (leftHomologyData S₁) (leftHomologyData S₂)
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ : LeftHomologyMapData φ h₁ h₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ leftHomologyMap φ ≫ (LeftHomologyData.leftHomologyIso h₂).hom = (LeftHomologyData.leftHomologyIso h₁).hom ≫ γ.φH
[PROOFSTEP]
simp only [γ.leftHomologyMap_eq, assoc, Iso.inv_hom_id, comp_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ : LeftHomologyMapData φ h₁ h₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ cyclesMap φ ≫ (LeftHomologyData.cyclesIso h₂).hom = (LeftHomologyData.cyclesIso h₁).hom ≫ γ.φK
[PROOFSTEP]
simp only [γ.cyclesMap_eq, assoc, Iso.inv_hom_id, comp_id]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ LeftHomologyData S₂
[PROOFSTEP]
let i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
⊢ LeftHomologyData S₂
[PROOFSTEP]
have wi : i ≫ S₂.g = 0 := by simp only [assoc, φ.comm₂₃, h.wi_assoc, zero_comp]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
⊢ i ≫ S₂.g = 0
[PROOFSTEP]
simp only [assoc, φ.comm₂₃, h.wi_assoc, zero_comp]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
⊢ LeftHomologyData S₂
[PROOFSTEP]
have hi : IsLimit (KernelFork.ofι i wi) :=
KernelFork.IsLimit.ofι _ _
(fun x hx =>
h.liftK (x ≫ inv φ.τ₂)
(by rw [assoc, ← cancel_mono φ.τ₃, assoc, assoc, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, hx, zero_comp]))
(fun x hx => by simp)
(fun x hx b hb => by
dsimp
rw [← cancel_mono h.i, ← cancel_mono φ.τ₂, assoc, assoc, liftK_i_assoc, assoc, IsIso.inv_hom_id, comp_id, hb])
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
W'✝ : C
x : W'✝ ⟶ S₂.X₂
hx : x ≫ S₂.g = 0
⊢ (x ≫ inv φ.τ₂) ≫ S₁.g = 0
[PROOFSTEP]
rw [assoc, ← cancel_mono φ.τ₃, assoc, assoc, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, hx, zero_comp]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
W'✝ : C
x : W'✝ ⟶ S₂.X₂
hx : x ≫ S₂.g = 0
⊢ (fun {W'} x hx => liftK h (x ≫ inv φ.τ₂) (_ : (x ≫ inv φ.τ₂) ≫ S₁.g = 0)) x hx ≫ i = x
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
W'✝ : C
x : W'✝ ⟶ S₂.X₂
hx : x ≫ S₂.g = 0
b : W'✝ ⟶ h.K
hb : b ≫ i = x
⊢ b = (fun {W'} x hx => liftK h (x ≫ inv φ.τ₂) (_ : (x ≫ inv φ.τ₂) ≫ S₁.g = 0)) x hx
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
W'✝ : C
x : W'✝ ⟶ S₂.X₂
hx : x ≫ S₂.g = 0
b : W'✝ ⟶ h.K
hb : b ≫ i = x
⊢ b = liftK h (x ≫ inv φ.τ₂) (_ : (x ≫ inv φ.τ₂) ≫ S₁.g = 0)
[PROOFSTEP]
rw [← cancel_mono h.i, ← cancel_mono φ.τ₂, assoc, assoc, liftK_i_assoc, assoc, IsIso.inv_hom_id, comp_id, hb]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
⊢ LeftHomologyData S₂
[PROOFSTEP]
let f' := hi.lift (KernelFork.ofι S₂.f S₂.zero)
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
⊢ LeftHomologyData S₂
[PROOFSTEP]
have hf' : φ.τ₁ ≫ f' = h.f' :=
by
have eq := @Fork.IsLimit.lift_ι _ _ _ _ _ _ _ ((KernelFork.ofι S₂.f S₂.zero)) hi
simp only [Fork.ι_ofι] at eq
rw [← cancel_mono h.i, ← cancel_mono φ.τ₂, assoc, assoc, eq, f'_i, φ.comm₁₂]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
⊢ φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
[PROOFSTEP]
have eq := @Fork.IsLimit.lift_ι _ _ _ _ _ _ _ ((KernelFork.ofι S₂.f S₂.zero)) hi
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
eq :
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) ≫ Fork.ι (KernelFork.ofι i wi) =
Fork.ι (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
⊢ φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
[PROOFSTEP]
simp only [Fork.ι_ofι] at eq
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
eq : IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)) ≫ h.i ≫ φ.τ₂ = S₂.f
⊢ φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
[PROOFSTEP]
rw [← cancel_mono h.i, ← cancel_mono φ.τ₂, assoc, assoc, eq, f'_i, φ.comm₁₂]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
⊢ LeftHomologyData S₂
[PROOFSTEP]
have wπ : f' ≫ h.π = 0 := by rw [← cancel_epi φ.τ₁, comp_zero, reassoc_of% hf', h.f'_π]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
⊢ f' ≫ h.π = 0
[PROOFSTEP]
rw [← cancel_epi φ.τ₁, comp_zero, reassoc_of% hf', h.f'_π]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
wπ : f' ≫ h.π = 0
⊢ LeftHomologyData S₂
[PROOFSTEP]
have hπ : IsColimit (CokernelCofork.ofπ h.π wπ) :=
CokernelCofork.IsColimit.ofπ _ _ (fun x hx => h.descH x (by rw [← hf', assoc, hx, comp_zero])) (fun x hx => by simp)
(fun x hx b hb => by rw [← cancel_epi h.π, π_descH, hb])
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
wπ : f' ≫ h.π = 0
Z'✝ : C
x : h.K ⟶ Z'✝
hx : f' ≫ x = 0
⊢ CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0
[PROOFSTEP]
rw [← hf', assoc, hx, comp_zero]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
wπ : f' ≫ h.π = 0
Z'✝ : C
x : h.K ⟶ Z'✝
hx : f' ≫ x = 0
⊢ h.π ≫ (fun {Z'} x hx => descH h x (_ : CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0)) x hx = x
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
wπ : f' ≫ h.π = 0
Z'✝ : C
x : h.K ⟶ Z'✝
hx : f' ≫ x = 0
b : h.H ⟶ Z'✝
hb : h.π ≫ b = x
⊢ b = (fun {Z'} x hx => descH h x (_ : CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0)) x hx
[PROOFSTEP]
rw [← cancel_epi h.π, π_descH, hb]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.150309, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₂.X₂ := h.i ≫ φ.τ₂
wi : i ≫ S₂.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₂.f (_ : S₂.f ≫ S₂.g = 0))
hf' : φ.τ₁ ≫ f' = CategoryTheory.ShortComplex.LeftHomologyData.f' h
wπ : f' ≫ h.π = 0
hπ : IsColimit (CokernelCofork.ofπ h.π wπ)
⊢ LeftHomologyData S₂
[PROOFSTEP]
exact ⟨h.K, h.H, i, h.π, wi, hi, wπ, hπ⟩
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ φ.τ₁ ≫ f' (ofEpiOfIsIsoOfMono φ h) = f' h
[PROOFSTEP]
rw [← cancel_mono (ofEpiOfIsIsoOfMono φ h).i, assoc, f'_i, ofEpiOfIsIsoOfMono_i, f'_i_assoc, φ.comm₁₂]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ LeftHomologyData S₁
[PROOFSTEP]
let i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
⊢ LeftHomologyData S₁
[PROOFSTEP]
have wi : i ≫ S₁.g = 0 := by
rw [assoc, ← cancel_mono φ.τ₃, zero_comp, assoc, assoc, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, h.wi]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
⊢ i ≫ S₁.g = 0
[PROOFSTEP]
rw [assoc, ← cancel_mono φ.τ₃, zero_comp, assoc, assoc, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, h.wi]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
⊢ LeftHomologyData S₁
[PROOFSTEP]
have hi : IsLimit (KernelFork.ofι i wi) :=
KernelFork.IsLimit.ofι _ _ (fun x hx => h.liftK (x ≫ φ.τ₂) (by rw [assoc, φ.comm₂₃, reassoc_of% hx, zero_comp]))
(fun x hx => by simp)
(fun x hx b hb => by
rw [← cancel_mono h.i, ← cancel_mono (inv φ.τ₂), assoc, assoc, hb, liftK_i_assoc, assoc, IsIso.hom_inv_id,
comp_id])
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
W'✝ : C
x : W'✝ ⟶ S₁.X₂
hx : x ≫ S₁.g = 0
⊢ (x ≫ φ.τ₂) ≫ S₂.g = 0
[PROOFSTEP]
rw [assoc, φ.comm₂₃, reassoc_of% hx, zero_comp]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
W'✝ : C
x : W'✝ ⟶ S₁.X₂
hx : x ≫ S₁.g = 0
⊢ (fun {W'} x hx => liftK h (x ≫ φ.τ₂) (_ : (x ≫ φ.τ₂) ≫ S₂.g = 0)) x hx ≫ i = x
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
W'✝ : C
x : W'✝ ⟶ S₁.X₂
hx : x ≫ S₁.g = 0
b : W'✝ ⟶ h.K
hb : b ≫ i = x
⊢ b = (fun {W'} x hx => liftK h (x ≫ φ.τ₂) (_ : (x ≫ φ.τ₂) ≫ S₂.g = 0)) x hx
[PROOFSTEP]
rw [← cancel_mono h.i, ← cancel_mono (inv φ.τ₂), assoc, assoc, hb, liftK_i_assoc, assoc, IsIso.hom_inv_id, comp_id]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
⊢ LeftHomologyData S₁
[PROOFSTEP]
let f' := hi.lift (KernelFork.ofι S₁.f S₁.zero)
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0))
⊢ LeftHomologyData S₁
[PROOFSTEP]
have hf' : f' ≫ i = S₁.f := Fork.IsLimit.lift_ι _
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0))
hf' : f' ≫ i = S₁.f
⊢ LeftHomologyData S₁
[PROOFSTEP]
have hf'' : f' = φ.τ₁ ≫ h.f' := by
rw [← cancel_mono h.i, ← cancel_mono (inv φ.τ₂), assoc, assoc, assoc, hf', f'_i_assoc, φ.comm₁₂_assoc,
IsIso.hom_inv_id, comp_id]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0))
hf' : f' ≫ i = S₁.f
⊢ f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h
[PROOFSTEP]
rw [← cancel_mono h.i, ← cancel_mono (inv φ.τ₂), assoc, assoc, assoc, hf', f'_i_assoc, φ.comm₁₂_assoc, IsIso.hom_inv_id,
comp_id]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0))
hf' : f' ≫ i = S₁.f
hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h
⊢ LeftHomologyData S₁
[PROOFSTEP]
have wπ : f' ≫ h.π = 0 := by simp only [hf'', assoc, f'_π, comp_zero]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0))
hf' : f' ≫ i = S₁.f
hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h
⊢ f' ≫ h.π = 0
[PROOFSTEP]
simp only [hf'', assoc, f'_π, comp_zero]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0))
hf' : f' ≫ i = S₁.f
hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h
wπ : f' ≫ h.π = 0
⊢ LeftHomologyData S₁
[PROOFSTEP]
have hπ : IsColimit (CokernelCofork.ofπ h.π wπ) :=
CokernelCofork.IsColimit.ofπ _ _
(fun x hx => h.descH x (by rw [← cancel_epi φ.τ₁, ← reassoc_of% hf'', hx, comp_zero])) (fun x hx => π_descH _ _ _)
(fun x hx b hx => by rw [← cancel_epi h.π, π_descH, hx])
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0))
hf' : f' ≫ i = S₁.f
hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h
wπ : f' ≫ h.π = 0
Z'✝ : C
x : h.K ⟶ Z'✝
hx : f' ≫ x = 0
⊢ CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0
[PROOFSTEP]
rw [← cancel_epi φ.τ₁, ← reassoc_of% hf'', hx, comp_zero]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0))
hf' : f' ≫ i = S₁.f
hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h
wπ : f' ≫ h.π = 0
Z'✝ : C
x : h.K ⟶ Z'✝
hx✝ : f' ≫ x = 0
b : h.H ⟶ Z'✝
hx : h.π ≫ b = x
⊢ b = (fun {Z'} x hx => descH h x (_ : CategoryTheory.ShortComplex.LeftHomologyData.f' h ≫ x = 0)) x hx✝
[PROOFSTEP]
rw [← cancel_epi h.π, π_descH, hx]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.166978, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
i : h.K ⟶ S₁.X₂ := h.i ≫ inv φ.τ₂
wi : i ≫ S₁.g = 0
hi : IsLimit (KernelFork.ofι i wi)
f' : (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0)).pt ⟶ (KernelFork.ofι i wi).pt :=
IsLimit.lift hi (KernelFork.ofι S₁.f (_ : S₁.f ≫ S₁.g = 0))
hf' : f' ≫ i = S₁.f
hf'' : f' = φ.τ₁ ≫ CategoryTheory.ShortComplex.LeftHomologyData.f' h
wπ : f' ≫ h.π = 0
hπ : IsColimit (CokernelCofork.ofπ h.π wπ)
⊢ LeftHomologyData S₁
[PROOFSTEP]
exact ⟨h.K, h.H, i, h.π, wi, hi, wπ, hπ⟩
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ f' (ofEpiOfIsIsoOfMono' φ h) = φ.τ₁ ≫ f' h
[PROOFSTEP]
rw [← cancel_mono (ofEpiOfIsIsoOfMono' φ h).i, f'_i, ofEpiOfIsIsoOfMono'_i, assoc, f'_i_assoc, φ.comm₁₂_assoc,
IsIso.hom_inv_id, comp_id]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.195682, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ IsIso (leftHomologyMap' φ h₁ h₂)
[PROOFSTEP]
let h₂' := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.195682, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁
⊢ IsIso (leftHomologyMap' φ h₁ h₂)
[PROOFSTEP]
have : IsIso (leftHomologyMap' φ h₁ h₂') :=
by
rw [(LeftHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).leftHomologyMap'_eq]
dsimp
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.195682, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁
⊢ IsIso (leftHomologyMap' φ h₁ h₂')
[PROOFSTEP]
rw [(LeftHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).leftHomologyMap'_eq]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.195682, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁
⊢ IsIso (LeftHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).φH
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.195682, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁
⊢ IsIso (𝟙 h₁.H)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.195682, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁
this : IsIso (leftHomologyMap' φ h₁ h₂')
⊢ IsIso (leftHomologyMap' φ h₁ h₂)
[PROOFSTEP]
have eq := leftHomologyMap'_comp φ (𝟙 S₂) h₁ h₂' h₂
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.195682, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁
this : IsIso (leftHomologyMap' φ h₁ h₂')
eq : leftHomologyMap' (φ ≫ 𝟙 S₂) h₁ h₂ = leftHomologyMap' φ h₁ h₂' ≫ leftHomologyMap' (𝟙 S₂) h₂' h₂
⊢ IsIso (leftHomologyMap' φ h₁ h₂)
[PROOFSTEP]
rw [comp_id] at eq
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.195682, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁
this : IsIso (leftHomologyMap' φ h₁ h₂')
eq : leftHomologyMap' φ h₁ h₂ = leftHomologyMap' φ h₁ h₂' ≫ leftHomologyMap' (𝟙 S₂) h₂' h₂
⊢ IsIso (leftHomologyMap' φ h₁ h₂)
[PROOFSTEP]
rw [eq]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.195682, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : LeftHomologyData S₂ := LeftHomologyData.ofEpiOfIsIsoOfMono φ h₁
this : IsIso (leftHomologyMap' φ h₁ h₂')
eq : leftHomologyMap' φ h₁ h₂ = leftHomologyMap' φ h₁ h₂' ≫ leftHomologyMap' (𝟙 S₂) h₂' h₂
⊢ IsIso (leftHomologyMap' φ h₁ h₂' ≫ leftHomologyMap' (𝟙 S₂) h₂' h₂)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁶ : Category.{?u.197546, u_1} C
inst✝⁵ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
inst✝⁴ : HasLeftHomology S₁
inst✝³ : HasLeftHomology S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ IsIso (leftHomologyMap φ)
[PROOFSTEP]
dsimp only [leftHomologyMap]
[GOAL]
C : Type u_1
inst✝⁶ : Category.{?u.197546, u_1} C
inst✝⁵ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
inst✝⁴ : HasLeftHomology S₁
inst✝³ : HasLeftHomology S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ IsIso (leftHomologyMap' φ (leftHomologyData S₁) (leftHomologyData S₂))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝² : Category.{?u.201841, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝ : HasLeftHomology S
A' : C
α : A' ⟶ A
⊢ (α ≫ k) ≫ S.g = 0
[PROOFSTEP]
rw [assoc, hk, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝ : HasLeftHomology S
A' : C
α : A' ⟶ A
⊢ α ≫ liftCycles S k hk = liftCycles S (α ≫ k) (_ : (α ≫ k) ≫ S.g = 0)
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.205152, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝¹ : HasLeftHomology S
inst✝ : HasKernel S.g
⊢ iCycles S ≫ S.g = 0
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.205152, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝¹ : HasLeftHomology S
inst✝ : HasKernel S.g
⊢ kernel.ι S.g ≫ S.g = 0
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝² : Category.{?u.209151, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝ : HasLeftHomology S
x : A ⟶ S.X₁
hx : k = x ≫ S.f
⊢ k ≫ S.g = 0
[PROOFSTEP]
rw [hx, assoc, S.zero, comp_zero]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝ : HasLeftHomology S
⊢ S.f = 𝟙 S.X₁ ≫ S.f
[PROOFSTEP]
rw [id_comp]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.213429, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝¹ : HasLeftHomology S
φ : S ⟶ S₁
inst✝ : HasLeftHomology S₁
⊢ (k ≫ φ.τ₂) ≫ S₁.g = 0
[PROOFSTEP]
rw [assoc, φ.comm₂₃, reassoc_of% hk, zero_comp]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝¹ : HasLeftHomology S
φ : S ⟶ S₁
inst✝ : HasLeftHomology S₁
⊢ liftCycles S k hk ≫ cyclesMap φ = liftCycles S₁ (k ≫ φ.τ₂) (_ : (k ≫ φ.τ₂) ≫ S₁.g = 0)
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝ : HasLeftHomology S
⊢ liftCycles S k hk ≫ (cyclesIso h).hom = liftK h k hk
[PROOFSTEP]
simp only [← cancel_mono h.i, assoc, LeftHomologyData.cyclesIso_hom_comp_i, liftCycles_i, LeftHomologyData.liftK_i]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : LeftHomologyData S
A : C
k : A ⟶ S.X₂
hk : k ≫ S.g = 0
inst✝ : HasLeftHomology S
⊢ liftK h k hk ≫ (cyclesIso h).inv = liftCycles S k hk
[PROOFSTEP]
rw [← h.liftCycles_comp_cyclesIso_hom, assoc, Iso.hom_inv_id, comp_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasLeftHomology S
inst✝ : HasKernel S.g
⊢ HasCokernel (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0))
[PROOFSTEP]
let h := S.leftHomologyData
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasLeftHomology S
inst✝ : HasKernel S.g
h : LeftHomologyData S := leftHomologyData S
⊢ HasCokernel (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0))
[PROOFSTEP]
haveI : HasColimit (parallelPair h.f' 0) := ⟨⟨⟨_, h.hπ'⟩⟩⟩
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasLeftHomology S
inst✝ : HasKernel S.g
h : LeftHomologyData S := leftHomologyData S
this : HasColimit (parallelPair (LeftHomologyData.f' h) 0)
⊢ HasCokernel (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0))
[PROOFSTEP]
let e : parallelPair (kernel.lift S.g S.f S.zero) 0 ≅ parallelPair h.f' 0 :=
parallelPair.ext (Iso.refl _) (IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi) (by aesop_cat) (by aesop_cat)
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasLeftHomology S
inst✝ : HasKernel S.g
h : LeftHomologyData S := leftHomologyData S
this : HasColimit (parallelPair (LeftHomologyData.f' h) 0)
⊢ (parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.left ≫
(IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi).hom =
(Iso.refl ((parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.zero)).hom ≫
(parallelPair (LeftHomologyData.f' h) 0).map WalkingParallelPairHom.left
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasLeftHomology S
inst✝ : HasKernel S.g
h : LeftHomologyData S := leftHomologyData S
this : HasColimit (parallelPair (LeftHomologyData.f' h) 0)
⊢ (parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.right ≫
(IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi).hom =
(Iso.refl ((parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.zero)).hom ≫
(parallelPair (LeftHomologyData.f' h) 0).map WalkingParallelPairHom.right
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasLeftHomology S
inst✝ : HasKernel S.g
h : LeftHomologyData S := leftHomologyData S
this : HasColimit (parallelPair (LeftHomologyData.f' h) 0)
e : parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0 ≅ parallelPair (LeftHomologyData.f' h) 0 :=
parallelPair.ext (Iso.refl ((parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.zero))
(IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi)
(_ :
(parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.left ≫
(IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) h.hi).hom =
(Iso.refl ((parallelPair (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.zero)).hom ≫
(parallelPair (LeftHomologyData.f' h) 0).map WalkingParallelPairHom.left)
(_ : 0 ≫ (IsLimit.conePointUniqueUpToIso (kernelIsKernel S.g) (leftHomologyData S).hi).hom = 𝟙 S.X₁ ≫ 0)
⊢ HasCokernel (kernel.lift S.g S.f (_ : S.f ≫ S.g = 0))
[PROOFSTEP]
exact hasColimitOfIso e
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₂✝ : IsIso φ.τ₂
h₃ : Mono φ.τ₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ IsIso (cyclesMap' φ h₁ h₂)
[PROOFSTEP]
refine' ⟨h₁.liftK (h₂.i ≫ inv φ.τ₂) _, _, _⟩
[GOAL]
case refine'_1
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₂✝ : IsIso φ.τ₂
h₃ : Mono φ.τ₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ (h₂.i ≫ inv φ.τ₂) ≫ S₁.g = 0
[PROOFSTEP]
simp only [assoc, ← cancel_mono φ.τ₃, zero_comp, ← φ.comm₂₃, IsIso.inv_hom_id_assoc, h₂.wi]
[GOAL]
case refine'_2
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₂✝ : IsIso φ.τ₂
h₃ : Mono φ.τ₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ cyclesMap' φ h₁ h₂ ≫ LeftHomologyData.liftK h₁ (h₂.i ≫ inv φ.τ₂) (_ : (h₂.i ≫ inv φ.τ₂) ≫ S₁.g = 0) = 𝟙 h₁.K
[PROOFSTEP]
simp only [← cancel_mono h₁.i, assoc, h₁.liftK_i, cyclesMap'_i_assoc, IsIso.hom_inv_id, comp_id, id_comp]
[GOAL]
case refine'_3
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₂✝ : IsIso φ.τ₂
h₃ : Mono φ.τ₃
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ LeftHomologyData.liftK h₁ (h₂.i ≫ inv φ.τ₂) (_ : (h₂.i ≫ inv φ.τ₂) ≫ S₁.g = 0) ≫ cyclesMap' φ h₁ h₂ = 𝟙 h₂.K
[PROOFSTEP]
simp only [← cancel_mono h₂.i, assoc, cyclesMap'_i, h₁.liftK_i_assoc, IsIso.inv_hom_id, comp_id, id_comp]
| {"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.LeftHomology", "llama_tokens": 34217} |
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.11796, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
x : S.X₃ ⟶ A
hx : k = S.g ≫ x
⊢ S.f ≫ k = 0
[PROOFSTEP]
rw [hx, S.zero_assoc, zero_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
x : S.X₃ ⟶ A
hx : k = S.g ≫ x
⊢ h.ι ≫ descQ h k (_ : S.f ≫ k = 0) = 0
[PROOFSTEP]
rw [show 0 = h.ι ≫ h.g' ≫ x by simp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
x : S.X₃ ⟶ A
hx : k = S.g ≫ x
⊢ 0 = h.ι ≫ g' h ≫ x
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
x : S.X₃ ⟶ A
hx : k = S.g ≫ x
⊢ h.ι ≫ descQ h k (_ : S.f ≫ k = 0) = h.ι ≫ g' h ≫ x
[PROOFSTEP]
congr 1
[GOAL]
case e_a
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
x : S.X₃ ⟶ A
hx : k = S.g ≫ x
⊢ descQ h k (_ : S.f ≫ k = 0) = g' h ≫ x
[PROOFSTEP]
simp only [← cancel_epi h.p, hx, p_descQ, p_g'_assoc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hf : S.f = 0
⊢ S.f ≫ 𝟙 S.X₂ = 0
[PROOFSTEP]
rw [hf, comp_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hf : S.f = 0
⊢ descQ h (𝟙 S.X₂) (_ : S.f ≫ 𝟙 S.X₂ = 0) ≫ h.p = 𝟙 h.Q
[PROOFSTEP]
simp only [← cancel_epi h.p, p_descQ_assoc, id_comp, comp_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hg : S.g = 0
⊢ IsIso h.ι
[PROOFSTEP]
have ⟨φ, hφ⟩ := KernelFork.IsLimit.lift' h.hι' (𝟙 _) (by rw [← cancel_epi h.p, id_comp, p_g', comp_zero, hg])
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hg : S.g = 0
⊢ 𝟙 h.Q ≫ g' h = 0
[PROOFSTEP]
rw [← cancel_epi h.p, id_comp, p_g', comp_zero, hg]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hg : S.g = 0
φ : h.Q ⟶ (KernelFork.ofι h.ι (_ : h.ι ≫ g' h = 0)).pt
hφ : φ ≫ Fork.ι (KernelFork.ofι h.ι (_ : h.ι ≫ g' h = 0)) = 𝟙 h.Q
⊢ IsIso h.ι
[PROOFSTEP]
dsimp at hφ
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hg : S.g = 0
φ : h.Q ⟶ (KernelFork.ofι h.ι (_ : h.ι ≫ g' h = 0)).pt
hφ : φ ≫ h.ι = 𝟙 h.Q
⊢ IsIso h.ι
[PROOFSTEP]
exact ⟨φ, by rw [← cancel_mono h.ι, assoc, hφ, comp_id, id_comp], hφ⟩
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hg : S.g = 0
φ : h.Q ⟶ (KernelFork.ofι h.ι (_ : h.ι ≫ g' h = 0)).pt
hφ : φ ≫ h.ι = 𝟙 h.Q
⊢ h.ι ≫ φ = 𝟙 h.H
[PROOFSTEP]
rw [← cancel_mono h.ι, assoc, hφ, comp_id, id_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.20229, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hf : S.f = 0
c : KernelFork S.g
hc : IsLimit c
⊢ S.f ≫ 𝟙 S.X₂ = 0
[PROOFSTEP]
rw [comp_id, hf]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.20229, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hf : S.f = 0
c : KernelFork S.g
hc : IsLimit c
⊢ (Iso.refl c.pt).hom ≫ Fork.ι (KernelFork.ofι (Fork.ι c) (_ : Fork.ι c ≫ S.g = 0)) = Fork.ι c
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hf : S.f = 0
c : KernelFork S.g
hc : IsLimit c
⊢ g' (ofIsLimitKernelFork S hf c hc) = S.g
[PROOFSTEP]
rw [← cancel_epi (ofIsLimitKernelFork S hf c hc).p, p_g', ofIsLimitKernelFork_p, id_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.25328, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hg : S.g = 0
c : CokernelCofork S.f
hc : IsColimit c
⊢ Cofork.π c ≫ (Iso.refl c.pt).hom = Cofork.π (CokernelCofork.ofπ (Cofork.π c) (_ : S.f ≫ Cofork.π c = 0))
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.25328, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hg : S.g = 0
c : CokernelCofork S.f
hc : IsColimit c
⊢ Cofork.π c ≫
𝟙 c.pt ≫
IsColimit.desc (IsColimit.ofIsoColimit hc (Cofork.ext (Iso.refl c.pt)))
(CokernelCofork.ofπ S.g (_ : S.f ≫ S.g = 0)) =
Cofork.π c ≫ 0
[PROOFSTEP]
simp [hg]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.25328, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hg : S.g = 0
c : CokernelCofork S.f
hc : IsColimit c
⊢ Cofork.π c ≫
IsColimit.desc (IsColimit.ofIsoColimit hc (Cofork.ext (Iso.refl c.pt)))
(CokernelCofork.ofπ S.g (_ : S.f ≫ S.g = 0)) =
Cofork.π c ≫ 0
[PROOFSTEP]
simp [hg]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hg : S.g = 0
c : CokernelCofork S.f
hc : IsColimit c
⊢ g' (ofIsColimitCokernelCofork S hg c hc) = 0
[PROOFSTEP]
rw [← cancel_epi (ofIsColimitCokernelCofork S hg c hc).p, p_g', hg, comp_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.30991, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hf : S.f = 0
hg : S.g = 0
⊢ S.f ≫ 𝟙 S.X₂ = 0
[PROOFSTEP]
rw [comp_id, hf]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.30991, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hf : S.f = 0
hg : S.g = 0
⊢ 𝟙 S.X₂ ≫ IsColimit.desc (CokernelCofork.IsColimit.ofId S.f hf) (CokernelCofork.ofπ S.g (_ : S.f ≫ S.g = 0)) = 0
[PROOFSTEP]
change 𝟙 _ ≫ S.g = 0
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.30991, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hf : S.f = 0
hg : S.g = 0
⊢ 𝟙 S.X₂ ≫ S.g = 0
[PROOFSTEP]
simp only [hg, comp_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
hf : S.f = 0
hg : S.g = 0
⊢ g' (ofZeros S hf hg) = 0
[PROOFSTEP]
rw [← cancel_epi ((ofZeros S hf hg).p), comp_zero, p_g', hg]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.57832, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂
⊢ ψ₁ = ψ₂
[PROOFSTEP]
have hQ : ψ₁.φQ = ψ₂.φQ := by rw [← cancel_epi h₁.p, commp, commp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.57832, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂
⊢ ψ₁.φQ = ψ₂.φQ
[PROOFSTEP]
rw [← cancel_epi h₁.p, commp, commp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.57832, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂
hQ : ψ₁.φQ = ψ₂.φQ
⊢ ψ₁ = ψ₂
[PROOFSTEP]
have hH : ψ₁.φH = ψ₂.φH := by rw [← cancel_mono h₂.ι, commι, commι, hQ]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.57832, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂
hQ : ψ₁.φQ = ψ₂.φQ
⊢ ψ₁.φH = ψ₂.φH
[PROOFSTEP]
rw [← cancel_mono h₂.ι, commι, commι, hQ]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.57832, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ₁ ψ₂ : RightHomologyMapData φ h₁ h₂
hQ : ψ₁.φQ = ψ₂.φQ
hH : ψ₁.φH = ψ₂.φH
⊢ ψ₁ = ψ₂
[PROOFSTEP]
cases ψ₁
[GOAL]
case mk
C : Type u_1
inst✝¹ : Category.{?u.57832, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ₂ : RightHomologyMapData φ h₁ h₂
φQ✝ : h₁.Q ⟶ h₂.Q
φH✝ : h₁.H ⟶ h₂.H
commp✝ : h₁.p ≫ φQ✝ = φ.τ₂ ≫ h₂.p
commg'✝ : φQ✝ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
commι✝ : φH✝ ≫ h₂.ι = h₁.ι ≫ φQ✝
hQ : (mk φQ✝ φH✝).φQ = ψ₂.φQ
hH : (mk φQ✝ φH✝).φH = ψ₂.φH
⊢ mk φQ✝ φH✝ = ψ₂
[PROOFSTEP]
cases ψ₂
[GOAL]
case mk.mk
C : Type u_1
inst✝¹ : Category.{?u.57832, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
φQ✝¹ : h₁.Q ⟶ h₂.Q
φH✝¹ : h₁.H ⟶ h₂.H
commp✝¹ : h₁.p ≫ φQ✝¹ = φ.τ₂ ≫ h₂.p
commg'✝¹ : φQ✝¹ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
commι✝¹ : φH✝¹ ≫ h₂.ι = h₁.ι ≫ φQ✝¹
φQ✝ : h₁.Q ⟶ h₂.Q
φH✝ : h₁.H ⟶ h₂.H
commp✝ : h₁.p ≫ φQ✝ = φ.τ₂ ≫ h₂.p
commg'✝ : φQ✝ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
commι✝ : φH✝ ≫ h₂.ι = h₁.ι ≫ φQ✝
hQ : (mk φQ✝¹ φH✝¹).φQ = (mk φQ✝ φH✝).φQ
hH : (mk φQ✝¹ φH✝¹).φH = (mk φQ✝ φH✝).φH
⊢ mk φQ✝¹ φH✝¹ = mk φQ✝ φH✝
[PROOFSTEP]
congr
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.60291, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ RightHomologyMapData φ h₁ h₂
[PROOFSTEP]
let φQ : h₁.Q ⟶ h₂.Q := h₁.descQ (φ.τ₂ ≫ h₂.p) (by rw [← φ.comm₁₂_assoc, h₂.wp, comp_zero])
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.60291, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ S₁.f ≫ φ.τ₂ ≫ h₂.p = 0
[PROOFSTEP]
rw [← φ.comm₁₂_assoc, h₂.wp, comp_zero]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.60291, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0)
⊢ RightHomologyMapData φ h₁ h₂
[PROOFSTEP]
have commg' : φQ ≫ h₂.g' = h₁.g' ≫ φ.τ₃ := by
rw [← cancel_epi h₁.p, RightHomologyData.p_descQ_assoc, assoc, RightHomologyData.p_g', φ.comm₂₃,
RightHomologyData.p_g'_assoc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.60291, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0)
⊢ φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
[PROOFSTEP]
rw [← cancel_epi h₁.p, RightHomologyData.p_descQ_assoc, assoc, RightHomologyData.p_g', φ.comm₂₃,
RightHomologyData.p_g'_assoc]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.60291, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0)
commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
⊢ RightHomologyMapData φ h₁ h₂
[PROOFSTEP]
let φH : h₁.H ⟶ h₂.H := h₂.liftH (h₁.ι ≫ φQ) (by rw [assoc, commg', RightHomologyData.ι_g'_assoc, zero_comp])
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.60291, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0)
commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
⊢ (h₁.ι ≫ φQ) ≫ RightHomologyData.g' h₂ = 0
[PROOFSTEP]
rw [assoc, commg', RightHomologyData.ι_g'_assoc, zero_comp]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.60291, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0)
commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
φH : h₁.H ⟶ h₂.H := RightHomologyData.liftH h₂ (h₁.ι ≫ φQ) (_ : (h₁.ι ≫ φQ) ≫ RightHomologyData.g' h₂ = 0)
⊢ RightHomologyMapData φ h₁ h₂
[PROOFSTEP]
exact ⟨φQ, φH, by simp, commg', by simp⟩
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.60291, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0)
commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
φH : h₁.H ⟶ h₂.H := RightHomologyData.liftH h₂ (h₁.ι ≫ φQ) (_ : (h₁.ι ≫ φQ) ≫ RightHomologyData.g' h₂ = 0)
⊢ h₁.p ≫ φQ = φ.τ₂ ≫ h₂.p
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.60291, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
φQ : h₁.Q ⟶ h₂.Q := RightHomologyData.descQ h₁ (φ.τ₂ ≫ h₂.p) (_ : S₁.f ≫ φ.τ₂ ≫ h₂.p = 0)
commg' : φQ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
φH : h₁.H ⟶ h₂.H := RightHomologyData.liftH h₂ (h₁.ι ≫ φQ) (_ : (h₁.ι ≫ φQ) ≫ RightHomologyData.g' h₂ = 0)
⊢ φH ≫ h₂.ι = h₁.ι ≫ φQ
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ₁ γ₂ : RightHomologyMapData φ h₁ h₂
eq : γ₁ = γ₂
⊢ γ₁.φH = γ₂.φH
[PROOFSTEP]
rw [eq]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ₁ γ₂ : RightHomologyMapData φ h₁ h₂
eq : γ₁ = γ₂
⊢ γ₁.φQ = γ₂.φQ
[PROOFSTEP]
rw [eq]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.68471, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ✝ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
φ : S₁ ⟶ S₂
hf₁ : S₁.f = 0
c₁ : KernelFork S₁.g
hc₁ : IsLimit c₁
hf₂ : S₂.f = 0
c₂ : KernelFork S₂.g
hc₂ : IsLimit c₂
f : c₁.pt ⟶ c₂.pt
comm : Fork.ι c₁ ≫ φ.τ₂ = f ≫ Fork.ι c₂
⊢ φ.τ₂ ≫ RightHomologyData.g' (RightHomologyData.ofIsLimitKernelFork S₂ hf₂ c₂ hc₂) =
RightHomologyData.g' (RightHomologyData.ofIsLimitKernelFork S₁ hf₁ c₁ hc₁) ≫ φ.τ₃
[PROOFSTEP]
simp only [RightHomologyData.ofIsLimitKernelFork_g', φ.comm₂₃]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.88776, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
⊢ Epi (pOpcycles S)
[PROOFSTEP]
dsimp only [pOpcycles]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.88776, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
⊢ Epi (rightHomologyData S).p
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝² : Category.{?u.89155, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
⊢ Mono (rightHomologyι S)
[PROOFSTEP]
dsimp only [rightHomologyι]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.89155, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
⊢ Mono (rightHomologyData S).ι
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
A : C
f₁ f₂ : A ⟶ rightHomology S
⊢ f₁ = f₂ ↔ f₁ ≫ rightHomologyι S = f₂ ≫ rightHomologyι S
[PROOFSTEP]
rw [cancel_mono]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
A : C
f₁ f₂ : A ⟶ rightHomology S
h : f₁ ≫ rightHomologyι S = f₂ ≫ rightHomologyι S
⊢ f₁ = f₂
[PROOFSTEP]
simpa only [rightHomology_ext_iff]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
A : C
f₁ f₂ : opcycles S ⟶ A
⊢ f₁ = f₂ ↔ pOpcycles S ≫ f₁ = pOpcycles S ≫ f₂
[PROOFSTEP]
rw [cancel_epi]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
A : C
f₁ f₂ : opcycles S ⟶ A
h : pOpcycles S ≫ f₁ = pOpcycles S ≫ f₂
⊢ f₁ = f₂
[PROOFSTEP]
simpa only [opcycles_ext_iff]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.92901, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
hf : S.f = 0
⊢ opcycles S ≅ S.X₂
[PROOFSTEP]
have := S.isIso_pOpcycles hf
[GOAL]
C : Type u_1
inst✝² : Category.{?u.92901, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
hf : S.f = 0
this : IsIso (pOpcycles S)
⊢ opcycles S ≅ S.X₂
[PROOFSTEP]
exact (asIso S.pOpcycles).symm
[GOAL]
C : Type u_1
inst✝² : Category.{?u.95802, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
hg : S.g = 0
⊢ opcycles S ≅ rightHomology S
[PROOFSTEP]
have := S.isIso_rightHomologyι hg
[GOAL]
C : Type u_1
inst✝² : Category.{?u.95802, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝ : HasRightHomology S
hg : S.g = 0
this : IsIso (rightHomologyι S)
⊢ opcycles S ≅ rightHomology S
[PROOFSTEP]
exact (asIso S.rightHomologyι).symm
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ opcyclesMap' φ h₁ h₂ ≫ RightHomologyData.g' h₂ = RightHomologyData.g' h₁ ≫ φ.τ₃
[PROOFSTEP]
simp only [← cancel_epi h₁.p, assoc, φ.comm₂₃, p_opcyclesMap'_assoc, RightHomologyData.p_g'_assoc,
RightHomologyData.p_g']
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
h₃ : RightHomologyData S₃
⊢ rightHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = rightHomologyMap' φ₁ h₁ h₂ ≫ rightHomologyMap' φ₂ h₂ h₃
[PROOFSTEP]
let γ₁ := rightHomologyMapData φ₁ h₁ h₂
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
h₃ : RightHomologyData S₃
γ₁ : RightHomologyMapData φ₁ h₁ h₂ := rightHomologyMapData φ₁ h₁ h₂
⊢ rightHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = rightHomologyMap' φ₁ h₁ h₂ ≫ rightHomologyMap' φ₂ h₂ h₃
[PROOFSTEP]
let γ₂ := rightHomologyMapData φ₂ h₂ h₃
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
h₃ : RightHomologyData S₃
γ₁ : RightHomologyMapData φ₁ h₁ h₂ := rightHomologyMapData φ₁ h₁ h₂
γ₂ : RightHomologyMapData φ₂ h₂ h₃ := rightHomologyMapData φ₂ h₂ h₃
⊢ rightHomologyMap' (φ₁ ≫ φ₂) h₁ h₃ = rightHomologyMap' φ₁ h₁ h₂ ≫ rightHomologyMap' φ₂ h₂ h₃
[PROOFSTEP]
rw [γ₁.rightHomologyMap'_eq, γ₂.rightHomologyMap'_eq, (γ₁.comp γ₂).rightHomologyMap'_eq, RightHomologyMapData.comp_φH]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
h₃ : RightHomologyData S₃
⊢ opcyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = opcyclesMap' φ₁ h₁ h₂ ≫ opcyclesMap' φ₂ h₂ h₃
[PROOFSTEP]
let γ₁ := rightHomologyMapData φ₁ h₁ h₂
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
h₃ : RightHomologyData S₃
γ₁ : RightHomologyMapData φ₁ h₁ h₂ := rightHomologyMapData φ₁ h₁ h₂
⊢ opcyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = opcyclesMap' φ₁ h₁ h₂ ≫ opcyclesMap' φ₂ h₂ h₃
[PROOFSTEP]
let γ₂ := rightHomologyMapData φ₂ h₂ h₃
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ₁ : S₁ ⟶ S₂
φ₂ : S₂ ⟶ S₃
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
h₃ : RightHomologyData S₃
γ₁ : RightHomologyMapData φ₁ h₁ h₂ := rightHomologyMapData φ₁ h₁ h₂
γ₂ : RightHomologyMapData φ₂ h₂ h₃ := rightHomologyMapData φ₂ h₂ h₃
⊢ opcyclesMap' (φ₁ ≫ φ₂) h₁ h₃ = opcyclesMap' φ₁ h₁ h₂ ≫ opcyclesMap' φ₂ h₂ h₃
[PROOFSTEP]
rw [γ₁.opcyclesMap'_eq, γ₂.opcyclesMap'_eq, (γ₁.comp γ₂).opcyclesMap'_eq, RightHomologyMapData.comp_φQ]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.122914, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ rightHomologyMap' e.hom h₁ h₂ ≫ rightHomologyMap' e.inv h₂ h₁ = 𝟙 h₁.H
[PROOFSTEP]
rw [← rightHomologyMap'_comp, e.hom_inv_id, rightHomologyMap'_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.122914, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ rightHomologyMap' e.inv h₂ h₁ ≫ rightHomologyMap' e.hom h₁ h₂ = 𝟙 h₂.H
[PROOFSTEP]
rw [← rightHomologyMap'_comp, e.inv_hom_id, rightHomologyMap'_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.125555, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ opcyclesMap' e.hom h₁ h₂ ≫ opcyclesMap' e.inv h₂ h₁ = 𝟙 h₁.Q
[PROOFSTEP]
rw [← opcyclesMap'_comp, e.hom_inv_id, opcyclesMap'_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.125555, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ opcyclesMap' e.inv h₂ h₁ ≫ opcyclesMap' e.hom h₁ h₂ = 𝟙 h₂.Q
[PROOFSTEP]
rw [← opcyclesMap'_comp, e.inv_hom_id, opcyclesMap'_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.128180, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ rightHomologyMap e.hom ≫ rightHomologyMap e.inv = 𝟙 (rightHomology S₁)
[PROOFSTEP]
rw [← rightHomologyMap_comp, e.hom_inv_id, rightHomologyMap_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.128180, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ rightHomologyMap e.inv ≫ rightHomologyMap e.hom = 𝟙 (rightHomology S₂)
[PROOFSTEP]
rw [← rightHomologyMap_comp, e.inv_hom_id, rightHomologyMap_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.131838, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ opcyclesMap e.hom ≫ opcyclesMap e.inv = 𝟙 (opcycles S₁)
[PROOFSTEP]
rw [← opcyclesMap_comp, e.hom_inv_id, opcyclesMap_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.131838, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
e : S₁ ≅ S₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ opcyclesMap e.inv ≫ opcyclesMap e.hom = 𝟙 (opcycles S₂)
[PROOFSTEP]
rw [← opcyclesMap_comp, e.inv_hom_id, opcyclesMap_id]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
inst✝ : HasRightHomology S
⊢ h.p ≫ (opcyclesIso h).inv = pOpcycles S
[PROOFSTEP]
dsimp [pOpcycles, RightHomologyData.opcyclesIso]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
inst✝ : HasRightHomology S
⊢ h.p ≫ opcyclesMap' (𝟙 S) h (rightHomologyData S) = (rightHomologyData S).p
[PROOFSTEP]
simp only [p_opcyclesMap', id_τ₂, id_comp]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
inst✝ : HasRightHomology S
⊢ pOpcycles S ≫ (opcyclesIso h).hom = h.p
[PROOFSTEP]
simp only [← h.p_comp_opcyclesIso_inv, assoc, Iso.inv_hom_id, comp_id]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
inst✝ : HasRightHomology S
⊢ (rightHomologyIso h).inv ≫ rightHomologyι S = h.ι ≫ (opcyclesIso h).inv
[PROOFSTEP]
dsimp only [rightHomologyι, rightHomologyIso, opcyclesIso, rightHomologyMapIso', opcyclesMapIso', Iso.refl]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
inst✝ : HasRightHomology S
⊢ rightHomologyMap' (𝟙 S) h (rightHomologyData S) ≫ (rightHomologyData S).ι =
h.ι ≫ opcyclesMap' (𝟙 S) h (rightHomologyData S)
[PROOFSTEP]
rw [rightHomologyι_naturality']
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
inst✝ : HasRightHomology S
⊢ (rightHomologyIso h).hom ≫ h.ι = rightHomologyι S ≫ (opcyclesIso h).hom
[PROOFSTEP]
simp only [← cancel_mono h.opcyclesIso.inv, ← cancel_epi h.rightHomologyIso.inv, assoc, Iso.inv_hom_id_assoc,
Iso.hom_inv_id, comp_id, rightHomologyIso_inv_comp_rightHomologyι]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ : RightHomologyMapData φ h₁ h₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ rightHomologyMap φ = (RightHomologyData.rightHomologyIso h₁).hom ≫ γ.φH ≫ (RightHomologyData.rightHomologyIso h₂).inv
[PROOFSTEP]
dsimp [RightHomologyData.rightHomologyIso, rightHomologyMapIso']
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ : RightHomologyMapData φ h₁ h₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ rightHomologyMap φ =
rightHomologyMap' (𝟙 S₁) (rightHomologyData S₁) h₁ ≫ γ.φH ≫ rightHomologyMap' (𝟙 S₂) h₂ (rightHomologyData S₂)
[PROOFSTEP]
rw [← γ.rightHomologyMap'_eq, ← rightHomologyMap'_comp, ← rightHomologyMap'_comp, id_comp, comp_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ : RightHomologyMapData φ h₁ h₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ rightHomologyMap φ = rightHomologyMap' φ (rightHomologyData S₁) (rightHomologyData S₂)
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ : RightHomologyMapData φ h₁ h₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ opcyclesMap φ = (RightHomologyData.opcyclesIso h₁).hom ≫ γ.φQ ≫ (RightHomologyData.opcyclesIso h₂).inv
[PROOFSTEP]
dsimp [RightHomologyData.opcyclesIso, cyclesMapIso']
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ : RightHomologyMapData φ h₁ h₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ opcyclesMap φ = opcyclesMap' (𝟙 S₁) (rightHomologyData S₁) h₁ ≫ γ.φQ ≫ opcyclesMap' (𝟙 S₂) h₂ (rightHomologyData S₂)
[PROOFSTEP]
rw [← γ.opcyclesMap'_eq, ← opcyclesMap'_comp, ← opcyclesMap'_comp, id_comp, comp_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ : RightHomologyMapData φ h₁ h₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ opcyclesMap φ = opcyclesMap' φ (rightHomologyData S₁) (rightHomologyData S₂)
[PROOFSTEP]
rfl
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ : RightHomologyMapData φ h₁ h₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ rightHomologyMap φ ≫ (RightHomologyData.rightHomologyIso h₂).hom = (RightHomologyData.rightHomologyIso h₁).hom ≫ γ.φH
[PROOFSTEP]
simp only [γ.rightHomologyMap_eq, assoc, Iso.inv_hom_id, comp_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ : RightHomologyMapData φ h₁ h₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ opcyclesMap φ ≫ (RightHomologyData.opcyclesIso h₂).hom = (RightHomologyData.opcyclesIso h₁).hom ≫ γ.φQ
[PROOFSTEP]
simp only [γ.opcyclesMap_eq, assoc, Iso.inv_hom_id, comp_id]
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.155614, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ : LeftHomologyMapData φ h₁ h₂
⊢ ((LeftHomologyData.op h₂).p ≫ ψ.φK.op).unop = ((opMap φ).τ₂ ≫ (LeftHomologyData.op h₁).p).unop
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.155614, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ : LeftHomologyMapData φ h₁ h₂
⊢ (ψ.φK.op ≫ RightHomologyData.g' (LeftHomologyData.op h₁)).unop =
(RightHomologyData.g' (LeftHomologyData.op h₂) ≫ (opMap φ).τ₃).unop
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.155614, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ : LeftHomologyMapData φ h₁ h₂
⊢ (ψ.φH.op ≫ (LeftHomologyData.op h₁).ι).unop = ((LeftHomologyData.op h₂).ι ≫ ψ.φK.op).unop
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.158318, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ : LeftHomologyMapData φ h₁ h₂
⊢ ((LeftHomologyData.unop h₂).p ≫ ψ.φK.unop).op = ((unopMap φ).τ₂ ≫ (LeftHomologyData.unop h₁).p).op
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.158318, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ : LeftHomologyMapData φ h₁ h₂
⊢ (ψ.φK.unop ≫ RightHomologyData.g' (LeftHomologyData.unop h₁)).op =
(RightHomologyData.g' (LeftHomologyData.unop h₂) ≫ (unopMap φ).τ₃).op
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.158318, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
ψ : LeftHomologyMapData φ h₁ h₂
⊢ (ψ.φH.unop ≫ (LeftHomologyData.unop h₁).ι).op = ((LeftHomologyData.unop h₂).ι ≫ ψ.φK.unop).op
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.160823, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ : RightHomologyMapData φ h₁ h₂
⊢ (ψ.φQ.op ≫ (RightHomologyData.op h₁).i).unop = ((RightHomologyData.op h₂).i ≫ (opMap φ).τ₂).unop
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.160823, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ : RightHomologyMapData φ h₁ h₂
⊢ (LeftHomologyData.f' (RightHomologyData.op h₂) ≫ ψ.φQ.op).unop =
((opMap φ).τ₁ ≫ LeftHomologyData.f' (RightHomologyData.op h₁)).unop
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.160823, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ S₁ S₂ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ : RightHomologyMapData φ h₁ h₂
⊢ ((RightHomologyData.op h₂).π ≫ ψ.φH.op).unop = (ψ.φQ.op ≫ (RightHomologyData.op h₁).π).unop
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.163518, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ : RightHomologyMapData φ h₁ h₂
⊢ (ψ.φQ.unop ≫ (RightHomologyData.unop h₁).i).op = ((RightHomologyData.unop h₂).i ≫ (unopMap φ).τ₂).op
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.163518, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ : RightHomologyMapData φ h₁ h₂
⊢ (LeftHomologyData.f' (RightHomologyData.unop h₂) ≫ ψ.φQ.unop).op =
((unopMap φ).τ₁ ≫ LeftHomologyData.f' (RightHomologyData.unop h₁)).op
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{?u.163518, u_1} C
inst✝ : HasZeroMorphisms C
S S₁✝ S₂✝ S₃ : ShortComplex C
S₁ S₂ : ShortComplex Cᵒᵖ
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
ψ : RightHomologyMapData φ h₁ h₂
⊢ ((RightHomologyData.unop h₂).π ≫ ψ.φH.unop).op = (ψ.φQ.unop ≫ (RightHomologyData.unop h₁).π).op
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
⊢ (leftHomologyMap' φ h₁ h₂).op = rightHomologyMap' (opMap φ) (LeftHomologyData.op h₂) (LeftHomologyData.op h₁)
[PROOFSTEP]
let γ : LeftHomologyMapData φ h₁ h₂ := leftHomologyMapData φ h₁ h₂
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : LeftHomologyData S₁
h₂ : LeftHomologyData S₂
γ : LeftHomologyMapData φ h₁ h₂ := leftHomologyMapData φ h₁ h₂
⊢ (leftHomologyMap' φ h₁ h₂).op = rightHomologyMap' (opMap φ) (LeftHomologyData.op h₂) (LeftHomologyData.op h₁)
[PROOFSTEP]
simp only [γ.leftHomologyMap'_eq, γ.op.rightHomologyMap'_eq, LeftHomologyMapData.op_φH]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ (leftHomologyMap φ).op = (rightHomologyOpIso S₂).inv ≫ rightHomologyMap (opMap φ) ≫ (rightHomologyOpIso S₁).hom
[PROOFSTEP]
dsimp [rightHomologyOpIso, RightHomologyData.rightHomologyIso, rightHomologyMap, leftHomologyMap]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
inst✝¹ : HasLeftHomology S₁
inst✝ : HasLeftHomology S₂
⊢ (leftHomologyMap' φ (leftHomologyData S₁) (leftHomologyData S₂)).op =
rightHomologyMap' (𝟙 (op S₂)) (LeftHomologyData.op (leftHomologyData S₂)) (rightHomologyData (op S₂)) ≫
rightHomologyMap' (opMap φ) (rightHomologyData (op S₂)) (rightHomologyData (op S₁)) ≫
rightHomologyMap' (𝟙 (op S₁)) (rightHomologyData (op S₁)) (LeftHomologyData.op (leftHomologyData S₁))
[PROOFSTEP]
simp only [← rightHomologyMap'_comp, comp_id, id_comp, leftHomologyMap'_op]
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ (rightHomologyMap' φ h₁ h₂).op = leftHomologyMap' (opMap φ) (RightHomologyData.op h₂) (RightHomologyData.op h₁)
[PROOFSTEP]
let γ : RightHomologyMapData φ h₁ h₂ := rightHomologyMapData φ h₁ h₂
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
γ : RightHomologyMapData φ h₁ h₂ := rightHomologyMapData φ h₁ h₂
⊢ (rightHomologyMap' φ h₁ h₂).op = leftHomologyMap' (opMap φ) (RightHomologyData.op h₂) (RightHomologyData.op h₁)
[PROOFSTEP]
simp only [γ.rightHomologyMap'_eq, γ.op.leftHomologyMap'_eq, RightHomologyMapData.op_φH]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ (rightHomologyMap φ).op = (leftHomologyOpIso S₂).inv ≫ leftHomologyMap (opMap φ) ≫ (leftHomologyOpIso S₁).hom
[PROOFSTEP]
dsimp [leftHomologyOpIso, LeftHomologyData.leftHomologyIso, leftHomologyMap, rightHomologyMap]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
inst✝¹ : HasRightHomology S₁
inst✝ : HasRightHomology S₂
⊢ (rightHomologyMap' φ (rightHomologyData S₁) (rightHomologyData S₂)).op =
leftHomologyMap' (𝟙 (op S₂)) (RightHomologyData.op (rightHomologyData S₂)) (leftHomologyData (op S₂)) ≫
leftHomologyMap' (opMap φ) (leftHomologyData (op S₂)) (leftHomologyData (op S₁)) ≫
leftHomologyMap' (𝟙 (op S₁)) (leftHomologyData (op S₁)) (RightHomologyData.op (rightHomologyData S₁))
[PROOFSTEP]
simp only [← leftHomologyMap'_comp, comp_id, id_comp, rightHomologyMap'_op]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ RightHomologyData S₂
[PROOFSTEP]
haveI : Epi (opMap φ).τ₁ := by dsimp; infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ Epi (opMap φ).τ₁
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ Epi φ.τ₃.op
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this : Epi (opMap φ).τ₁
⊢ RightHomologyData S₂
[PROOFSTEP]
haveI : IsIso (opMap φ).τ₂ := by dsimp; infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this : Epi (opMap φ).τ₁
⊢ IsIso (opMap φ).τ₂
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this : Epi (opMap φ).τ₁
⊢ IsIso φ.τ₂.op
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this✝ : Epi (opMap φ).τ₁
this : IsIso (opMap φ).τ₂
⊢ RightHomologyData S₂
[PROOFSTEP]
haveI : Mono (opMap φ).τ₃ := by dsimp; infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this✝ : Epi (opMap φ).τ₁
this : IsIso (opMap φ).τ₂
⊢ Mono (opMap φ).τ₃
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this✝ : Epi (opMap φ).τ₁
this : IsIso (opMap φ).τ₂
⊢ Mono φ.τ₁.op
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.173881, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this✝¹ : Epi (opMap φ).τ₁
this✝ : IsIso (opMap φ).τ₂
this : Mono (opMap φ).τ₃
⊢ RightHomologyData S₂
[PROOFSTEP]
exact (LeftHomologyData.ofEpiOfIsIsoOfMono' (opMap φ) h.op).unop
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ (ofEpiOfIsIsoOfMono φ h).p = inv φ.τ₂ ≫ h.p
[PROOFSTEP]
simp [ofEpiOfIsIsoOfMono, opMap]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₁
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ g' (ofEpiOfIsIsoOfMono φ h) = g' h ≫ φ.τ₃
[PROOFSTEP]
simp [ofEpiOfIsIsoOfMono, opMap]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ RightHomologyData S₁
[PROOFSTEP]
haveI : Epi (opMap φ).τ₁ := by dsimp; infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ Epi (opMap φ).τ₁
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ Epi φ.τ₃.op
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this : Epi (opMap φ).τ₁
⊢ RightHomologyData S₁
[PROOFSTEP]
haveI : IsIso (opMap φ).τ₂ := by dsimp; infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this : Epi (opMap φ).τ₁
⊢ IsIso (opMap φ).τ₂
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this : Epi (opMap φ).τ₁
⊢ IsIso φ.τ₂.op
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this✝ : Epi (opMap φ).τ₁
this : IsIso (opMap φ).τ₂
⊢ RightHomologyData S₁
[PROOFSTEP]
haveI : Mono (opMap φ).τ₃ := by dsimp; infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this✝ : Epi (opMap φ).τ₁
this : IsIso (opMap φ).τ₂
⊢ Mono (opMap φ).τ₃
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this✝ : Epi (opMap φ).τ₁
this : IsIso (opMap φ).τ₂
⊢ Mono φ.τ₁.op
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.184271, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
this✝¹ : Epi (opMap φ).τ₁
this✝ : IsIso (opMap φ).τ₂
this : Mono (opMap φ).τ₃
⊢ RightHomologyData S₁
[PROOFSTEP]
exact (LeftHomologyData.ofEpiOfIsIsoOfMono (opMap φ) h.op).unop
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ (ofEpiOfIsIsoOfMono' φ h).p = φ.τ₂ ≫ h.p
[PROOFSTEP]
simp [ofEpiOfIsIsoOfMono', opMap]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{u_2, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ g' (ofEpiOfIsIsoOfMono' φ h) ≫ φ.τ₃ = g' h
[PROOFSTEP]
rw [← cancel_epi (ofEpiOfIsIsoOfMono' φ h).p, p_g'_assoc, ofEpiOfIsIsoOfMono'_p, assoc, p_g', φ.comm₂₃]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.203472, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ IsIso (rightHomologyMap' φ h₁ h₂)
[PROOFSTEP]
let h₂' := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.203472, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁
⊢ IsIso (rightHomologyMap' φ h₁ h₂)
[PROOFSTEP]
haveI : IsIso (rightHomologyMap' φ h₁ h₂') :=
by
rw [(RightHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).rightHomologyMap'_eq]
dsimp
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.203472, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁
⊢ IsIso (rightHomologyMap' φ h₁ h₂')
[PROOFSTEP]
rw [(RightHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).rightHomologyMap'_eq]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.203472, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁
⊢ IsIso (RightHomologyMapData.ofEpiOfIsIsoOfMono φ h₁).φH
[PROOFSTEP]
dsimp
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.203472, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁
⊢ IsIso (𝟙 h₁.H)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.203472, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁
this : IsIso (rightHomologyMap' φ h₁ h₂')
⊢ IsIso (rightHomologyMap' φ h₁ h₂)
[PROOFSTEP]
have eq := rightHomologyMap'_comp φ (𝟙 S₂) h₁ h₂' h₂
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.203472, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁
this : IsIso (rightHomologyMap' φ h₁ h₂')
eq : rightHomologyMap' (φ ≫ 𝟙 S₂) h₁ h₂ = rightHomologyMap' φ h₁ h₂' ≫ rightHomologyMap' (𝟙 S₂) h₂' h₂
⊢ IsIso (rightHomologyMap' φ h₁ h₂)
[PROOFSTEP]
rw [comp_id] at eq
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.203472, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁
this : IsIso (rightHomologyMap' φ h₁ h₂')
eq : rightHomologyMap' φ h₁ h₂ = rightHomologyMap' φ h₁ h₂' ≫ rightHomologyMap' (𝟙 S₂) h₂' h₂
⊢ IsIso (rightHomologyMap' φ h₁ h₂)
[PROOFSTEP]
rw [eq]
[GOAL]
C : Type u_1
inst✝⁴ : Category.{?u.203472, u_1} C
inst✝³ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
h₂' : RightHomologyData S₂ := RightHomologyData.ofEpiOfIsIsoOfMono φ h₁
this : IsIso (rightHomologyMap' φ h₁ h₂')
eq : rightHomologyMap' φ h₁ h₂ = rightHomologyMap' φ h₁ h₂' ≫ rightHomologyMap' (𝟙 S₂) h₂' h₂
⊢ IsIso (rightHomologyMap' φ h₁ h₂' ≫ rightHomologyMap' (𝟙 S₂) h₂' h₂)
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁶ : Category.{?u.205342, u_1} C
inst✝⁵ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
inst✝⁴ : HasRightHomology S₁
inst✝³ : HasRightHomology S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ IsIso (rightHomologyMap φ)
[PROOFSTEP]
dsimp only [rightHomologyMap]
[GOAL]
C : Type u_1
inst✝⁶ : Category.{?u.205342, u_1} C
inst✝⁵ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
inst✝⁴ : HasRightHomology S₁
inst✝³ : HasRightHomology S₂
inst✝² : Epi φ.τ₁
inst✝¹ : IsIso φ.τ₂
inst✝ : Mono φ.τ₃
⊢ IsIso (rightHomologyMap' φ (rightHomologyData S₁) (rightHomologyData S₂))
[PROOFSTEP]
infer_instance
[GOAL]
C : Type u_1
inst✝⁵ : Category.{?u.207199, u_1} C
inst✝⁴ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝³ : HasKernels C
inst✝² : HasCokernels C
inst✝¹ : HasKernels Cᵒᵖ
inst✝ : HasCokernels Cᵒᵖ
⊢ ∀ {X Y : (ShortComplex C)ᵒᵖ} (f : X ⟶ Y),
(rightHomologyFunctor C).op.map f ≫ ((fun S => (leftHomologyOpIso S.unop).symm) Y).hom =
((fun S => (leftHomologyOpIso S.unop).symm) X).hom ≫ (opFunctor C ⋙ leftHomologyFunctor Cᵒᵖ).map f
[PROOFSTEP]
simp [rightHomologyMap_op]
[GOAL]
C : Type u_1
inst✝⁵ : Category.{?u.214499, u_1} C
inst✝⁴ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝³ : HasKernels C
inst✝² : HasCokernels C
inst✝¹ : HasKernels Cᵒᵖ
inst✝ : HasCokernels Cᵒᵖ
⊢ ∀ {X Y : (ShortComplex C)ᵒᵖ} (f : X ⟶ Y),
(leftHomologyFunctor C).op.map f ≫ ((fun S => (rightHomologyOpIso S.unop).symm) Y).hom =
((fun S => (rightHomologyOpIso S.unop).symm) X).hom ≫ (opFunctor C ⋙ rightHomologyFunctor Cᵒᵖ).map f
[PROOFSTEP]
simp [leftHomologyMap_op]
[GOAL]
C : Type u_1
inst✝² : Category.{?u.224277, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝ : HasRightHomology S
A' : C
α : A ⟶ A'
⊢ S.f ≫ k ≫ α = 0
[PROOFSTEP]
rw [reassoc_of% hk, zero_comp]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝ : HasRightHomology S
A' : C
α : A ⟶ A'
⊢ descOpcycles S k hk ≫ α = descOpcycles S (k ≫ α) (_ : S.f ≫ k ≫ α = 0)
[PROOFSTEP]
simp only [← cancel_epi S.pOpcycles, p_descOpcycles_assoc, p_descOpcycles]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.227378, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝¹ : HasRightHomology S
inst✝ : HasCokernel S.f
⊢ S.f ≫ cokernel.π S.f = 0
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.227378, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝¹ : HasRightHomology S
inst✝ : HasCokernel S.f
⊢ S.f ≫ pOpcycles S = 0
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝² : Category.{?u.231633, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝ : HasRightHomology S
x : S.X₃ ⟶ A
hx : k = S.g ≫ x
⊢ S.f ≫ k = 0
[PROOFSTEP]
rw [hx, S.zero_assoc, zero_comp]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝ : HasRightHomology S
⊢ S.g = S.g ≫ 𝟙 S.X₃
[PROOFSTEP]
rw [comp_id]
[GOAL]
C : Type u_1
inst✝³ : Category.{?u.236265, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝¹ : HasRightHomology S
φ : S₁ ⟶ S
inst✝ : HasRightHomology S₁
⊢ S₁.f ≫ φ.τ₂ ≫ k = 0
[PROOFSTEP]
rw [← φ.comm₁₂_assoc, hk, comp_zero]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝¹ : HasRightHomology S
φ : S₁ ⟶ S
inst✝ : HasRightHomology S₁
⊢ opcyclesMap φ ≫ descOpcycles S k hk = descOpcycles S₁ (φ.τ₂ ≫ k) (_ : S₁.f ≫ φ.τ₂ ≫ k = 0)
[PROOFSTEP]
simp only [← cancel_epi (S₁.pOpcycles), p_opcyclesMap_assoc, p_descOpcycles]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝ : HasRightHomology S
⊢ (opcyclesIso h).inv ≫ descOpcycles S k hk = descQ h k hk
[PROOFSTEP]
simp only [← cancel_epi h.p, p_comp_opcyclesIso_inv_assoc, p_descOpcycles, p_descQ]
[GOAL]
C : Type u_1
inst✝² : Category.{u_2, u_1} C
inst✝¹ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
h : RightHomologyData S
A : C
k : S.X₂ ⟶ A
hk : S.f ≫ k = 0
inst✝ : HasRightHomology S
⊢ (opcyclesIso h).hom ≫ descQ h k hk = descOpcycles S k hk
[PROOFSTEP]
rw [← h.opcyclesIso_inv_comp_descOpcycles, Iso.hom_inv_id_assoc]
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasRightHomology S
inst✝ : HasCokernel S.f
⊢ HasKernel (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0))
[PROOFSTEP]
let h := S.rightHomologyData
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasRightHomology S
inst✝ : HasCokernel S.f
h : RightHomologyData S := rightHomologyData S
⊢ HasKernel (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0))
[PROOFSTEP]
haveI : HasLimit (parallelPair h.g' 0) := ⟨⟨⟨_, h.hι'⟩⟩⟩
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasRightHomology S
inst✝ : HasCokernel S.f
h : RightHomologyData S := rightHomologyData S
this : HasLimit (parallelPair (RightHomologyData.g' h) 0)
⊢ HasKernel (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0))
[PROOFSTEP]
let e : parallelPair (cokernel.desc S.f S.g S.zero) 0 ≅ parallelPair h.g' 0 :=
parallelPair.ext (IsColimit.coconePointUniqueUpToIso (colimit.isColimit _) h.hp) (Iso.refl _)
(coequalizer.hom_ext (by simp)) (by aesop_cat)
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasRightHomology S
inst✝ : HasCokernel S.f
h : RightHomologyData S := rightHomologyData S
this : HasLimit (parallelPair (RightHomologyData.g' h) 0)
⊢ coequalizer.π S.f 0 ≫
(parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.left ≫
(Iso.refl ((parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.one)).hom =
coequalizer.π S.f 0 ≫
(IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) h.hp).hom ≫
(parallelPair (RightHomologyData.g' h) 0).map WalkingParallelPairHom.left
[PROOFSTEP]
simp
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasRightHomology S
inst✝ : HasCokernel S.f
h : RightHomologyData S := rightHomologyData S
this : HasLimit (parallelPair (RightHomologyData.g' h) 0)
⊢ (parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.right ≫
(Iso.refl ((parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.one)).hom =
(IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) h.hp).hom ≫
(parallelPair (RightHomologyData.g' h) 0).map WalkingParallelPairHom.right
[PROOFSTEP]
aesop_cat
[GOAL]
C : Type u_1
inst✝³ : Category.{u_2, u_1} C
inst✝² : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
inst✝¹ : HasRightHomology S
inst✝ : HasCokernel S.f
h : RightHomologyData S := rightHomologyData S
this : HasLimit (parallelPair (RightHomologyData.g' h) 0)
e : parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0 ≅ parallelPair (RightHomologyData.g' h) 0 :=
parallelPair.ext (IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) h.hp)
(Iso.refl ((parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.one))
(_ :
(parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).map WalkingParallelPairHom.left ≫
(Iso.refl ((parallelPair (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0)) 0).obj WalkingParallelPair.one)).hom =
(IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) h.hp).hom ≫
(parallelPair (RightHomologyData.g' h) 0).map WalkingParallelPairHom.left)
(_ :
0 ≫ 𝟙 S.X₃ =
(IsColimit.coconePointUniqueUpToIso (colimit.isColimit (parallelPair S.f 0)) (rightHomologyData S).hp).hom ≫ 0)
⊢ HasKernel (cokernel.desc S.f S.g (_ : S.f ≫ S.g = 0))
[PROOFSTEP]
exact hasLimitOfIso e.symm
[GOAL]
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₂✝ : IsIso φ.τ₂
h₁✝ : Epi φ.τ₁
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ IsIso (opcyclesMap' φ h₁ h₂)
[PROOFSTEP]
refine' ⟨h₂.descQ (inv φ.τ₂ ≫ h₁.p) _, _, _⟩
[GOAL]
case refine'_1
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₂✝ : IsIso φ.τ₂
h₁✝ : Epi φ.τ₁
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ S₂.f ≫ inv φ.τ₂ ≫ h₁.p = 0
[PROOFSTEP]
simp only [← cancel_epi φ.τ₁, comp_zero, φ.comm₁₂_assoc, IsIso.hom_inv_id_assoc, h₁.wp]
[GOAL]
case refine'_2
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₂✝ : IsIso φ.τ₂
h₁✝ : Epi φ.τ₁
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ opcyclesMap' φ h₁ h₂ ≫ RightHomologyData.descQ h₂ (inv φ.τ₂ ≫ h₁.p) (_ : S₂.f ≫ inv φ.τ₂ ≫ h₁.p = 0) = 𝟙 h₁.Q
[PROOFSTEP]
simp only [← cancel_epi h₁.p, p_opcyclesMap'_assoc, h₂.p_descQ, IsIso.hom_inv_id_assoc, comp_id]
[GOAL]
case refine'_3
C : Type u_1
inst✝¹ : Category.{u_2, u_1} C
inst✝ : HasZeroMorphisms C
S S₁ S₂ S₃ : ShortComplex C
φ : S₁ ⟶ S₂
h₂✝ : IsIso φ.τ₂
h₁✝ : Epi φ.τ₁
h₁ : RightHomologyData S₁
h₂ : RightHomologyData S₂
⊢ RightHomologyData.descQ h₂ (inv φ.τ₂ ≫ h₁.p) (_ : S₂.f ≫ inv φ.τ₂ ≫ h₁.p = 0) ≫ opcyclesMap' φ h₁ h₂ = 𝟙 h₂.Q
[PROOFSTEP]
simp only [← cancel_epi h₂.p, h₂.p_descQ_assoc, assoc, p_opcyclesMap', IsIso.inv_hom_id_assoc, comp_id]
| {"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.RightHomology", "llama_tokens": 30095} |
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
n : ℕ
f : Fin n → β
⊢ ∏ i : Fin n, f i = List.prod (List.map f (List.finRange n))
[PROOFSTEP]
simp [univ_def]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
n : ℕ
f : Fin n → β
⊢ List.prod (List.ofFn f) = ∏ i : Fin n, f i
[PROOFSTEP]
rw [List.ofFn_eq_map, prod_univ_def]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
n : ℕ
f : Fin (n + 1) → β
x : Fin (n + 1)
⊢ ∏ i : Fin (n + 1), f i = f x * ∏ i : Fin n, f (succAbove x i)
[PROOFSTEP]
rw [univ_succAbove, prod_cons, Finset.prod_map _ x.succAboveEmb.toEmbedding, RelEmbedding.coe_toEmbedding]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
n : ℕ
f : Fin (n + 1) → β
x : Fin (n + 1)
⊢ f x * ∏ x_1 : Fin n, f (↑(succAboveEmb x) x_1) = f x * ∏ i : Fin n, f (succAbove x i)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
n : ℕ
f : Fin (n + 1) → β
⊢ ∏ i : Fin (n + 1), f i = (∏ i : Fin n, f (castSucc i)) * f (last n)
[PROOFSTEP]
simpa [mul_comm] using prod_univ_succAbove f (last n)
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
n : ℕ
x : β
f : Fin n → β
⊢ ∏ i : Fin (Nat.succ n), cons x f i = x * ∏ i : Fin n, f i
[PROOFSTEP]
simp_rw [prod_univ_succ, cons_zero, cons_succ]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 1 → β
⊢ ∏ i : Fin 1, f i = f 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 2 → β
⊢ ∏ i : Fin 2, f i = f 0 * f 1
[PROOFSTEP]
simp [prod_univ_succ]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 3 → β
⊢ ∏ i : Fin 3, f i = f 0 * f 1 * f 2
[PROOFSTEP]
rw [prod_univ_castSucc, prod_univ_two]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 3 → β
⊢ f (castSucc 0) * f (castSucc 1) * f (last 2) = f 0 * f 1 * f 2
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 4 → β
⊢ ∏ i : Fin 4, f i = f 0 * f 1 * f 2 * f 3
[PROOFSTEP]
rw [prod_univ_castSucc, prod_univ_three]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 4 → β
⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (last 3) = f 0 * f 1 * f 2 * f 3
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 5 → β
⊢ ∏ i : Fin 5, f i = f 0 * f 1 * f 2 * f 3 * f 4
[PROOFSTEP]
rw [prod_univ_castSucc, prod_univ_four]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 5 → β
⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (castSucc 3) * f (last 4) = f 0 * f 1 * f 2 * f 3 * f 4
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 6 → β
⊢ ∏ i : Fin 6, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5
[PROOFSTEP]
rw [prod_univ_castSucc, prod_univ_five]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 6 → β
⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (castSucc 3) * f (castSucc 4) * f (last 5) =
f 0 * f 1 * f 2 * f 3 * f 4 * f 5
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 7 → β
⊢ ∏ i : Fin 7, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6
[PROOFSTEP]
rw [prod_univ_castSucc, prod_univ_six]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 7 → β
⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (castSucc 3) * f (castSucc 4) * f (castSucc 5) * f (last 6) =
f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 8 → β
⊢ ∏ i : Fin 8, f i = f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 * f 7
[PROOFSTEP]
rw [prod_univ_castSucc, prod_univ_seven]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid β
f : Fin 8 → β
⊢ f (castSucc 0) * f (castSucc 1) * f (castSucc 2) * f (castSucc 3) * f (castSucc 4) * f (castSucc 5) * f (castSucc 6) *
f (last 7) =
f 0 * f 1 * f 2 * f 3 * f 4 * f 5 * f 6 * f 7
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
n : ℕ
R : Type u_3
inst✝ : CommSemiring R
a b : R
⊢ ∑ s : Finset (Fin n), a ^ card s * b ^ (n - card s) = (a + b) ^ n
[PROOFSTEP]
simpa using Fintype.sum_pow_mul_eq_add_pow (Fin n) a b
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
x : α
⊢ ∏ _i : Fin n, x = x ^ n
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : AddCommMonoid α
n : ℕ
x : α
⊢ ∑ _i : Fin n, x = n • x
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
n : ℕ
v : Fin (Nat.succ n) → M
⊢ ∏ i in Ioi 0, v i = ∏ j : Fin n, v (succ j)
[PROOFSTEP]
rw [Ioi_zero_eq_map, Finset.prod_map, RelEmbedding.coe_toEmbedding, val_succEmbedding]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
n : ℕ
i : Fin n
v : Fin (Nat.succ n) → M
⊢ ∏ j in Ioi (succ i), v j = ∏ j in Ioi i, v (succ j)
[PROOFSTEP]
rw [Ioi_succ, Finset.prod_map, RelEmbedding.coe_toEmbedding, val_succEmbedding]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
a b : ℕ
f : Fin b → M
h : a = b
⊢ ∏ i : Fin a, f (↑(castIso h) i) = ∏ i : Fin b, f i
[PROOFSTEP]
subst h
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
a : ℕ
f : Fin a → M
⊢ ∏ i : Fin a, f (↑(castIso (_ : a = a)) i) = ∏ i : Fin a, f i
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
a b : ℕ
f : Fin (a + b) → M
⊢ ∏ i : Fin (a + b), f i = (∏ i : Fin a, f (castAdd b i)) * ∏ i : Fin b, f (natAdd a i)
[PROOFSTEP]
rw [Fintype.prod_equiv finSumFinEquiv.symm f fun i => f (finSumFinEquiv.toFun i)]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
a b : ℕ
f : Fin (a + b) → M
⊢ ∏ x : Fin a ⊕ Fin b, f (Equiv.toFun finSumFinEquiv x) = (∏ i : Fin a, f (castAdd b i)) * ∏ i : Fin b, f (natAdd a i)
[PROOFSTEP]
apply Fintype.prod_sum_type
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
a b : ℕ
f : Fin (a + b) → M
⊢ ∀ (x : Fin (a + b)), f x = f (Equiv.toFun finSumFinEquiv (↑finSumFinEquiv.symm x))
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
a b : ℕ
f : Fin (a + b) → M
x : Fin (a + b)
⊢ f x = f (Equiv.toFun finSumFinEquiv (↑finSumFinEquiv.symm x))
[PROOFSTEP]
simp only [Equiv.toFun_as_coe, Equiv.apply_symm_apply]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
a b : ℕ
f : Fin (a + b) → M
hf : ∀ (j : Fin b), f (natAdd a j) = 1
⊢ ∏ i : Fin (a + b), f i = ∏ i : Fin a, f (castLE (_ : a ≤ a + b) i)
[PROOFSTEP]
rw [prod_univ_add, Fintype.prod_eq_one _ hf, mul_one]
[GOAL]
α : Type u_1
β : Type u_2
M : Type u_3
inst✝ : CommMonoid M
a b : ℕ
f : Fin (a + b) → M
hf : ∀ (j : Fin b), f (natAdd a j) = 1
⊢ ∏ i : Fin a, f (castAdd b i) = ∏ i : Fin a, f (castLE (_ : a ≤ a + b) i)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Monoid α
n : ℕ
f : Fin n → α
⊢ partialProd f 0 = 1
[PROOFSTEP]
simp [partialProd]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Monoid α
n : ℕ
f : Fin n → α
j : Fin n
⊢ partialProd f (succ j) = partialProd f (castSucc j) * f j
[PROOFSTEP]
simp [partialProd, List.take_succ, List.ofFnNthVal, dif_pos j.is_lt, ← Option.coe_def]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Monoid α
n : ℕ
f : Fin (n + 1) → α
j : Fin (n + 1)
⊢ partialProd f (succ j) = f 0 * partialProd (tail f) j
[PROOFSTEP]
simp [partialProd]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : Monoid α
n : ℕ
f : Fin (n + 1) → α
j : Fin (n + 1)
⊢ f 0 * List.prod (List.take (↑j) (List.ofFn fun i => f (succ i))) =
f 0 * List.prod (List.take (↑j) (List.ofFn (tail f)))
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin (n + 1) → G
x : Fin (n + 1)
⊢ (f 0 • partialProd fun i => (f ↑↑i)⁻¹ * f (succ i)) 0 = f 0
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin (n + 1) → G
x✝ : Fin (n + 1)
x : Fin n
hx : (f 0 • partialProd fun i => (f ↑↑i)⁻¹ * f (succ i)) (castSucc x) = f (castSucc x)
⊢ (f 0 • partialProd fun i => (f ↑↑i)⁻¹ * f (succ i)) (succ x) = f (succ x)
[PROOFSTEP]
simp only [coe_eq_castSucc, Pi.smul_apply, smul_eq_mul] at hx ⊢
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin (n + 1) → G
x✝ : Fin (n + 1)
x : Fin n
hx : f 0 * partialProd (fun i => (f (castSucc i))⁻¹ * f (succ i)) (castSucc x) = f (castSucc x)
⊢ f 0 * partialProd (fun i => (f (castSucc i))⁻¹ * f (succ i)) (succ x) = f (succ x)
[PROOFSTEP]
rw [partialProd_succ, ← mul_assoc, hx, mul_inv_cancel_left]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : Fin n
⊢ (partialProd f (castSucc i))⁻¹ * partialProd f (succ i) = f i
[PROOFSTEP]
cases' i with i hn
[GOAL]
case mk
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hn : i < n
⊢ (partialProd f (castSucc { val := i, isLt := hn }))⁻¹ * partialProd f (succ { val := i, isLt := hn }) =
f { val := i, isLt := hn }
[PROOFSTEP]
induction i with
| zero => simp [-Fin.succ_mk, partialProd_succ]
| succ i hi =>
specialize hi (lt_trans (Nat.lt_succ_self i) hn)
simp only [Fin.coe_eq_castSucc, Fin.succ_mk, Fin.castSucc_mk] at hi ⊢
rw [← Fin.succ_mk _ _ (lt_trans (Nat.lt_succ_self _) hn), ← Fin.succ_mk]
rw [Nat.succ_eq_add_one] at hn
simp only [partialProd_succ, mul_inv_rev, Fin.castSucc_mk]
-- Porting note: was
-- assoc_rw [hi, inv_mul_cancel_left]
rw [← mul_assoc, mul_left_eq_self, mul_assoc, hi, mul_left_inv]
[GOAL]
case mk
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hn : i < n
⊢ (partialProd f (castSucc { val := i, isLt := hn }))⁻¹ * partialProd f (succ { val := i, isLt := hn }) =
f { val := i, isLt := hn }
[PROOFSTEP]
induction i with
| zero => simp [-Fin.succ_mk, partialProd_succ]
| succ i hi =>
specialize hi (lt_trans (Nat.lt_succ_self i) hn)
simp only [Fin.coe_eq_castSucc, Fin.succ_mk, Fin.castSucc_mk] at hi ⊢
rw [← Fin.succ_mk _ _ (lt_trans (Nat.lt_succ_self _) hn), ← Fin.succ_mk]
rw [Nat.succ_eq_add_one] at hn
simp only [partialProd_succ, mul_inv_rev, Fin.castSucc_mk]
-- Porting note: was
-- assoc_rw [hi, inv_mul_cancel_left]
rw [← mul_assoc, mul_left_eq_self, mul_assoc, hi, mul_left_inv]
[GOAL]
case mk.zero
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
hn : Nat.zero < n
⊢ (partialProd f (castSucc { val := Nat.zero, isLt := hn }))⁻¹ * partialProd f (succ { val := Nat.zero, isLt := hn }) =
f { val := Nat.zero, isLt := hn }
[PROOFSTEP]
| zero => simp [-Fin.succ_mk, partialProd_succ]
[GOAL]
case mk.zero
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
hn : Nat.zero < n
⊢ (partialProd f (castSucc { val := Nat.zero, isLt := hn }))⁻¹ * partialProd f (succ { val := Nat.zero, isLt := hn }) =
f { val := Nat.zero, isLt := hn }
[PROOFSTEP]
simp [-Fin.succ_mk, partialProd_succ]
[GOAL]
case mk.succ
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hi :
∀ (hn : i < n),
(partialProd f (castSucc { val := i, isLt := hn }))⁻¹ * partialProd f (succ { val := i, isLt := hn }) =
f { val := i, isLt := hn }
hn : Nat.succ i < n
⊢ (partialProd f (castSucc { val := Nat.succ i, isLt := hn }))⁻¹ *
partialProd f (succ { val := Nat.succ i, isLt := hn }) =
f { val := Nat.succ i, isLt := hn }
[PROOFSTEP]
| succ i hi =>
specialize hi (lt_trans (Nat.lt_succ_self i) hn)
simp only [Fin.coe_eq_castSucc, Fin.succ_mk, Fin.castSucc_mk] at hi ⊢
rw [← Fin.succ_mk _ _ (lt_trans (Nat.lt_succ_self _) hn), ← Fin.succ_mk]
rw [Nat.succ_eq_add_one] at hn
simp only [partialProd_succ, mul_inv_rev, Fin.castSucc_mk]
-- Porting note: was
-- assoc_rw [hi, inv_mul_cancel_left]
rw [← mul_assoc, mul_left_eq_self, mul_assoc, hi, mul_left_inv]
[GOAL]
case mk.succ
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hi :
∀ (hn : i < n),
(partialProd f (castSucc { val := i, isLt := hn }))⁻¹ * partialProd f (succ { val := i, isLt := hn }) =
f { val := i, isLt := hn }
hn : Nat.succ i < n
⊢ (partialProd f (castSucc { val := Nat.succ i, isLt := hn }))⁻¹ *
partialProd f (succ { val := Nat.succ i, isLt := hn }) =
f { val := Nat.succ i, isLt := hn }
[PROOFSTEP]
specialize hi (lt_trans (Nat.lt_succ_self i) hn)
[GOAL]
case mk.succ
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hn : Nat.succ i < n
hi :
(partialProd f (castSucc { val := i, isLt := (_ : i < n) }))⁻¹ *
partialProd f (succ { val := i, isLt := (_ : i < n) }) =
f { val := i, isLt := (_ : i < n) }
⊢ (partialProd f (castSucc { val := Nat.succ i, isLt := hn }))⁻¹ *
partialProd f (succ { val := Nat.succ i, isLt := hn }) =
f { val := Nat.succ i, isLt := hn }
[PROOFSTEP]
simp only [Fin.coe_eq_castSucc, Fin.succ_mk, Fin.castSucc_mk] at hi ⊢
[GOAL]
case mk.succ
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hn : Nat.succ i < n
hi :
(partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ *
partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } =
f { val := i, isLt := (_ : i < n) }
⊢ (partialProd f { val := Nat.succ i, isLt := (_ : Nat.succ i < Nat.succ n) })⁻¹ *
partialProd f { val := Nat.succ i + 1, isLt := (_ : Nat.succ (Nat.succ i) < Nat.succ n) } =
f { val := Nat.succ i, isLt := hn }
[PROOFSTEP]
rw [← Fin.succ_mk _ _ (lt_trans (Nat.lt_succ_self _) hn), ← Fin.succ_mk]
[GOAL]
case mk.succ
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hn : Nat.succ i < n
hi :
(partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ *
partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } =
f { val := i, isLt := (_ : i < n) }
⊢ (partialProd f (succ { val := i, isLt := (_ : i < n) }))⁻¹ *
partialProd f (succ { val := i + 1, isLt := ?mk.succ.h }) =
f { val := Nat.succ i, isLt := hn }
case mk.succ.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hn : Nat.succ i < n
hi :
(partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ *
partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } =
f { val := i, isLt := (_ : i < n) }
⊢ i + 1 < n
[PROOFSTEP]
rw [Nat.succ_eq_add_one] at hn
[GOAL]
case mk.succ
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hn✝ : Nat.succ i < n
hn : i + 1 < n
hi :
(partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ *
partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } =
f { val := i, isLt := (_ : i < n) }
⊢ (partialProd f (succ { val := i, isLt := (_ : i < n) }))⁻¹ *
partialProd f (succ { val := i + 1, isLt := (_ : i + 1 < n) }) =
f { val := Nat.succ i, isLt := hn✝ }
[PROOFSTEP]
simp only [partialProd_succ, mul_inv_rev, Fin.castSucc_mk]
-- Porting note: was
-- assoc_rw [hi, inv_mul_cancel_left]
[GOAL]
case mk.succ
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
f : Fin n → G
i : ℕ
hn✝ : Nat.succ i < n
hn : i + 1 < n
hi :
(partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ *
partialProd f { val := i + 1, isLt := (_ : Nat.succ i < Nat.succ n) } =
f { val := i, isLt := (_ : i < n) }
⊢ (f { val := i, isLt := (_ : i < n) })⁻¹ * (partialProd f { val := i, isLt := (_ : i < Nat.succ n) })⁻¹ *
(partialProd f { val := i + 1, isLt := (_ : i + 1 < Nat.succ n) } * f { val := i + 1, isLt := (_ : i + 1 < n) }) =
f { val := Nat.succ i, isLt := hn✝ }
[PROOFSTEP]
rw [← mul_assoc, mul_left_eq_self, mul_assoc, hi, mul_left_inv]
[GOAL]
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
⊢ (partialProd g (succAbove (succ j) (castSucc k)))⁻¹ * partialProd g (succ (succAbove j k)) =
contractNth j (fun x x_1 => x * x_1) g k
[PROOFSTEP]
rcases lt_trichotomy (k : ℕ) j with (h | h | h)
[GOAL]
case inl
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑k < ↑j
⊢ (partialProd g (succAbove (succ j) (castSucc k)))⁻¹ * partialProd g (succ (succAbove j k)) =
contractNth j (fun x x_1 => x * x_1) g k
[PROOFSTEP]
rwa [succAbove_below, succAbove_below, partialProd_right_inv, contractNth_apply_of_lt]
[GOAL]
case inl.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑k < ↑j
⊢ castSucc k < j
[PROOFSTEP]
assumption
[GOAL]
case inl.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑k < ↑j
⊢ castSucc (castSucc k) < succ j
[PROOFSTEP]
rw [castSucc_lt_iff_succ_le, succ_le_succ_iff, le_iff_val_le_val]
[GOAL]
case inl.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑k < ↑j
⊢ ↑(castSucc k) ≤ ↑j
[PROOFSTEP]
exact le_of_lt h
[GOAL]
case inr.inl
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑k = ↑j
⊢ (partialProd g (succAbove (succ j) (castSucc k)))⁻¹ * partialProd g (succ (succAbove j k)) =
contractNth j (fun x x_1 => x * x_1) g k
[PROOFSTEP]
rwa [succAbove_below, succAbove_above, partialProd_succ, castSucc_fin_succ, ← mul_assoc, partialProd_right_inv,
contractNth_apply_of_eq]
[GOAL]
case inr.inl.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑k = ↑j
⊢ j ≤ castSucc k
[PROOFSTEP]
simp [le_iff_val_le_val, ← h]
[GOAL]
case inr.inl.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑k = ↑j
⊢ castSucc (castSucc k) < succ j
[PROOFSTEP]
rw [castSucc_lt_iff_succ_le, succ_le_succ_iff, le_iff_val_le_val]
[GOAL]
case inr.inl.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑k = ↑j
⊢ ↑(castSucc k) ≤ ↑j
[PROOFSTEP]
exact le_of_eq h
[GOAL]
case inr.inr
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑j < ↑k
⊢ (partialProd g (succAbove (succ j) (castSucc k)))⁻¹ * partialProd g (succ (succAbove j k)) =
contractNth j (fun x x_1 => x * x_1) g k
[PROOFSTEP]
rwa [succAbove_above, succAbove_above, partialProd_succ, partialProd_succ, castSucc_fin_succ, partialProd_succ,
inv_mul_cancel_left, contractNth_apply_of_gt]
[GOAL]
case inr.inr.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑j < ↑k
⊢ j ≤ castSucc k
[PROOFSTEP]
exact le_iff_val_le_val.2 (le_of_lt h)
[GOAL]
case inr.inr.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑j < ↑k
⊢ succ j ≤ castSucc (castSucc k)
[PROOFSTEP]
rw [le_iff_val_le_val, val_succ]
[GOAL]
case inr.inr.h
α : Type u_1
β : Type u_2
inst✝¹ : Monoid α
n : ℕ
G : Type u_3
inst✝ : Group G
g : Fin (n + 1) → G
j : Fin (n + 1)
k : Fin n
h : ↑j < ↑k
⊢ ↑j + 1 ≤ ↑(castSucc (castSucc k))
[PROOFSTEP]
exact Nat.succ_le_of_lt h
[GOAL]
α : Type u_1
β : Type u_2
m n : ℕ
⊢ Fintype.card (Fin n → Fin m) = Fintype.card (Fin (m ^ n))
[PROOFSTEP]
simp_rw [Fintype.card_fun, Fintype.card_fin]
[GOAL]
α : Type u_1
β : Type u_2
m n : ℕ
f : Fin n → Fin m
⊢ ∑ i : Fin n, ↑(f i) * m ^ ↑i < m ^ n
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
β : Type u_2
m n : ℕ
f✝ : Fin n → Fin m
f : Fin Nat.zero → Fin m
⊢ ∑ i : Fin Nat.zero, ↑(f i) * m ^ ↑i < m ^ Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
β : Type u_2
m n✝ : ℕ
f✝ : Fin n✝ → Fin m
n : ℕ
ih : ∀ (f : Fin n → Fin m), ∑ i : Fin n, ↑(f i) * m ^ ↑i < m ^ n
f : Fin (Nat.succ n) → Fin m
⊢ ∑ i : Fin (Nat.succ n), ↑(f i) * m ^ ↑i < m ^ Nat.succ n
[PROOFSTEP]
cases m
[GOAL]
case succ.zero
α : Type u_1
β : Type u_2
n✝ n : ℕ
f✝ : Fin n✝ → Fin Nat.zero
ih : ∀ (f : Fin n → Fin Nat.zero), ∑ i : Fin n, ↑(f i) * Nat.zero ^ ↑i < Nat.zero ^ n
f : Fin (Nat.succ n) → Fin Nat.zero
⊢ ∑ i : Fin (Nat.succ n), ↑(f i) * Nat.zero ^ ↑i < Nat.zero ^ Nat.succ n
[PROOFSTEP]
dsimp only [Nat.zero_eq] at f
[GOAL]
case succ.zero
α : Type u_1
β : Type u_2
n✝ n : ℕ
f✝ : Fin n✝ → Fin Nat.zero
ih : ∀ (f : Fin n → Fin Nat.zero), ∑ i : Fin n, ↑(f i) * Nat.zero ^ ↑i < Nat.zero ^ n
f : Fin (Nat.succ n) → Fin 0
⊢ ∑ i : Fin (Nat.succ n), ↑(f i) * Nat.zero ^ ↑i < Nat.zero ^ Nat.succ n
[PROOFSTEP]
exact isEmptyElim (f <| Fin.last _)
[GOAL]
case succ.succ
α : Type u_1
β : Type u_2
n✝¹ n n✝ : ℕ
f✝ : Fin n✝¹ → Fin (Nat.succ n✝)
ih : ∀ (f : Fin n → Fin (Nat.succ n✝)), ∑ i : Fin n, ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ n
f : Fin (Nat.succ n) → Fin (Nat.succ n✝)
⊢ ∑ i : Fin (Nat.succ n), ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ Nat.succ n
[PROOFSTEP]
simp_rw [Fin.sum_univ_castSucc, Fin.coe_castSucc, Fin.val_last]
[GOAL]
case succ.succ
α : Type u_1
β : Type u_2
n✝¹ n n✝ : ℕ
f✝ : Fin n✝¹ → Fin (Nat.succ n✝)
ih : ∀ (f : Fin n → Fin (Nat.succ n✝)), ∑ i : Fin n, ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ n
f : Fin (Nat.succ n) → Fin (Nat.succ n✝)
⊢ ∑ x : Fin n, ↑(f (Fin.castSucc x)) * Nat.succ n✝ ^ ↑x + ↑(f (Fin.last n)) * Nat.succ n✝ ^ n < Nat.succ n✝ ^ Nat.succ n
[PROOFSTEP]
refine' (add_lt_add_of_lt_of_le (ih _) <| mul_le_mul_right' (Fin.is_le _) _).trans_eq _
[GOAL]
case succ.succ
α : Type u_1
β : Type u_2
n✝¹ n n✝ : ℕ
f✝ : Fin n✝¹ → Fin (Nat.succ n✝)
ih : ∀ (f : Fin n → Fin (Nat.succ n✝)), ∑ i : Fin n, ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ n
f : Fin (Nat.succ n) → Fin (Nat.succ n✝)
⊢ Nat.succ n✝ ^ n + n✝ * Nat.succ n✝ ^ n = Nat.succ n✝ ^ Nat.succ n
[PROOFSTEP]
rw [← one_add_mul (_ : ℕ), add_comm, pow_succ]
-- porting note: added, wrong `succ`
[GOAL]
case succ.succ
α : Type u_1
β : Type u_2
n✝¹ n n✝ : ℕ
f✝ : Fin n✝¹ → Fin (Nat.succ n✝)
ih : ∀ (f : Fin n → Fin (Nat.succ n✝)), ∑ i : Fin n, ↑(f i) * Nat.succ n✝ ^ ↑i < Nat.succ n✝ ^ n
f : Fin (Nat.succ n) → Fin (Nat.succ n✝)
⊢ (n✝ + 1) * Nat.succ n✝ ^ n = Nat.succ n✝ * Nat.succ n✝ ^ n
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
m n : ℕ
a : Fin (m ^ n)
b : Fin n
⊢ ↑a / m ^ ↑b % m < m
[PROOFSTEP]
cases' n with n
[GOAL]
case zero
α : Type u_1
β : Type u_2
m : ℕ
a : Fin (m ^ Nat.zero)
b : Fin Nat.zero
⊢ ↑a / m ^ ↑b % m < m
[PROOFSTEP]
exact b.elim0
[GOAL]
case succ
α : Type u_1
β : Type u_2
m n : ℕ
a : Fin (m ^ Nat.succ n)
b : Fin (Nat.succ n)
⊢ ↑a / m ^ ↑b % m < m
[PROOFSTEP]
cases' m with m
[GOAL]
case succ.zero
α : Type u_1
β : Type u_2
n : ℕ
b : Fin (Nat.succ n)
a : Fin (Nat.zero ^ Nat.succ n)
⊢ ↑a / Nat.zero ^ ↑b % Nat.zero < Nat.zero
[PROOFSTEP]
dsimp only [Nat.zero_eq] at a
[GOAL]
case succ.zero
α : Type u_1
β : Type u_2
n : ℕ
b : Fin (Nat.succ n)
a : Fin (0 ^ Nat.succ n)
⊢ ↑a / Nat.zero ^ ↑b % Nat.zero < Nat.zero
[PROOFSTEP]
rw [zero_pow n.succ_pos] at a
[GOAL]
case succ.zero
α : Type u_1
β : Type u_2
n : ℕ
b : Fin (Nat.succ n)
a✝ : Fin (0 ^ Nat.succ n)
a : Fin 0
⊢ ↑a✝ / Nat.zero ^ ↑b % Nat.zero < Nat.zero
[PROOFSTEP]
exact a.elim0
[GOAL]
case succ.succ
α : Type u_1
β : Type u_2
n : ℕ
b : Fin (Nat.succ n)
m : ℕ
a : Fin (Nat.succ m ^ Nat.succ n)
⊢ ↑a / Nat.succ m ^ ↑b % Nat.succ m < Nat.succ m
[PROOFSTEP]
exact Nat.mod_lt _ m.succ_pos
[GOAL]
α : Type u_1
β : Type u_2
m n : ℕ
a : Fin (m ^ n)
⊢ (fun f => { val := ∑ i : Fin n, ↑(f i) * m ^ ↑i, isLt := (_ : ∑ i : Fin n, ↑(f i) * m ^ ↑i < m ^ n) })
((fun a b => { val := ↑a / m ^ ↑b % m, isLt := (_ : ↑a / m ^ ↑b % m < m) }) a) =
a
[PROOFSTEP]
dsimp
[GOAL]
α : Type u_1
β : Type u_2
m n : ℕ
a : Fin (m ^ n)
⊢ { val := ∑ i : Fin n, ↑a / m ^ ↑i % m * m ^ ↑i,
isLt := (_ : ∑ i : Fin n, ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i < m ^ n) } =
a
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
α : Type u_1
β : Type u_2
m n : ℕ
a✝ : Fin (m ^ n)
a : Fin (m ^ Nat.zero)
⊢ { val := ∑ i : Fin Nat.zero, ↑a / m ^ ↑i % m * m ^ ↑i,
isLt :=
(_ :
∑ i : Fin Nat.zero, ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i <
m ^ Nat.zero) } =
a
[PROOFSTEP]
haveI : Subsingleton (Fin (m ^ 0)) := (Fin.castIso <| pow_zero _).toEquiv.subsingleton
[GOAL]
case zero
α : Type u_1
β : Type u_2
m n : ℕ
a✝ : Fin (m ^ n)
a : Fin (m ^ Nat.zero)
this : Subsingleton (Fin (m ^ 0))
⊢ { val := ∑ i : Fin Nat.zero, ↑a / m ^ ↑i % m * m ^ ↑i,
isLt :=
(_ :
∑ i : Fin Nat.zero, ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i <
m ^ Nat.zero) } =
a
[PROOFSTEP]
exact Subsingleton.elim _ _
[GOAL]
case succ
α : Type u_1
β : Type u_2
m n✝ : ℕ
a✝ : Fin (m ^ n✝)
n : ℕ
ih :
∀ (a : Fin (m ^ n)),
{ val := ∑ i : Fin n, ↑a / m ^ ↑i % m * m ^ ↑i,
isLt := (_ : ∑ i : Fin n, ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i < m ^ n) } =
a
a : Fin (m ^ Nat.succ n)
⊢ { val := ∑ i : Fin (Nat.succ n), ↑a / m ^ ↑i % m * m ^ ↑i,
isLt :=
(_ :
∑ i : Fin (Nat.succ n), ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i <
m ^ Nat.succ n) } =
a
[PROOFSTEP]
simp_rw [Fin.forall_iff, Fin.ext_iff] at ih
[GOAL]
case succ
α : Type u_1
β : Type u_2
m n✝ : ℕ
a✝ : Fin (m ^ n✝)
n : ℕ
a : Fin (m ^ Nat.succ n)
ih : ∀ (i : ℕ), i < m ^ n → ∑ x : Fin n, i / m ^ ↑x % m * m ^ ↑x = i
⊢ { val := ∑ i : Fin (Nat.succ n), ↑a / m ^ ↑i % m * m ^ ↑i,
isLt :=
(_ :
∑ i : Fin (Nat.succ n), ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i <
m ^ Nat.succ n) } =
a
[PROOFSTEP]
ext
[GOAL]
case succ.h
α : Type u_1
β : Type u_2
m n✝ : ℕ
a✝ : Fin (m ^ n✝)
n : ℕ
a : Fin (m ^ Nat.succ n)
ih : ∀ (i : ℕ), i < m ^ n → ∑ x : Fin n, i / m ^ ↑x % m * m ^ ↑x = i
⊢ ↑{ val := ∑ i : Fin (Nat.succ n), ↑a / m ^ ↑i % m * m ^ ↑i,
isLt :=
(_ :
∑ i : Fin (Nat.succ n), ↑{ val := ↑a / m ^ ↑i % m, isLt := (_ : ↑a / m ^ ↑i % m < m) } * m ^ ↑i <
m ^ Nat.succ n) } =
↑a
[PROOFSTEP]
simp_rw [Fin.sum_univ_succ, Fin.val_zero, Fin.val_succ, pow_zero, Nat.div_one, mul_one, pow_succ, ←
Nat.div_div_eq_div_mul, mul_left_comm _ m, ← mul_sum]
[GOAL]
case succ.h
α : Type u_1
β : Type u_2
m n✝ : ℕ
a✝ : Fin (m ^ n✝)
n : ℕ
a : Fin (m ^ Nat.succ n)
ih : ∀ (i : ℕ), i < m ^ n → ∑ x : Fin n, i / m ^ ↑x % m * m ^ ↑x = i
⊢ ↑a % m + m * ∑ x : Fin n, ↑a / m / m ^ ↑x % m * m ^ ↑x = ↑a
[PROOFSTEP]
rw [ih _ (Nat.div_lt_of_lt_mul ?_), Nat.mod_add_div]
-- porting note: replaces `a.is_lt` in the wildcard above. Caused by a refactor of the `npow`
-- instance for `Fin`.
[GOAL]
α : Type u_1
β : Type u_2
m n✝ : ℕ
a✝ : Fin (m ^ n✝)
n : ℕ
a : Fin (m ^ Nat.succ n)
ih : ∀ (i : ℕ), i < m ^ n → ∑ x : Fin n, i / m ^ ↑x % m * m ^ ↑x = i
⊢ ↑a < m * m ^ n
[PROOFSTEP]
exact a.is_lt.trans_eq (pow_succ _ _)
[GOAL]
α : Type u_1
β : Type u_2
m n : ℕ
inst✝ : NeZero m
i : Fin n
j : Fin m
⊢ ↑(↑finFunctionFinEquiv (Pi.single i j)) = ↑j * m ^ ↑i
[PROOFSTEP]
rw [finFunctionFinEquiv_apply, Fintype.sum_eq_single i, Pi.single_eq_same]
[GOAL]
α : Type u_1
β : Type u_2
m n : ℕ
inst✝ : NeZero m
i : Fin n
j : Fin m
⊢ ∀ (x : Fin n), x ≠ i → ↑(Pi.single i j x) * m ^ ↑x = 0
[PROOFSTEP]
rintro x hx
[GOAL]
α : Type u_1
β : Type u_2
m n : ℕ
inst✝ : NeZero m
i : Fin n
j : Fin m
x : Fin n
hx : x ≠ i
⊢ ↑(Pi.single i j x) * m ^ ↑x = 0
[PROOFSTEP]
rw [Pi.single_eq_of_ne hx, Fin.val_zero', zero_mul]
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
⊢ Fintype.card ((i : Fin m) → Fin (n i)) = Fintype.card (Fin (∏ i : Fin m, n i))
[PROOFSTEP]
simp_rw [Fintype.card_pi, Fintype.card_fin]
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
f : (i : Fin m) → Fin (n i)
⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
[PROOFSTEP]
induction' m with m ih
[GOAL]
case zero
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
f✝ : (i : Fin m) → Fin (n✝ i)
n : Fin Nat.zero → ℕ
f : (i : Fin Nat.zero) → Fin (n i)
⊢ ∑ i : Fin Nat.zero, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ Nat.zero) j) < ∏ i : Fin Nat.zero, n i
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝ : Fin m✝ → ℕ
f✝ : (i : Fin m✝) → Fin (n✝ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n : Fin (Nat.succ m) → ℕ
f : (i : Fin (Nat.succ m)) → Fin (n i)
⊢ ∑ i : Fin (Nat.succ m), ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ Nat.succ m) j) < ∏ i : Fin (Nat.succ m), n i
[PROOFSTEP]
rw [Fin.prod_univ_castSucc, Fin.sum_univ_castSucc]
[GOAL]
case succ
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝ : Fin m✝ → ℕ
f✝ : (i : Fin m✝) → Fin (n✝ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n : Fin (Nat.succ m) → ℕ
f : (i : Fin (Nat.succ m)) → Fin (n i)
⊢ ∑ i : Fin m,
↑(f (Fin.castSucc i)) * ∏ j : Fin ↑(Fin.castSucc i), n (Fin.castLE (_ : ↑(Fin.castSucc i) ≤ Nat.succ m) j) +
↑(f (Fin.last m)) * ∏ j : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) j) <
(∏ i : Fin m, n (Fin.castSucc i)) * n (Fin.last m)
[PROOFSTEP]
suffices
∀ (n : Fin m → ℕ) (nn : ℕ) (f : ∀ i : Fin m, Fin (n i)) (fn : Fin nn),
((∑ i : Fin m, ↑(f i) * ∏ j : Fin i, n (Fin.castLE i.prop.le j)) + ↑fn * ∏ j, n j) < (∏ i : Fin m, n i) * nn
by
replace := this (Fin.init n) (n (Fin.last _)) (Fin.init f) (f (Fin.last _))
rw [← Fin.snoc_init_self f]
simp (config := { singlePass := true }) only [← Fin.snoc_init_self n]
simp_rw [Fin.snoc_castSucc, Fin.snoc_last, Fin.snoc_init_self n]
exact this
[GOAL]
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝ : Fin m✝ → ℕ
f✝ : (i : Fin m✝) → Fin (n✝ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n : Fin (Nat.succ m) → ℕ
f : (i : Fin (Nat.succ m)) → Fin (n i)
this :
∀ (n : Fin m → ℕ) (nn : ℕ) (f : (i : Fin m) → Fin (n i)) (fn : Fin nn),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j < (∏ i : Fin m, n i) * nn
⊢ ∑ i : Fin m,
↑(f (Fin.castSucc i)) * ∏ j : Fin ↑(Fin.castSucc i), n (Fin.castLE (_ : ↑(Fin.castSucc i) ≤ Nat.succ m) j) +
↑(f (Fin.last m)) * ∏ j : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) j) <
(∏ i : Fin m, n (Fin.castSucc i)) * n (Fin.last m)
[PROOFSTEP]
replace := this (Fin.init n) (n (Fin.last _)) (Fin.init f) (f (Fin.last _))
[GOAL]
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝ : Fin m✝ → ℕ
f✝ : (i : Fin m✝) → Fin (n✝ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n : Fin (Nat.succ m) → ℕ
f : (i : Fin (Nat.succ m)) → Fin (n i)
this :
∑ i : Fin m, ↑(Fin.init f i) * ∏ j : Fin ↑i, Fin.init n (Fin.castLE (_ : ↑i ≤ m) j) +
↑(f (Fin.last m)) * ∏ j : Fin m, Fin.init n j <
(∏ i : Fin m, Fin.init n i) * n (Fin.last m)
⊢ ∑ i : Fin m,
↑(f (Fin.castSucc i)) * ∏ j : Fin ↑(Fin.castSucc i), n (Fin.castLE (_ : ↑(Fin.castSucc i) ≤ Nat.succ m) j) +
↑(f (Fin.last m)) * ∏ j : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) j) <
(∏ i : Fin m, n (Fin.castSucc i)) * n (Fin.last m)
[PROOFSTEP]
rw [← Fin.snoc_init_self f]
[GOAL]
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝ : Fin m✝ → ℕ
f✝ : (i : Fin m✝) → Fin (n✝ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n : Fin (Nat.succ m) → ℕ
f : (i : Fin (Nat.succ m)) → Fin (n i)
this :
∑ i : Fin m, ↑(Fin.init f i) * ∏ j : Fin ↑i, Fin.init n (Fin.castLE (_ : ↑i ≤ m) j) +
↑(f (Fin.last m)) * ∏ j : Fin m, Fin.init n j <
(∏ i : Fin m, Fin.init n i) * n (Fin.last m)
⊢ ∑ i : Fin m,
↑(Fin.snoc (Fin.init f) (f (Fin.last m)) (Fin.castSucc i)) *
∏ j : Fin ↑(Fin.castSucc i), n (Fin.castLE (_ : ↑(Fin.castSucc i) ≤ Nat.succ m) j) +
↑(Fin.snoc (Fin.init f) (f (Fin.last m)) (Fin.last m)) *
∏ j : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) j) <
(∏ i : Fin m, n (Fin.castSucc i)) * n (Fin.last m)
[PROOFSTEP]
simp (config := { singlePass := true }) only [← Fin.snoc_init_self n]
[GOAL]
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝ : Fin m✝ → ℕ
f✝ : (i : Fin m✝) → Fin (n✝ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n : Fin (Nat.succ m) → ℕ
f : (i : Fin (Nat.succ m)) → Fin (n i)
this :
∑ i : Fin m, ↑(Fin.init f i) * ∏ j : Fin ↑i, Fin.init n (Fin.castLE (_ : ↑i ≤ m) j) +
↑(f (Fin.last m)) * ∏ j : Fin m, Fin.init n j <
(∏ i : Fin m, Fin.init n i) * n (Fin.last m)
⊢ ∑ x : Fin m,
↑(Fin.snoc (Fin.init f) (f (Fin.last m)) (Fin.castSucc x)) *
∏ x_1 : Fin ↑(Fin.castSucc x),
Fin.snoc (Fin.init n) (n (Fin.last m)) (Fin.castLE (_ : ↑(Fin.castSucc x) ≤ Nat.succ m) x_1) +
↑(Fin.snoc (Fin.init f) (f (Fin.last m)) (Fin.last m)) *
∏ x : Fin ↑(Fin.last m),
Fin.snoc (Fin.init n) (n (Fin.last m)) (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) x) <
(∏ x : Fin m, Fin.snoc (Fin.init n) (n (Fin.last m)) (Fin.castSucc x)) *
Fin.snoc (Fin.init n) (n (Fin.last m)) (Fin.last m)
[PROOFSTEP]
simp_rw [Fin.snoc_castSucc, Fin.snoc_last, Fin.snoc_init_self n]
[GOAL]
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝ : Fin m✝ → ℕ
f✝ : (i : Fin m✝) → Fin (n✝ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n : Fin (Nat.succ m) → ℕ
f : (i : Fin (Nat.succ m)) → Fin (n i)
this :
∑ i : Fin m, ↑(Fin.init f i) * ∏ j : Fin ↑i, Fin.init n (Fin.castLE (_ : ↑i ≤ m) j) +
↑(f (Fin.last m)) * ∏ j : Fin m, Fin.init n j <
(∏ i : Fin m, Fin.init n i) * n (Fin.last m)
⊢ ∑ x : Fin m,
↑(Fin.init f x) * ∏ x_1 : Fin ↑(Fin.castSucc x), n (Fin.castLE (_ : ↑(Fin.castSucc x) ≤ Nat.succ m) x_1) +
↑(f (Fin.last m)) * ∏ x : Fin ↑(Fin.last m), n (Fin.castLE (_ : ↑(Fin.last m) ≤ Nat.succ m) x) <
(∏ x : Fin m, Fin.init n x) * n (Fin.last m)
[PROOFSTEP]
exact this
[GOAL]
case succ
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝ : Fin m✝ → ℕ
f✝ : (i : Fin m✝) → Fin (n✝ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n : Fin (Nat.succ m) → ℕ
f : (i : Fin (Nat.succ m)) → Fin (n i)
⊢ ∀ (n : Fin m → ℕ) (nn : ℕ) (f : (i : Fin m) → Fin (n i)) (fn : Fin nn),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j < (∏ i : Fin m, n i) * nn
[PROOFSTEP]
intro n nn f fn
[GOAL]
case succ
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝¹ : Fin m✝ → ℕ
f✝¹ : (i : Fin m✝) → Fin (n✝¹ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n✝ : Fin (Nat.succ m) → ℕ
f✝ : (i : Fin (Nat.succ m)) → Fin (n✝ i)
n : Fin m → ℕ
nn : ℕ
f : (i : Fin m) → Fin (n i)
fn : Fin nn
⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j < (∏ i : Fin m, n i) * nn
[PROOFSTEP]
cases nn
[GOAL]
case succ.zero
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝¹ : Fin m✝ → ℕ
f✝¹ : (i : Fin m✝) → Fin (n✝¹ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n✝ : Fin (Nat.succ m) → ℕ
f✝ : (i : Fin (Nat.succ m)) → Fin (n✝ i)
n : Fin m → ℕ
f : (i : Fin m) → Fin (n i)
fn : Fin Nat.zero
⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j <
(∏ i : Fin m, n i) * Nat.zero
[PROOFSTEP]
dsimp only [Nat.zero_eq] at fn
[GOAL]
case succ.zero
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝¹ : Fin m✝ → ℕ
f✝¹ : (i : Fin m✝) → Fin (n✝¹ i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n✝ : Fin (Nat.succ m) → ℕ
f✝ : (i : Fin (Nat.succ m)) → Fin (n✝ i)
n : Fin m → ℕ
f : (i : Fin m) → Fin (n i)
fn : Fin 0
⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j <
(∏ i : Fin m, n i) * Nat.zero
[PROOFSTEP]
exact isEmptyElim fn
[GOAL]
case succ.succ
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝² : Fin m✝ → ℕ
f✝¹ : (i : Fin m✝) → Fin (n✝² i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n✝¹ : Fin (Nat.succ m) → ℕ
f✝ : (i : Fin (Nat.succ m)) → Fin (n✝¹ i)
n : Fin m → ℕ
f : (i : Fin m) → Fin (n i)
n✝ : ℕ
fn : Fin (Nat.succ n✝)
⊢ ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) + ↑fn * ∏ j : Fin m, n j <
(∏ i : Fin m, n i) * Nat.succ n✝
[PROOFSTEP]
refine' (add_lt_add_of_lt_of_le (ih _) <| mul_le_mul_right' (Fin.is_le _) _).trans_eq _
[GOAL]
case succ.succ
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝² : Fin m✝ → ℕ
f✝¹ : (i : Fin m✝) → Fin (n✝² i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n✝¹ : Fin (Nat.succ m) → ℕ
f✝ : (i : Fin (Nat.succ m)) → Fin (n✝¹ i)
n : Fin m → ℕ
f : (i : Fin m) → Fin (n i)
n✝ : ℕ
fn : Fin (Nat.succ n✝)
⊢ ∏ i : Fin m, n i + n✝ * ∏ j : Fin m, n j = (∏ i : Fin m, n i) * Nat.succ n✝
[PROOFSTEP]
rw [← one_add_mul (_ : ℕ), mul_comm, add_comm]
-- porting note: added, wrong `succ`
[GOAL]
case succ.succ
α : Type u_1
β : Type u_2
m✝ : ℕ
n✝² : Fin m✝ → ℕ
f✝¹ : (i : Fin m✝) → Fin (n✝² i)
m : ℕ
ih :
∀ {n : Fin m → ℕ} (f : (i : Fin m) → Fin (n i)),
∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i
n✝¹ : Fin (Nat.succ m) → ℕ
f✝ : (i : Fin (Nat.succ m)) → Fin (n✝¹ i)
n : Fin m → ℕ
f : (i : Fin m) → Fin (n i)
n✝ : ℕ
fn : Fin (Nat.succ n✝)
⊢ (∏ i : Fin m, n i) * (n✝ + 1) = (∏ i : Fin m, n i) * Nat.succ n✝
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
a : Fin (∏ i : Fin m, n i)
b : Fin m
⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b < n b
[PROOFSTEP]
cases m
[GOAL]
case zero
α : Type u_1
β : Type u_2
n : Fin Nat.zero → ℕ
a : Fin (∏ i : Fin Nat.zero, n i)
b : Fin Nat.zero
⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.zero) j)) % n b < n b
[PROOFSTEP]
exact b.elim0
[GOAL]
case succ
α : Type u_1
β : Type u_2
n✝ : ℕ
n : Fin (Nat.succ n✝) → ℕ
a : Fin (∏ i : Fin (Nat.succ n✝), n i)
b : Fin (Nat.succ n✝)
⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.succ n✝) j)) % n b < n b
[PROOFSTEP]
cases' h : n b with nb
[GOAL]
case succ.zero
α : Type u_1
β : Type u_2
n✝ : ℕ
n : Fin (Nat.succ n✝) → ℕ
a : Fin (∏ i : Fin (Nat.succ n✝), n i)
b : Fin (Nat.succ n✝)
h : n b = Nat.zero
⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.succ n✝) j)) % Nat.zero < Nat.zero
[PROOFSTEP]
rw [prod_eq_zero (Finset.mem_univ _) h] at a
[GOAL]
case succ.zero
α : Type u_1
β : Type u_2
n✝ : ℕ
n : Fin (Nat.succ n✝) → ℕ
a✝ : Fin (∏ i : Fin (Nat.succ n✝), n i)
a : Fin 0
b : Fin (Nat.succ n✝)
h : n b = Nat.zero
⊢ (↑a✝ / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.succ n✝) j)) % Nat.zero < Nat.zero
[PROOFSTEP]
exact isEmptyElim a
[GOAL]
case succ.succ
α : Type u_1
β : Type u_2
n✝ : ℕ
n : Fin (Nat.succ n✝) → ℕ
a : Fin (∏ i : Fin (Nat.succ n✝), n i)
b : Fin (Nat.succ n✝)
nb : ℕ
h : n b = Nat.succ nb
⊢ (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ Nat.succ n✝) j)) % Nat.succ nb < Nat.succ nb
[PROOFSTEP]
exact Nat.mod_lt _ nb.succ_pos
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
⊢ Function.RightInverse
(fun a b =>
{ val := (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b,
isLt := (_ : (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b < n b) })
fun f =>
{ val := ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j),
isLt := (_ : ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i) }
[PROOFSTEP]
intro a
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
a : Fin (∏ i : Fin m, n i)
⊢ (fun f =>
{ val := ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j),
isLt := (_ : ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i) })
((fun a b =>
{ val := (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b,
isLt := (_ : (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b < n b) })
a) =
a
[PROOFSTEP]
revert a
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
⊢ ∀ (a : Fin (∏ i : Fin m, n i)),
(fun f =>
{ val := ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j),
isLt := (_ : ∑ i : Fin m, ↑(f i) * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) < ∏ i : Fin m, n i) })
((fun a b =>
{ val := (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b,
isLt := (_ : (↑a / ∏ j : Fin ↑b, n (Fin.castLE (_ : ↑b ≤ m) j)) % n b < n b) })
a) =
a
[PROOFSTEP]
dsimp only [Fin.val_mk]
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
⊢ ∀ (a : Fin (∏ i : Fin m, n i)),
{
val :=
∑ i : Fin m,
(↑a / ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j)) % n i * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j),
isLt :=
(_ :
∑ i : Fin m,
↑{ val := (↑a / ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j)) % n i,
isLt := (_ : (↑a / ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j)) % n i < n i) } *
∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j) <
∏ i : Fin m, n i) } =
a
[PROOFSTEP]
refine' Fin.consInduction _ _ n
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
⊢ ∀ (a : Fin (∏ i : Fin 0, Fin.elim0 i)),
{
val :=
∑ i : Fin 0,
(↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i *
∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j),
isLt :=
(_ :
∑ i : Fin 0,
↑{ val := (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i,
isLt :=
(_ : (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i < Fin.elim0 i) } *
∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j) <
∏ i : Fin 0, Fin.elim0 i) } =
a
[PROOFSTEP]
intro a
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
a : Fin (∏ i : Fin 0, Fin.elim0 i)
⊢ {
val :=
∑ i : Fin 0,
(↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i *
∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j),
isLt :=
(_ :
∑ i : Fin 0,
↑{ val := (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i,
isLt :=
(_ : (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i < Fin.elim0 i) } *
∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j) <
∏ i : Fin 0, Fin.elim0 i) } =
a
[PROOFSTEP]
haveI : Subsingleton (Fin (∏ i : Fin 0, i.elim0)) := (Fin.castIso <| prod_empty).toEquiv.subsingleton
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
a : Fin (∏ i : Fin 0, Fin.elim0 i)
this : Subsingleton (Fin (∏ i : Fin 0, Fin.elim0 i))
⊢ {
val :=
∑ i : Fin 0,
(↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i *
∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j),
isLt :=
(_ :
∑ i : Fin 0,
↑{ val := (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i,
isLt :=
(_ : (↑a / ∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j)) % Fin.elim0 i < Fin.elim0 i) } *
∏ j : Fin ↑i, Fin.elim0 (Fin.castLE (_ : ↑i ≤ 0) j) <
∏ i : Fin 0, Fin.elim0 i) } =
a
[PROOFSTEP]
exact Subsingleton.elim _ _
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
⊢ ∀ {n : ℕ} (x₀ : ℕ) (x : Fin n → ℕ),
(∀ (a : Fin (∏ i : Fin n, x i)),
{
val :=
∑ i : Fin n,
(↑a / ∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j)) % x i * ∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j),
isLt :=
(_ :
∑ i : Fin n,
↑{ val := (↑a / ∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j)) % x i,
isLt := (_ : (↑a / ∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j)) % x i < x i) } *
∏ j : Fin ↑i, x (Fin.castLE (_ : ↑i ≤ n) j) <
∏ i : Fin n, x i) } =
a) →
∀ (a : Fin (∏ i : Fin (n + 1), Fin.cons x₀ x i)),
{
val :=
∑ i : Fin (n + 1),
(↑a / ∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x₀ x i *
∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j),
isLt :=
(_ :
∑ i : Fin (n + 1),
↑{ val := (↑a / ∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x₀ x i,
isLt :=
(_ :
(↑a / ∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x₀ x i <
Fin.cons x₀ x i) } *
∏ j : Fin ↑i, Fin.cons x₀ x (Fin.castLE (_ : ↑i ≤ n + 1) j) <
∏ i : Fin (n + 1), Fin.cons x₀ x i) } =
a
[PROOFSTEP]
intro n x xs ih a
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
ih :
∀ (a : Fin (∏ i : Fin n, xs i)),
{
val :=
∑ i : Fin n,
(↑a / ∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j)) % xs i * ∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j),
isLt :=
(_ :
∑ i : Fin n,
↑{ val := (↑a / ∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j)) % xs i,
isLt := (_ : (↑a / ∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j)) % xs i < xs i) } *
∏ j : Fin ↑i, xs (Fin.castLE (_ : ↑i ≤ n) j) <
∏ i : Fin n, xs i) } =
a
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
⊢ {
val :=
∑ i : Fin (n + 1),
(↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i *
∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j),
isLt :=
(_ :
∑ i : Fin (n + 1),
↑{ val := (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i,
isLt :=
(_ :
(↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i <
Fin.cons x xs i) } *
∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j) <
∏ i : Fin (n + 1), Fin.cons x xs i) } =
a
[PROOFSTEP]
simp_rw [Fin.forall_iff, Fin.ext_iff] at ih
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ {
val :=
∑ i : Fin (n + 1),
(↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i *
∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j),
isLt :=
(_ :
∑ i : Fin (n + 1),
↑{ val := (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i,
isLt :=
(_ :
(↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i <
Fin.cons x xs i) } *
∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j) <
∏ i : Fin (n + 1), Fin.cons x xs i) } =
a
[PROOFSTEP]
ext
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ ↑{
val :=
∑ i : Fin (n + 1),
(↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i *
∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j),
isLt :=
(_ :
∑ i : Fin (n + 1),
↑{ val := (↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i,
isLt :=
(_ :
(↑a / ∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j)) % Fin.cons x xs i <
Fin.cons x xs i) } *
∏ j : Fin ↑i, Fin.cons x xs (Fin.castLE (_ : ↑i ≤ n + 1) j) <
∏ i : Fin (n + 1), Fin.cons x xs i) } =
↑a
[PROOFSTEP]
simp_rw [Fin.sum_univ_succ, Fin.cons_succ]
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ (↑a / ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j)) % Fin.cons x xs 0 *
∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j) +
∑ x_1 : Fin n,
(↑a / ∏ j : Fin ↑(Fin.succ x_1), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ x_1) ≤ n + 1) j)) % xs x_1 *
∏ j : Fin ↑(Fin.succ x_1), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ x_1) ≤ n + 1) j) =
↑a
[PROOFSTEP]
have := fun i : Fin n =>
Fintype.prod_equiv (Fin.castIso <| Fin.val_succ i).toEquiv
(fun j => (Fin.cons x xs : _ → ℕ) (Fin.castLE (Fin.is_lt _).le j))
(fun j => (Fin.cons x xs : _ → ℕ) (Fin.castLE (Nat.succ_le_succ (Fin.is_lt _).le) j)) fun j => rfl
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
this :
∀ (i : Fin n),
∏ x_1 : Fin ↑(Fin.succ i), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ i) ≤ n + 1) x_1) =
∏ x_1 : Fin (↑i + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑i ≤ Nat.succ n) x_1)
⊢ (↑a / ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j)) % Fin.cons x xs 0 *
∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j) +
∑ x_1 : Fin n,
(↑a / ∏ j : Fin ↑(Fin.succ x_1), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ x_1) ≤ n + 1) j)) % xs x_1 *
∏ j : Fin ↑(Fin.succ x_1), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ x_1) ≤ n + 1) j) =
↑a
[PROOFSTEP]
simp_rw [this]
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
this :
∀ (i : Fin n),
∏ x_1 : Fin ↑(Fin.succ i), Fin.cons x xs (Fin.castLE (_ : ↑(Fin.succ i) ≤ n + 1) x_1) =
∏ x_1 : Fin (↑i + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑i ≤ Nat.succ n) x_1)
⊢ (↑a / ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j)) % Fin.cons x xs 0 *
∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j) +
∑ x_1 : Fin n,
(↑a / ∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2)) % xs x_1 *
∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2) =
↑a
[PROOFSTEP]
clear this
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ (↑a / ∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j)) % Fin.cons x xs 0 *
∏ j : Fin ↑0, Fin.cons x xs (Fin.castLE (_ : ↑0 ≤ n + 1) j) +
∑ x_1 : Fin n,
(↑a / ∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2)) % xs x_1 *
∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2) =
↑a
[PROOFSTEP]
dsimp only [Fin.val_zero]
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ (↑a / ∏ j : Fin 0, Fin.cons x xs (Fin.castLE (_ : 0 ≤ n + 1) j)) % Fin.cons x xs 0 *
∏ j : Fin 0, Fin.cons x xs (Fin.castLE (_ : 0 ≤ n + 1) j) +
∑ x_1 : Fin n,
(↑a / ∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2)) % xs x_1 *
∏ x_2 : Fin (↑x_1 + 1), Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) x_2) =
↑a
[PROOFSTEP]
simp_rw [Fintype.prod_empty, Nat.div_one, mul_one, Fin.cons_zero, Fin.prod_univ_succ]
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ ↑a % x +
∑ x_1 : Fin n,
↑a /
(Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) 0) *
∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i))) %
xs x_1 *
(Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) 0) *
∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i))) =
↑a
[PROOFSTEP]
change (_ + ∑ y : _, _ / (x * _) % _ * (x * _)) = _
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ ↑a % x +
∑ y : Fin n,
↑a / (x * ∏ i : Fin ↑y, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑y ≤ Nat.succ n) (Fin.succ i))) % xs y *
(x * ∏ i : Fin ↑y, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑y ≤ Nat.succ n) (Fin.succ i))) =
↑a
[PROOFSTEP]
simp_rw [← Nat.div_div_eq_div_mul, mul_left_comm (_ % _ : ℕ), ← mul_sum]
[GOAL]
case refine'_2.h
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ ↑a % x +
x *
∑ x_1 : Fin n,
(↑a / x / ∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i))) % xs x_1 *
∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i)) =
↑a
[PROOFSTEP]
convert
Nat.mod_add_div _
_
-- porting note: new
[GOAL]
case h.e'_2.h.e'_6.h.e'_6
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ ∑ x_1 : Fin n,
(↑a / x / ∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i))) % xs x_1 *
∏ i : Fin ↑x_1, Fin.cons x xs (Fin.castLE (_ : Nat.succ ↑x_1 ≤ Nat.succ n) (Fin.succ i)) =
↑a / x
[PROOFSTEP]
refine (ih (a / x) (Nat.div_lt_of_lt_mul <| a.is_lt.trans_eq ?_))
[GOAL]
case h.e'_2.h.e'_6.h.e'_6
α : Type u_1
β : Type u_2
m : ℕ
n✝ : Fin m → ℕ
n x : ℕ
xs : Fin n → ℕ
a : Fin (∏ i : Fin (n + 1), Fin.cons x xs i)
ih :
∀ (i : ℕ),
i < ∏ i : Fin n, xs i →
∑ x : Fin n,
(i / ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j)) % xs x * ∏ j : Fin ↑x, xs (Fin.castLE (_ : ↑x ≤ n) j) =
i
⊢ ∏ i : Fin (n + 1), Fin.cons x xs i = x * ∏ i : Fin n, xs i
[PROOFSTEP]
exact
Fin.prod_univ_succ
_ -- porting note: was:
/-
refine' Eq.trans _ (ih (a / x) (Nat.div_lt_of_lt_mul <| a.is_lt.trans_eq _))
swap
· convert Fin.prod_univ_succ (Fin.cons x xs : ∀ _, ℕ)
simp_rw [Fin.cons_succ]
congr with i
congr with j
· cases j
rfl
· cases j
rfl-/
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
inst✝ : ∀ (i : Fin m), NeZero (n i)
i : Fin m
j : Fin (n i)
⊢ ↑(↑finPiFinEquiv (Pi.single i j)) = ↑j * ∏ j : Fin ↑i, n (Fin.castLE (_ : ↑i ≤ m) j)
[PROOFSTEP]
rw [finPiFinEquiv_apply, Fintype.sum_eq_single i, Pi.single_eq_same]
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
inst✝ : ∀ (i : Fin m), NeZero (n i)
i : Fin m
j : Fin (n i)
⊢ ∀ (x : Fin m), x ≠ i → ↑(Pi.single i j x) * ∏ j : Fin ↑x, n (Fin.castLE (_ : ↑x ≤ m) j) = 0
[PROOFSTEP]
rintro x hx
[GOAL]
α : Type u_1
β : Type u_2
m : ℕ
n : Fin m → ℕ
inst✝ : ∀ (i : Fin m), NeZero (n i)
i : Fin m
j : Fin (n i)
x : Fin m
hx : x ≠ i
⊢ ↑(Pi.single i j x) * ∏ j : Fin ↑x, n (Fin.castLE (_ : ↑x ≤ m) j) = 0
[PROOFSTEP]
rw [Pi.single_eq_of_ne hx, Fin.val_zero', zero_mul]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
⊢ prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
[PROOFSTEP]
induction i with
| zero => simp
| succ i IH =>
by_cases h : i < n
· have : i < length (ofFn f) := by rwa [length_ofFn f]
rw [prod_take_succ _ _ this]
have A :
((Finset.univ : Finset (Fin n)).filter fun j => j.val < i + 1) =
((Finset.univ : Finset (Fin n)).filter fun j => j.val < i) ∪ {(⟨i, h⟩ : Fin n)} :=
by
ext ⟨_, _⟩
simp [Nat.lt_succ_iff_lt_or_eq]
have B : _root_.Disjoint (Finset.filter (fun j : Fin n => j.val < i) Finset.univ) (singleton (⟨i, h⟩ : Fin n)) := by
simp
rw [A, Finset.prod_union B, IH]
simp
· have A : (ofFn f).take i = (ofFn f).take i.succ :=
by
rw [← length_ofFn f] at h
have : length (ofFn f) ≤ i := not_lt.mp h
rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))]
have B : ∀ j : Fin n, ((j : ℕ) < i.succ) = ((j : ℕ) < i) :=
by
intro j
have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h)
simp [this, lt_trans this (Nat.lt_succ_self _)]
simp [← A, B, IH]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
⊢ prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
[PROOFSTEP]
induction i with
| zero => simp
| succ i IH =>
by_cases h : i < n
· have : i < length (ofFn f) := by rwa [length_ofFn f]
rw [prod_take_succ _ _ this]
have A :
((Finset.univ : Finset (Fin n)).filter fun j => j.val < i + 1) =
((Finset.univ : Finset (Fin n)).filter fun j => j.val < i) ∪ {(⟨i, h⟩ : Fin n)} :=
by
ext ⟨_, _⟩
simp [Nat.lt_succ_iff_lt_or_eq]
have B : _root_.Disjoint (Finset.filter (fun j : Fin n => j.val < i) Finset.univ) (singleton (⟨i, h⟩ : Fin n)) := by
simp
rw [A, Finset.prod_union B, IH]
simp
· have A : (ofFn f).take i = (ofFn f).take i.succ :=
by
rw [← length_ofFn f] at h
have : length (ofFn f) ≤ i := not_lt.mp h
rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))]
have B : ∀ j : Fin n, ((j : ℕ) < i.succ) = ((j : ℕ) < i) :=
by
intro j
have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h)
simp [this, lt_trans this (Nat.lt_succ_self _)]
simp [← A, B, IH]
[GOAL]
case zero
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
⊢ prod (take Nat.zero (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.zero) univ, f j
[PROOFSTEP]
| zero => simp
[GOAL]
case zero
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
⊢ prod (take Nat.zero (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.zero) univ, f j
[PROOFSTEP]
simp
[GOAL]
case succ
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
| succ i IH =>
by_cases h : i < n
· have : i < length (ofFn f) := by rwa [length_ofFn f]
rw [prod_take_succ _ _ this]
have A :
((Finset.univ : Finset (Fin n)).filter fun j => j.val < i + 1) =
((Finset.univ : Finset (Fin n)).filter fun j => j.val < i) ∪ {(⟨i, h⟩ : Fin n)} :=
by
ext ⟨_, _⟩
simp [Nat.lt_succ_iff_lt_or_eq]
have B : _root_.Disjoint (Finset.filter (fun j : Fin n => j.val < i) Finset.univ) (singleton (⟨i, h⟩ : Fin n)) := by
simp
rw [A, Finset.prod_union B, IH]
simp
· have A : (ofFn f).take i = (ofFn f).take i.succ :=
by
rw [← length_ofFn f] at h
have : length (ofFn f) ≤ i := not_lt.mp h
rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))]
have B : ∀ j : Fin n, ((j : ℕ) < i.succ) = ((j : ℕ) < i) :=
by
intro j
have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h)
simp [this, lt_trans this (Nat.lt_succ_self _)]
simp [← A, B, IH]
[GOAL]
case succ
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
by_cases h : i < n
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
have : i < length (ofFn f) := by rwa [length_ofFn f]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
⊢ i < length (ofFn f)
[PROOFSTEP]
rwa [length_ofFn f]
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
this : i < length (ofFn f)
⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
rw [prod_take_succ _ _ this]
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
this : i < length (ofFn f)
⊢ prod (take i (ofFn f)) * nthLe (ofFn f) i this = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
have A :
((Finset.univ : Finset (Fin n)).filter fun j => j.val < i + 1) =
((Finset.univ : Finset (Fin n)).filter fun j => j.val < i) ∪ {(⟨i, h⟩ : Fin n)} :=
by
ext ⟨_, _⟩
simp [Nat.lt_succ_iff_lt_or_eq]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
this : i < length (ofFn f)
⊢ Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }}
[PROOFSTEP]
ext ⟨_, _⟩
[GOAL]
case a.mk
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
this : i < length (ofFn f)
val✝ : ℕ
isLt✝ : val✝ < n
⊢ { val := val✝, isLt := isLt✝ } ∈ Finset.filter (fun j => ↑j < i + 1) univ ↔
{ val := val✝, isLt := isLt✝ } ∈ Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }}
[PROOFSTEP]
simp [Nat.lt_succ_iff_lt_or_eq]
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
this : i < length (ofFn f)
A : Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }}
⊢ prod (take i (ofFn f)) * nthLe (ofFn f) i this = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
have B : _root_.Disjoint (Finset.filter (fun j : Fin n => j.val < i) Finset.univ) (singleton (⟨i, h⟩ : Fin n)) := by
simp
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
this : i < length (ofFn f)
A : Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }}
⊢ _root_.Disjoint (Finset.filter (fun j => ↑j < i) univ) {{ val := i, isLt := h }}
[PROOFSTEP]
simp
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
this : i < length (ofFn f)
A : Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }}
B : _root_.Disjoint (Finset.filter (fun j => ↑j < i) univ) {{ val := i, isLt := h }}
⊢ prod (take i (ofFn f)) * nthLe (ofFn f) i this = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
rw [A, Finset.prod_union B, IH]
[GOAL]
case pos
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : i < n
this : i < length (ofFn f)
A : Finset.filter (fun j => ↑j < i + 1) univ = Finset.filter (fun j => ↑j < i) univ ∪ {{ val := i, isLt := h }}
B : _root_.Disjoint (Finset.filter (fun j => ↑j < i) univ) {{ val := i, isLt := h }}
⊢ (∏ j in Finset.filter (fun j => ↑j < i) univ, f j) * nthLe (ofFn f) i this =
(∏ x in Finset.filter (fun j => ↑j < i) univ, f x) * ∏ x in {{ val := i, isLt := h }}, f x
[PROOFSTEP]
simp
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : ¬i < n
⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
have A : (ofFn f).take i = (ofFn f).take i.succ :=
by
rw [← length_ofFn f] at h
have : length (ofFn f) ≤ i := not_lt.mp h
rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : ¬i < n
⊢ take i (ofFn f) = take (Nat.succ i) (ofFn f)
[PROOFSTEP]
rw [← length_ofFn f] at h
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : ¬i < length (ofFn f)
⊢ take i (ofFn f) = take (Nat.succ i) (ofFn f)
[PROOFSTEP]
have : length (ofFn f) ≤ i := not_lt.mp h
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : ¬i < length (ofFn f)
this : length (ofFn f) ≤ i
⊢ take i (ofFn f) = take (Nat.succ i) (ofFn f)
[PROOFSTEP]
rw [take_all_of_le this, take_all_of_le (le_trans this (Nat.le_succ _))]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : ¬i < n
A : take i (ofFn f) = take (Nat.succ i) (ofFn f)
⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
have B : ∀ j : Fin n, ((j : ℕ) < i.succ) = ((j : ℕ) < i) :=
by
intro j
have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h)
simp [this, lt_trans this (Nat.lt_succ_self _)]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : ¬i < n
A : take i (ofFn f) = take (Nat.succ i) (ofFn f)
⊢ ∀ (j : Fin n), (↑j < Nat.succ i) = (↑j < i)
[PROOFSTEP]
intro j
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : ¬i < n
A : take i (ofFn f) = take (Nat.succ i) (ofFn f)
j : Fin n
⊢ (↑j < Nat.succ i) = (↑j < i)
[PROOFSTEP]
have : (j : ℕ) < i := lt_of_lt_of_le j.2 (not_lt.mp h)
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : ¬i < n
A : take i (ofFn f) = take (Nat.succ i) (ofFn f)
j : Fin n
this : ↑j < i
⊢ (↑j < Nat.succ i) = (↑j < i)
[PROOFSTEP]
simp [this, lt_trans this (Nat.lt_succ_self _)]
[GOAL]
case neg
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
i : ℕ
IH : prod (take i (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < i) univ, f j
h : ¬i < n
A : take i (ofFn f) = take (Nat.succ i) (ofFn f)
B : ∀ (j : Fin n), (↑j < Nat.succ i) = (↑j < i)
⊢ prod (take (Nat.succ i) (ofFn f)) = ∏ j in Finset.filter (fun j => ↑j < Nat.succ i) univ, f j
[PROOFSTEP]
simp [← A, B, IH]
[GOAL]
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
⊢ prod (ofFn f) = ∏ i : Fin n, f i
[PROOFSTEP]
convert prod_take_ofFn f n
[GOAL]
case h.e'_2.h.e'_4
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
⊢ ofFn f = take n (ofFn f)
[PROOFSTEP]
rw [take_all_of_le (le_of_eq (length_ofFn f))]
[GOAL]
case h.e'_3.h
α : Type u_1
β : Type u_2
inst✝ : CommMonoid α
n : ℕ
f : Fin n → α
⊢ univ = Finset.filter (fun j => ↑j < n) univ
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
G : Type u_3
inst✝ : CommGroup G
⊢ alternatingProd [] = ∏ i : Fin (length []), get [] i ^ (-1) ^ ↑i
[PROOFSTEP]
rw [alternatingProd, Finset.prod_eq_one]
[GOAL]
α : Type u_1
β : Type u_2
G : Type u_3
inst✝ : CommGroup G
⊢ ∀ (x : Fin (length [])), x ∈ univ → get [] x ^ (-1) ^ ↑x = 1
[PROOFSTEP]
rintro ⟨i, ⟨⟩⟩
[GOAL]
α : Type u_1
β : Type u_2
G : Type u_3
inst✝ : CommGroup G
g : G
⊢ alternatingProd [g] = ∏ i : Fin (length [g]), get [g] i ^ (-1) ^ ↑i
[PROOFSTEP]
show g = ∏ i : Fin 1, [g].get i ^ (-1 : ℤ) ^ (i : ℕ)
[GOAL]
α : Type u_1
β : Type u_2
G : Type u_3
inst✝ : CommGroup G
g : G
⊢ g = ∏ i : Fin 1, get [g] i ^ (-1) ^ ↑i
[PROOFSTEP]
rw [Fin.prod_univ_succ]
[GOAL]
α : Type u_1
β : Type u_2
G : Type u_3
inst✝ : CommGroup G
g : G
⊢ g = get [g] 0 ^ (-1) ^ ↑0 * ∏ i : Fin 0, get [g] (Fin.succ i) ^ (-1) ^ ↑(Fin.succ i)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
G : Type u_3
inst✝ : CommGroup G
g h : G
L : List G
⊢ g * h⁻¹ * ∏ i : Fin (length L), get L i ^ (-1) ^ ↑i = ∏ i : Fin (length L + 2), get (g :: h :: L) i ^ (-1) ^ ↑i
[PROOFSTEP]
{ rw [Fin.prod_univ_succ, Fin.prod_univ_succ, mul_assoc]
simp [Nat.succ_eq_add_one, pow_add]
}
[GOAL]
α : Type u_1
β : Type u_2
G : Type u_3
inst✝ : CommGroup G
g h : G
L : List G
⊢ g * h⁻¹ * ∏ i : Fin (length L), get L i ^ (-1) ^ ↑i = ∏ i : Fin (length L + 2), get (g :: h :: L) i ^ (-1) ^ ↑i
[PROOFSTEP]
rw [Fin.prod_univ_succ, Fin.prod_univ_succ, mul_assoc]
[GOAL]
α : Type u_1
β : Type u_2
G : Type u_3
inst✝ : CommGroup G
g h : G
L : List G
⊢ g * (h⁻¹ * ∏ i : Fin (length L), get L i ^ (-1) ^ ↑i) =
get (g :: h :: L) 0 ^ (-1) ^ ↑0 *
(get (g :: h :: L) (Fin.succ 0) ^ (-1) ^ ↑(Fin.succ 0) *
∏ i : Fin (length L), get (g :: h :: L) (Fin.succ (Fin.succ i)) ^ (-1) ^ ↑(Fin.succ (Fin.succ i)))
[PROOFSTEP]
simp [Nat.succ_eq_add_one, pow_add]
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Fin", "llama_tokens": 38484} |
[GOAL]
R : Type u_1
S✝ : Type u_2
M✝ : Type u_3
A : Type u_4
inst✝⁴ : Semiring S✝
inst✝³ : AddCommMonoid M✝
inst✝² : CommSemiring R
inst✝¹ : Algebra R S✝
inst✝ : Module S✝ M✝
r : R
S : S✝
M : RestrictScalars R S✝ M✝
⊢ (r • S) • M = r • S • M
[PROOFSTEP]
rw [Algebra.smul_def, mul_smul]
[GOAL]
R : Type u_1
S✝ : Type u_2
M✝ : Type u_3
A : Type u_4
inst✝⁴ : Semiring S✝
inst✝³ : AddCommMonoid M✝
inst✝² : CommSemiring R
inst✝¹ : Algebra R S✝
inst✝ : Module S✝ M✝
r : R
S : S✝
M : RestrictScalars R S✝ M✝
⊢ ↑(algebraMap R S✝) r • S • M = r • S • M
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
A : Type u_4
inst✝⁴ : AddCommMonoid M
inst✝³ : CommSemiring R
inst✝² : Semiring S
inst✝¹ : Algebra R S
inst✝ : Module S M
r : R
s : S
x : M
⊢ ↑(AddEquiv.symm (addEquiv R S M)) ((r • s) • x) = r • ↑(AddEquiv.symm (addEquiv R S M)) (s • x)
[PROOFSTEP]
rw [Algebra.smul_def, mul_smul]
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
A : Type u_4
inst✝⁴ : AddCommMonoid M
inst✝³ : CommSemiring R
inst✝² : Semiring S
inst✝¹ : Algebra R S
inst✝ : Module S M
r : R
s : S
x : M
⊢ ↑(AddEquiv.symm (addEquiv R S M)) (↑(algebraMap R S) r • s • x) = r • ↑(AddEquiv.symm (addEquiv R S M)) (s • x)
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Algebra.RestrictScalars", "llama_tokens": 683} |
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
src✝¹ : Module R (A × B) := instModule
src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B)
⊢ ∀ (r : R) (x : (fun x => A × B) r),
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
x =
x *
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r
[PROOFSTEP]
rintro r ⟨a, b⟩
[GOAL]
case mk
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
src✝¹ : Module R (A × B) := instModule
src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B)
r : R
a : A
b : B
⊢ ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
(a, b) =
(a, b) *
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r
[PROOFSTEP]
dsimp
[GOAL]
case mk
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
src✝¹ : Module R (A × B) := instModule
src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B)
r : R
a : A
b : B
⊢ (↑(algebraMap R A) r * a, ↑(algebraMap R B) r * b) = (a * ↑(algebraMap R A) r, b * ↑(algebraMap R B) r)
[PROOFSTEP]
rw [commutes r a, commutes r b]
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
src✝¹ : Module R (A × B) := instModule
src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B)
⊢ ∀ (r : R) (x : (fun x => A × B) r),
r • x =
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
x
[PROOFSTEP]
rintro r ⟨a, b⟩
[GOAL]
case mk
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
src✝¹ : Module R (A × B) := instModule
src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B)
r : R
a : A
b : B
⊢ r • (a, b) =
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
(a, b)
[PROOFSTEP]
dsimp
[GOAL]
case mk
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
src✝¹ : Module R (A × B) := instModule
src✝ : R →+* A × B := RingHom.prod (algebraMap R A) (algebraMap R B)
r : R
a : A
b : B
⊢ (r • a, r • b) = (↑(algebraMap R A) r * a, ↑(algebraMap R B) r * b)
[PROOFSTEP]
rw [Algebra.smul_def r a, Algebra.smul_def r b]
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : A →ₐ[R] B
g : A →ₐ[R] C
src✝ : A →+* B × C := RingHom.prod ↑f ↑g
r : R
⊢ OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap R A) r) =
↑(algebraMap R (B × C)) r
[PROOFSTEP]
simp only [toRingHom_eq_coe, RingHom.toFun_eq_coe, RingHom.prod_apply, coe_toRingHom, commutes, Prod.algebraMap_apply]
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : A →ₐ[R] B
g : A →ₐ[R] C
⊢ comp (fst R B C) (prod f g) = f
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : A →ₐ[R] B
g : A →ₐ[R] C
x✝ : A
⊢ ↑(comp (fst R B C) (prod f g)) x✝ = ↑f x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : A →ₐ[R] B
g : A →ₐ[R] C
⊢ comp (snd R B C) (prod f g) = g
[PROOFSTEP]
ext
[GOAL]
case H
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : A →ₐ[R] B
g : A →ₐ[R] C
x✝ : A
⊢ ↑(comp (snd R B C) (prod f g)) x✝ = ↑g x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : (A →ₐ[R] B) × (A →ₐ[R] C)
⊢ (fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f) = f
[PROOFSTEP]
ext
[GOAL]
case h₁.H
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : (A →ₐ[R] B) × (A →ₐ[R] C)
x✝ : A
⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).fst x✝ = ↑f.fst x✝
[PROOFSTEP]
rfl
[GOAL]
case h₂.H
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : (A →ₐ[R] B) × (A →ₐ[R] C)
x✝ : A
⊢ ↑((fun f => (comp (fst R B C) f, comp (snd R B C) f)) ((fun f => prod f.fst f.snd) f)).snd x✝ = ↑f.snd x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : A →ₐ[R] B × C
⊢ (fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f) = f
[PROOFSTEP]
ext
[GOAL]
case H.h₁
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : A →ₐ[R] B × C
x✝ : A
⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).fst = (↑f x✝).fst
[PROOFSTEP]
rfl
[GOAL]
case H.h₂
R : Type u_1
A : Type u_2
B : Type u_3
C : Type u_4
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : Semiring B
inst✝² : Algebra R B
inst✝¹ : Semiring C
inst✝ : Algebra R C
f : A →ₐ[R] B × C
x✝ : A
⊢ (↑((fun f => prod f.fst f.snd) ((fun f => (comp (fst R B C) f, comp (snd R B C) f)) f)) x✝).snd = (↑f x✝).snd
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Algebra.Prod", "llama_tokens": 4200} |
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
hf : Set.Finite (mulSupport (f ∘ PLift.down))
s : Finset (PLift α)
hs : Finite.toFinset hf ⊆ s
⊢ ∏ᶠ (i : α), f i = ∏ i in s, f i.down
[PROOFSTEP]
rw [finprod, dif_pos]
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
hf : Set.Finite (mulSupport (f ∘ PLift.down))
s : Finset (PLift α)
hs : Finite.toFinset hf ⊆ s
⊢ ∏ i in Finite.toFinset ?hc, f i.down = ∏ i in s, f i.down
case hc
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
hf : Set.Finite (mulSupport (f ∘ PLift.down))
s : Finset (PLift α)
hs : Finite.toFinset hf ⊆ s
⊢ Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down))
[PROOFSTEP]
refine' Finset.prod_subset hs fun x _ hxf => _
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
hf : Set.Finite (mulSupport (f ∘ PLift.down))
s : Finset (PLift α)
hs : Finite.toFinset hf ⊆ s
x : PLift α
x✝ : x ∈ s
hxf : ¬x ∈ Finite.toFinset hf
⊢ f x.down = 1
[PROOFSTEP]
rwa [hf.mem_toFinset, nmem_mulSupport] at hxf
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset (PLift α)
hs : mulSupport (f ∘ PLift.down) ⊆ ↑s
x : PLift α
hx : x ∈ Finite.toFinset (_ : Set.Finite (mulSupport (f ∘ PLift.down)))
⊢ x ∈ s
[PROOFSTEP]
rw [Finite.mem_toFinset] at hx
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset (PLift α)
hs : mulSupport (f ∘ PLift.down) ⊆ ↑s
x : PLift α
hx : x ∈ mulSupport (f ∘ PLift.down)
⊢ x ∈ s
[PROOFSTEP]
exact hs hx
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
⊢ ∏ᶠ (x : α), 1 = 1
[PROOFSTEP]
have : (mulSupport fun x : PLift α => (fun _ => 1 : α → M) x.down) ⊆ (∅ : Finset (PLift α)) := fun x h => by simp at h
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
x : PLift α
h : x ∈ mulSupport fun x => (fun x => 1) x.down
⊢ x ∈ ↑∅
[PROOFSTEP]
simp at h
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
this : (mulSupport fun x => (fun x => 1) x.down) ⊆ ↑∅
⊢ ∏ᶠ (x : α), 1 = 1
[PROOFSTEP]
rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_empty]
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : IsEmpty α
f : α → M
⊢ ∏ᶠ (i : α), f i = 1
[PROOFSTEP]
rw [← finprod_one]
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : IsEmpty α
f : α → M
⊢ ∏ᶠ (i : α), f i = ∏ᶠ (x : ?m.32760), 1
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : IsEmpty α
f : α → M
⊢ Sort ?u.32758
[PROOFSTEP]
congr
[GOAL]
case e_f
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
inst✝ : IsEmpty α
f : α → M
⊢ (fun i => f i) = fun x => 1
[PROOFSTEP]
simp
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
a : α
ha : ∀ (x : α), x ≠ a → f x = 1
⊢ ∏ᶠ (x : α), f x = f a
[PROOFSTEP]
have : mulSupport (f ∘ PLift.down) ⊆ ({PLift.up a} : Finset (PLift α)) :=
by
intro x
contrapose
simpa [PLift.eq_up_iff_down_eq] using ha x.down
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
a : α
ha : ∀ (x : α), x ≠ a → f x = 1
⊢ mulSupport (f ∘ PLift.down) ⊆ ↑{{ down := a }}
[PROOFSTEP]
intro x
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
a : α
ha : ∀ (x : α), x ≠ a → f x = 1
x : PLift α
⊢ x ∈ mulSupport (f ∘ PLift.down) → x ∈ ↑{{ down := a }}
[PROOFSTEP]
contrapose
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
a : α
ha : ∀ (x : α), x ≠ a → f x = 1
x : PLift α
⊢ ¬x ∈ ↑{{ down := a }} → ¬x ∈ mulSupport (f ∘ PLift.down)
[PROOFSTEP]
simpa [PLift.eq_up_iff_down_eq] using ha x.down
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
a : α
ha : ∀ (x : α), x ≠ a → f x = 1
this : mulSupport (f ∘ PLift.down) ⊆ ↑{{ down := a }}
⊢ ∏ᶠ (x : α), f x = f a
[PROOFSTEP]
rw [finprod_eq_prod_pLift_of_mulSupport_subset this, Finset.prod_singleton]
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
p : Prop
inst✝ : Decidable p
f : p → M
⊢ ∏ᶠ (i : p), f i = if h : p then f h else 1
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
p : Prop
inst✝ : Decidable p
f : p → M
h : p
⊢ ∏ᶠ (i : p), f i = f h
[PROOFSTEP]
haveI : Unique p := ⟨⟨h⟩, fun _ => rfl⟩
[GOAL]
case pos
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
p : Prop
inst✝ : Decidable p
f : p → M
h : p
this : Unique p
⊢ ∏ᶠ (i : p), f i = f h
[PROOFSTEP]
exact finprod_unique f
[GOAL]
case neg
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
p : Prop
inst✝ : Decidable p
f : p → M
h : ¬p
⊢ ∏ᶠ (i : p), f i = 1
[PROOFSTEP]
haveI : IsEmpty p := ⟨h⟩
[GOAL]
case neg
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
p : Prop
inst✝ : Decidable p
f : p → M
h : ¬p
this : IsEmpty p
⊢ ∏ᶠ (i : p), f i = 1
[PROOFSTEP]
exact finprod_of_isEmpty f
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
p q : Prop
f : p → M
g : q → M
hpq : p = q
hfg : ∀ (h : q), f (_ : p) = g h
⊢ finprod f = finprod g
[PROOFSTEP]
subst q
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
p : Prop
f g : p → M
hfg : ∀ (h : p), f (_ : p) = g h
⊢ finprod f = finprod g
[PROOFSTEP]
exact finprod_congr hfg
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : M → Prop
hp₀ : p 1
hp₁ : ∀ (x y : M), p x → p y → p (x * y)
hp₂ : ∀ (i : α), p (f i)
⊢ p (∏ᶠ (i : α), f i)
[PROOFSTEP]
rw [finprod]
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : M → Prop
hp₀ : p 1
hp₁ : ∀ (x y : M), p x → p y → p (x * y)
hp₂ : ∀ (i : α), p (f i)
⊢ p (if h : Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down)) then ∏ i in Finite.toFinset h, f i.down else 1)
[PROOFSTEP]
split_ifs
[GOAL]
case pos
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : M → Prop
hp₀ : p 1
hp₁ : ∀ (x y : M), p x → p y → p (x * y)
hp₂ : ∀ (i : α), p (f i)
h✝ : Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down))
⊢ p (∏ i in Finite.toFinset h✝, f i.down)
case neg
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : M → Prop
hp₀ : p 1
hp₁ : ∀ (x y : M), p x → p y → p (x * y)
hp₂ : ∀ (i : α), p (f i)
h✝ : ¬Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down))
⊢ p 1
[PROOFSTEP]
exacts [Finset.prod_induction _ _ hp₁ hp₀ fun i _ => hp₂ _, hp₀]
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : M →* N
g : α → M
h : Set.Finite (mulSupport (g ∘ PLift.down))
⊢ ↑f (∏ᶠ (x : α), g x) = ∏ᶠ (x : α), ↑f (g x)
[PROOFSTEP]
rw [finprod_eq_prod_pLift_of_mulSupport_subset h.coe_toFinset.ge, finprod_eq_prod_pLift_of_mulSupport_subset,
f.map_prod]
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : M →* N
g : α → M
h : Set.Finite (mulSupport (g ∘ PLift.down))
⊢ mulSupport ((fun x => ↑f (g x)) ∘ PLift.down) ⊆ ↑(Finite.toFinset h)
[PROOFSTEP]
rw [h.coe_toFinset]
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : M →* N
g : α → M
h : Set.Finite (mulSupport (g ∘ PLift.down))
⊢ mulSupport ((fun x => ↑f (g x)) ∘ PLift.down) ⊆ mulSupport (g ∘ PLift.down)
[PROOFSTEP]
exact mulSupport_comp_subset f.map_one (g ∘ PLift.down)
[GOAL]
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : M →* N
hf : ∀ (x : M), ↑f x = 1 → x = 1
g : α → M
⊢ ↑f (∏ᶠ (i : α), g i) = ∏ᶠ (i : α), ↑f (g i)
[PROOFSTEP]
by_cases hg : (mulSupport <| g ∘ PLift.down).Finite
[GOAL]
case pos
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : M →* N
hf : ∀ (x : M), ↑f x = 1 → x = 1
g : α → M
hg : Set.Finite (mulSupport (g ∘ PLift.down))
⊢ ↑f (∏ᶠ (i : α), g i) = ∏ᶠ (i : α), ↑f (g i)
[PROOFSTEP]
exact f.map_finprod_pLift g hg
[GOAL]
case neg
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : M →* N
hf : ∀ (x : M), ↑f x = 1 → x = 1
g : α → M
hg : ¬Set.Finite (mulSupport (g ∘ PLift.down))
⊢ ↑f (∏ᶠ (i : α), g i) = ∏ᶠ (i : α), ↑f (g i)
[PROOFSTEP]
rw [finprod, dif_neg, f.map_one, finprod, dif_neg]
[GOAL]
case neg.hnc
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : M →* N
hf : ∀ (x : M), ↑f x = 1 → x = 1
g : α → M
hg : ¬Set.Finite (mulSupport (g ∘ PLift.down))
⊢ ¬Set.Finite (mulSupport ((fun i => ↑f (g i)) ∘ PLift.down))
case neg.hnc
G : Type u_1
M : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : M →* N
hf : ∀ (x : M), ↑f x = 1 → x = 1
g : α → M
hg : ¬Set.Finite (mulSupport (g ∘ PLift.down))
⊢ ¬Set.Finite (mulSupport ((fun i => g i) ∘ PLift.down))
[PROOFSTEP]
exacts [Infinite.mono (fun x hx => mt (hf (g x.down)) hx) hg, hg]
[GOAL]
G : Type u_1
M✝ : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝⁵ : CommMonoid M✝
inst✝⁴ : CommMonoid N
R : Type u_7
M : Type u_8
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
f : ι → R
x : M
⊢ (∑ᶠ (i : ι), f i) • x = ∑ᶠ (i : ι), f i • x
[PROOFSTEP]
rcases eq_or_ne x 0 with (rfl | hx)
[GOAL]
case inl
G : Type u_1
M✝ : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝⁵ : CommMonoid M✝
inst✝⁴ : CommMonoid N
R : Type u_7
M : Type u_8
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
f : ι → R
⊢ (∑ᶠ (i : ι), f i) • 0 = ∑ᶠ (i : ι), f i • 0
[PROOFSTEP]
simp
[GOAL]
case inr
G : Type u_1
M✝ : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝⁵ : CommMonoid M✝
inst✝⁴ : CommMonoid N
R : Type u_7
M : Type u_8
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
f : ι → R
x : M
hx : x ≠ 0
⊢ (∑ᶠ (i : ι), f i) • x = ∑ᶠ (i : ι), f i • x
[PROOFSTEP]
exact ((smulAddHom R M).flip x).map_finsum_of_injective (smul_left_injective R hx) _
[GOAL]
G : Type u_1
M✝ : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝⁵ : CommMonoid M✝
inst✝⁴ : CommMonoid N
R : Type u_7
M : Type u_8
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
c : R
f : ι → M
⊢ c • ∑ᶠ (i : ι), f i = ∑ᶠ (i : ι), c • f i
[PROOFSTEP]
rcases eq_or_ne c 0 with (rfl | hc)
[GOAL]
case inl
G : Type u_1
M✝ : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝⁵ : CommMonoid M✝
inst✝⁴ : CommMonoid N
R : Type u_7
M : Type u_8
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
f : ι → M
⊢ 0 • ∑ᶠ (i : ι), f i = ∑ᶠ (i : ι), 0 • f i
[PROOFSTEP]
simp
[GOAL]
case inr
G : Type u_1
M✝ : Type u_2
N : Type u_3
α : Sort u_4
β : Sort u_5
ι : Sort u_6
inst✝⁵ : CommMonoid M✝
inst✝⁴ : CommMonoid N
R : Type u_7
M : Type u_8
inst✝³ : Ring R
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : NoZeroSMulDivisors R M
c : R
f : ι → M
hc : c ≠ 0
⊢ c • ∑ᶠ (i : ι), f i = ∑ᶠ (i : ι), c • f i
[PROOFSTEP]
exact (smulAddHom R M c).map_finsum_of_injective (smul_right_injective M hc) _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
s : Set α
f : α → M
a : α
⊢ ∏ᶠ (_ : a ∈ s), f a = mulIndicator s f a
[PROOFSTEP]
classical convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
s : Set α
f : α → M
a : α
⊢ ∏ᶠ (_ : a ∈ s), f a = mulIndicator s f a
[PROOFSTEP]
convert finprod_eq_if (M := M) (p := a ∈ s) (x := f a)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
a : α
⊢ ∏ᶠ (_ : f a ≠ 1), f a = f a
[PROOFSTEP]
rw [← mem_mulSupport, finprod_eq_mulIndicator_apply, mulIndicator_mulSupport]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
⊢ ∏ᶠ (i : α), f i = ∏ i in s, f i
[PROOFSTEP]
have A : mulSupport (f ∘ PLift.down) = Equiv.plift.symm '' mulSupport f :=
by
rw [mulSupport_comp_eq_preimage]
exact (Equiv.plift.symm.image_eq_preimage _).symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
⊢ mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f
[PROOFSTEP]
rw [mulSupport_comp_eq_preimage]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
⊢ PLift.down ⁻¹' mulSupport f = ↑Equiv.plift.symm '' mulSupport f
[PROOFSTEP]
exact (Equiv.plift.symm.image_eq_preimage _).symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f
⊢ ∏ᶠ (i : α), f i = ∏ i in s, f i
[PROOFSTEP]
have : mulSupport (f ∘ PLift.down) ⊆ s.map Equiv.plift.symm.toEmbedding :=
by
rw [A, Finset.coe_map]
exact image_subset _ h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f
⊢ mulSupport (f ∘ PLift.down) ⊆ ↑(Finset.map (Equiv.toEmbedding Equiv.plift.symm) s)
[PROOFSTEP]
rw [A, Finset.coe_map]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f
⊢ ↑Equiv.plift.symm '' mulSupport f ⊆ ↑(Equiv.toEmbedding Equiv.plift.symm) '' ↑s
[PROOFSTEP]
exact image_subset _ h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f
this : mulSupport (f ∘ PLift.down) ⊆ ↑(Finset.map (Equiv.toEmbedding Equiv.plift.symm) s)
⊢ ∏ᶠ (i : α), f i = ∏ i in s, f i
[PROOFSTEP]
rw [finprod_eq_prod_pLift_of_mulSupport_subset this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f
this : mulSupport (f ∘ PLift.down) ⊆ ↑(Finset.map (Equiv.toEmbedding Equiv.plift.symm) s)
⊢ ∏ i in Finset.map (Equiv.toEmbedding Equiv.plift.symm) s, f i.down = ∏ i in s, f i
[PROOFSTEP]
simp only [Finset.prod_map, Equiv.coe_toEmbedding]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
A : mulSupport (f ∘ PLift.down) = ↑Equiv.plift.symm '' mulSupport f
this : mulSupport (f ∘ PLift.down) ⊆ ↑(Finset.map (Equiv.toEmbedding Equiv.plift.symm) s)
⊢ ∏ x in s, f (↑Equiv.plift.symm x).down = ∏ i in s, f i
[PROOFSTEP]
congr
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Finset α
h : mulSupport f ⊆ ↑s
⊢ Finite.toFinset (_ : Set.Finite (mulSupport f)) ⊆ s
[PROOFSTEP]
simpa [← Finset.coe_subset, Set.coe_toFinset]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
inst✝ : Decidable (Set.Finite (mulSupport f))
⊢ ∏ᶠ (i : α), f i = if h : Set.Finite (mulSupport f) then ∏ i in Finite.toFinset h, f i else 1
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
inst✝ : Decidable (Set.Finite (mulSupport f))
h : Set.Finite (mulSupport f)
⊢ ∏ᶠ (i : α), f i = ∏ i in Finite.toFinset h, f i
[PROOFSTEP]
exact finprod_eq_prod_of_mulSupport_toFinset_subset _ h (Finset.Subset.refl _)
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
inst✝ : Decidable (Set.Finite (mulSupport f))
h : ¬Set.Finite (mulSupport f)
⊢ ∏ᶠ (i : α), f i = 1
[PROOFSTEP]
rw [finprod, dif_neg]
[GOAL]
case neg.hnc
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
inst✝ : Decidable (Set.Finite (mulSupport f))
h : ¬Set.Finite (mulSupport f)
⊢ ¬Set.Finite (mulSupport ((fun i => f i) ∘ PLift.down))
[PROOFSTEP]
rw [mulSupport_comp_eq_preimage]
[GOAL]
case neg.hnc
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
inst✝ : Decidable (Set.Finite (mulSupport f))
h : ¬Set.Finite (mulSupport f)
⊢ ¬Set.Finite (PLift.down ⁻¹' mulSupport fun i => f i)
[PROOFSTEP]
exact mt (fun hf => hf.of_preimage Equiv.plift.surjective) h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
hf : Set.Infinite (mulSupport f)
⊢ ∏ᶠ (i : α), f i = 1
[PROOFSTEP]
classical rw [finprod_def, dif_neg hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
hf : Set.Infinite (mulSupport f)
⊢ ∏ᶠ (i : α), f i = 1
[PROOFSTEP]
rw [finprod_def, dif_neg hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
hf : Set.Finite (mulSupport f)
⊢ ∏ᶠ (i : α), f i = ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
classical rw [finprod_def, dif_pos hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
hf : Set.Finite (mulSupport f)
⊢ ∏ᶠ (i : α), f i = ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
rw [finprod_def, dif_pos hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : α → Prop
t : Finset α
h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t)
⊢ ∏ᶠ (i : α) (_ : p i), f i = ∏ i in t, f i
[PROOFSTEP]
set s := {x | p x}
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : α → Prop
t : Finset α
h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t)
s : Set α := {x | p x}
⊢ ∏ᶠ (i : α) (_ : p i), f i = ∏ i in t, f i
[PROOFSTEP]
have : mulSupport (s.mulIndicator f) ⊆ t :=
by
rw [Set.mulSupport_mulIndicator]
intro x hx
exact (h hx.2).1 hx.1
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : α → Prop
t : Finset α
h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t)
s : Set α := {x | p x}
⊢ mulSupport (mulIndicator s f) ⊆ ↑t
[PROOFSTEP]
rw [Set.mulSupport_mulIndicator]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : α → Prop
t : Finset α
h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t)
s : Set α := {x | p x}
⊢ s ∩ mulSupport f ⊆ ↑t
[PROOFSTEP]
intro x hx
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : α → Prop
t : Finset α
h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t)
s : Set α := {x | p x}
x : α
hx : x ∈ s ∩ mulSupport f
⊢ x ∈ ↑t
[PROOFSTEP]
exact (h hx.2).1 hx.1
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : α → Prop
t : Finset α
h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t)
s : Set α := {x | p x}
this : mulSupport (mulIndicator s f) ⊆ ↑t
⊢ ∏ᶠ (i : α) (_ : p i), f i = ∏ i in t, f i
[PROOFSTEP]
erw [finprod_mem_def, finprod_eq_prod_of_mulSupport_subset _ this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : α → Prop
t : Finset α
h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t)
s : Set α := {x | p x}
this : mulSupport (mulIndicator s f) ⊆ ↑t
⊢ ∏ i in t, mulIndicator s f i = ∏ i in t, f i
[PROOFSTEP]
refine' Finset.prod_congr rfl fun x hx => mulIndicator_apply_eq_self.2 fun hxs => _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : α → Prop
t : Finset α
h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t)
s : Set α := {x | p x}
this : mulSupport (mulIndicator s f) ⊆ ↑t
x : α
hx : x ∈ t
hxs : ¬x ∈ s
⊢ f x = 1
[PROOFSTEP]
contrapose! hxs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
p : α → Prop
t : Finset α
h : ∀ {x : α}, f x ≠ 1 → (p x ↔ x ∈ t)
s : Set α := {x | p x}
this : mulSupport (mulIndicator s f) ⊆ ↑t
x : α
hx : x ∈ t
hxs : f x ≠ 1
⊢ x ∈ {x | p x}
[PROOFSTEP]
exact (h hxs).2 hx
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
a : α
inst✝ : DecidableEq α
hf : Set.Finite (mulSupport f)
⊢ ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ i in Finset.erase (Finite.toFinset hf) a, f i
[PROOFSTEP]
apply finprod_cond_eq_prod_of_cond_iff
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
a : α
inst✝ : DecidableEq α
hf : Set.Finite (mulSupport f)
⊢ ∀ {x : α}, f x ≠ 1 → (x ≠ a ↔ x ∈ Finset.erase (Finite.toFinset hf) a)
[PROOFSTEP]
intro x hx
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
a : α
inst✝ : DecidableEq α
hf : Set.Finite (mulSupport f)
x : α
hx : f x ≠ 1
⊢ x ≠ a ↔ x ∈ Finset.erase (Finite.toFinset hf) a
[PROOFSTEP]
rw [Finset.mem_erase, Finite.mem_toFinset, mem_mulSupport]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
a : α
inst✝ : DecidableEq α
hf : Set.Finite (mulSupport f)
x : α
hx : f x ≠ 1
⊢ x ≠ a ↔ x ≠ a ∧ f x ≠ 1
[PROOFSTEP]
exact ⟨fun h => And.intro h hx, fun h => h.1⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
t : Finset α
h : s ∩ mulSupport f = ↑t ∩ mulSupport f
⊢ ∀ {x : α}, f x ≠ 1 → (x ∈ s ↔ x ∈ t)
[PROOFSTEP]
intro x hxf
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
t : Finset α
h : s ∩ mulSupport f = ↑t ∩ mulSupport f
x : α
hxf : f x ≠ 1
⊢ x ∈ s ↔ x ∈ t
[PROOFSTEP]
rw [← mem_mulSupport] at hxf
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
t : Finset α
h : s ∩ mulSupport f = ↑t ∩ mulSupport f
x : α
hxf : x ∈ mulSupport f
⊢ x ∈ s ↔ x ∈ t
[PROOFSTEP]
refine ⟨fun hx => ?_, fun hx => ?_⟩
[GOAL]
case refine_1
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
t : Finset α
h : s ∩ mulSupport f = ↑t ∩ mulSupport f
x : α
hxf : x ∈ mulSupport f
hx : x ∈ s
⊢ x ∈ t
[PROOFSTEP]
refine ((mem_inter_iff x t (mulSupport f)).mp ?_).1
[GOAL]
case refine_1
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
t : Finset α
h : s ∩ mulSupport f = ↑t ∩ mulSupport f
x : α
hxf : x ∈ mulSupport f
hx : x ∈ s
⊢ x ∈ ↑t ∩ mulSupport f
[PROOFSTEP]
rw [← Set.ext_iff.mp h x, mem_inter_iff]
[GOAL]
case refine_1
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
t : Finset α
h : s ∩ mulSupport f = ↑t ∩ mulSupport f
x : α
hxf : x ∈ mulSupport f
hx : x ∈ s
⊢ x ∈ s ∧ x ∈ mulSupport f
[PROOFSTEP]
exact ⟨hx, hxf⟩
[GOAL]
case refine_2
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
t : Finset α
h : s ∩ mulSupport f = ↑t ∩ mulSupport f
x : α
hxf : x ∈ mulSupport f
hx : x ∈ t
⊢ x ∈ s
[PROOFSTEP]
refine ((mem_inter_iff x s (mulSupport f)).mp ?_).1
[GOAL]
case refine_2
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
t : Finset α
h : s ∩ mulSupport f = ↑t ∩ mulSupport f
x : α
hxf : x ∈ mulSupport f
hx : x ∈ t
⊢ x ∈ s ∩ mulSupport f
[PROOFSTEP]
rw [Set.ext_iff.mp h x, mem_inter_iff]
[GOAL]
case refine_2
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
t : Finset α
h : s ∩ mulSupport f = ↑t ∩ mulSupport f
x : α
hxf : x ∈ mulSupport f
hx : x ∈ t
⊢ x ∈ ↑t ∧ x ∈ mulSupport f
[PROOFSTEP]
exact ⟨hx, hxf⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
hf : Set.Finite (s ∩ mulSupport f)
⊢ (s ∩ mulSupport fun i => f i) = ↑(Finite.toFinset hf) ∩ mulSupport fun i => f i
[PROOFSTEP]
simp [inter_assoc]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
hf : Set.Finite (mulSupport f)
⊢ (s ∩ mulSupport fun i => f i) = ↑(Finset.filter (fun x => x ∈ s) (Finite.toFinset hf)) ∩ mulSupport fun i => f i
[PROOFSTEP]
ext x
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
s : Set α
inst✝ : DecidablePred fun x => x ∈ s
hf : Set.Finite (mulSupport f)
x : α
⊢ (x ∈ s ∩ mulSupport fun i => f i) ↔
x ∈ ↑(Finset.filter (fun x => x ∈ s) (Finite.toFinset hf)) ∩ mulSupport fun i => f i
[PROOFSTEP]
simp [and_comm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f : α → M
s : Set α
inst✝ : Fintype ↑s
⊢ (s ∩ mulSupport fun i => f i) = ↑(toFinset s) ∩ mulSupport fun i => f i
[PROOFSTEP]
simp_rw [coe_toFinset s]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
hs : Set.Finite s
⊢ (s ∩ mulSupport fun i => f i) = ↑(Finite.toFinset hs) ∩ mulSupport fun i => f i
[PROOFSTEP]
rw [hs.coe_toFinset]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
hs : Set.Infinite (s ∩ mulSupport f)
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = 1
[PROOFSTEP]
rw [finprod_mem_def]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
hs : Set.Infinite (s ∩ mulSupport f)
⊢ ∏ᶠ (a : α), mulIndicator s (fun i => f i) a = 1
[PROOFSTEP]
apply finprod_of_infinite_mulSupport
[GOAL]
case hf
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
hs : Set.Infinite (s ∩ mulSupport f)
⊢ Set.Infinite (mulSupport fun i => mulIndicator s (fun i => f i) i)
[PROOFSTEP]
rwa [← mulSupport_mulIndicator] at hs
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
h : ∀ (x : α), x ∈ s → f x = 1
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = 1
[PROOFSTEP]
simp (config := { contextual := true }) [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s : Set α
⊢ ∏ᶠ (i : α) (_ : i ∈ s ∩ mulSupport f), f i = ∏ᶠ (i : α) (_ : i ∈ s), f i
[PROOFSTEP]
rw [finprod_mem_def, finprod_mem_def, mulIndicator_inter_mulSupport]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s t : Set α
h : s ∩ mulSupport f = t ∩ mulSupport f
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (i : α) (_ : i ∈ t), f i
[PROOFSTEP]
rw [← finprod_mem_inter_mulSupport, h, finprod_mem_inter_mulSupport]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s t : Set α
h : ∀ (x : α), x ∈ mulSupport f → (x ∈ s ↔ x ∈ t)
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (i : α) (_ : i ∈ t), f i
[PROOFSTEP]
apply finprod_mem_inter_mulSupport_eq
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s t : Set α
h : ∀ (x : α), x ∈ mulSupport f → (x ∈ s ↔ x ∈ t)
⊢ (s ∩ mulSupport fun i => f i) = t ∩ mulSupport fun i => f i
[PROOFSTEP]
ext x
[GOAL]
case h.h
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f : α → M
s t : Set α
h : ∀ (x : α), x ∈ mulSupport f → (x ∈ s ↔ x ∈ t)
x : α
⊢ (x ∈ s ∩ mulSupport fun i => f i) ↔ x ∈ t ∩ mulSupport fun i => f i
[PROOFSTEP]
exact and_congr_left (h x)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
f : α → M
h : ∀ (x : α), f x = 1
⊢ ∏ᶠ (i : α), f i = 1
[PROOFSTEP]
simp (config := { contextual := true }) [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M✝ : Type u_5
N : Type u_6
inst✝² : CommMonoid M✝
inst✝¹ : CommMonoid N
f✝ g : α → M✝
a b : α
s t : Set α
M : Type u_7
inst✝ : OrderedCancelCommMonoid M
f : ι → M
h : ∀ (i : ι), 1 ≤ f i
h' : ∃ i, 1 < f i
hf : Set.Finite (mulSupport f)
⊢ 1 < ∏ᶠ (i : ι), f i
[PROOFSTEP]
rcases h' with ⟨i, hi⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M✝ : Type u_5
N : Type u_6
inst✝² : CommMonoid M✝
inst✝¹ : CommMonoid N
f✝ g : α → M✝
a b : α
s t : Set α
M : Type u_7
inst✝ : OrderedCancelCommMonoid M
f : ι → M
h : ∀ (i : ι), 1 ≤ f i
hf : Set.Finite (mulSupport f)
i : ι
hi : 1 < f i
⊢ 1 < ∏ᶠ (i : ι), f i
[PROOFSTEP]
rw [finprod_eq_prod _ hf]
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M✝ : Type u_5
N : Type u_6
inst✝² : CommMonoid M✝
inst✝¹ : CommMonoid N
f✝ g : α → M✝
a b : α
s t : Set α
M : Type u_7
inst✝ : OrderedCancelCommMonoid M
f : ι → M
h : ∀ (i : ι), 1 ≤ f i
hf : Set.Finite (mulSupport f)
i : ι
hi : 1 < f i
⊢ 1 < ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
refine Finset.one_lt_prod' (fun i _ ↦ h i) ⟨i, ?_, hi⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M✝ : Type u_5
N : Type u_6
inst✝² : CommMonoid M✝
inst✝¹ : CommMonoid N
f✝ g : α → M✝
a b : α
s t : Set α
M : Type u_7
inst✝ : OrderedCancelCommMonoid M
f : ι → M
h : ∀ (i : ι), 1 ≤ f i
hf : Set.Finite (mulSupport f)
i : ι
hi : 1 < f i
⊢ i ∈ Finite.toFinset hf
[PROOFSTEP]
simpa only [Finite.mem_toFinset, mem_mulSupport] using ne_of_gt hi
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : Set.Finite (mulSupport f)
hg : Set.Finite (mulSupport g)
⊢ ∏ᶠ (i : α), f i * g i = (∏ᶠ (i : α), f i) * ∏ᶠ (i : α), g i
[PROOFSTEP]
classical
rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _),
finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ← Finset.prod_mul_distrib]
refine' finprod_eq_prod_of_mulSupport_subset _ _
simp only [Finset.coe_union, Finite.coe_toFinset, mulSupport_subset_iff, mem_union, mem_mulSupport]
intro x
contrapose!
rintro ⟨hf, hg⟩
simp [hf, hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : Set.Finite (mulSupport f)
hg : Set.Finite (mulSupport g)
⊢ ∏ᶠ (i : α), f i * g i = (∏ᶠ (i : α), f i) * ∏ᶠ (i : α), g i
[PROOFSTEP]
rw [finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_union_left _ _),
finprod_eq_prod_of_mulSupport_toFinset_subset _ hg (Finset.subset_union_right _ _), ← Finset.prod_mul_distrib]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : Set.Finite (mulSupport f)
hg : Set.Finite (mulSupport g)
⊢ ∏ᶠ (i : α), f i * g i = ∏ x in Finite.toFinset hf ∪ Finite.toFinset hg, f x * g x
[PROOFSTEP]
refine' finprod_eq_prod_of_mulSupport_subset _ _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : Set.Finite (mulSupport f)
hg : Set.Finite (mulSupport g)
⊢ (mulSupport fun i => f i * g i) ⊆ ↑(Finite.toFinset hf ∪ Finite.toFinset hg)
[PROOFSTEP]
simp only [Finset.coe_union, Finite.coe_toFinset, mulSupport_subset_iff, mem_union, mem_mulSupport]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : Set.Finite (mulSupport f)
hg : Set.Finite (mulSupport g)
⊢ ∀ (x : α), f x * g x ≠ 1 → f x ≠ 1 ∨ g x ≠ 1
[PROOFSTEP]
intro x
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : Set.Finite (mulSupport f)
hg : Set.Finite (mulSupport g)
x : α
⊢ f x * g x ≠ 1 → f x ≠ 1 ∨ g x ≠ 1
[PROOFSTEP]
contrapose!
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : Set.Finite (mulSupport f)
hg : Set.Finite (mulSupport g)
x : α
⊢ f x = 1 ∧ g x = 1 → f x * g x = 1
[PROOFSTEP]
rintro ⟨hf, hg⟩
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf✝ : Set.Finite (mulSupport f)
hg✝ : Set.Finite (mulSupport g)
x : α
hf : f x = 1
hg : g x = 1
⊢ f x * g x = 1
[PROOFSTEP]
simp [hf, hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
inst✝ : DivisionCommMonoid G
f g : α → G
hf : Set.Finite (mulSupport f)
hg : Set.Finite (mulSupport g)
⊢ ∏ᶠ (i : α), f i / g i = (∏ᶠ (i : α), f i) / ∏ᶠ (i : α), g i
[PROOFSTEP]
simp only [div_eq_mul_inv, finprod_mul_distrib hf ((mulSupport_inv g).symm.rec hg), finprod_inv_distrib]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : Set.Finite (s ∩ mulSupport f)
hg : Set.Finite (s ∩ mulSupport g)
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i * g i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ s), g i
[PROOFSTEP]
rw [← mulSupport_mulIndicator] at hf hg
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : Set.Finite (mulSupport (mulIndicator s f))
hg : Set.Finite (mulSupport (mulIndicator s g))
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i * g i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ s), g i
[PROOFSTEP]
simp only [finprod_mem_def, mulIndicator_mul, finprod_mul_distrib hf hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s✝ t s : Set α
⊢ ∏ᶠ (i : α) (_ : i ∈ s), 1 = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : EqOn f 1 s
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = 1
[PROOFSTEP]
rw [← finprod_mem_one s]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hf : EqOn f 1 s
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (i : α) (_ : i ∈ s), 1
[PROOFSTEP]
exact finprod_mem_congr rfl hf
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
h : ∏ᶠ (i : α) (_ : i ∈ s), f i ≠ 1
⊢ ∃ x, x ∈ s ∧ f x ≠ 1
[PROOFSTEP]
by_contra' h'
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
h : ∏ᶠ (i : α) (_ : i ∈ s), f i ≠ 1
h' : ∀ (x : α), x ∈ s → f x = 1
⊢ False
[PROOFSTEP]
exact h (finprod_mem_of_eqOn_one h')
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
f : α → M
g : M →* N
h₀ : Set.Finite (s ∩ mulSupport f)
⊢ ↑g (∏ᶠ (j : α) (_ : j ∈ s), f j) = ∏ᶠ (i : α) (_ : i ∈ s), ↑g (f i)
[PROOFSTEP]
rw [g.map_finprod]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
f : α → M
g : M →* N
h₀ : Set.Finite (s ∩ mulSupport f)
⊢ ∏ᶠ (i : α), ↑g (∏ᶠ (_ : i ∈ s), f i) = ∏ᶠ (i : α) (_ : i ∈ s), ↑g (f i)
[PROOFSTEP]
simp only [g.map_finprod_Prop]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
f : α → M
g : M →* N
h₀ : Set.Finite (s ∩ mulSupport f)
⊢ Set.Finite (mulSupport fun j => ∏ᶠ (_ : j ∈ s), f j)
[PROOFSTEP]
simpa only [finprod_eq_mulIndicator_apply, mulSupport_mulIndicator]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
inst✝ : DivisionCommMonoid G
f g : α → G
hs : Set.Finite s
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i / g i = (∏ᶠ (i : α) (_ : i ∈ s), f i) / ∏ᶠ (i : α) (_ : i ∈ s), g i
[PROOFSTEP]
simp only [div_eq_mul_inv, finprod_mem_mul_distrib hs, finprod_mem_inv_distrib g hs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
⊢ ∏ᶠ (i : α) (_ : i ∈ ∅), f i = 1
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hs : Set.Finite s
ht : Set.Finite t
⊢ (∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ t), f i =
(∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i
[PROOFSTEP]
lift s to Finset α using hs
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
t : Set α
ht : Set.Finite t
s : Finset α
⊢ (∏ᶠ (i : α) (_ : i ∈ ↑s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑s ∩ t), f i =
(∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i
[PROOFSTEP]
lift t to Finset α using ht
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Finset α
⊢ (∏ᶠ (i : α) (_ : i ∈ ↑s ∪ ↑t), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑s ∩ ↑t), f i =
(∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑t), f i
[PROOFSTEP]
classical
rw [← Finset.coe_union, ← Finset.coe_inter]
simp only [finprod_mem_coe_finset, Finset.prod_union_inter]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Finset α
⊢ (∏ᶠ (i : α) (_ : i ∈ ↑s ∪ ↑t), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑s ∩ ↑t), f i =
(∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑t), f i
[PROOFSTEP]
rw [← Finset.coe_union, ← Finset.coe_inter]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Finset α
⊢ (∏ᶠ (i : α) (_ : i ∈ ↑(s ∪ t)), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑(s ∩ t)), f i =
(∏ᶠ (i : α) (_ : i ∈ ↑s), f i) * ∏ᶠ (i : α) (_ : i ∈ ↑t), f i
[PROOFSTEP]
simp only [finprod_mem_coe_finset, Finset.prod_union_inter]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hs : Set.Finite (s ∩ mulSupport f)
ht : Set.Finite (t ∩ mulSupport f)
⊢ (∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ t), f i =
(∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i
[PROOFSTEP]
rw [← finprod_mem_inter_mulSupport f s, ← finprod_mem_inter_mulSupport f t, ← finprod_mem_union_inter hs ht, ←
union_inter_distrib_right, finprod_mem_inter_mulSupport, ← finprod_mem_inter_mulSupport f (s ∩ t)]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hs : Set.Finite (s ∩ mulSupport f)
ht : Set.Finite (t ∩ mulSupport f)
⊢ (∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ t ∩ mulSupport f), f i =
(∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s ∩ mulSupport f ∩ (t ∩ mulSupport f)), f i
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_f
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hs : Set.Finite (s ∩ mulSupport f)
ht : Set.Finite (t ∩ mulSupport f)
⊢ (fun i => ∏ᶠ (_ : i ∈ s ∩ t ∩ mulSupport f), f i) = fun i => ∏ᶠ (_ : i ∈ s ∩ mulSupport f ∩ (t ∩ mulSupport f)), f i
[PROOFSTEP]
rw [inter_left_comm, inter_assoc, inter_assoc, inter_self, inter_left_comm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hst : Disjoint s t
hs : Set.Finite (s ∩ mulSupport f)
ht : Set.Finite (t ∩ mulSupport f)
⊢ ∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i
[PROOFSTEP]
rw [← finprod_mem_union_inter' hs ht, disjoint_iff_inter_eq_empty.1 hst, finprod_mem_empty, mul_one]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hst : Disjoint (s ∩ mulSupport f) (t ∩ mulSupport f)
hs : Set.Finite (s ∩ mulSupport f)
ht : Set.Finite (t ∩ mulSupport f)
⊢ ∏ᶠ (i : α) (_ : i ∈ s ∪ t), f i = (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t), f i
[PROOFSTEP]
rw [← finprod_mem_inter_mulSupport f s, ← finprod_mem_inter_mulSupport f t, ← finprod_mem_union hst hs ht, ←
union_inter_distrib_right, finprod_mem_inter_mulSupport]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
⊢ ∏ᶠ (i : α) (_ : i ∈ {a}), f i = f a
[PROOFSTEP]
rw [← Finset.coe_singleton, finprod_mem_coe_finset, Finset.prod_singleton]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
⊢ ∏ᶠ (i : α) (_ : a = i), f i = f a
[PROOFSTEP]
simp [@eq_comm _ a]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
f : α → M
h : ¬a ∈ s
hs : Set.Finite (s ∩ mulSupport f)
⊢ ∏ᶠ (i : α) (_ : i ∈ insert a s), f i = f a * ∏ᶠ (i : α) (_ : i ∈ s), f i
[PROOFSTEP]
rw [insert_eq, finprod_mem_union' _ _ hs, finprod_mem_singleton]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
f : α → M
h : ¬a ∈ s
hs : Set.Finite (s ∩ mulSupport f)
⊢ Disjoint {a} s
[PROOFSTEP]
rwa [disjoint_singleton_left]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
f : α → M
h : ¬a ∈ s
hs : Set.Finite (s ∩ mulSupport f)
⊢ Set.Finite ({a} ∩ mulSupport f)
[PROOFSTEP]
exact (finite_singleton a).inter_of_left _
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
h : ¬a ∈ s → f a = 1
⊢ ∏ᶠ (i : α) (_ : i ∈ insert a s), f i = ∏ᶠ (i : α) (_ : i ∈ s), f i
[PROOFSTEP]
refine' finprod_mem_inter_mulSupport_eq' _ _ _ fun x hx => ⟨_, Or.inr⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
h : ¬a ∈ s → f a = 1
x : α
hx : x ∈ mulSupport fun i => f i
⊢ x ∈ insert a s → x ∈ s
[PROOFSTEP]
rintro (rfl | hxs)
[GOAL]
case inl
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
b : α
s t : Set α
x : α
hx : x ∈ mulSupport fun i => f i
h : ¬x ∈ s → f x = 1
⊢ x ∈ s
case inr
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
h : ¬a ∈ s → f a = 1
x : α
hx : x ∈ mulSupport fun i => f i
hxs : x ∈ s
⊢ x ∈ s
[PROOFSTEP]
exacts [not_imp_comm.1 h hx, hxs]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a✝ b : α
s t : Set α
f : α → N
a : α
hf : Set.Finite (mulSupport f)
⊢ f a ∣ finprod f
[PROOFSTEP]
by_cases ha : a ∈ mulSupport f
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a✝ b : α
s t : Set α
f : α → N
a : α
hf : Set.Finite (mulSupport f)
ha : a ∈ mulSupport f
⊢ f a ∣ finprod f
[PROOFSTEP]
rw [finprod_eq_prod_of_mulSupport_toFinset_subset f hf (Set.Subset.refl _)]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a✝ b : α
s t : Set α
f : α → N
a : α
hf : Set.Finite (mulSupport f)
ha : a ∈ mulSupport f
⊢ f a ∣ ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
exact Finset.dvd_prod_of_mem f ((Finite.mem_toFinset hf).mpr ha)
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a✝ b : α
s t : Set α
f : α → N
a : α
hf : Set.Finite (mulSupport f)
ha : ¬a ∈ mulSupport f
⊢ f a ∣ finprod f
[PROOFSTEP]
rw [nmem_mulSupport.mp ha]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a✝ b : α
s t : Set α
f : α → N
a : α
hf : Set.Finite (mulSupport f)
ha : ¬a ∈ mulSupport f
⊢ 1 ∣ finprod f
[PROOFSTEP]
exact one_dvd (finprod f)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
h : a ≠ b
⊢ ∏ᶠ (i : α) (_ : i ∈ {a, b}), f i = f a * f b
[PROOFSTEP]
rw [finprod_mem_insert, finprod_mem_singleton]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
h : a ≠ b
⊢ ¬a ∈ {b}
case hs
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
h : a ≠ b
⊢ Set.Finite {b}
[PROOFSTEP]
exacts [h, finite_singleton b]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg : InjOn g (s ∩ mulSupport (f ∘ g))
⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j)
[PROOFSTEP]
classical
by_cases hs : (s ∩ mulSupport (f ∘ g)).Finite
· have hg : ∀ x ∈ hs.toFinset, ∀ y ∈ hs.toFinset, g x = g y → x = y := by simpa only [hs.mem_toFinset]
have := finprod_mem_eq_prod (comp f g) hs
unfold Function.comp at this
rw [this, ← Finset.prod_image hg]
refine' finprod_mem_eq_prod_of_inter_mulSupport_eq f _
rw [Finset.coe_image, hs.coe_toFinset, ← image_inter_mulSupport_eq, inter_assoc, inter_self]
· unfold Function.comp at hs
rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite]
rwa [image_inter_mulSupport_eq, infinite_image_iff hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg : InjOn g (s ∩ mulSupport (f ∘ g))
⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j)
[PROOFSTEP]
by_cases hs : (s ∩ mulSupport (f ∘ g)).Finite
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg : InjOn g (s ∩ mulSupport (f ∘ g))
hs : Set.Finite (s ∩ mulSupport (f ∘ g))
⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j)
[PROOFSTEP]
have hg : ∀ x ∈ hs.toFinset, ∀ y ∈ hs.toFinset, g x = g y → x = y := by simpa only [hs.mem_toFinset]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg : InjOn g (s ∩ mulSupport (f ∘ g))
hs : Set.Finite (s ∩ mulSupport (f ∘ g))
⊢ ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y
[PROOFSTEP]
simpa only [hs.mem_toFinset]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg✝ : InjOn g (s ∩ mulSupport (f ∘ g))
hs : Set.Finite (s ∩ mulSupport (f ∘ g))
hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y
⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j)
[PROOFSTEP]
have := finprod_mem_eq_prod (comp f g) hs
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg✝ : InjOn g (s ∩ mulSupport (f ∘ g))
hs : Set.Finite (s ∩ mulSupport (f ∘ g))
hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y
this : ∏ᶠ (i : β) (_ : i ∈ s), (f ∘ g) i = ∏ i in Finite.toFinset hs, (f ∘ g) i
⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j)
[PROOFSTEP]
unfold Function.comp at this
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg✝ : InjOn g (s ∩ mulSupport (f ∘ g))
hs : Set.Finite (s ∩ mulSupport (f ∘ g))
hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y
this : ∏ᶠ (i : β) (_ : i ∈ s), f (g i) = ∏ i in Finite.toFinset hs, f (g i)
⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j)
[PROOFSTEP]
rw [this, ← Finset.prod_image hg]
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg✝ : InjOn g (s ∩ mulSupport (f ∘ g))
hs : Set.Finite (s ∩ mulSupport (f ∘ g))
hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y
this : ∏ᶠ (i : β) (_ : i ∈ s), f (g i) = ∏ i in Finite.toFinset hs, f (g i)
⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ x in Finset.image (fun x => g x) (Finite.toFinset hs), f x
[PROOFSTEP]
refine' finprod_mem_eq_prod_of_inter_mulSupport_eq f _
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg✝ : InjOn g (s ∩ mulSupport (f ∘ g))
hs : Set.Finite (s ∩ mulSupport (f ∘ g))
hg : ∀ (x : β), x ∈ Finite.toFinset hs → ∀ (y : β), y ∈ Finite.toFinset hs → g x = g y → x = y
this : ∏ᶠ (i : β) (_ : i ∈ s), f (g i) = ∏ i in Finite.toFinset hs, f (g i)
⊢ g '' s ∩ mulSupport f = ↑(Finset.image (fun x => g x) (Finite.toFinset hs)) ∩ mulSupport f
[PROOFSTEP]
rw [Finset.coe_image, hs.coe_toFinset, ← image_inter_mulSupport_eq, inter_assoc, inter_self]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg : InjOn g (s ∩ mulSupport (f ∘ g))
hs : ¬Set.Finite (s ∩ mulSupport (f ∘ g))
⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j)
[PROOFSTEP]
unfold Function.comp at hs
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg : InjOn g (s ∩ mulSupport (f ∘ g))
hs : ¬Set.Finite (s ∩ mulSupport fun x => f (g x))
⊢ ∏ᶠ (i : α) (_ : i ∈ g '' s), f i = ∏ᶠ (j : β) (_ : j ∈ s), f (g j)
[PROOFSTEP]
rw [finprod_mem_eq_one_of_infinite hs, finprod_mem_eq_one_of_infinite]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s✝ t : Set α
s : Set β
g : β → α
hg : InjOn g (s ∩ mulSupport (f ∘ g))
hs : ¬Set.Finite (s ∩ mulSupport fun x => f (g x))
⊢ Set.Infinite (g '' s ∩ mulSupport fun i => f i)
[PROOFSTEP]
rwa [image_inter_mulSupport_eq, infinite_image_iff hg]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s t : Set α
g : β → α
hg : InjOn g (mulSupport (f ∘ g))
⊢ ∏ᶠ (i : α) (_ : i ∈ range g), f i = ∏ᶠ (j : β), f (g j)
[PROOFSTEP]
rw [← image_univ, finprod_mem_image', finprod_mem_univ]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g✝ : α → M
a b : α
s t : Set α
g : β → α
hg : InjOn g (mulSupport (f ∘ g))
⊢ InjOn g (univ ∩ mulSupport ((fun i => f i) ∘ g))
[PROOFSTEP]
rwa [univ_inter]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g✝ : α → M
a b : α
s✝ t✝ s : Set α
t : Set β
f : α → M
g : β → M
e : α → β
he₀ : BijOn e s t
he₁ : ∀ (x : α), x ∈ s → f x = g (e x)
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (j : β) (_ : j ∈ t), g j
[PROOFSTEP]
rw [← Set.BijOn.image_eq he₀, finprod_mem_image he₀.2.1]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g✝ : α → M
a b : α
s✝ t✝ s : Set α
t : Set β
f : α → M
g : β → M
e : α → β
he₀ : BijOn e s t
he₁ : ∀ (x : α), x ∈ s → f x = g (e x)
⊢ ∏ᶠ (i : α) (_ : i ∈ s), f i = ∏ᶠ (j : α) (_ : j ∈ s), g (e j)
[PROOFSTEP]
exact finprod_mem_congr rfl he₁
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
f : α → M
g : β → M
e : α → β
he₀ : Bijective e
he₁ : ∀ (x : α), f x = g (e x)
⊢ ∏ᶠ (i : α), f i = ∏ᶠ (j : β), g j
[PROOFSTEP]
rw [← finprod_mem_univ f, ← finprod_mem_univ g]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
f : α → M
g : β → M
e : α → β
he₀ : Bijective e
he₁ : ∀ (x : α), f x = g (e x)
⊢ ∏ᶠ (i : α) (_ : i ∈ univ), f i = ∏ᶠ (i : β) (_ : i ∈ univ), g i
[PROOFSTEP]
exact finprod_mem_eq_of_bijOn _ (bijective_iff_bijOn_univ.mp he₀) fun x _ => he₁ x
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s✝ t s : Set α
⊢ ∏ᶠ (j : ↑s), f ↑j = ∏ᶠ (i : α) (_ : i ∈ s), f i
[PROOFSTEP]
rw [← finprod_mem_range, Subtype.range_coe]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s✝ t s : Set α
⊢ Injective fun j => ↑j
[PROOFSTEP]
exact Subtype.coe_injective
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ t : Set α
h : Set.Finite (s ∩ mulSupport f)
⊢ (∏ᶠ (i : α) (_ : i ∈ s ∩ t), f i) * ∏ᶠ (i : α) (_ : i ∈ s \ t), f i = ∏ᶠ (i : α) (_ : i ∈ s), f i
[PROOFSTEP]
rw [← finprod_mem_union', inter_union_diff]
[GOAL]
case hst
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ t : Set α
h : Set.Finite (s ∩ mulSupport f)
⊢ Disjoint (s ∩ t) (s \ t)
case hs
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ t : Set α
h : Set.Finite (s ∩ mulSupport f)
⊢ Set.Finite (s ∩ t ∩ mulSupport fun i => f i)
case ht
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ t : Set α
h : Set.Finite (s ∩ mulSupport f)
⊢ Set.Finite (s \ t ∩ mulSupport fun i => f i)
[PROOFSTEP]
rw [disjoint_iff_inf_le]
[GOAL]
case hst
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ t : Set α
h : Set.Finite (s ∩ mulSupport f)
⊢ s ∩ t ⊓ s \ t ≤ ⊥
case hs
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ t : Set α
h : Set.Finite (s ∩ mulSupport f)
⊢ Set.Finite (s ∩ t ∩ mulSupport fun i => f i)
case ht
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ t : Set α
h : Set.Finite (s ∩ mulSupport f)
⊢ Set.Finite (s \ t ∩ mulSupport fun i => f i)
[PROOFSTEP]
exacts [fun x hx => hx.2.2 hx.1.2, h.subset fun x hx => ⟨hx.1.1, hx.2⟩, h.subset fun x hx => ⟨hx.1.1, hx.2⟩]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t : Set α
hst : s ⊆ t
ht : Set.Finite (t ∩ mulSupport f)
⊢ (∏ᶠ (i : α) (_ : i ∈ s), f i) * ∏ᶠ (i : α) (_ : i ∈ t \ s), f i = ∏ᶠ (i : α) (_ : i ∈ t), f i
[PROOFSTEP]
rw [← finprod_mem_inter_mul_diff' _ ht, inter_eq_self_of_subset_right hst]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
inst✝ : Finite ι
t : ι → Set α
h : Pairwise (Disjoint on t)
ht : ∀ (i : ι), Set.Finite (t i)
⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), t i), f a = ∏ᶠ (i : ι) (a : α) (_ : a ∈ t i), f a
[PROOFSTEP]
cases nonempty_fintype ι
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
inst✝ : Finite ι
t : ι → Set α
h : Pairwise (Disjoint on t)
ht : ∀ (i : ι), Set.Finite (t i)
val✝ : Fintype ι
⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), t i), f a = ∏ᶠ (i : ι) (a : α) (_ : a ∈ t i), f a
[PROOFSTEP]
lift t to ι → Finset α using ht
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
inst✝ : Finite ι
val✝ : Fintype ι
t : ι → Finset α
h : Pairwise (Disjoint on fun i => ↑(t i))
⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), (fun i => ↑(t i)) i), f a = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a
[PROOFSTEP]
classical
rw [← biUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset, Finset.prod_biUnion]
· simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]
· exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
inst✝ : Finite ι
val✝ : Fintype ι
t : ι → Finset α
h : Pairwise (Disjoint on fun i => ↑(t i))
⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : ι), (fun i => ↑(t i)) i), f a = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a
[PROOFSTEP]
rw [← biUnion_univ, ← Finset.coe_univ, ← Finset.coe_biUnion, finprod_mem_coe_finset, Finset.prod_biUnion]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
inst✝ : Finite ι
val✝ : Fintype ι
t : ι → Finset α
h : Pairwise (Disjoint on fun i => ↑(t i))
⊢ ∏ x : ι, ∏ i in t x, f i = ∏ᶠ (i : ι) (a : α) (_ : a ∈ (fun i => ↑(t i)) i), f a
[PROOFSTEP]
simp only [finprod_mem_coe_finset, finprod_eq_prod_of_fintype]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
inst✝ : Finite ι
val✝ : Fintype ι
t : ι → Finset α
h : Pairwise (Disjoint on fun i => ↑(t i))
⊢ PairwiseDisjoint ↑Finset.univ fun x => t x
[PROOFSTEP]
exact fun x _ y _ hxy => Finset.disjoint_coe.1 (h hxy)
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
I : Set ι
t : ι → Set α
h : PairwiseDisjoint I t
hI : Set.Finite I
ht : ∀ (i : ι), i ∈ I → Set.Finite (t i)
⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (x : ι) (_ : x ∈ I), t x), f a = ∏ᶠ (i : ι) (_ : i ∈ I) (j : α) (_ : j ∈ t i), f j
[PROOFSTEP]
haveI := hI.fintype
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
I : Set ι
t : ι → Set α
h : PairwiseDisjoint I t
hI : Set.Finite I
ht : ∀ (i : ι), i ∈ I → Set.Finite (t i)
this : Fintype ↑I
⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (x : ι) (_ : x ∈ I), t x), f a = ∏ᶠ (i : ι) (_ : i ∈ I) (j : α) (_ : j ∈ t i), f j
[PROOFSTEP]
rw [biUnion_eq_iUnion, finprod_mem_iUnion, ← finprod_set_coe_eq_finprod_mem]
[GOAL]
case h
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
I : Set ι
t : ι → Set α
h : PairwiseDisjoint I t
hI : Set.Finite I
ht : ∀ (i : ι), i ∈ I → Set.Finite (t i)
this : Fintype ↑I
⊢ Pairwise (Disjoint on fun x => t ↑x)
case ht
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
I : Set ι
t : ι → Set α
h : PairwiseDisjoint I t
hI : Set.Finite I
ht : ∀ (i : ι), i ∈ I → Set.Finite (t i)
this : Fintype ↑I
⊢ ∀ (i : ↑I), Set.Finite (t ↑i)
[PROOFSTEP]
exacts [fun x y hxy => h x.2 y.2 (Subtype.coe_injective.ne hxy), fun b => ht b b.2]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
t : Set (Set α)
h : PairwiseDisjoint t id
ht₀ : Set.Finite t
ht₁ : ∀ (x : Set α), x ∈ t → Set.Finite x
⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃₀ t), f a = ∏ᶠ (s : Set α) (_ : s ∈ t) (a : α) (_ : a ∈ s), f a
[PROOFSTEP]
rw [Set.sUnion_eq_biUnion]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a b : α
s t✝ : Set α
t : Set (Set α)
h : PairwiseDisjoint t id
ht₀ : Set.Finite t
ht₁ : ∀ (x : Set α), x ∈ t → Set.Finite x
⊢ ∏ᶠ (a : α) (_ : a ∈ ⋃ (i : Set α) (_ : i ∈ t), i), f a = ∏ᶠ (s : Set α) (_ : s ∈ t) (a : α) (_ : a ∈ s), f a
[PROOFSTEP]
exact finprod_mem_biUnion h ht₀ ht₁
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
⊢ f a * ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ᶠ (i : α), f i
[PROOFSTEP]
classical
rw [finprod_eq_prod _ hf]
have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.toFinset \ { a }) :=
by
intro x hx
rw [Finset.mem_sdiff, Finset.mem_singleton, Finite.mem_toFinset, mem_mulSupport]
exact ⟨fun h => And.intro hx h, fun h => h.2⟩
rw [finprod_cond_eq_prod_of_cond_iff f (fun hx => h _ hx), Finset.sdiff_singleton_eq_erase]
by_cases ha : a ∈ mulSupport f
· apply Finset.mul_prod_erase _ _ ((Finite.mem_toFinset _).mpr ha)
· rw [mem_mulSupport, not_not] at ha
rw [ha, one_mul]
apply Finset.prod_erase _ ha
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
⊢ f a * ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ᶠ (i : α), f i
[PROOFSTEP]
rw [finprod_eq_prod _ hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
⊢ f a * ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
have h : ∀ x : α, f x ≠ 1 → (x ≠ a ↔ x ∈ hf.toFinset \ { a }) :=
by
intro x hx
rw [Finset.mem_sdiff, Finset.mem_singleton, Finite.mem_toFinset, mem_mulSupport]
exact ⟨fun h => And.intro hx h, fun h => h.2⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
⊢ ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a})
[PROOFSTEP]
intro x hx
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
x : α
hx : f x ≠ 1
⊢ x ≠ a ↔ x ∈ Finite.toFinset hf \ {a}
[PROOFSTEP]
rw [Finset.mem_sdiff, Finset.mem_singleton, Finite.mem_toFinset, mem_mulSupport]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
x : α
hx : f x ≠ 1
⊢ x ≠ a ↔ f x ≠ 1 ∧ ¬x = a
[PROOFSTEP]
exact ⟨fun h => And.intro hx h, fun h => h.2⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a})
⊢ f a * ∏ᶠ (i : α) (_ : i ≠ a), f i = ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
rw [finprod_cond_eq_prod_of_cond_iff f (fun hx => h _ hx), Finset.sdiff_singleton_eq_erase]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a})
⊢ f a * ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
by_cases ha : a ∈ mulSupport f
[GOAL]
case pos
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a})
ha : a ∈ mulSupport f
⊢ f a * ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
apply Finset.mul_prod_erase _ _ ((Finite.mem_toFinset _).mpr ha)
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a})
ha : ¬a ∈ mulSupport f
⊢ f a * ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
rw [mem_mulSupport, not_not] at ha
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a})
ha : f a = 1
⊢ f a * ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
rw [ha, one_mul]
[GOAL]
case neg
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f g : α → M
a✝ b : α
s t : Set α
a : α
hf : Set.Finite (mulSupport f)
h : ∀ (x : α), f x ≠ 1 → (x ≠ a ↔ x ∈ Finite.toFinset hf \ {a})
ha : f a = 1
⊢ ∏ i in Finset.erase (Finite.toFinset hf) a, f i = ∏ i in Finite.toFinset hf, f i
[PROOFSTEP]
apply Finset.prod_erase _ ha
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t✝ s : Set α
t : Set β
f : α → β → M
hs : Set.Finite s
ht : Set.Finite t
⊢ ∏ᶠ (i : α) (_ : i ∈ s) (j : β) (_ : j ∈ t), f i j = ∏ᶠ (j : β) (_ : j ∈ t) (i : α) (_ : i ∈ s), f i j
[PROOFSTEP]
lift s to Finset α using hs
[GOAL]
case intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t✝ : Set α
t : Set β
f : α → β → M
ht : Set.Finite t
s : Finset α
⊢ ∏ᶠ (i : α) (_ : i ∈ ↑s) (j : β) (_ : j ∈ t), f i j = ∏ᶠ (j : β) (_ : j ∈ t) (i : α) (_ : i ∈ ↑s), f i j
[PROOFSTEP]
lift t to Finset β using ht
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t✝ : Set α
f : α → β → M
s : Finset α
t : Finset β
⊢ ∏ᶠ (i : α) (_ : i ∈ ↑s) (j : β) (_ : j ∈ ↑t), f i j = ∏ᶠ (j : β) (_ : j ∈ ↑t) (i : α) (_ : i ∈ ↑s), f i j
[PROOFSTEP]
simp only [finprod_mem_coe_finset]
[GOAL]
case intro.intro
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t✝ : Set α
f : α → β → M
s : Finset α
t : Finset β
⊢ ∏ i in s, ∏ i_1 in t, f i i_1 = ∏ i in t, ∏ i_1 in s, f i_1 i
[PROOFSTEP]
exact Finset.prod_comm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M✝ : Type u_5
N : Type u_6
inst✝² : CommMonoid M✝
inst✝¹ : CommMonoid N
f✝ g : α → M✝
a b : α
s t : Set α
M : Type u_7
inst✝ : OrderedCommMonoid M
i : α
f : α → M
hf : Set.Finite (mulSupport f)
h : ∀ (j : α), 1 ≤ f j
⊢ f i ≤ ∏ᶠ (j : α), f j
[PROOFSTEP]
classical calc
f i ≤ ∏ j in insert i hf.toFinset, f j := Finset.single_le_prod' (fun j _ => h j) (Finset.mem_insert_self _ _)
_ = ∏ᶠ j, f j := (finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M✝ : Type u_5
N : Type u_6
inst✝² : CommMonoid M✝
inst✝¹ : CommMonoid N
f✝ g : α → M✝
a b : α
s t : Set α
M : Type u_7
inst✝ : OrderedCommMonoid M
i : α
f : α → M
hf : Set.Finite (mulSupport f)
h : ∀ (j : α), 1 ≤ f j
⊢ f i ≤ ∏ᶠ (j : α), f j
[PROOFSTEP]
calc
f i ≤ ∏ j in insert i hf.toFinset, f j := Finset.single_le_prod' (fun j _ => h j) (Finset.mem_insert_self _ _)
_ = ∏ᶠ j, f j := (finprod_eq_prod_of_mulSupport_toFinset_subset _ hf (Finset.subset_insert _ _)).symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
M₀ : Type u_7
inst✝ : CommMonoidWithZero M₀
f : α → M₀
x : α
hx : f x = 0
hf : Set.Finite (mulSupport f)
⊢ ∏ᶠ (x : α), f x = 0
[PROOFSTEP]
nontriviality
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
M₀ : Type u_7
inst✝ : CommMonoidWithZero M₀
f : α → M₀
x : α
hx : f x = 0
hf : Set.Finite (mulSupport f)
✝ : Nontrivial M₀
⊢ ∏ᶠ (x : α), f x = 0
[PROOFSTEP]
rw [finprod_eq_prod f hf]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
M₀ : Type u_7
inst✝ : CommMonoidWithZero M₀
f : α → M₀
x : α
hx : f x = 0
hf : Set.Finite (mulSupport f)
✝ : Nontrivial M₀
⊢ ∏ i in Finite.toFinset hf, f i = 0
[PROOFSTEP]
refine' Finset.prod_eq_zero (hf.mem_toFinset.2 _) hx
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
M₀ : Type u_7
inst✝ : CommMonoidWithZero M₀
f : α → M₀
x : α
hx : f x = 0
hf : Set.Finite (mulSupport f)
✝ : Nontrivial M₀
⊢ x ∈ mulSupport f
[PROOFSTEP]
simp [hx]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
⊢ ∏ᶠ (a : α), ∏ b in s, f a b = ∏ b in s, ∏ᶠ (a : α), f a b
[PROOFSTEP]
have hU :
(mulSupport fun a => ∏ b in s, f a b) ⊆ (s.finite_toSet.biUnion fun b hb => h b (Finset.mem_coe.1 hb)).toFinset :=
by
rw [Finite.coe_toFinset]
intro x hx
simp only [exists_prop, mem_iUnion, Ne.def, mem_mulSupport, Finset.mem_coe]
contrapose! hx
rw [mem_mulSupport, not_not, Finset.prod_congr rfl hx, Finset.prod_const_one]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
⊢ (mulSupport fun a => ∏ b in s, f a b) ⊆
↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)))
[PROOFSTEP]
rw [Finite.coe_toFinset]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
⊢ (mulSupport fun a => ∏ b in s, f a b) ⊆ ⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i
[PROOFSTEP]
intro x hx
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
x : α
hx : x ∈ mulSupport fun a => ∏ b in s, f a b
⊢ x ∈ ⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i
[PROOFSTEP]
simp only [exists_prop, mem_iUnion, Ne.def, mem_mulSupport, Finset.mem_coe]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
x : α
hx : x ∈ mulSupport fun a => ∏ b in s, f a b
⊢ ∃ i, i ∈ s ∧ ¬f x i = 1
[PROOFSTEP]
contrapose! hx
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
x : α
hx : ∀ (i : β), i ∈ s → f x i = 1
⊢ ¬x ∈ mulSupport fun a => ∏ b in s, f a b
[PROOFSTEP]
rw [mem_mulSupport, not_not, Finset.prod_congr rfl hx, Finset.prod_const_one]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
hU :
(mulSupport fun a => ∏ b in s, f a b) ⊆
↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)))
⊢ ∏ᶠ (a : α), ∏ b in s, f a b = ∏ b in s, ∏ᶠ (a : α), f a b
[PROOFSTEP]
rw [finprod_eq_prod_of_mulSupport_subset _ hU, Finset.prod_comm]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
hU :
(mulSupport fun a => ∏ b in s, f a b) ⊆
↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)))
⊢ ∏ y in s, ∏ x in Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)), f x y =
∏ b in s, ∏ᶠ (a : α), f a b
[PROOFSTEP]
refine' Finset.prod_congr rfl fun b hb => (finprod_eq_prod_of_mulSupport_subset _ _).symm
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b✝ : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
hU :
(mulSupport fun a => ∏ b in s, f a b) ⊆
↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)))
b : β
hb : b ∈ s
⊢ (mulSupport fun x => f x b) ⊆ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)))
[PROOFSTEP]
intro a ha
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a✝ b✝ : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
hU :
(mulSupport fun a => ∏ b in s, f a b) ⊆
↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)))
b : β
hb : b ∈ s
a : α
ha : a ∈ mulSupport fun x => f x b
⊢ a ∈ ↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)))
[PROOFSTEP]
simp only [Finite.coe_toFinset, mem_iUnion]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a✝ b✝ : α
s✝ t : Set α
s : Finset β
f : α → β → M
h : ∀ (b : β), b ∈ s → Set.Finite (mulSupport fun a => f a b)
hU :
(mulSupport fun a => ∏ b in s, f a b) ⊆
↑(Finite.toFinset (_ : Set.Finite (⋃ (i : β) (_ : i ∈ ↑s), mulSupport fun a => f a i)))
b : β
hb : b ∈ s
a : α
ha : a ∈ mulSupport fun x => f x b
⊢ ∃ i i_1, a ∈ mulSupport fun a => f a i
[PROOFSTEP]
exact ⟨b, hb, ha⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b : α
s✝ t : Set α
inst✝ : DecidableEq β
s : Finset α
f : α → M
g : α → β
⊢ (mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f) ⊆ ↑(image g s)
[PROOFSTEP]
simp only [Finset.coe_image, Set.mem_image, Finset.mem_coe, Function.support_subset_iff]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b : α
s✝ t : Set α
inst✝ : DecidableEq β
s : Finset α
f : α → M
g : α → β
⊢ (mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f) ⊆ g '' ↑s
[PROOFSTEP]
intro b h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b✝ : α
s✝ t : Set α
inst✝ : DecidableEq β
s : Finset α
f : α → M
g : α → β
b : β
h : b ∈ mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f
⊢ b ∈ g '' ↑s
[PROOFSTEP]
suffices (s.filter fun a : α => g a = b).Nonempty by
simpa only [s.fiber_nonempty_iff_mem_image g b, Finset.mem_image, exists_prop]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b✝ : α
s✝ t : Set α
inst✝ : DecidableEq β
s : Finset α
f : α → M
g : α → β
b : β
h : b ∈ mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f
this : Finset.Nonempty (filter (fun a => g a = b) s)
⊢ b ∈ g '' ↑s
[PROOFSTEP]
simpa only [s.fiber_nonempty_iff_mem_image g b, Finset.mem_image, exists_prop]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b✝ : α
s✝ t : Set α
inst✝ : DecidableEq β
s : Finset α
f : α → M
g : α → β
b : β
h : b ∈ mulSupport fun b => Finset.prod (filter (fun a => g a = b) s) f
⊢ Finset.Nonempty (filter (fun a => g a = b) s)
[PROOFSTEP]
exact Finset.nonempty_of_prod_ne_one h
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab =
∏ᶠ (a : α) (b : β) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b)
[PROOFSTEP]
have :
∀ a,
(∏ i : β in (s.filter fun ab => Prod.fst ab = a).image Prod.snd, f (a, i)) =
(Finset.filter (fun ab => Prod.fst ab = a) s).prod f :=
by
refine' fun a => Finset.prod_bij (fun b _ => (a, b)) _ _ _ _ <;> simp
suffices ∀ a' b, (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a by simpa
rintro a' b hp rfl
exact ⟨hp, rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
⊢ ∀ (a : α),
∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) =
Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f
[PROOFSTEP]
refine' fun a => Finset.prod_bij (fun b _ => (a, b)) _ _ _ _
[GOAL]
case refine'_1
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a✝ b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
a : α
⊢ ∀ (a_1 : β) (ha : a_1 ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)),
(fun b x => (a, b)) a_1 ha ∈ Finset.filter (fun ab => ab.fst = a) s
[PROOFSTEP]
simp
[GOAL]
case refine'_2
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a✝ b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
a : α
⊢ ∀ (a_1 : β) (ha : a_1 ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)),
f (a, a_1) = f ((fun b x => (a, b)) a_1 ha)
[PROOFSTEP]
simp
[GOAL]
case refine'_3
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a✝ b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
a : α
⊢ ∀ (a₁ a₂ : β) (ha₁ : a₁ ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s))
(ha₂ : a₂ ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)),
(fun b x => (a, b)) a₁ ha₁ = (fun b x => (a, b)) a₂ ha₂ → a₁ = a₂
[PROOFSTEP]
simp
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a✝ b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
a : α
⊢ ∀ (b : α × β), b ∈ Finset.filter (fun ab => ab.fst = a) s → ∃ a_2 ha, b = (fun b x => (a, b)) a_2 ha
[PROOFSTEP]
simp
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a✝ b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
a : α
⊢ ∀ (a_1 : α) (b : β), (a_1, b) ∈ s → a_1 = a → (a, b) ∈ s ∧ a_1 = a
[PROOFSTEP]
suffices ∀ a' b, (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a by simpa
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a✝ b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
a : α
this : ∀ (a' : α) (b : β), (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a
⊢ ∀ (a_1 : α) (b : β), (a_1, b) ∈ s → a_1 = a → (a, b) ∈ s ∧ a_1 = a
[PROOFSTEP]
simpa
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a✝ b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
a : α
⊢ ∀ (a' : α) (b : β), (a', b) ∈ s → a' = a → (a, b) ∈ s ∧ a' = a
[PROOFSTEP]
rintro a' b hp rfl
[GOAL]
case refine'_4
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a b✝ : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
a' : α
b : β
hp : (a', b) ∈ s
⊢ (a', b) ∈ s ∧ a' = a'
[PROOFSTEP]
exact ⟨hp, rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
this :
∀ (a : α),
∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) =
Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f
⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab =
∏ᶠ (a : α) (b : β) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b)
[PROOFSTEP]
rw [finprod_mem_finset_eq_prod]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
this :
∀ (a : α),
∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) =
Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f
⊢ ∏ i in s, f i = ∏ᶠ (a : α) (b : β) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b)
[PROOFSTEP]
simp_rw [finprod_mem_finset_eq_prod, this]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
this :
∀ (a : α),
∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) =
Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f
⊢ ∏ i in s, f i = ∏ᶠ (a : α), Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f
[PROOFSTEP]
rw [finprod_eq_prod_of_mulSupport_subset _ (s.mulSupport_of_fiberwise_prod_subset_image f Prod.fst), ←
Finset.prod_fiberwise_of_maps_to (t := Finset.image Prod.fst s) _ f]
-- `finish` could close the goal here
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
this :
∀ (a : α),
∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) =
Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f
⊢ ∀ (x : α × β), x ∈ s → x.fst ∈ Finset.image Prod.fst s
[PROOFSTEP]
simp only [Finset.mem_image, Prod.mk.eta]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝³ : CommMonoid M
inst✝² : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
inst✝¹ : DecidableEq α
inst✝ : DecidableEq β
s : Finset (α × β)
f : α × β → M
this :
∀ (a : α),
∏ i in Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s), f (a, i) =
Finset.prod (Finset.filter (fun ab => ab.fst = a) s) f
⊢ ∀ (x : α × β), x ∈ s → ∃ a, a ∈ s ∧ a.fst = x.fst
[PROOFSTEP]
exact fun x hx => ⟨x, hx, rfl⟩
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset (α × β)
f : α × β → M
⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab = ∏ᶠ (a : α) (b : β) (_ : (a, b) ∈ s), f (a, b)
[PROOFSTEP]
classical
rw [finprod_mem_finset_product']
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset (α × β)
f : α × β → M
⊢ ∏ᶠ (ab : α × β) (_ : ab ∈ s), f ab = ∏ᶠ (a : α) (b : β) (_ : (a, b) ∈ s), f (a, b)
[PROOFSTEP]
rw [finprod_mem_finset_product']
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
s : Finset (α × β)
f : α × β → M
⊢ ∏ᶠ (a : α) (b : β) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b) =
∏ᶠ (a : α) (b : β) (_ : (a, b) ∈ s), f (a, b)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
γ : Type u_7
s : Finset (α × β × γ)
f : α × β × γ → M
⊢ ∏ᶠ (abc : α × β × γ) (_ : abc ∈ s), f abc = ∏ᶠ (a : α) (b : β) (c : γ) (_ : (a, b, c) ∈ s), f (a, b, c)
[PROOFSTEP]
classical
rw [finprod_mem_finset_product']
simp_rw [finprod_mem_finset_product']
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
γ : Type u_7
s : Finset (α × β × γ)
f : α × β × γ → M
⊢ ∏ᶠ (abc : α × β × γ) (_ : abc ∈ s), f abc = ∏ᶠ (a : α) (b : β) (c : γ) (_ : (a, b, c) ∈ s), f (a, b, c)
[PROOFSTEP]
rw [finprod_mem_finset_product']
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
γ : Type u_7
s : Finset (α × β × γ)
f : α × β × γ → M
⊢ ∏ᶠ (a : α) (b : β × γ) (_ : b ∈ Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)), f (a, b) =
∏ᶠ (a : α) (b : β) (c : γ) (_ : (a, b, c) ∈ s), f (a, b, c)
[PROOFSTEP]
simp_rw [finprod_mem_finset_product']
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s✝ t : Set α
γ : Type u_7
s : Finset (α × β × γ)
f : α × β × γ → M
⊢ ∏ᶠ (a : α) (a_1 : β) (b : γ) (_ :
b ∈
Finset.image Prod.snd
(Finset.filter (fun ab => ab.fst = a_1) (Finset.image Prod.snd (Finset.filter (fun ab => ab.fst = a) s)))),
f (a, a_1, b) =
∏ᶠ (a : α) (b : β) (c : γ) (_ : (a, b, c) ∈ s), f (a, b, c)
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
f : α × β → M
hf : Set.Finite (mulSupport f)
⊢ ∏ᶠ (ab : α × β), f ab = ∏ᶠ (a : α) (b : β), f (a, b)
[PROOFSTEP]
have h₁ : ∀ a, ∏ᶠ _ : a ∈ hf.toFinset, f a = f a := by simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
f : α × β → M
hf : Set.Finite (mulSupport f)
⊢ ∀ (a : α × β), ∏ᶠ (_ : a ∈ Finite.toFinset hf), f a = f a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
f : α × β → M
hf : Set.Finite (mulSupport f)
h₁ : ∀ (a : α × β), ∏ᶠ (_ : a ∈ Finite.toFinset hf), f a = f a
⊢ ∏ᶠ (ab : α × β), f ab = ∏ᶠ (a : α) (b : β), f (a, b)
[PROOFSTEP]
have h₂ : ∏ᶠ a, f a = ∏ᶠ (a) (_ : a ∈ hf.toFinset), f a := by simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
f : α × β → M
hf : Set.Finite (mulSupport f)
h₁ : ∀ (a : α × β), ∏ᶠ (_ : a ∈ Finite.toFinset hf), f a = f a
⊢ ∏ᶠ (a : α × β), f a = ∏ᶠ (a : α × β) (_ : a ∈ Finite.toFinset hf), f a
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
f : α × β → M
hf : Set.Finite (mulSupport f)
h₁ : ∀ (a : α × β), ∏ᶠ (_ : a ∈ Finite.toFinset hf), f a = f a
h₂ : ∏ᶠ (a : α × β), f a = ∏ᶠ (a : α × β) (_ : a ∈ Finite.toFinset hf), f a
⊢ ∏ᶠ (ab : α × β), f ab = ∏ᶠ (a : α) (b : β), f (a, b)
[PROOFSTEP]
simp_rw [h₂, finprod_mem_finset_product, h₁]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
γ : Type u_7
f : α × β × γ → M
h : Set.Finite (mulSupport f)
⊢ ∏ᶠ (abc : α × β × γ), f abc = ∏ᶠ (a : α) (b : β) (c : γ), f (a, b, c)
[PROOFSTEP]
rw [finprod_curry f h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
γ : Type u_7
f : α × β × γ → M
h : Set.Finite (mulSupport f)
⊢ ∏ᶠ (a : α) (b : β × γ), f (a, b) = ∏ᶠ (a : α) (b : β) (c : γ), f (a, b, c)
[PROOFSTEP]
congr
[GOAL]
case e_f
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a b : α
s t : Set α
γ : Type u_7
f : α × β × γ → M
h : Set.Finite (mulSupport f)
⊢ (fun a => ∏ᶠ (b : β × γ), f (a, b)) = fun a => ∏ᶠ (b : β) (c : γ), f (a, b, c)
[PROOFSTEP]
ext a
[GOAL]
case e_f.h
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a✝ b : α
s t : Set α
γ : Type u_7
f : α × β × γ → M
h : Set.Finite (mulSupport f)
a : α
⊢ ∏ᶠ (b : β × γ), f (a, b) = ∏ᶠ (b : β) (c : γ), f (a, b, c)
[PROOFSTEP]
rw [finprod_curry]
[GOAL]
case e_f.h.hf
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝¹ : CommMonoid M
inst✝ : CommMonoid N
f✝ g : α → M
a✝ b : α
s t : Set α
γ : Type u_7
f : α × β × γ → M
h : Set.Finite (mulSupport f)
a : α
⊢ Set.Finite (mulSupport fun b => f (a, b))
[PROOFSTEP]
simp [h]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
f : α → β
hf : Injective f
inst✝ : DecidablePred fun x => x ∈ range f
g : α → M
⊢ (∏ᶠ (b : β), if h : b ∈ range f then g (Classical.choose h) else 1) = ∏ᶠ (a : α), g a
[PROOFSTEP]
simp_rw [← finprod_eq_dif]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
f : α → β
hf : Injective f
inst✝ : DecidablePred fun x => x ∈ range f
g : α → M
⊢ ∏ᶠ (b : β) (h : b ∈ range f), g (Classical.choose h) = ∏ᶠ (a : α), g a
[PROOFSTEP]
rw [finprod_dmem, finprod_mem_range hf, finprod_congr fun a => _]
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a b : α
s t : Set α
f : α → β
hf : Injective f
inst✝ : DecidablePred fun x => x ∈ range f
g : α → M
⊢ ∀ (a : α), (if h' : f a ∈ range f then g (Classical.choose h') else 1) = g a
[PROOFSTEP]
intro a
[GOAL]
α : Type u_1
β : Type u_2
ι : Type u_3
G : Type u_4
M : Type u_5
N : Type u_6
inst✝² : CommMonoid M
inst✝¹ : CommMonoid N
f✝ g✝ : α → M
a✝ b : α
s t : Set α
f : α → β
hf : Injective f
inst✝ : DecidablePred fun x => x ∈ range f
g : α → M
a : α
⊢ (if h' : f a ∈ range f then g (Classical.choose h') else 1) = g a
[PROOFSTEP]
rw [dif_pos (Set.mem_range_self a), hf (Classical.choose_spec (Set.mem_range_self a))]
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Finprod", "llama_tokens": 53643} |
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : X✝ ⟶ Y✝
i : ι
h : i = j
⊢ X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝
[PROOFSTEP]
dsimp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : X✝ ⟶ Y✝
i : ι
h : i = j
⊢ (if i = j then X✝ else 0) = X✝
[PROOFSTEP]
rw [if_pos h]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : X✝ ⟶ Y✝
i : ι
h : i = j
⊢ Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i
[PROOFSTEP]
dsimp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : X✝ ⟶ Y✝
i : ι
h : i = j
⊢ Y✝ = if i = j then Y✝ else 0
[PROOFSTEP]
rw [if_pos h]
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
A : V
⊢ { obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫
f ≫
eqToHom
(_ :
Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.map
(𝟙 A) =
𝟙
({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫
f ≫
eqToHom
(_ :
Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.obj
A)
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
A : V
i✝ : ι
⊢ Hom.f
({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫
f ≫
eqToHom
(_ :
Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.map
(𝟙 A))
i✝ =
Hom.f
(𝟙
({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i =
X) ≫
f ≫
eqToHom
(_ :
Y =
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.obj
A))
i✝
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
A : V
i✝ : ι
⊢ (if h : i✝ = j then eqToHom (_ : (if i✝ = j then A else 0) = A) ≫ 𝟙 A ≫ eqToHom (_ : A = if i✝ = j then A else 0)
else 0) =
𝟙 (if i✝ = j then A else 0)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
A : V
i✝ : ι
h : i✝ = j
⊢ eqToHom (_ : (if i✝ = j then A else 0) = A) ≫ 𝟙 A ≫ eqToHom (_ : A = if i✝ = j then A else 0) =
𝟙 (if i✝ = j then A else 0)
[PROOFSTEP]
subst h
[GOAL]
case pos
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
A : V
i✝ : ι
⊢ eqToHom (_ : (if i✝ = i✝ then A else 0) = A) ≫ 𝟙 A ≫ eqToHom (_ : A = if i✝ = i✝ then A else 0) =
𝟙 (if i✝ = i✝ then A else 0)
[PROOFSTEP]
simp
[GOAL]
case neg
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
A : V
i✝ : ι
h : ¬i✝ = j
⊢ 0 = 𝟙 (if i✝ = j then A else 0)
[PROOFSTEP]
rw [if_neg h]
[GOAL]
case neg
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
A : V
i✝ : ι
h : ¬i✝ = j
⊢ 0 = 𝟙 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ { obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫
f ≫
eqToHom
(_ :
Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.map
(f ≫ g) =
{ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫
f ≫
eqToHom
(_ :
Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.map
f ≫
{ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫
f ≫
eqToHom
(_ :
Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.map
g
[PROOFSTEP]
ext
[GOAL]
case h
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
i✝ : ι
⊢ Hom.f
({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i = X) ≫
f ≫
eqToHom
(_ :
Y = HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.map
(f ≫ g))
i✝ =
Hom.f
({ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i =
X) ≫
f ≫
eqToHom
(_ :
Y =
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.map
f ≫
{ obj := fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0,
map := fun {X Y} f =>
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X) i =
X) ≫
f ≫
eqToHom
(_ :
Y =
HomologicalComplex.X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y) i)
else 0 }.map
g)
i✝
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
i✝ : ι
⊢ (if h : i✝ = j then
eqToHom (_ : (if i✝ = j then X✝ else 0) = X✝) ≫ (f ≫ g) ≫ eqToHom (_ : Z✝ = if i✝ = j then Z✝ else 0)
else 0) =
(if h : i✝ = j then eqToHom (_ : (if i✝ = j then X✝ else 0) = X✝) ≫ f ≫ eqToHom (_ : Y✝ = if i✝ = j then Y✝ else 0)
else 0) ≫
if h : i✝ = j then eqToHom (_ : (if i✝ = j then Y✝ else 0) = Y✝) ≫ g ≫ eqToHom (_ : Z✝ = if i✝ = j then Z✝ else 0)
else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
i✝ : ι
h : i✝ = j
⊢ eqToHom (_ : (if i✝ = j then X✝ else 0) = X✝) ≫ (f ≫ g) ≫ eqToHom (_ : Z✝ = if i✝ = j then Z✝ else 0) =
(eqToHom (_ : (if i✝ = j then X✝ else 0) = X✝) ≫ f ≫ eqToHom (_ : Y✝ = if i✝ = j then Y✝ else 0)) ≫
eqToHom (_ : (if i✝ = j then Y✝ else 0) = Y✝) ≫ g ≫ eqToHom (_ : Z✝ = if i✝ = j then Z✝ else 0)
[PROOFSTEP]
subst h
[GOAL]
case pos
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
i✝ : ι
⊢ eqToHom (_ : (if i✝ = i✝ then X✝ else 0) = X✝) ≫ (f ≫ g) ≫ eqToHom (_ : Z✝ = if i✝ = i✝ then Z✝ else 0) =
(eqToHom (_ : (if i✝ = i✝ then X✝ else 0) = X✝) ≫ f ≫ eqToHom (_ : Y✝ = if i✝ = i✝ then Y✝ else 0)) ≫
eqToHom (_ : (if i✝ = i✝ then Y✝ else 0) = Y✝) ≫ g ≫ eqToHom (_ : Z✝ = if i✝ = i✝ then Z✝ else 0)
[PROOFSTEP]
simp
[GOAL]
case neg
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
i✝ : ι
h : ¬i✝ = j
⊢ 0 = 0 ≫ 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
A : V
⊢ X ((single V c j).obj A) j = A
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
A B : V
f : A ⟶ B
⊢ Hom.f ((single V c j).map f) j = (singleObjXSelf V c j A).hom ≫ f ≫ (singleObjXSelf V c j B).inv
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
a₁✝ a₂✝ : X✝ ⟶ Y✝
w : (single V c j).map a₁✝ = (single V c j).map a₂✝
⊢ a₁✝ = a₂✝
[PROOFSTEP]
have := congr_hom w j
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
a₁✝ a₂✝ : X✝ ⟶ Y✝
w : (single V c j).map a₁✝ = (single V c j).map a₂✝
this : Hom.f ((single V c j).map a₁✝) j = Hom.f ((single V c j).map a₂✝) j
⊢ a₁✝ = a₂✝
[PROOFSTEP]
dsimp at this
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
a₁✝ a₂✝ : X✝ ⟶ Y✝
w : (single V c j).map a₁✝ = (single V c j).map a₂✝
this :
(if h : j = j then
eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) j = X✝) ≫
a₁✝ ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) j)
else 0) =
if h : j = j then
eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) j = X✝) ≫
a₂✝ ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) j)
else 0
⊢ a₁✝ = a₂✝
[PROOFSTEP]
simp only [dif_pos] at this
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
a₁✝ a₂✝ : X✝ ⟶ Y✝
w : (single V c j).map a₁✝ = (single V c j).map a₂✝
this :
eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) j = X✝) ≫
a₁✝ ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) j) =
eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) j = X✝) ≫
a₂✝ ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) j)
⊢ a₁✝ = a₂✝
[PROOFSTEP]
rw [← IsIso.inv_comp_eq, inv_eqToHom, eqToHom_trans_assoc, eqToHom_refl, Category.id_comp, ← IsIso.comp_inv_eq,
Category.assoc, inv_eqToHom, eqToHom_trans, eqToHom_refl, Category.comp_id] at this
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
a₁✝ a₂✝ : X✝ ⟶ Y✝
w : (single V c j).map a₁✝ = (single V c j).map a₂✝
this : a₁✝ = a₂✝
⊢ a₁✝ = a₂✝
[PROOFSTEP]
exact this
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
⊢ X✝ = X ((single V c j).obj X✝) j
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
⊢ X ((single V c j).obj Y✝) j = Y✝
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
⊢ (single V c j).map
((fun {X Y} f =>
eqToHom (_ : X = if j = j then X else 0) ≫ Hom.f f j ≫ eqToHom (_ : (if j = j then Y else 0) = Y))
f) =
f
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
i : ι
⊢ Hom.f
((single V c j).map
((fun {X Y} f =>
eqToHom (_ : X = if j = j then X else 0) ≫ Hom.f f j ≫ eqToHom (_ : (if j = j then Y else 0) = Y))
f))
i =
Hom.f f i
[PROOFSTEP]
dsimp
[GOAL]
case h
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
i : ι
⊢ (if h : i = j then
eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝) ≫
(eqToHom (_ : X✝ = if j = j then X✝ else 0) ≫ Hom.f f j ≫ eqToHom (_ : (if j = j then Y✝ else 0) = Y✝)) ≫
eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i)
else 0) =
Hom.f f i
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
i : ι
h : i = j
⊢ eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝) ≫
(eqToHom (_ : X✝ = if j = j then X✝ else 0) ≫ Hom.f f j ≫ eqToHom (_ : (if j = j then Y✝ else 0) = Y✝)) ≫
eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i) =
Hom.f f i
[PROOFSTEP]
subst h
[GOAL]
case pos
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
X✝ Y✝ : V
i : ι
f : (single V c i).obj X✝ ⟶ (single V c i).obj Y✝
⊢ eqToHom (_ : X ((fun A => mk (fun i_1 => if i_1 = i then A else 0) fun i_1 j => 0) X✝) i = X✝) ≫
(eqToHom (_ : X✝ = if i = i then X✝ else 0) ≫ Hom.f f i ≫ eqToHom (_ : (if i = i then Y✝ else 0) = Y✝)) ≫
eqToHom (_ : Y✝ = X ((fun A => mk (fun i_1 => if i_1 = i then A else 0) fun i_1 j => 0) Y✝) i) =
Hom.f f i
[PROOFSTEP]
simp
[GOAL]
case neg
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
i : ι
h : ¬i = j
⊢ 0 = Hom.f f i
[PROOFSTEP]
symm
[GOAL]
case neg
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
i : ι
h : ¬i = j
⊢ Hom.f f i = 0
[PROOFSTEP]
apply zero_of_target_iso_zero
[GOAL]
case neg.i
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
i : ι
h : ¬i = j
⊢ X ((single V c j).obj Y✝) i ≅ 0
[PROOFSTEP]
dsimp
[GOAL]
case neg.i
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
inst✝¹ : HasZeroObject V
ι : Type u_1
inst✝ : DecidableEq ι
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : (single V c j).obj X✝ ⟶ (single V c j).obj Y✝
i : ι
h : ¬i = j
⊢ (if i = j then Y✝ else 0) ≅ 0
[PROOFSTEP]
rw [if_neg h]
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ {
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(𝟙 X) =
𝟙
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.obj
X)
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(𝟙 X))
Nat.zero =
Hom.f
(𝟙
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.obj
X))
Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(𝟙 X))
(Nat.succ n✝) =
Hom.f
(𝟙
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.obj
X))
(Nat.succ n✝)
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ {
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(f ≫ g) =
{
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
f ≫
{
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
g
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(f ≫ g))
Nat.zero =
Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
f ≫
{
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
g)
Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
n✝ : ℕ
⊢ Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(f ≫ g))
(Nat.succ n✝) =
Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
f ≫
{
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
g)
(Nat.succ n✝)
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
j : ℕ
⊢ dTo ((single₀ V).obj X) j = 0
[PROOFSTEP]
rw [dTo_eq ((single₀ V).obj X) rfl]
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
j : ℕ
⊢ (xPrevIso ((single₀ V).obj X) (_ : j + 1 = j + 1)).hom ≫ d ((single₀ V).obj X) (j + 1) j = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
i : ℕ
⊢ dFrom ((single₀ V).obj X) i = 0
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ dFrom ((single₀ V).obj X) Nat.zero = 0
[PROOFSTEP]
rw [dFrom_eq_zero]
[GOAL]
case zero.h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero (ComplexShape.next (ComplexShape.down ℕ) Nat.zero)
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ dFrom ((single₀ V).obj X) (Nat.succ n✝) = 0
[PROOFSTEP]
erw [dFrom_eq ((single₀ V).obj X) rfl]
[GOAL]
case succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ d ((single₀ V).obj X) (n✝ + 1) n✝ ≫ (xNextIso ((single₀ V).obj X) (_ : n✝ + 1 = n✝ + 1)).inv = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X : V
⊢ dTo ((single₀ V).obj X) 0 = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X : V
⊢ dFrom ((single₀ V).obj X) 0 = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ (single₀ V ⋙ homologyFunctor V (ComplexShape.down ℕ) 0).map f ≫
((fun X =>
homology.congr (_ : dTo ((single₀ V).obj X) 0 ≫ dFrom ((single₀ V).obj X) 0 = 0) (_ : 0 ≫ 0 = 0) (_ : 0 = 0)
(_ : d ((single₀ V).obj X) 0 (ComplexShape.next (ComplexShape.down ℕ) 0) = 0) ≪≫
homologyZeroZero)
Y✝).hom =
((fun X =>
homology.congr (_ : dTo ((single₀ V).obj X) 0 ≫ dFrom ((single₀ V).obj X) 0 = 0) (_ : 0 ≫ 0 = 0) (_ : 0 = 0)
(_ : d ((single₀ V).obj X) 0 (ComplexShape.next (ComplexShape.down ℕ) 0) = 0) ≪≫
homologyZeroZero)
X✝).hom ≫
(𝟭 V).map f
[PROOFSTEP]
dsimp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0)
(_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (Hom.sqTo ((single₀ V).map f) 0)
(Hom.sqFrom ((single₀ V).map f) 0)
(_ : (Hom.sqTo ((single₀ V).map f) 0).right = (Hom.sqTo ((single₀ V).map f) 0).right) ≫
homology.map (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (_ : 0 ≫ 0 = 0)
(CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj Y✝) 0)) (𝟙 Y✝))
(CommaMorphism.mk (𝟙 Y✝) (𝟙 (xNext ((single₀ V).obj Y✝) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫
homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0))
(_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) =
(homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : 0 ≫ 0 = 0)
(CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj X✝) 0)) (𝟙 X✝))
(CommaMorphism.mk (𝟙 X✝) (𝟙 (xNext ((single₀ V).obj X✝) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫
homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0))
(_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0)) ≫
f
[PROOFSTEP]
ext
[GOAL]
case p
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ homology.π (dTo ((single₀ V).obj X✝) 0) (dFrom ((single₀ V).obj X✝) 0)
(_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) ≫
homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0)
(_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (Hom.sqTo ((single₀ V).map f) 0)
(Hom.sqFrom ((single₀ V).map f) 0)
(_ : (Hom.sqTo ((single₀ V).map f) 0).right = (Hom.sqTo ((single₀ V).map f) 0).right) ≫
homology.map (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (_ : 0 ≫ 0 = 0)
(CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj Y✝) 0)) (𝟙 Y✝))
(CommaMorphism.mk (𝟙 Y✝) (𝟙 (xNext ((single₀ V).obj Y✝) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫
homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0))
(_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) =
homology.π (dTo ((single₀ V).obj X✝) 0) (dFrom ((single₀ V).obj X✝) 0)
(_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) ≫
(homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : 0 ≫ 0 = 0)
(CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj X✝) 0)) (𝟙 X✝))
(CommaMorphism.mk (𝟙 X✝) (𝟙 (xNext ((single₀ V).obj X✝) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫
homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0))
(_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0)) ≫
f
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
n : ℕ
X : V
⊢ dTo ((single₀ V).obj X) (n + 1) = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
n : ℕ
X : V
⊢ dFrom ((single₀ V).obj X) (n + 1) = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : C ⟶ (single₀ V).obj X
⊢ d C 1 0 ≫ Hom.f f 0 = 0
[PROOFSTEP]
rw [← f.comm 1 0]
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : C ⟶ (single₀ V).obj X
⊢ Hom.f f 1 ≫ d ((single₀ V).obj X) 1 0 = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
i j : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
i ≫
d ((single₀ V).obj X) i j =
d C i j ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
j
[PROOFSTEP]
rcases i with (_ | _ | i)
[GOAL]
case zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
j : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero j
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
Nat.zero ≫
d ((single₀ V).obj X) Nat.zero j =
d C Nat.zero j ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
j
[PROOFSTEP]
cases j
[GOAL]
case succ.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
j : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ Nat.zero) j
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
(Nat.succ Nat.zero) ≫
d ((single₀ V).obj X) (Nat.succ Nat.zero) j =
d C (Nat.succ Nat.zero) j ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
j
[PROOFSTEP]
cases j
[GOAL]
case succ.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
j i : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) j
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
(Nat.succ (Nat.succ i)) ≫
d ((single₀ V).obj X) (Nat.succ (Nat.succ i)) j =
d C (Nat.succ (Nat.succ i)) j ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
j
[PROOFSTEP]
cases j
[GOAL]
case zero.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
Nat.zero ≫
d ((single₀ V).obj X) Nat.zero Nat.zero =
d C Nat.zero Nat.zero ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
Nat.zero
[PROOFSTEP]
simp only [single₀_obj_X_d, comp_zero]
[GOAL]
case zero.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero (Nat.succ n✝)
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
Nat.zero ≫
d ((single₀ V).obj X) Nat.zero (Nat.succ n✝) =
d C Nat.zero (Nat.succ n✝) ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
(Nat.succ n✝)
[PROOFSTEP]
simp only [single₀_obj_X_d, comp_zero]
[GOAL]
case succ.zero.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ Nat.zero) Nat.zero
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
(Nat.succ Nat.zero) ≫
d ((single₀ V).obj X) (Nat.succ Nat.zero) Nat.zero =
d C (Nat.succ Nat.zero) Nat.zero ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
Nat.zero
[PROOFSTEP]
simp only [single₀_obj_X_d, comp_zero]
[GOAL]
case succ.zero.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ Nat.zero) (Nat.succ n✝)
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
(Nat.succ Nat.zero) ≫
d ((single₀ V).obj X) (Nat.succ Nat.zero) (Nat.succ n✝) =
d C (Nat.succ Nat.zero) (Nat.succ n✝) ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
(Nat.succ n✝)
[PROOFSTEP]
simp only [single₀_obj_X_d, comp_zero]
[GOAL]
case succ.succ.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
i : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) Nat.zero
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
(Nat.succ (Nat.succ i)) ≫
d ((single₀ V).obj X) (Nat.succ (Nat.succ i)) Nat.zero =
d C (Nat.succ (Nat.succ i)) Nat.zero ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
Nat.zero
[PROOFSTEP]
simp only [single₀_obj_X_d, comp_zero]
[GOAL]
case succ.succ.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
i n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) (Nat.succ n✝)
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
(Nat.succ (Nat.succ i)) ≫
d ((single₀ V).obj X) (Nat.succ (Nat.succ i)) (Nat.succ n✝) =
d C (Nat.succ (Nat.succ i)) (Nat.succ n✝) ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
(Nat.succ n✝)
[PROOFSTEP]
simp only [single₀_obj_X_d, comp_zero]
[GOAL]
case zero.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero
⊢ 0 = d C Nat.zero Nat.zero ≫ ↑f
[PROOFSTEP]
rw [C.shape, zero_comp]
[GOAL]
case zero.zero.a
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero
⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ.zero.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ Nat.zero) Nat.zero
⊢ 0 = d C (Nat.succ Nat.zero) Nat.zero ≫ ↑f
[PROOFSTEP]
exact f.2.symm
[GOAL]
case succ.succ.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
i : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) Nat.zero
⊢ 0 = d C (Nat.succ (Nat.succ i)) Nat.zero ≫ ↑f
[PROOFSTEP]
rw [C.shape, zero_comp]
[GOAL]
case succ.succ.zero.a
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : { f // d C 1 0 ≫ f = 0 }
i : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) Nat.zero
⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ (Nat.succ i)) Nat.zero
[PROOFSTEP]
exact i.succ_succ_ne_one.symm
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : C ⟶ (single₀ V).obj X
⊢ (fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
((fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) }) f) =
f
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : C ⟶ (single₀ V).obj X
i : ℕ
⊢ Hom.f
((fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
((fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) }) f))
i =
Hom.f f i
[PROOFSTEP]
rcases i with ⟨⟩
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : C ⟶ (single₀ V).obj X
⊢ Hom.f
((fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
((fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) }) f))
Nat.zero =
Hom.f f Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : C ⟶ (single₀ V).obj X
n✝ : ℕ
⊢ Hom.f
((fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
((fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) }) f))
(Nat.succ n✝) =
Hom.f f (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : C ⟶ (single₀ V).obj X
n✝ : ℕ
⊢ 0 = Hom.f f (Nat.succ n✝)
[PROOFSTEP]
ext
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
⊢ Function.RightInverse
(fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
fun f => { val := Hom.f f 0, property := (_ : d C 1 0 ≫ Hom.f f 0 = 0) }
[PROOFSTEP]
aesop_cat
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f g : C ⟶ (single₀ V).obj X
h : Hom.f f 0 = Hom.f g 0
⊢ ↑(toSingle₀Equiv C X) f = ↑(toSingle₀Equiv C X) g
[PROOFSTEP]
ext
[GOAL]
case a
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f g : C ⟶ (single₀ V).obj X
h : Hom.f f 0 = Hom.f g 0
⊢ ↑(↑(toSingle₀Equiv C X) f) = ↑(↑(toSingle₀Equiv C X) g)
[PROOFSTEP]
exact h
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
i j : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ (fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
i ≫
d C i j =
d ((single₀ V).obj X) i j ≫
(fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
j
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
j : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero j
⊢ (fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
Nat.zero ≫
d C Nat.zero j =
d ((single₀ V).obj X) Nat.zero j ≫
(fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
j
[PROOFSTEP]
cases j
[GOAL]
case succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
j n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ n✝) j
⊢ (fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
(Nat.succ n✝) ≫
d C (Nat.succ n✝) j =
d ((single₀ V).obj X) (Nat.succ n✝) j ≫
(fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
j
[PROOFSTEP]
cases j
[GOAL]
case zero.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero Nat.zero
⊢ (fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
Nat.zero ≫
d C Nat.zero Nat.zero =
d ((single₀ V).obj X) Nat.zero Nat.zero ≫
(fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
Nat.zero
[PROOFSTEP]
simp only [shape, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp, single₀_obj_X_d, Nat.zero_eq,
add_eq_zero, comp_zero]
[GOAL]
case zero.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) Nat.zero (Nat.succ n✝)
⊢ (fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
Nat.zero ≫
d C Nat.zero (Nat.succ n✝) =
d ((single₀ V).obj X) Nat.zero (Nat.succ n✝) ≫
(fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
(Nat.succ n✝)
[PROOFSTEP]
simp only [shape, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp, single₀_obj_X_d, Nat.zero_eq,
add_eq_zero, comp_zero]
[GOAL]
case succ.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ n✝) Nat.zero
⊢ (fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
(Nat.succ n✝) ≫
d C (Nat.succ n✝) Nat.zero =
d ((single₀ V).obj X) (Nat.succ n✝) Nat.zero ≫
(fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
Nat.zero
[PROOFSTEP]
simp only [shape, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp, single₀_obj_X_d, Nat.zero_eq,
add_eq_zero, comp_zero]
[GOAL]
case succ.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
n✝¹ n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.down ℕ) (Nat.succ n✝¹) (Nat.succ n✝)
⊢ (fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
(Nat.succ n✝¹) ≫
d C (Nat.succ n✝¹) (Nat.succ n✝) =
d ((single₀ V).obj X) (Nat.succ n✝¹) (Nat.succ n✝) ≫
(fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
(Nat.succ n✝)
[PROOFSTEP]
simp only [shape, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp, single₀_obj_X_d, Nat.zero_eq,
add_eq_zero, comp_zero]
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
⊢ (fun f =>
Hom.mk fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
((fun f => Hom.f f 0) f) =
f
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
i : ℕ
⊢ Hom.f
((fun f =>
Hom.mk fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
((fun f => Hom.f f 0) f))
i =
Hom.f f i
[PROOFSTEP]
cases i
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
⊢ Hom.f
((fun f =>
Hom.mk fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
((fun f => Hom.f f 0) f))
Nat.zero =
Hom.f f Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
n✝ : ℕ
⊢ Hom.f
((fun f =>
Hom.mk fun i =>
match i with
| 0 => f
| Nat.succ n => 0)
((fun f => Hom.f f 0) f))
(Nat.succ n✝) =
Hom.f f (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : ChainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
n✝ : ℕ
⊢ 0 = Hom.f f (Nat.succ n✝)
[PROOFSTEP]
ext
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
i : ℕ
⊢ HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ HomologicalComplex.X ((single₀ V).obj X) Nat.zero ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero
[PROOFSTEP]
exact 𝟙 _
[GOAL]
case succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n✝) ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n✝)
[PROOFSTEP]
exact 𝟙 _
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
i : ℕ
⊢ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero ⟶
HomologicalComplex.X ((single₀ V).obj X) Nat.zero
[PROOFSTEP]
exact 𝟙 _
[GOAL]
case succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n✝) ⟶
HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n✝)
[PROOFSTEP]
exact 𝟙 _
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i))
0 =
Hom.f (𝟙 ((single₀ V).obj X)) 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ ((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) =
𝟙 ((single V (ComplexShape.down ℕ) 0).obj X)
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i))
Nat.zero =
Hom.f (𝟙 ((single V (ComplexShape.down ℕ) 0).obj X)) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ 𝟙 (if 0 = 0 then X else 0) ≫ 𝟙 X = 𝟙 (if 0 = 0 then X else 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i))
(Nat.succ n✝) =
Hom.f (𝟙 ((single V (ComplexShape.down ℕ) 0).obj X)) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ 𝟙 (if Nat.succ n✝ = 0 then X else 0) ≫ 𝟙 0 = 𝟙 (if Nat.succ n✝ = 0 then X else 0)
[PROOFSTEP]
rw [Category.comp_id]
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ (single₀ V).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n)))
(_ : i = i))
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i
(fun h =>
(_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)))
Y✝).hom =
((fun X =>
Iso.mk
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n)))
(_ : i = i))
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i
(fun h =>
(_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)))
X✝).hom ≫
(single V (ComplexShape.down ℕ) 0).map f
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ Hom.f
((single₀ V).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n)))
(_ : i = i))
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i
(fun h =>
(_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)))
Y✝).hom)
Nat.zero =
Hom.f
(((fun X =>
Iso.mk
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n)))
(_ : i = i))
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i
(fun h =>
(_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)))
X✝).hom ≫
(single V (ComplexShape.down ℕ) 0).map f)
Nat.zero
[PROOFSTEP]
aesop_cat
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X✝ Y✝ : V
f : X✝ ⟶ Y✝
n✝ : ℕ
⊢ Hom.f
((single₀ V).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n)))
(_ : i = i))
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i
(fun h =>
(_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)))
Y✝).hom)
(Nat.succ n✝) =
Hom.f
(((fun X =>
Iso.mk
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n)))
(_ : i = i))
(Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i
(fun h =>
(_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (HomologicalComplex.X ((single V (ComplexShape.down ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)))
X✝).hom ≫
(single V (ComplexShape.down ℕ) 0).map f)
(Nat.succ n✝)
[PROOFSTEP]
aesop_cat
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ {
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(𝟙 X) =
𝟙
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.obj
X)
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(𝟙 X))
Nat.zero =
Hom.f
(𝟙
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.obj
X))
Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(𝟙 X))
(Nat.succ n✝) =
Hom.f
(𝟙
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.obj
X))
(Nat.succ n✝)
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ {
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(f ≫ g) =
{
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
f ≫
{
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
g
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(f ≫ g))
Nat.zero =
Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
f ≫
{
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
g)
Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X✝ Y✝ Z✝ : V
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
n✝ : ℕ
⊢ Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
(f ≫ g))
(Nat.succ n✝) =
Hom.f
({
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
f ≫
{
obj := fun X =>
HomologicalComplex.mk
(fun n =>
match n with
| 0 => X
| Nat.succ n => 0)
fun i j => 0,
map := fun {X Y} f =>
Hom.mk fun n =>
match n with
| 0 => f
| Nat.succ n => 0 }.map
g)
(Nat.succ n✝)
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
j : ℕ
⊢ dFrom ((single₀ V).obj X) j = 0
[PROOFSTEP]
rw [dFrom_eq ((single₀ V).obj X) rfl]
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
j : ℕ
⊢ d ((single₀ V).obj X) j (j + 1) ≫ (xNextIso ((single₀ V).obj X) (_ : j + 1 = j + 1)).inv = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
i : ℕ
⊢ dTo ((single₀ V).obj X) i = 0
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ dTo ((single₀ V).obj X) Nat.zero = 0
[PROOFSTEP]
rw [dTo_eq_zero]
[GOAL]
case zero.h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) Nat.zero) Nat.zero
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ dTo ((single₀ V).obj X) (Nat.succ n✝) = 0
[PROOFSTEP]
erw [dTo_eq ((single₀ V).obj X) rfl]
[GOAL]
case succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ (xPrevIso ((single₀ V).obj X) (_ : n✝ + 1 = n✝ + 1)).hom ≫ d ((single₀ V).obj X) n✝ (n✝ + 1) = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X : V
⊢ dTo ((single₀ V).obj X) 0 = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X : V
⊢ dFrom ((single₀ V).obj X) 0 = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ (single₀ V ⋙ homologyFunctor V (ComplexShape.up ℕ) 0).map f ≫
((fun X =>
homology.congr (_ : dTo ((single₀ V).obj X) 0 ≫ dFrom ((single₀ V).obj X) 0 = 0) (_ : 0 ≫ 0 = 0)
(_ : d ((single₀ V).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0) (_ : 0 = 0) ≪≫
homologyZeroZero)
Y✝).hom =
((fun X =>
homology.congr (_ : dTo ((single₀ V).obj X) 0 ≫ dFrom ((single₀ V).obj X) 0 = 0) (_ : 0 ≫ 0 = 0)
(_ : d ((single₀ V).obj X) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0) (_ : 0 = 0) ≪≫
homologyZeroZero)
X✝).hom ≫
(𝟭 V).map f
[PROOFSTEP]
dsimp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0)
(_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (Hom.sqTo ((single₀ V).map f) 0)
(Hom.sqFrom ((single₀ V).map f) 0)
(_ : (Hom.sqTo ((single₀ V).map f) 0).right = (Hom.sqTo ((single₀ V).map f) 0).right) ≫
homology.map (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (_ : 0 ≫ 0 = 0)
(CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj Y✝) 0)) (𝟙 Y✝))
(CommaMorphism.mk (𝟙 Y✝) (𝟙 (xNext ((single₀ V).obj Y✝) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫
homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0))
(_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) =
(homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : 0 ≫ 0 = 0)
(CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj X✝) 0)) (𝟙 X✝))
(CommaMorphism.mk (𝟙 X✝) (𝟙 (xNext ((single₀ V).obj X✝) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫
homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0))
(_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0)) ≫
f
[PROOFSTEP]
ext
[GOAL]
case p
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ homology.π (dTo ((single₀ V).obj X✝) 0) (dFrom ((single₀ V).obj X✝) 0)
(_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) ≫
homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0)
(_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (Hom.sqTo ((single₀ V).map f) 0)
(Hom.sqFrom ((single₀ V).map f) 0)
(_ : (Hom.sqTo ((single₀ V).map f) 0).right = (Hom.sqTo ((single₀ V).map f) 0).right) ≫
homology.map (_ : dTo ((single₀ V).obj Y✝) 0 ≫ dFrom ((single₀ V).obj Y✝) 0 = 0) (_ : 0 ≫ 0 = 0)
(CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj Y✝) 0)) (𝟙 Y✝))
(CommaMorphism.mk (𝟙 Y✝) (𝟙 (xNext ((single₀ V).obj Y✝) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫
homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0))
(_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0) =
homology.π (dTo ((single₀ V).obj X✝) 0) (dFrom ((single₀ V).obj X✝) 0)
(_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) ≫
(homology.map (_ : dTo ((single₀ V).obj X✝) 0 ≫ dFrom ((single₀ V).obj X✝) 0 = 0) (_ : 0 ≫ 0 = 0)
(CommaMorphism.mk (𝟙 (xPrev ((single₀ V).obj X✝) 0)) (𝟙 X✝))
(CommaMorphism.mk (𝟙 X✝) (𝟙 (xNext ((single₀ V).obj X✝) 0)))
(_ :
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right =
(CommaMorphism.mk (𝟙 (Arrow.mk 0).left) (𝟙 (Arrow.mk 0).right)).right) ≫
homology.desc 0 0 (_ : 0 ≫ 0 = 0) (Subobject.arrow (kernelSubobject 0))
(_ : imageToKernel 0 0 (_ : 0 ≫ 0 = 0) ≫ Subobject.arrow (kernelSubobject 0) = 0)) ≫
f
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
n : ℕ
X : V
⊢ dTo ((single₀ V).obj X) (n + 1) = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : HasZeroMorphisms V
inst✝⁴ : HasZeroObject V
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
n : ℕ
X : V
⊢ dFrom ((single₀ V).obj X) (n + 1) = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
⊢ Hom.f f 0 ≫ d C 0 1 = 0
[PROOFSTEP]
rw [f.comm 0 1]
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
⊢ d ((single₀ V).obj X) 0 1 ≫ Hom.f f 1 = 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : { f // f ≫ d C 0 1 = 0 }
i j : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) i j
⊢ (fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
i ≫
d C i j =
d ((single₀ V).obj X) i j ≫
(fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
j
[PROOFSTEP]
rcases f with ⟨f, hf⟩
[GOAL]
case mk
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
i j : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) i j
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
i ≫
d C i j =
d ((single₀ V).obj X) i j ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
j
[PROOFSTEP]
rcases j with (_ | _ | j)
[GOAL]
case mk.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
i : ℕ
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
h : ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
i ≫
d C i Nat.zero =
d ((single₀ V).obj X) i Nat.zero ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
Nat.zero
[PROOFSTEP]
cases i
[GOAL]
case mk.succ.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
i : ℕ
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
h : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero)
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
i ≫
d C i (Nat.succ Nat.zero) =
d ((single₀ V).obj X) i (Nat.succ Nat.zero) ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
(Nat.succ Nat.zero)
[PROOFSTEP]
cases i
[GOAL]
case mk.succ.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
i : ℕ
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
j : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j))
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
i ≫
d C i (Nat.succ (Nat.succ j)) =
d ((single₀ V).obj X) i (Nat.succ (Nat.succ j)) ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
(Nat.succ (Nat.succ j))
[PROOFSTEP]
cases i
[GOAL]
case mk.zero.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
Nat.zero ≫
d C Nat.zero Nat.zero =
d ((single₀ V).obj X) Nat.zero Nat.zero ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
Nat.zero
[PROOFSTEP]
simp only [single₀_obj_X_d, zero_comp]
[GOAL]
case mk.zero.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
(Nat.succ n✝) ≫
d C (Nat.succ n✝) Nat.zero =
d ((single₀ V).obj X) (Nat.succ n✝) Nat.zero ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
Nat.zero
[PROOFSTEP]
simp only [single₀_obj_X_d, zero_comp]
[GOAL]
case mk.succ.zero.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
Nat.zero ≫
d C Nat.zero (Nat.succ Nat.zero) =
d ((single₀ V).obj X) Nat.zero (Nat.succ Nat.zero) ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
(Nat.succ Nat.zero)
[PROOFSTEP]
simp only [single₀_obj_X_d, zero_comp]
[GOAL]
case mk.succ.zero.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero)
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
(Nat.succ n✝) ≫
d C (Nat.succ n✝) (Nat.succ Nat.zero) =
d ((single₀ V).obj X) (Nat.succ n✝) (Nat.succ Nat.zero) ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
(Nat.succ Nat.zero)
[PROOFSTEP]
simp only [single₀_obj_X_d, zero_comp]
[GOAL]
case mk.succ.succ.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
j : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
Nat.zero ≫
d C Nat.zero (Nat.succ (Nat.succ j)) =
d ((single₀ V).obj X) Nat.zero (Nat.succ (Nat.succ j)) ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
(Nat.succ (Nat.succ j))
[PROOFSTEP]
simp only [single₀_obj_X_d, zero_comp]
[GOAL]
case mk.succ.succ.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
j n✝ : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j))
⊢ (fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
(Nat.succ n✝) ≫
d C (Nat.succ n✝) (Nat.succ (Nat.succ j)) =
d ((single₀ V).obj X) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫
(fun i =>
match i with
| 0 => ↑{ val := f, property := hf }
| Nat.succ n => 0)
(Nat.succ (Nat.succ j))
[PROOFSTEP]
simp only [single₀_obj_X_d, zero_comp]
[GOAL]
case mk.zero.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ f ≫ d C Nat.zero Nat.zero = 0
[PROOFSTEP]
rw [C.shape, comp_zero]
[GOAL]
case mk.zero.zero.a
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
[PROOFSTEP]
simp
[GOAL]
case mk.succ.zero.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ f ≫ d C Nat.zero (Nat.succ Nat.zero) = 0
[PROOFSTEP]
exact hf
[GOAL]
case mk.succ.succ.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
j : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ f ≫ d C Nat.zero (Nat.succ (Nat.succ j)) = 0
[PROOFSTEP]
rw [C.shape, comp_zero]
[GOAL]
case mk.succ.succ.zero.a
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
j : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
[PROOFSTEP]
simp
[GOAL]
case mk.succ.succ.zero.a
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
hf : f ≫ d C 0 1 = 0
j : ℕ
h : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ ¬1 = Nat.succ (Nat.succ j)
[PROOFSTEP]
exact j.succ_succ_ne_one.symm
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
⊢ (fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
((fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) }) f) =
f
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
i : ℕ
⊢ Hom.f
((fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
((fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) }) f))
i =
Hom.f f i
[PROOFSTEP]
rcases i with ⟨⟩
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
⊢ Hom.f
((fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
((fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) }) f))
Nat.zero =
Hom.f f Nat.zero
[PROOFSTEP]
rfl
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
n✝ : ℕ
⊢ Hom.f
((fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
((fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) }) f))
(Nat.succ n✝) =
Hom.f f (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f : (single₀ V).obj X ⟶ C
n✝ : ℕ
⊢ 0 = Hom.f f (Nat.succ n✝)
[PROOFSTEP]
ext
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
⊢ Function.RightInverse
(fun f =>
Hom.mk fun i =>
match i with
| 0 => ↑f
| Nat.succ n => 0)
fun f => { val := Hom.f f 0, property := (_ : Hom.f f 0 ≫ d C 0 1 = 0) }
[PROOFSTEP]
aesop_cat
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f g : (single₀ V).obj X ⟶ C
h : Hom.f f 0 = Hom.f g 0
⊢ ↑(fromSingle₀Equiv C X) f = ↑(fromSingle₀Equiv C X) g
[PROOFSTEP]
ext
[GOAL]
case a
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
C : CochainComplex V ℕ
X : V
f g : (single₀ V).obj X ⟶ C
h : Hom.f f 0 = Hom.f g 0
⊢ ↑(↑(fromSingle₀Equiv C X) f) = ↑(↑(fromSingle₀Equiv C X) g)
[PROOFSTEP]
exact h
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
i : ℕ
⊢ HomologicalComplex.X ((single₀ V).obj X) i ⟶ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ HomologicalComplex.X ((single₀ V).obj X) Nat.zero ⟶
HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero
[PROOFSTEP]
exact 𝟙 _
[GOAL]
case succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n✝) ⟶
HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n✝)
[PROOFSTEP]
exact 𝟙 _
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
i : ℕ
⊢ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶ HomologicalComplex.X ((single₀ V).obj X) i
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero ⟶
HomologicalComplex.X ((single₀ V).obj X) Nat.zero
[PROOFSTEP]
exact 𝟙 _
[GOAL]
case succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n✝) ⟶
HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n✝)
[PROOFSTEP]
exact 𝟙 _
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i))
0 =
Hom.f (𝟙 ((single₀ V).obj X)) 0
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ ((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i)) =
𝟙 ((single V (ComplexShape.up ℕ) 0).obj X)
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i))
Nat.zero =
Hom.f (𝟙 ((single V (ComplexShape.up ℕ) 0).obj X)) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
⊢ 𝟙 (if 0 = 0 then X else 0) ≫ 𝟙 X = 𝟙 (if 0 = 0 then X else 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i ⟶
HomologicalComplex.X ((single₀ V).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t →
(HomologicalComplex.X ((single₀ V).obj X) i ⟶
HomologicalComplex.X ((single V (ComplexShape.up ℕ) 0).obj X) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (HomologicalComplex.X ((single₀ V).obj X) (Nat.succ n))) (_ : i = i))
(Nat.succ n✝) =
Hom.f (𝟙 ((single V (ComplexShape.up ℕ) 0).obj X)) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ 𝟙 (if Nat.succ n✝ = 0 then X else 0) ≫ 𝟙 0 = 𝟙 (if Nat.succ n✝ = 0 then X else 0)
[PROOFSTEP]
rw [Category.id_comp]
[GOAL]
case h.succ
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
inst✝ : HasZeroObject V
X : V
n✝ : ℕ
⊢ 𝟙 0 = 𝟙 (if Nat.succ n✝ = 0 then X else 0)
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.Homology.Single", "llama_tokens": 43424} |
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
w : ¬ComplexShape.Rel (ComplexShape.down ℕ) i j
⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) (i + 1) (j + 1)
[PROOFSTEP]
simpa
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroObject V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
⊢ d (truncate.obj C) 1 0 ≫ d C 1 0 = 0
[PROOFSTEP]
aesop
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i j : ℕ
h : ¬ComplexShape.Rel (ComplexShape.down ℕ) (i + 1) (j + 1)
⊢ (fun x x_1 =>
match x, x_1 with
| 1, 0 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(i + 1) (j + 1) =
0
[PROOFSTEP]
simp only
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i j : ℕ
h : ¬ComplexShape.Rel (ComplexShape.down ℕ) (i + 1) (j + 1)
⊢ d C i j = 0
[PROOFSTEP]
exact C.shape i j (Nat.succ_ne_succ.1 h)
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i j : ℕ
⊢ d (augment C f w) (i + 1) (j + 1) = d C i j
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
j : ℕ
⊢ d (augment C f w) (Nat.zero + 1) (j + 1) = d C Nat.zero j
[PROOFSTEP]
rfl
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
j n✝ : ℕ
⊢ d (augment C f w) (Nat.succ n✝ + 1) (j + 1) = d C (Nat.succ n✝) j
[PROOFSTEP]
rfl
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) i j →
(fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i j =
d C i j ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) j
[PROOFSTEP]
cases j
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) i Nat.zero →
(fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i Nat.zero =
d C i Nat.zero ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i : ℕ
⊢ 0 + 1 = i → 𝟙 (HomologicalComplex.X C i) ≫ d (augment C f w) (i + 1) (0 + 1) = d C i 0 ≫ 𝟙 (HomologicalComplex.X C 0)
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i n✝ : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) i (Nat.succ n✝) →
(fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i (Nat.succ n✝) =
d C i (Nat.succ n✝) ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i n✝ : ℕ
⊢ Nat.succ n✝ + 1 = i →
𝟙 (HomologicalComplex.X C i) ≫ d (augment C f w) (i + 1) (Nat.succ n✝ + 1) =
d C i (Nat.succ n✝) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ n✝))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
⊢ ((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) =
𝟙 (truncate.obj (augment C f w))
[PROOFSTEP]
ext (_ | i)
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X C i))
Nat.zero =
Hom.f (𝟙 (truncate.obj (augment C f w))) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
⊢ 𝟙 (HomologicalComplex.X C 0) ≫ 𝟙 (HomologicalComplex.X C 0) = 𝟙 (HomologicalComplex.X C 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i : ℕ
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X C i))
(Nat.succ i) =
Hom.f (𝟙 (truncate.obj (augment C f w))) (Nat.succ i)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i : ℕ
⊢ 𝟙 (HomologicalComplex.X C (Nat.succ i)) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ i)) = 𝟙 (HomologicalComplex.X C (i + 1))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
⊢ ((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) =
𝟙 C
[PROOFSTEP]
ext (_ | i)
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i))
Nat.zero =
Hom.f (𝟙 C) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
⊢ 𝟙 (HomologicalComplex.X C 0) ≫ 𝟙 (HomologicalComplex.X C 0) = 𝟙 (HomologicalComplex.X C 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i : ℕ
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i))
(Nat.succ i) =
Hom.f (𝟙 C) (Nat.succ i)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
X : V
f : HomologicalComplex.X C 0 ⟶ X
w : d C 1 0 ≫ f = 0
i : ℕ
⊢ 𝟙 (HomologicalComplex.X C (Nat.succ i)) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ i)) =
𝟙 (HomologicalComplex.X C (Nat.succ i))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ d C (i + 2) 0 = 0
[PROOFSTEP]
rw [C.shape]
[GOAL]
case a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) (i + 2) 0
[PROOFSTEP]
exact i.succ_succ_ne_one.symm
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
⊢ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero ⟶ X C Nat.zero
[PROOFSTEP]
exact 𝟙 _
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
n✝ : ℕ
⊢ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n✝) ⟶ X C (Nat.succ n✝)
[PROOFSTEP]
exact 𝟙 _
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) i j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
i ≫
d C i j =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
j
[PROOFSTEP]
match i with
| 0 | 1 | n + 2 => cases' j with j <;> dsimp [augment, truncate] <;> simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
0 ≫
d C 0 j =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
j
[PROOFSTEP]
cases' j with j
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
0 ≫
d C 0 Nat.zero =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 (Nat.succ j) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
0 ≫
d C 0 (Nat.succ j) =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 (Nat.succ j) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ j)
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ 0 + 1 = 0 → 𝟙 (X C 0) ≫ d C 0 0 = 0 ≫ 𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ Nat.succ j + 1 = 0 → 𝟙 (X C 0) ≫ d C 0 (Nat.succ j) = 0 ≫ 𝟙 (X C (j + 1))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
1 ≫
d C 1 j =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
j
[PROOFSTEP]
cases' j with j
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
1 ≫
d C 1 Nat.zero =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 (Nat.succ j) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
1 ≫
d C 1 (Nat.succ j) =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 (Nat.succ j) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ j)
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ 0 + 1 = 1 → 𝟙 (X C (0 + 1)) ≫ d C 1 0 = d C 1 0 ≫ 𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ Nat.succ j + 1 = 1 → 𝟙 (X C (0 + 1)) ≫ d C 1 (Nat.succ j) = d C (0 + 1) (j + 1) ≫ 𝟙 (X C (j + 1))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j n : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
(n + 2) ≫
d C (n + 2) j =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
j
[PROOFSTEP]
cases' j with j
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i n : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
(n + 2) ≫
d C (n + 2) Nat.zero =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i n j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) (Nat.succ j) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
(n + 2) ≫
d C (n + 2) (Nat.succ j) =
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) (Nat.succ j) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i))
i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ j)
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i n : ℕ
⊢ 0 + 1 = n + 2 →
𝟙 (X C (n + 1 + 1)) ≫ d C (n + 2) 0 =
(match n + 2, 0 with
| 1, 0 => d C 1 0
| Nat.succ i, Nat.succ j => d C (i + 1) (j + 1)
| x, x_1 => 0) ≫
𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i n j : ℕ
⊢ Nat.succ j + 1 = n + 2 →
𝟙 (X C (n + 1 + 1)) ≫ d C (n + 2) (Nat.succ j) =
(match n + 2, Nat.succ j with
| 1, 0 => d C 1 0
| Nat.succ i, Nat.succ j => d C (i + 1) (j + 1)
| x, x_1 => 0) ≫
𝟙 (X C (j + 1))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
⊢ X C Nat.zero ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero
[PROOFSTEP]
exact 𝟙 _
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
n✝ : ℕ
⊢ X C (Nat.succ n✝) ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n✝)
[PROOFSTEP]
exact 𝟙 _
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) i j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
i ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i j =
d C i j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
j
[PROOFSTEP]
match i with
| 0 | 1 | n + 2 => cases' j with j <;> dsimp [augment, truncate] <;> simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
0 ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 j =
d C 0 j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
j
[PROOFSTEP]
cases' j with j
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
0 ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 Nat.zero =
d C 0 Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 0 (Nat.succ j) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
0 ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 0 (Nat.succ j) =
d C 0 (Nat.succ j) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
(Nat.succ j)
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ 0 + 1 = 0 → 𝟙 (X C 0) ≫ 0 = d C 0 0 ≫ 𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ Nat.succ j + 1 = 0 → 𝟙 (X C 0) ≫ 0 = d C 0 (Nat.succ j) ≫ 𝟙 (X C (Nat.succ j))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
1 ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 j =
d C 1 j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
j
[PROOFSTEP]
cases' j with j
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
1 ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 Nat.zero =
d C 1 Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) 1 (Nat.succ j) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
1 ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) 1 (Nat.succ j) =
d C 1 (Nat.succ j) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
(Nat.succ j)
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ 0 + 1 = 1 → 𝟙 (X C (Nat.succ 0)) ≫ d C 1 0 = d C 1 0 ≫ 𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j : ℕ
⊢ Nat.succ j + 1 = 1 → 𝟙 (X C (Nat.succ 0)) ≫ d C (0 + 1) (j + 1) = d C 1 (Nat.succ j) ≫ 𝟙 (X C (Nat.succ j))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i j n : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
(n + 2) ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) j =
d C (n + 2) j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
j
[PROOFSTEP]
cases' j with j
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i n : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
(n + 2) ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) Nat.zero =
d C (n + 2) Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i n j : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) (n + 2) (Nat.succ j) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
(n + 2) ≫
d (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (n + 2) (Nat.succ j) =
d C (n + 2) (Nat.succ j) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i))
i (fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero))
(fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n))) (_ : i = i))
(Nat.succ j)
[PROOFSTEP]
dsimp [augment, truncate]
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i n : ℕ
⊢ 0 + 1 = n + 2 →
(𝟙 (X C (Nat.succ (n + 1))) ≫
match n + 2, 0 with
| 1, 0 => d C 1 0
| Nat.succ i, Nat.succ j => d C (i + 1) (j + 1)
| x, x_1 => 0) =
d C (n + 2) 0 ≫ 𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i n j : ℕ
⊢ Nat.succ j + 1 = n + 2 →
(𝟙 (X C (Nat.succ (n + 1))) ≫
match n + 2, Nat.succ j with
| 1, 0 => d C 1 0
| Nat.succ i, Nat.succ j => d C (i + 1) (j + 1)
| x, x_1 => 0) =
d C (n + 2) (Nat.succ j) ≫ 𝟙 (X C (Nat.succ j))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
⊢ ((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) =
𝟙 (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0))
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
i =
Hom.f (𝟙 (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0))) i
[PROOFSTEP]
cases i
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
Nat.zero =
Hom.f (𝟙 (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0))) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
⊢ 𝟙 (X C 0) ≫ 𝟙 (X C 0) = 𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ n✝) =
Hom.f (𝟙 (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0))) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
n✝ : ℕ
⊢ 𝟙 (X C (n✝ + 1)) ≫ 𝟙 (X C (Nat.succ n✝)) = 𝟙 (X C (n✝ + 1))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
⊢ ((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i)) =
𝟙 C
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
i : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
i =
Hom.f (𝟙 C) i
[PROOFSTEP]
cases i
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero =
Hom.f (𝟙 C) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
⊢ 𝟙 (X C 0) ≫ 𝟙 (X C 0) = 𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 1 0) (_ : d C (1 + 1) (0 + 1) ≫ d C (0 + 1) 0 = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ n✝) =
Hom.f (𝟙 C) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : ChainComplex V ℕ
n✝ : ℕ
⊢ 𝟙 (X C (Nat.succ n✝)) ≫ 𝟙 (X C (n✝ + 1)) = 𝟙 (X C (Nat.succ n✝))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i j : ℕ
w : ¬ComplexShape.Rel (ComplexShape.up ℕ) i j
⊢ (fun i j => d C (i + 1) (j + 1)) i j = 0
[PROOFSTEP]
apply C.shape
[GOAL]
case a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i j : ℕ
w : ¬ComplexShape.Rel (ComplexShape.up ℕ) i j
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) (i + 1) (j + 1)
[PROOFSTEP]
simpa
[GOAL]
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroObject V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ d C 0 1 ≫ d (truncate.obj C) 0 1 = 0
[PROOFSTEP]
aesop
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j : ℕ
s : ¬ComplexShape.Rel (ComplexShape.up ℕ) i j
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i j =
0
[PROOFSTEP]
simp at s
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j : ℕ
s : ¬i + 1 = j
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i j =
0
[PROOFSTEP]
rcases j with (_ | _ | j)
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
s : ¬i + 1 = Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i Nat.zero =
0
[PROOFSTEP]
cases i
[GOAL]
case succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
s : ¬i + 1 = Nat.succ Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i (Nat.succ Nat.zero) =
0
[PROOFSTEP]
cases i
[GOAL]
case succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j : ℕ
s : ¬i + 1 = Nat.succ (Nat.succ j)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i (Nat.succ (Nat.succ j)) =
0
[PROOFSTEP]
cases i
[GOAL]
case zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
s : ¬Nat.zero + 1 = Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero =
0
[PROOFSTEP]
try simp
[GOAL]
case zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
s : ¬Nat.zero + 1 = Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero =
0
[PROOFSTEP]
simp
[GOAL]
case zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
n✝ : ℕ
s : ¬Nat.succ n✝ + 1 = Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) Nat.zero =
0
[PROOFSTEP]
try simp
[GOAL]
case zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
n✝ : ℕ
s : ¬Nat.succ n✝ + 1 = Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) Nat.zero =
0
[PROOFSTEP]
simp
[GOAL]
case succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
s : ¬Nat.zero + 1 = Nat.succ Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
s : ¬Nat.zero + 1 = Nat.succ Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
n✝ : ℕ
s : ¬Nat.succ n✝ + 1 = Nat.succ Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
n✝ : ℕ
s : ¬Nat.succ n✝ + 1 = Nat.succ Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
s : ¬Nat.zero + 1 = Nat.succ (Nat.succ j)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ j)) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
s : ¬Nat.zero + 1 = Nat.succ (Nat.succ j)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ j)) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j n✝ : ℕ
s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ (Nat.succ j)) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j n✝ : ℕ
s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ (Nat.succ j)) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
s : ¬Nat.zero + 1 = Nat.succ Nat.zero
⊢ f = 0
[PROOFSTEP]
simp at s
[GOAL]
case succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j n✝ : ℕ
s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j)
⊢ d C n✝ (Nat.succ j) = 0
[PROOFSTEP]
rw [C.shape]
[GOAL]
case succ.succ.succ.a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j n✝ : ℕ
s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j)
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) n✝ (Nat.succ j)
[PROOFSTEP]
simp only [ComplexShape.up_Rel]
[GOAL]
case succ.succ.succ.a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j n✝ : ℕ
s : ¬Nat.succ n✝ + 1 = Nat.succ (Nat.succ j)
⊢ ¬n✝ + 1 = Nat.succ j
[PROOFSTEP]
contrapose! s
[GOAL]
case succ.succ.succ.a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j n✝ : ℕ
s : n✝ + 1 = Nat.succ j
⊢ Nat.succ n✝ + 1 = Nat.succ (Nat.succ j)
[PROOFSTEP]
rw [← s]
[GOAL]
case succ.succ.succ.a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j n✝ : ℕ
s : n✝ + 1 = Nat.succ j
⊢ Nat.succ n✝ + 1 = Nat.succ (n✝ + 1)
[PROOFSTEP]
rfl
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j k : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i j
hjk : ComplexShape.Rel (ComplexShape.up ℕ) j k
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i j ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
j k =
0
[PROOFSTEP]
rcases k with (_ | _ | k)
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i j
hjk : ComplexShape.Rel (ComplexShape.up ℕ) j Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i j ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
j Nat.zero =
0
[PROOFSTEP]
rcases j with (_ | _ | j)
[GOAL]
case succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i j
hjk : ComplexShape.Rel (ComplexShape.up ℕ) j (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i j ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
j (Nat.succ Nat.zero) =
0
[PROOFSTEP]
rcases j with (_ | _ | j)
[GOAL]
case succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i j
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) j (Nat.succ (Nat.succ k))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i j ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
j (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
rcases j with (_ | _ | j)
[GOAL]
case zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero =
0
[PROOFSTEP]
cases i
[GOAL]
case zero.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero)
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) Nat.zero =
0
[PROOFSTEP]
cases i
[GOAL]
case zero.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j))
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) Nat.zero =
0
[PROOFSTEP]
cases i
[GOAL]
case succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) =
0
[PROOFSTEP]
cases i
[GOAL]
case succ.zero.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero)
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
cases i
[GOAL]
case succ.zero.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j))
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
cases i
[GOAL]
case succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i k : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
cases i
[GOAL]
case succ.succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i k : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero)
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
cases i
[GOAL]
case succ.succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i k j : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j))
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
i (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
cases i
[GOAL]
case zero.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero =
0
[PROOFSTEP]
try simp
[GOAL]
case zero.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero =
0
[PROOFSTEP]
simp
[GOAL]
case zero.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero =
0
[PROOFSTEP]
try simp
[GOAL]
case zero.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero =
0
[PROOFSTEP]
simp
[GOAL]
case zero.succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) Nat.zero =
0
[PROOFSTEP]
try simp
[GOAL]
case zero.succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) Nat.zero =
0
[PROOFSTEP]
simp
[GOAL]
case zero.succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) Nat.zero =
0
[PROOFSTEP]
try simp
[GOAL]
case zero.succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) Nat.zero
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) Nat.zero =
0
[PROOFSTEP]
simp
[GOAL]
case zero.succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) Nat.zero =
0
[PROOFSTEP]
try simp
[GOAL]
case zero.succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) Nat.zero =
0
[PROOFSTEP]
simp
[GOAL]
case zero.succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) Nat.zero =
0
[PROOFSTEP]
try simp
[GOAL]
case zero.succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) Nat.zero
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) Nat.zero =
0
[PROOFSTEP]
simp
[GOAL]
case succ.zero.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.zero.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.zero.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.zero.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.zero.succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero)
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.zero.succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero)
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.zero.succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero)
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.zero.succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ Nat.zero)
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.zero.succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero)
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.zero.succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero)
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.zero.succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero)
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.zero.succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ Nat.zero)
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ Nat.zero) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k))
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k))
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k))
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ k))
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) Nat.zero ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.succ.succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k))
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.succ.succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k))
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.succ.succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k))
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.succ.succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k))
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero)
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ Nat.zero) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ Nat.zero) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.succ.succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k))
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.succ.succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k))
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
Nat.zero (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.succ.succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k))
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
try simp
[GOAL]
case succ.succ.succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k j : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k))
n✝ : ℕ
hij : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j))
⊢ (fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫
(fun x x_1 =>
match x, x_1 with
| 0, 1 => f
| Nat.succ i, Nat.succ j => d C i j
| x, x_2 => 0)
(Nat.succ (Nat.succ j)) (Nat.succ (Nat.succ k)) =
0
[PROOFSTEP]
simp
[GOAL]
case succ.succ.succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
k : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ k))
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
⊢ f ≫ d C 0 (Nat.succ k) = 0
[PROOFSTEP]
cases k
[GOAL]
case succ.succ.succ.zero.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ Nat.zero))
⊢ f ≫ d C 0 (Nat.succ Nat.zero) = 0
[PROOFSTEP]
exact w
[GOAL]
case succ.succ.succ.zero.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
n✝ : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ (Nat.succ n✝)))
⊢ f ≫ d C 0 (Nat.succ (Nat.succ n✝)) = 0
[PROOFSTEP]
rw [C.shape, comp_zero]
[GOAL]
case succ.succ.succ.zero.zero.succ.a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
n✝ : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ (Nat.succ n✝)))
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 (Nat.succ (Nat.succ n✝))
[PROOFSTEP]
simp only [Nat.zero_eq, ComplexShape.up_Rel, zero_add]
[GOAL]
case succ.succ.succ.zero.zero.succ.a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
hij : ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero)
n✝ : ℕ
hjk : ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ Nat.zero) (Nat.succ (Nat.succ (Nat.succ n✝)))
⊢ ¬1 = Nat.succ (Nat.succ n✝)
[PROOFSTEP]
exact (Nat.one_lt_succ_succ _).ne
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i j →
(fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i j =
d C i j ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) j
[PROOFSTEP]
cases j
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero →
(fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i Nat.zero =
d C i Nat.zero ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
⊢ i + 1 = 0 → 𝟙 (HomologicalComplex.X C i) ≫ d C i 0 = d C i 0 ≫ 𝟙 (HomologicalComplex.X C 0)
[PROOFSTEP]
simp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i n✝ : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ n✝) →
(fun i => 𝟙 (HomologicalComplex.X C i)) i ≫ d (truncate.obj (augment C f w)) i (Nat.succ n✝) =
d C i (Nat.succ n✝) ≫ (fun i => 𝟙 (HomologicalComplex.X C i)) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i n✝ : ℕ
⊢ i + 1 = Nat.succ n✝ →
𝟙 (HomologicalComplex.X C i) ≫ d C i (n✝ + 1) = d C i (Nat.succ n✝) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ n✝))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
⊢ ((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) =
𝟙 (truncate.obj (augment C f w))
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X C i))
i =
Hom.f (𝟙 (truncate.obj (augment C f w))) i
[PROOFSTEP]
cases i
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X C i))
Nat.zero =
Hom.f (𝟙 (truncate.obj (augment C f w))) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
⊢ 𝟙 (HomologicalComplex.X C 0) ≫ 𝟙 (HomologicalComplex.X C 0) = 𝟙 (HomologicalComplex.X C 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X C i))
(Nat.succ n✝) =
Hom.f (𝟙 (truncate.obj (augment C f w))) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
n✝ : ℕ
⊢ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) =
𝟙 (HomologicalComplex.X C (n✝ + 1))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
⊢ ((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i)) =
𝟙 C
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
i : ℕ
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i))
i =
Hom.f (𝟙 C) i
[PROOFSTEP]
cases i
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i))
Nat.zero =
Hom.f (𝟙 C) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
⊢ 𝟙 (HomologicalComplex.X C 0) ≫ 𝟙 (HomologicalComplex.X C 0) = 𝟙 (HomologicalComplex.X C 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i => 𝟙 (HomologicalComplex.X C i)) ≫
Hom.mk fun i => 𝟙 (HomologicalComplex.X (truncate.obj (augment C f w)) i))
(Nat.succ n✝) =
Hom.f (𝟙 C) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
X : V
f : X ⟶ HomologicalComplex.X C 0
w : f ≫ d C 0 1 = 0
n✝ : ℕ
⊢ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) ≫ 𝟙 (HomologicalComplex.X C (Nat.succ n✝)) =
𝟙 (HomologicalComplex.X C (Nat.succ n✝))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ d C 0 (i + 2) = 0
[PROOFSTEP]
rw [C.shape]
[GOAL]
case a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 (i + 2)
[PROOFSTEP]
simp only [ComplexShape.up_Rel, zero_add]
[GOAL]
case a
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ ¬1 = i + 2
[PROOFSTEP]
exact (Nat.one_lt_succ_succ _).ne
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero ⟶ X C Nat.zero
[PROOFSTEP]
exact 𝟙 _
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) ⟶ X C (Nat.succ n✝)
[PROOFSTEP]
exact 𝟙 _
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
i ≫
d C i j =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
j
[PROOFSTEP]
rcases j with (_ | _ | j)
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
i ≫
d C i Nat.zero =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero
[PROOFSTEP]
cases i
[GOAL]
case succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
i ≫
d C i (Nat.succ Nat.zero) =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i (Nat.succ Nat.zero) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ Nat.zero)
[PROOFSTEP]
cases i
[GOAL]
case succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j)) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
i ≫
d C i (Nat.succ (Nat.succ j)) =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i (Nat.succ (Nat.succ j)) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ (Nat.succ j))
[PROOFSTEP]
cases i
[GOAL]
case zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero ≫
d C Nat.zero Nat.zero =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ 0 + 1 = 0 →
𝟙 (X C 0) ≫ d C 0 0 = d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) 0 0 ≫ 𝟙 (X C 0)
[PROOFSTEP]
aesop
[GOAL]
case zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ n✝) ≫
d C (Nat.succ n✝) Nat.zero =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ Nat.succ n✝ + 1 = 0 →
𝟙 (X C (n✝ + 1)) ≫ d C (Nat.succ n✝) 0 =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) 0 ≫ 𝟙 (X C 0)
[PROOFSTEP]
aesop
[GOAL]
case succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero ≫
d C Nat.zero (Nat.succ Nat.zero) =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero (Nat.succ Nat.zero) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ Nat.zero)
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ 0 + 1 = Nat.succ 0 → 𝟙 (X C 0) ≫ d C 0 (Nat.succ 0) = d C 0 1 ≫ 𝟙 (X C (0 + 1))
[PROOFSTEP]
aesop
[GOAL]
case succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ Nat.zero) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ n✝) ≫
d C (Nat.succ n✝) (Nat.succ Nat.zero) =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) (Nat.succ Nat.zero) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ Nat.zero)
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ Nat.succ n✝ + 1 = Nat.succ 0 →
𝟙 (X C (n✝ + 1)) ≫ d C (Nat.succ n✝) (Nat.succ 0) = d C (n✝ + 1) (0 + 1) ≫ 𝟙 (X C (0 + 1))
[PROOFSTEP]
aesop
[GOAL]
case succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
j : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero ≫
d C Nat.zero (Nat.succ (Nat.succ j)) =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero (Nat.succ (Nat.succ j)) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ (Nat.succ j))
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
j : ℕ
⊢ 0 + 1 = Nat.succ (Nat.succ j) →
𝟙 (X C 0) ≫ d C 0 (Nat.succ (Nat.succ j)) =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) 0 (Nat.succ (Nat.succ j)) ≫
𝟙 (X C (Nat.succ j + 1))
[PROOFSTEP]
aesop
[GOAL]
case succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
j n✝ : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ n✝) (Nat.succ (Nat.succ j)) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ n✝) ≫
d C (Nat.succ n✝) (Nat.succ (Nat.succ j)) =
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝) (Nat.succ (Nat.succ j)) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ (Nat.succ j))
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
j n✝ : ℕ
⊢ Nat.succ n✝ + 1 = Nat.succ (Nat.succ j) →
𝟙 (X C (n✝ + 1)) ≫ d C (Nat.succ n✝) (Nat.succ (Nat.succ j)) = d C (n✝ + 1) (j + 1 + 1) ≫ 𝟙 (X C (Nat.succ j + 1))
[PROOFSTEP]
aesop
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i
[PROOFSTEP]
cases i
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ X C Nat.zero ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero
[PROOFSTEP]
exact 𝟙 _
[GOAL]
case succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ X C (Nat.succ n✝) ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n✝)
[PROOFSTEP]
exact 𝟙 _
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i j →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
i ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i j =
d C i j ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
j
[PROOFSTEP]
rcases j with (_ | _ | j)
[GOAL]
case zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
i ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i Nat.zero =
d C i Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
Nat.zero
[PROOFSTEP]
cases' i with i
[GOAL]
case succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ Nat.zero) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
i ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i (Nat.succ Nat.zero) =
d C i (Nat.succ Nat.zero) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ Nat.zero)
[PROOFSTEP]
cases' i with i
[GOAL]
case succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i j : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) i (Nat.succ (Nat.succ j)) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
i ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i (Nat.succ (Nat.succ j)) =
d C i (Nat.succ (Nat.succ j)) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ (Nat.succ j))
[PROOFSTEP]
cases' i with i
[GOAL]
case zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
Nat.zero ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero Nat.zero =
d C Nat.zero Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ 0 + 1 = 0 →
𝟙 (X C 0) ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) 0 0 = d C 0 0 ≫ 𝟙 (X C 0)
[PROOFSTEP]
aesop
[GOAL]
case zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ i) Nat.zero →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ i) ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ i) Nat.zero =
d C (Nat.succ i) Nat.zero ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
Nat.zero
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ Nat.succ i + 1 = 0 →
𝟙 (X C (Nat.succ i)) ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ i) 0 =
d C (Nat.succ i) 0 ≫ 𝟙 (X C 0)
[PROOFSTEP]
aesop
[GOAL]
case succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ Nat.zero) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
Nat.zero ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero (Nat.succ Nat.zero) =
d C Nat.zero (Nat.succ Nat.zero) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ Nat.zero)
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case succ.zero.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ 0 + 1 = Nat.succ 0 → 𝟙 (X C 0) ≫ d C 0 1 = d C 0 (Nat.succ 0) ≫ 𝟙 (X C (Nat.succ 0))
[PROOFSTEP]
aesop
[GOAL]
case succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ i) (Nat.succ Nat.zero) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ i) ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ i) (Nat.succ Nat.zero) =
d C (Nat.succ i) (Nat.succ Nat.zero) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ Nat.zero)
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case succ.zero.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ Nat.succ i + 1 = Nat.succ 0 →
𝟙 (X C (Nat.succ i)) ≫ d C (i + 1) (0 + 1) = d C (Nat.succ i) (Nat.succ 0) ≫ 𝟙 (X C (Nat.succ 0))
[PROOFSTEP]
aesop
[GOAL]
case succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
j : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) Nat.zero (Nat.succ (Nat.succ j)) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
Nat.zero ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero (Nat.succ (Nat.succ j)) =
d C Nat.zero (Nat.succ (Nat.succ j)) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ (Nat.succ j))
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case succ.succ.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
j : ℕ
⊢ 0 + 1 = Nat.succ (Nat.succ j) →
𝟙 (X C 0) ≫ d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) 0 (Nat.succ (Nat.succ j)) =
d C 0 (Nat.succ (Nat.succ j)) ≫ 𝟙 (X C (Nat.succ (Nat.succ j)))
[PROOFSTEP]
aesop
[GOAL]
case succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
j i : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) (Nat.succ i) (Nat.succ (Nat.succ j)) →
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ i) ≫
d (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ i) (Nat.succ (Nat.succ j)) =
d C (Nat.succ i) (Nat.succ (Nat.succ j)) ≫
(fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ (Nat.succ j))
[PROOFSTEP]
dsimp
-- Porting note: simp can't handle this now but aesop does
[GOAL]
case succ.succ.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
j i : ℕ
⊢ Nat.succ i + 1 = Nat.succ (Nat.succ j) →
𝟙 (X C (Nat.succ i)) ≫ d C (i + 1) (j + 1 + 1) =
d C (Nat.succ i) (Nat.succ (Nat.succ j)) ≫ 𝟙 (X C (Nat.succ (Nat.succ j)))
[PROOFSTEP]
aesop
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ ((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) =
𝟙 (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0))
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
i =
Hom.f (𝟙 (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0))) i
[PROOFSTEP]
cases i
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
Nat.zero =
Hom.f (𝟙 (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0))) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ 𝟙 (X C 0) ≫ 𝟙 (X C 0) = 𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i))
(Nat.succ n✝) =
Hom.f (𝟙 (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0))) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ 𝟙 (X C (n✝ + 1)) ≫ 𝟙 (X C (Nat.succ n✝)) = 𝟙 (X C (n✝ + 1))
[PROOFSTEP]
simp
[GOAL]
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ ((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸ 𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i)) =
𝟙 C
[PROOFSTEP]
ext i
[GOAL]
case h
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
i : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
i =
Hom.f (𝟙 C) i
[PROOFSTEP]
cases i
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
Nat.zero =
Hom.f (𝟙 C) Nat.zero
[PROOFSTEP]
dsimp
[GOAL]
case h.zero
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
⊢ 𝟙 (X C 0) ≫ 𝟙 (X C 0) = 𝟙 (X C 0)
[PROOFSTEP]
simp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X C i ⟶ X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i)) i
(fun h => (_ : Nat.zero = i) ▸ 𝟙 (X C Nat.zero)) (fun n h => (_ : Nat.succ n = i) ▸ 𝟙 (X C (Nat.succ n)))
(_ : i = i)) ≫
Hom.mk fun i =>
Nat.casesOn (motive := fun t =>
i = t → (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) i ⟶ X C i)) i
(fun h =>
(_ : Nat.zero = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) Nat.zero))
(fun n h =>
(_ : Nat.succ n = i) ▸
𝟙 (X (augment (truncate.obj C) (d C 0 1) (_ : d C 0 1 ≫ d C 1 (1 + 1) = 0)) (Nat.succ n)))
(_ : i = i))
(Nat.succ n✝) =
Hom.f (𝟙 C) (Nat.succ n✝)
[PROOFSTEP]
dsimp
[GOAL]
case h.succ
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
C : CochainComplex V ℕ
n✝ : ℕ
⊢ 𝟙 (X C (Nat.succ n✝)) ≫ 𝟙 (X C (n✝ + 1)) = 𝟙 (X C (Nat.succ n✝))
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Algebra.Homology.Augment", "llama_tokens": 68110} |
[GOAL]
I : Type u
R : Type u_1
f✝ : I → Type v
x y : (i : I) → f✝ i
i : I
r : CommSemiring R
s : (i : I) → Semiring (f✝ i)
inst✝ : (i : I) → Algebra R (f✝ i)
src✝ : R →+* (i : I) → f✝ i := Pi.ringHom fun i => algebraMap R (f✝ i)
a : R
f : (fun x => (i : I) → f✝ i) a
⊢ ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
a *
f =
f *
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
a
[PROOFSTEP]
ext
[GOAL]
case h
I : Type u
R : Type u_1
f✝ : I → Type v
x y : (i : I) → f✝ i
i : I
r : CommSemiring R
s : (i : I) → Semiring (f✝ i)
inst✝ : (i : I) → Algebra R (f✝ i)
src✝ : R →+* (i : I) → f✝ i := Pi.ringHom fun i => algebraMap R (f✝ i)
a : R
f : (fun x => (i : I) → f✝ i) a
x✝ : I
⊢ (↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
a *
f)
x✝ =
(f *
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
a)
x✝
[PROOFSTEP]
simp [Algebra.commutes]
[GOAL]
I : Type u
R : Type u_1
f✝ : I → Type v
x y : (i : I) → f✝ i
i : I
r : CommSemiring R
s : (i : I) → Semiring (f✝ i)
inst✝ : (i : I) → Algebra R (f✝ i)
src✝ : R →+* (i : I) → f✝ i := Pi.ringHom fun i => algebraMap R (f✝ i)
a : R
f : (fun x => (i : I) → f✝ i) a
⊢ a • f =
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
a *
f
[PROOFSTEP]
ext
[GOAL]
case h
I : Type u
R : Type u_1
f✝ : I → Type v
x y : (i : I) → f✝ i
i : I
r : CommSemiring R
s : (i : I) → Semiring (f✝ i)
inst✝ : (i : I) → Algebra R (f✝ i)
src✝ : R →+* (i : I) → f✝ i := Pi.ringHom fun i => algebraMap R (f✝ i)
a : R
f : (fun x => (i : I) → f✝ i) a
x✝ : I
⊢ (a • f) x✝ =
(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
a *
f)
x✝
[PROOFSTEP]
simp [Algebra.smul_def]
[GOAL]
R : Type u
A : Type v
B : Type w
I✝ : Type u_1
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Semiring B
inst✝¹ : Algebra R A
inst✝ : Algebra R B
f : A →ₐ[R] B
I : Type u_2
src✝ : (I → A) →+* I → B := RingHom.compLeft (↑f) I
c : R
⊢ OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := fun h => ↑f ∘ h, map_one' := (_ : OneHom.toFun (↑↑src✝) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : I → A),
OneHom.toFun (↑↑src✝) (x * y) = OneHom.toFun (↑↑src✝) x * OneHom.toFun (↑↑src✝) y) },
map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : I → A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap R (I → A)) c) =
↑(algebraMap R (I → B)) c
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
A : Type v
B : Type w
I✝ : Type u_1
inst✝⁴ : CommSemiring R
inst✝³ : Semiring A
inst✝² : Semiring B
inst✝¹ : Algebra R A
inst✝ : Algebra R B
f : A →ₐ[R] B
I : Type u_2
src✝ : (I → A) →+* I → B := RingHom.compLeft (↑f) I
c : R
x✝ : I
⊢ OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := fun h => ↑f ∘ h, map_one' := (_ : OneHom.toFun (↑↑src✝) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : I → A),
OneHom.toFun (↑↑src✝) (x * y) = OneHom.toFun (↑↑src✝) x * OneHom.toFun (↑↑src✝) y) },
map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : I → A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap R (I → A)) c) x✝ =
↑(algebraMap R (I → B)) c x✝
[PROOFSTEP]
exact f.commutes' c
[GOAL]
R : Type u_1
ι : Type u_2
A₁ : ι → Type u_3
A₂ : ι → Type u_4
inst✝⁴ : CommSemiring R
inst✝³ : (i : ι) → Semiring (A₁ i)
inst✝² : (i : ι) → Semiring (A₂ i)
inst✝¹ : (i : ι) → Algebra R (A₁ i)
inst✝ : (i : ι) → Algebra R (A₂ i)
e : (i : ι) → A₁ i ≃ₐ[R] A₂ i
src✝ : ((i : ι) → A₁ i) ≃+* ((i : ι) → A₂ i) := RingEquiv.piCongrRight fun i => toRingEquiv (e i)
r : R
⊢ Equiv.toFun
{ toFun := fun x j => ↑(e j) (x j), invFun := fun x j => ↑(symm (e j)) (x j),
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(↑(algebraMap R ((i : ι) → A₁ i)) r) =
↑(algebraMap R ((i : ι) → A₂ i)) r
[PROOFSTEP]
ext i
[GOAL]
case h
R : Type u_1
ι : Type u_2
A₁ : ι → Type u_3
A₂ : ι → Type u_4
inst✝⁴ : CommSemiring R
inst✝³ : (i : ι) → Semiring (A₁ i)
inst✝² : (i : ι) → Semiring (A₂ i)
inst✝¹ : (i : ι) → Algebra R (A₁ i)
inst✝ : (i : ι) → Algebra R (A₂ i)
e : (i : ι) → A₁ i ≃ₐ[R] A₂ i
src✝ : ((i : ι) → A₁ i) ≃+* ((i : ι) → A₂ i) := RingEquiv.piCongrRight fun i => toRingEquiv (e i)
r : R
i : ι
⊢ Equiv.toFun
{ toFun := fun x j => ↑(e j) (x j), invFun := fun x j => ↑(symm (e j)) (x j),
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(↑(algebraMap R ((i : ι) → A₁ i)) r) i =
↑(algebraMap R ((i : ι) → A₂ i)) r i
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Algebra.Algebra.Pi", "llama_tokens": 3071} |
[GOAL]
R✝ : Type u_1
S : Type u_2
A✝ : Type u_3
B : Type u_4
inst✝¹² : CommSemiring R✝
inst✝¹¹ : CommSemiring S
inst✝¹⁰ : Semiring A✝
inst✝⁹ : Semiring B
inst✝⁸ : Algebra R✝ S
inst✝⁷ : Algebra R✝ A✝
inst✝⁶ : Algebra R✝ B
inst✝⁵ : Algebra S A✝
inst✝⁴ : SMulCommClass R✝ S A✝
inst✝³ : IsScalarTower R✝ S A✝
R : Type ?u.2035
A : Type ?u.2038
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
r : R
x : A
⊢ ↑(RingHom.toOpposite (algebraMap R A)
(_ :
∀ (x y : R),
↑(algebraMap R ((fun x => A) x)) x * ↑(algebraMap R A) y =
↑(algebraMap R A) y * ↑(algebraMap R ((fun x => A) x)) x))
r *
op x =
op x *
↑(RingHom.toOpposite (algebraMap R A)
(_ :
∀ (x y : R),
↑(algebraMap R ((fun x => A) x)) x * ↑(algebraMap R A) y =
↑(algebraMap R A) y * ↑(algebraMap R ((fun x => A) x)) x))
r
[PROOFSTEP]
simp only [RingHom.toOpposite_apply, Function.comp_apply, ← op_mul, Algebra.commutes]
[GOAL]
R✝ : Type u_1
S : Type u_2
A✝ : Type u_3
B : Type u_4
inst✝¹² : CommSemiring R✝
inst✝¹¹ : CommSemiring S
inst✝¹⁰ : Semiring A✝
inst✝⁹ : Semiring B
inst✝⁸ : Algebra R✝ S
inst✝⁷ : Algebra R✝ A✝
inst✝⁶ : Algebra R✝ B
inst✝⁵ : Algebra S A✝
inst✝⁴ : SMulCommClass R✝ S A✝
inst✝³ : IsScalarTower R✝ S A✝
R : Type ?u.2035
A : Type ?u.2038
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
c : R
x : (fun x => Aᵐᵒᵖ) c
⊢ unop (c • x) =
unop
(↑(RingHom.toOpposite (algebraMap R A)
(_ :
∀ (x y : R),
↑(algebraMap R ((fun x => A) x)) x * ↑(algebraMap R A) y =
↑(algebraMap R A) y * ↑(algebraMap R ((fun x => A) x)) x))
c *
x)
[PROOFSTEP]
simp only [unop_smul, RingHom.toOpposite_apply, Function.comp_apply, unop_mul, op_mul, Algebra.smul_def,
Algebra.commutes, op_unop, unop_op]
| {"mathlib_filename": "Mathlib.Algebra.Algebra.Opposite", "llama_tokens": 930} |
[GOAL]
R : Type u
inst✝¹ : CommRing R
D : Type v
inst✝ : SmallCategory D
I : D ⥤ Ideal R
X✝ Y✝ Z✝ : D
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ { obj := fun t => ModuleCat.of R (R ⧸ I.obj t),
map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map
(f ≫ g) =
{ obj := fun t => ModuleCat.of R (R ⧸ I.obj t),
map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map
f ≫
{ obj := fun t => ModuleCat.of R (R ⧸ I.obj t),
map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map
g
[PROOFSTEP]
apply Submodule.linearMap_qext
[GOAL]
case h
R : Type u
inst✝¹ : CommRing R
D : Type v
inst✝ : SmallCategory D
I : D ⥤ Ideal R
X✝ Y✝ Z✝ : D
f : X✝ ⟶ Y✝
g : Y✝ ⟶ Z✝
⊢ LinearMap.comp
({ obj := fun t => ModuleCat.of R (R ⧸ I.obj t),
map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map
(f ≫ g))
(Submodule.mkQ (I.obj X✝)) =
LinearMap.comp
({ obj := fun t => ModuleCat.of R (R ⧸ I.obj t),
map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map
f ≫
{ obj := fun t => ModuleCat.of R (R ⧸ I.obj t),
map := fun {X Y} w => Submodule.mapQ (I.obj X) (I.obj Y) LinearMap.id (_ : I.obj X ≤ I.obj Y) }.map
g)
(Submodule.mkQ (I.obj X✝))
[PROOFSTEP]
rfl
[GOAL]
R : Type u
inst✝ : CommRing R
J : Ideal R
k : ℕᵒᵖ
⊢ J ≤ Ideal.radical ((idealPowersDiagram J).obj k)
[PROOFSTEP]
change _ ≤ (J ^ unop k).radical
[GOAL]
R : Type u
inst✝ : CommRing R
J : Ideal R
k : ℕᵒᵖ
⊢ J ≤ Ideal.radical (J ^ k.unop)
[PROOFSTEP]
cases' unop k with n
[GOAL]
case zero
R : Type u
inst✝ : CommRing R
J : Ideal R
k : ℕᵒᵖ
⊢ J ≤ Ideal.radical (J ^ Nat.zero)
[PROOFSTEP]
simp [Ideal.radical_top, pow_zero, Ideal.one_eq_top, le_top, Nat.zero_eq]
[GOAL]
case succ
R : Type u
inst✝ : CommRing R
J : Ideal R
k : ℕᵒᵖ
n : ℕ
⊢ J ≤ Ideal.radical (J ^ Nat.succ n)
[PROOFSTEP]
simp only [J.radical_pow _ n.succ_pos, Ideal.le_radical]
[GOAL]
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hIJ : I ≤ Ideal.radical J
hJ : Ideal.FG (Ideal.radical J)
⊢ ∃ k, I ^ k ≤ J
[PROOFSTEP]
obtain ⟨k, hk⟩ := J.exists_radical_pow_le_of_fg hJ
[GOAL]
case intro
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hIJ : I ≤ Ideal.radical J
hJ : Ideal.FG (Ideal.radical J)
k : ℕ
hk : Ideal.radical J ^ k ≤ J
⊢ ∃ k, I ^ k ≤ J
[PROOFSTEP]
use k
[GOAL]
case h
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hIJ : I ≤ Ideal.radical J
hJ : Ideal.FG (Ideal.radical J)
k : ℕ
hk : Ideal.radical J ^ k ≤ J
⊢ I ^ k ≤ J
[PROOFSTEP]
calc
I ^ k ≤ J.radical ^ k := Ideal.pow_mono hIJ _
_ ≤ J := hk
[GOAL]
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
⊢ IsConnected (CostructuredArrow (idealPowersToSelfLERadical J) J')
[PROOFSTEP]
apply (config := { allowSynthFailures := true }) zigzag_isConnected
[GOAL]
case inst
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
⊢ Nonempty (CostructuredArrow (idealPowersToSelfLERadical J) J')
[PROOFSTEP]
obtain ⟨k, hk⟩ := Ideal.exists_pow_le_of_le_radical_of_fG J'.2 (isNoetherian_def.mp hR _)
[GOAL]
case inst.intro
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
k : ℕ
hk : J ^ k ≤ J'.obj
⊢ Nonempty (CostructuredArrow (idealPowersToSelfLERadical J) J')
[PROOFSTEP]
exact ⟨CostructuredArrow.mk (⟨⟨hk⟩⟩ : (idealPowersToSelfLERadical J).obj (op k) ⟶ J')⟩
[GOAL]
case h
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
⊢ ∀ (j₁ j₂ : CostructuredArrow (idealPowersToSelfLERadical J) J'), Zigzag j₁ j₂
[PROOFSTEP]
intro j1 j2
[GOAL]
case h
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J'
⊢ Zigzag j1 j2
[PROOFSTEP]
apply Relation.ReflTransGen.single
[GOAL]
case h.hab
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J'
⊢ Zag j1 j2
[PROOFSTEP]
cases' le_total (unop j1.left) (unop j2.left) with h h
[GOAL]
case h.hab.inl
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J'
h : j1.left.unop ≤ j2.left.unop
⊢ Zag j1 j2
case h.hab.inr
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J'
h : j2.left.unop ≤ j1.left.unop
⊢ Zag j1 j2
[PROOFSTEP]
right
[GOAL]
case h.hab.inl.h
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J'
h : j1.left.unop ≤ j2.left.unop
⊢ Nonempty (j2 ⟶ j1)
case h.hab.inr
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J'
h : j2.left.unop ≤ j1.left.unop
⊢ Zag j1 j2
[PROOFSTEP]
exact ⟨CostructuredArrow.homMk (homOfLE h).op (AsTrue.get trivial)⟩
[GOAL]
case h.hab.inr
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J'
h : j2.left.unop ≤ j1.left.unop
⊢ Zag j1 j2
[PROOFSTEP]
left
[GOAL]
case h.hab.inr.h
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hR : IsNoetherian R R
J' : SelfLERadical J
j1 j2 : CostructuredArrow (idealPowersToSelfLERadical J) J'
h : j2.left.unop ≤ j1.left.unop
⊢ Nonempty (j1 ⟶ j2)
[PROOFSTEP]
exact ⟨CostructuredArrow.homMk (homOfLE h).op (AsTrue.get trivial)⟩
[GOAL]
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hJK : Ideal.radical J = Ideal.radical K
L : Ideal R
hL : J ≤ Ideal.radical L
⊢ K ≤ Ideal.radical L
[PROOFSTEP]
rw [← Ideal.radical_le_radical_iff] at hL ⊢
[GOAL]
R : Type u
inst✝ : CommRing R
I J K : Ideal R
hJK : Ideal.radical J = Ideal.radical K
L : Ideal R
hL : Ideal.radical J ≤ Ideal.radical L
⊢ Ideal.radical K ≤ Ideal.radical L
[PROOFSTEP]
exact hJK.symm.trans_le hL
| {"mathlib_filename": "Mathlib.Algebra.Homology.LocalCohomology", "llama_tokens": 3075} |
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.24757, u_1} J
inst✝¹ : Category.{?u.24761, u_2} C
inst✝ : HasZeroMorphisms C
F : J ⥤ ShortComplex C
⊢ whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.24757, u_1} J
inst✝¹ : Category.{?u.24761, u_2} C
inst✝ : HasZeroMorphisms C
X✝ Y✝ : J ⥤ ShortComplex C
φ : X✝ ⟶ Y✝
⊢ whiskerRight φ π₁ ≫
((fun F => mk (whiskerLeft F π₁Toπ₂) (whiskerLeft F π₂Toπ₃) (_ : whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0))
Y✝).f =
((fun F => mk (whiskerLeft F π₁Toπ₂) (whiskerLeft F π₂Toπ₃) (_ : whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0))
X✝).f ≫
whiskerRight φ π₂
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.24757, u_1} J
inst✝¹ : Category.{?u.24761, u_2} C
inst✝ : HasZeroMorphisms C
X✝ Y✝ : J ⥤ ShortComplex C
φ : X✝ ⟶ Y✝
⊢ whiskerRight φ π₂ ≫
((fun F => mk (whiskerLeft F π₁Toπ₂) (whiskerLeft F π₂Toπ₃) (_ : whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0))
Y✝).g =
((fun F => mk (whiskerLeft F π₁Toπ₂) (whiskerLeft F π₂Toπ₃) (_ : whiskerLeft F π₁Toπ₂ ≫ whiskerLeft F π₂Toπ₃ = 0))
X✝).g ≫
whiskerRight φ π₃
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.53514, u_1} J
inst✝¹ : Category.{?u.53518, u_2} C
inst✝ : HasZeroMorphisms C
x✝ : ShortComplex (J ⥤ C)
⊢ ∀ {X Y : J} (f : X ⟶ Y),
((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₁.map f ≫
((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₁.obj x)) Y).hom =
((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₁.obj x)) X).hom ≫
((functor J C ⋙ inverse J C).obj x✝).X₁.map f
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.53514, u_1} J
inst✝¹ : Category.{?u.53518, u_2} C
inst✝ : HasZeroMorphisms C
x✝ : ShortComplex (J ⥤ C)
⊢ ∀ {X Y : J} (f : X ⟶ Y),
((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.map f ≫
((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.obj x)) Y).hom =
((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.obj x)) X).hom ≫
((functor J C ⋙ inverse J C).obj x✝).X₂.map f
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.53514, u_1} J
inst✝¹ : Category.{?u.53518, u_2} C
inst✝ : HasZeroMorphisms C
x✝ : ShortComplex (J ⥤ C)
⊢ ∀ {X Y : J} (f : X ⟶ Y),
((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₃.map f ≫
((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₃.obj x)) Y).hom =
((fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₃.obj x)) X).hom ≫
((functor J C ⋙ inverse J C).obj x✝).X₃.map f
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.53514, u_1} J
inst✝¹ : Category.{?u.53518, u_2} C
inst✝ : HasZeroMorphisms C
x✝ : ShortComplex (J ⥤ C)
⊢ (NatIso.ofComponents fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₁.obj x)).hom ≫
((functor J C ⋙ inverse J C).obj x✝).f =
((𝟭 (ShortComplex (J ⥤ C))).obj x✝).f ≫
(NatIso.ofComponents fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.obj x)).hom
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.53514, u_1} J
inst✝¹ : Category.{?u.53518, u_2} C
inst✝ : HasZeroMorphisms C
x✝ : ShortComplex (J ⥤ C)
⊢ (NatIso.ofComponents fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₂.obj x)).hom ≫
((functor J C ⋙ inverse J C).obj x✝).g =
((𝟭 (ShortComplex (J ⥤ C))).obj x✝).g ≫
(NatIso.ofComponents fun x => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x✝).X₃.obj x)).hom
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.53514, u_1} J
inst✝¹ : Category.{?u.53518, u_2} C
inst✝ : HasZeroMorphisms C
⊢ ∀ {X Y : ShortComplex (J ⥤ C)} (f : X ⟶ Y),
(𝟭 (ShortComplex (J ⥤ C))).map f ≫
((fun x =>
isoMk (NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₁.obj x_1))
(NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₂.obj x_1))
(NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₃.obj x_1)))
Y).hom =
((fun x =>
isoMk (NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₁.obj x_1))
(NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₂.obj x_1))
(NatIso.ofComponents fun x_1 => Iso.refl (((𝟭 (ShortComplex (J ⥤ C))).obj x).X₃.obj x_1)))
X).hom ≫
(functor J C ⋙ inverse J C).map f
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.111338, u_1} J
inst✝¹ : Category.{?u.111342, u_2} C
inst✝ : HasZeroMorphisms C
x✝¹ : J ⥤ ShortComplex C
x✝ : J
⊢ (Iso.refl (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).X₁).hom ≫ (((𝟭 (J ⥤ ShortComplex C)).obj x✝¹).obj x✝).f =
(((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).f ≫ (Iso.refl (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).X₂).hom
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.111338, u_1} J
inst✝¹ : Category.{?u.111342, u_2} C
inst✝ : HasZeroMorphisms C
x✝¹ : J ⥤ ShortComplex C
x✝ : J
⊢ (Iso.refl (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).X₂).hom ≫ (((𝟭 (J ⥤ ShortComplex C)).obj x✝¹).obj x✝).g =
(((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).g ≫ (Iso.refl (((inverse J C ⋙ functor J C).obj x✝¹).obj x✝).X₃).hom
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.111338, u_1} J
inst✝¹ : Category.{?u.111342, u_2} C
inst✝ : HasZeroMorphisms C
x✝ : J ⥤ ShortComplex C
⊢ ∀ {X Y : J} (f : X ⟶ Y),
((inverse J C ⋙ functor J C).obj x✝).map f ≫
((fun x =>
isoMk (Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₁)
(Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₂)
(Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₃))
Y).hom =
((fun x =>
isoMk (Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₁)
(Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₂)
(Iso.refl (((inverse J C ⋙ functor J C).obj x✝).obj x).X₃))
X).hom ≫
((𝟭 (J ⥤ ShortComplex C)).obj x✝).map f
[PROOFSTEP]
aesop_cat
[GOAL]
J : Type u_1
C : Type u_2
inst✝² : Category.{?u.111338, u_1} J
inst✝¹ : Category.{?u.111342, u_2} C
inst✝ : HasZeroMorphisms C
⊢ ∀ {X Y : J ⥤ ShortComplex C} (f : X ⟶ Y),
(inverse J C ⋙ functor J C).map f ≫
((fun x =>
NatIso.ofComponents fun x_1 =>
isoMk (Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₁)
(Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₂)
(Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₃))
Y).hom =
((fun x =>
NatIso.ofComponents fun x_1 =>
isoMk (Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₁)
(Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₂)
(Iso.refl (((inverse J C ⋙ functor J C).obj x).obj x_1).X₃))
X).hom ≫
(𝟭 (J ⥤ ShortComplex C)).map f
[PROOFSTEP]
aesop_cat
| {"mathlib_filename": "Mathlib.Algebra.Homology.ShortComplex.FunctorEquivalence", "llama_tokens": 3857} |
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
f : (i j : ι) → X C i ⟶ X D j
i i' : ι
w : ComplexShape.Rel c i i'
⊢ ↑(dNext i) f = d C i i' ≫ f i' i
[PROOFSTEP]
obtain rfl := c.next_eq' w
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
f : (i j : ι) → X C i ⟶ X D j
i : ι
w : ComplexShape.Rel c i (ComplexShape.next c i)
⊢ ↑(dNext i) f = d C i (ComplexShape.next c i) ≫ f (ComplexShape.next c i) i
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
f : (i j : ι) → X C i ⟶ X D j
j j' : ι
w : ComplexShape.Rel c j' j
⊢ ↑(prevD j) f = f j j' ≫ d D j' j
[PROOFSTEP]
obtain rfl := c.prev_eq' w
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
f : (i j : ι) → X C i ⟶ X D j
j : ι
w : ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ ↑(prevD j) f = f j (ComplexShape.prev c j) ≫ d D (ComplexShape.prev c j) j
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
f : (i j : ι) → X C i ⟶ X D j
g : D ⟶ E
j : ι
⊢ (↑(prevD j) fun i j => f i j ≫ Hom.f g j) = ↑(prevD j) f ≫ Hom.f g j
[PROOFSTEP]
dsimp [prevD]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
f : (i j : ι) → X C i ⟶ X D j
g : D ⟶ E
j : ι
⊢ (f j (ComplexShape.prev c j) ≫ Hom.f g (ComplexShape.prev c j)) ≫ d E (ComplexShape.prev c j) j =
(f j (ComplexShape.prev c j) ≫ d D (ComplexShape.prev c j) j) ≫ Hom.f g j
[PROOFSTEP]
simp only [Category.assoc, g.comm]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i✝ : ι
C D : ChainComplex V ℕ
i : ℕ
f : (i j : ℕ) → X C i ⟶ X D j
⊢ ↑(dNext i) f = d C i (i - 1) ≫ f (i - 1) i
[PROOFSTEP]
dsimp [dNext]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i✝ : ι
C D : ChainComplex V ℕ
i : ℕ
f : (i j : ℕ) → X C i ⟶ X D j
⊢ d C i (ComplexShape.next (ComplexShape.down ℕ) i) ≫ f (ComplexShape.next (ComplexShape.down ℕ) i) i =
d C i (i - 1) ≫ f (i - 1) i
[PROOFSTEP]
cases i
[GOAL]
case zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : ChainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
⊢ d C Nat.zero (ComplexShape.next (ComplexShape.down ℕ) Nat.zero) ≫
f (ComplexShape.next (ComplexShape.down ℕ) Nat.zero) Nat.zero =
d C Nat.zero (Nat.zero - 1) ≫ f (Nat.zero - 1) Nat.zero
[PROOFSTEP]
simp only [shape, ChainComplex.next_nat_zero, ComplexShape.down_Rel, Nat.one_ne_zero, not_false_iff, zero_comp]
[GOAL]
case succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : ChainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
n✝ : ℕ
⊢ d C (Nat.succ n✝) (ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝)) ≫
f (ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝)) (Nat.succ n✝) =
d C (Nat.succ n✝) (Nat.succ n✝ - 1) ≫ f (Nat.succ n✝ - 1) (Nat.succ n✝)
[PROOFSTEP]
congr
[GOAL]
case succ.h.e_4.h.e_a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : ChainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
n✝ : ℕ
⊢ ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1
[PROOFSTEP]
simp
[GOAL]
case succ.h.e_6.e_8.h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : ChainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
n✝ : ℕ
⊢ ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1
[PROOFSTEP]
simp
[GOAL]
case succ.h.e_7.e_1
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : ChainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
n✝ : ℕ
⊢ ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i✝ : ι
C D : CochainComplex V ℕ
i : ℕ
f : (i j : ℕ) → X C i ⟶ X D j
⊢ ↑(prevD i) f = f i (i - 1) ≫ d D (i - 1) i
[PROOFSTEP]
dsimp [prevD]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i✝ : ι
C D : CochainComplex V ℕ
i : ℕ
f : (i j : ℕ) → X C i ⟶ X D j
⊢ f i (ComplexShape.prev (ComplexShape.up ℕ) i) ≫ d D (ComplexShape.prev (ComplexShape.up ℕ) i) i =
f i (i - 1) ≫ d D (i - 1) i
[PROOFSTEP]
cases i
[GOAL]
case zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : CochainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
⊢ f Nat.zero (ComplexShape.prev (ComplexShape.up ℕ) Nat.zero) ≫
d D (ComplexShape.prev (ComplexShape.up ℕ) Nat.zero) Nat.zero =
f Nat.zero (Nat.zero - 1) ≫ d D (Nat.zero - 1) Nat.zero
[PROOFSTEP]
simp only [shape, CochainComplex.prev_nat_zero, ComplexShape.up_Rel, Nat.one_ne_zero, not_false_iff, comp_zero]
[GOAL]
case succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : CochainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
n✝ : ℕ
⊢ f (Nat.succ n✝) (ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝)) ≫
d D (ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝)) (Nat.succ n✝) =
f (Nat.succ n✝) (Nat.succ n✝ - 1) ≫ d D (Nat.succ n✝ - 1) (Nat.succ n✝)
[PROOFSTEP]
congr
[GOAL]
case succ.h.e_4.h.e_a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : CochainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
n✝ : ℕ
⊢ ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1
[PROOFSTEP]
simp
[GOAL]
case succ.h.e_6.e_2
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : CochainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
n✝ : ℕ
⊢ ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1
[PROOFSTEP]
simp
[GOAL]
case succ.h.e_7.e_7.h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
C D : CochainComplex V ℕ
f : (i j : ℕ) → X C i ⟶ X D j
n✝ : ℕ
⊢ ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) = Nat.succ n✝ - 1
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
h : Homotopy f g
i : ι
⊢ Hom.f (f - g) i = ((↑(dNext i) fun i j => hom h i j) + ↑(prevD i) fun i j => hom h i j) + Hom.f 0 i
[PROOFSTEP]
simp [h.comm]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
h : Homotopy (f - g) 0
i : ι
⊢ Hom.f f i = ((↑(dNext i) fun i j => hom h i j) + ↑(prevD i) fun i j => hom h i j) + Hom.f g i
[PROOFSTEP]
simpa [sub_eq_iff_eq_add] using h.comm i
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
⊢ Function.LeftInverse (fun h => mk fun i j => hom h i j) fun h => mk fun i j => hom h i j
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
⊢ Function.RightInverse (fun h => mk fun i j => hom h i j) fun h => mk fun i j => hom h i j
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
f g : C ⟶ D
h : Homotopy f g
i j : ι
w : ¬ComplexShape.Rel c j i
⊢ (-h.hom) i j = 0
[PROOFSTEP]
rw [Pi.neg_apply, Pi.neg_apply, h.zero i j w, neg_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
f g : C ⟶ D
h : Homotopy f g
i : ι
⊢ Hom.f g i = ↑(dNext i) (-h.hom) + ↑(prevD i) (-h.hom) + Hom.f f i
[PROOFSTEP]
rw [AddMonoidHom.map_neg, AddMonoidHom.map_neg, h.comm, ← neg_add, ← add_assoc, neg_add_self, zero_add]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k✝ : D ⟶ E
i✝ : ι
e f g : C ⟶ D
h : Homotopy e f
k : Homotopy f g
i j : ι
w : ¬ComplexShape.Rel c j i
⊢ (h.hom + k.hom) i j = 0
[PROOFSTEP]
rw [Pi.add_apply, Pi.add_apply, h.zero i j w, k.zero i j w, zero_add]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k✝ : D ⟶ E
i✝ : ι
e f g : C ⟶ D
h : Homotopy e f
k : Homotopy f g
i : ι
⊢ Hom.f e i = ↑(dNext i) (h.hom + k.hom) + ↑(prevD i) (h.hom + k.hom) + Hom.f g i
[PROOFSTEP]
rw [AddMonoidHom.map_add, AddMonoidHom.map_add, h.comm, k.comm]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k✝ : D ⟶ E
i✝ : ι
e f g : C ⟶ D
h : Homotopy e f
k : Homotopy f g
i : ι
⊢ ↑(dNext i) h.hom + ↑(prevD i) h.hom + (↑(dNext i) k.hom + ↑(prevD i) k.hom + Hom.f g i) =
↑(dNext i) h.hom + ↑(dNext i) k.hom + (↑(prevD i) h.hom + ↑(prevD i) k.hom) + Hom.f g i
[PROOFSTEP]
abel
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k✝ : D ⟶ E
i✝ : ι
e f g : C ⟶ D
h : Homotopy e f
k : Homotopy f g
i : ι
⊢ ↑(dNext i) h.hom + ↑(prevD i) h.hom + (↑(dNext i) k.hom + ↑(prevD i) k.hom + Hom.f g i) =
↑(dNext i) h.hom + ↑(dNext i) k.hom + (↑(prevD i) h.hom + ↑(prevD i) k.hom) + Hom.f g i
[PROOFSTEP]
abel
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
f₁ g₁ f₂ g₂ : C ⟶ D
h₁ : Homotopy f₁ g₁
h₂ : Homotopy f₂ g₂
i j : ι
hij : ¬ComplexShape.Rel c j i
⊢ (h₁.hom + h₂.hom) i j = 0
[PROOFSTEP]
rw [Pi.add_apply, Pi.add_apply, h₁.zero i j hij, h₂.zero i j hij, add_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
f₁ g₁ f₂ g₂ : C ⟶ D
h₁ : Homotopy f₁ g₁
h₂ : Homotopy f₂ g₂
i : ι
⊢ Hom.f (f₁ + f₂) i = ↑(dNext i) (h₁.hom + h₂.hom) + ↑(prevD i) (h₁.hom + h₂.hom) + Hom.f (g₁ + g₂) i
[PROOFSTEP]
simp only [HomologicalComplex.add_f_apply, h₁.comm, h₂.comm, AddMonoidHom.map_add]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
f₁ g₁ f₂ g₂ : C ⟶ D
h₁ : Homotopy f₁ g₁
h₂ : Homotopy f₂ g₂
i : ι
⊢ ↑(dNext i) h₁.hom + ↑(prevD i) h₁.hom + Hom.f g₁ i + (↑(dNext i) h₂.hom + ↑(prevD i) h₂.hom + Hom.f g₂ i) =
↑(dNext i) h₁.hom + ↑(dNext i) h₂.hom + (↑(prevD i) h₁.hom + ↑(prevD i) h₂.hom) + (Hom.f g₁ i + Hom.f g₂ i)
[PROOFSTEP]
abel
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
f₁ g₁ f₂ g₂ : C ⟶ D
h₁ : Homotopy f₁ g₁
h₂ : Homotopy f₂ g₂
i : ι
⊢ ↑(dNext i) h₁.hom + ↑(prevD i) h₁.hom + Hom.f g₁ i + (↑(dNext i) h₂.hom + ↑(prevD i) h₂.hom + Hom.f g₂ i) =
↑(dNext i) h₁.hom + ↑(dNext i) h₂.hom + (↑(prevD i) h₁.hom + ↑(prevD i) h₂.hom) + (Hom.f g₁ i + Hom.f g₂ i)
[PROOFSTEP]
abel
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
e f : C ⟶ D
h : Homotopy e f
g : D ⟶ E
i j : ι
w : ¬ComplexShape.Rel c j i
⊢ (fun i j => hom h i j ≫ Hom.f g j) i j = 0
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
e f : C ⟶ D
h : Homotopy e f
g : D ⟶ E
i j : ι
w : ¬ComplexShape.Rel c j i
⊢ hom h i j ≫ Hom.f g j = 0
[PROOFSTEP]
rw [h.zero i j w, zero_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
e f : C ⟶ D
h : Homotopy e f
g : D ⟶ E
i : ι
⊢ Hom.f (e ≫ g) i =
((↑(dNext i) fun i j => hom h i j ≫ Hom.f g j) + ↑(prevD i) fun i j => hom h i j ≫ Hom.f g j) + Hom.f (f ≫ g) i
[PROOFSTEP]
rw [comp_f, h.comm i, dNext_comp_right, prevD_comp_right, Preadditive.add_comp, comp_f, Preadditive.add_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
f g : D ⟶ E
h : Homotopy f g
e : C ⟶ D
i j : ι
w : ¬ComplexShape.Rel c j i
⊢ (fun i j => Hom.f e i ≫ hom h i j) i j = 0
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
f g : D ⟶ E
h : Homotopy f g
e : C ⟶ D
i j : ι
w : ¬ComplexShape.Rel c j i
⊢ Hom.f e i ≫ hom h i j = 0
[PROOFSTEP]
rw [h.zero i j w, comp_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
f g : D ⟶ E
h : Homotopy f g
e : C ⟶ D
i : ι
⊢ Hom.f (e ≫ f) i =
((↑(dNext i) fun i j => Hom.f e i ≫ hom h i j) + ↑(prevD i) fun i j => Hom.f e i ≫ hom h i j) + Hom.f (e ≫ g) i
[PROOFSTEP]
rw [comp_f, h.comm i, dNext_comp_left, prevD_comp_left, comp_f, Preadditive.comp_add, Preadditive.comp_add]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → X C i ⟶ X D j
i j : ι
hij : ComplexShape.Rel c i j
⊢ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) i ≫ d D i j = d C i j ≫ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) j
[PROOFSTEP]
have eq1 : prevD i hom ≫ D.d i j = 0 := by
simp only [prevD, AddMonoidHom.mk'_apply, Category.assoc, d_comp_d, comp_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → X C i ⟶ X D j
i j : ι
hij : ComplexShape.Rel c i j
⊢ ↑(prevD i) hom ≫ d D i j = 0
[PROOFSTEP]
simp only [prevD, AddMonoidHom.mk'_apply, Category.assoc, d_comp_d, comp_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → X C i ⟶ X D j
i j : ι
hij : ComplexShape.Rel c i j
eq1 : ↑(prevD i) hom ≫ d D i j = 0
⊢ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) i ≫ d D i j = d C i j ≫ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) j
[PROOFSTEP]
have eq2 : C.d i j ≫ dNext j hom = 0 := by simp only [dNext, AddMonoidHom.mk'_apply, d_comp_d_assoc, zero_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → X C i ⟶ X D j
i j : ι
hij : ComplexShape.Rel c i j
eq1 : ↑(prevD i) hom ≫ d D i j = 0
⊢ d C i j ≫ ↑(dNext j) hom = 0
[PROOFSTEP]
simp only [dNext, AddMonoidHom.mk'_apply, d_comp_d_assoc, zero_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → X C i ⟶ X D j
i j : ι
hij : ComplexShape.Rel c i j
eq1 : ↑(prevD i) hom ≫ d D i j = 0
eq2 : d C i j ≫ ↑(dNext j) hom = 0
⊢ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) i ≫ d D i j = d C i j ≫ (fun i => ↑(dNext i) hom + ↑(prevD i) hom) j
[PROOFSTEP]
dsimp only
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → X C i ⟶ X D j
i j : ι
hij : ComplexShape.Rel c i j
eq1 : ↑(prevD i) hom ≫ d D i j = 0
eq2 : d C i j ≫ ↑(dNext j) hom = 0
⊢ (↑(dNext i) hom + ↑(prevD i) hom) ≫ d D i j = d C i j ≫ (↑(dNext j) hom + ↑(prevD j) hom)
[PROOFSTEP]
rw [dNext_eq hom hij, prevD_eq hom hij, Preadditive.comp_add, Preadditive.add_comp, eq1, eq2, add_zero, zero_add,
Category.assoc]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i : ι
hom : (i j : ι) → X C i ⟶ X D j
g : D ⟶ E
⊢ nullHomotopicMap hom ≫ g = nullHomotopicMap fun i j => hom i j ≫ Hom.f g j
[PROOFSTEP]
ext n
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i : ι
hom : (i j : ι) → X C i ⟶ X D j
g : D ⟶ E
n : ι
⊢ Hom.f (nullHomotopicMap hom ≫ g) n = Hom.f (nullHomotopicMap fun i j => hom i j ≫ Hom.f g j) n
[PROOFSTEP]
dsimp [nullHomotopicMap, fromNext, toPrev, AddMonoidHom.mk'_apply]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i : ι
hom : (i j : ι) → X C i ⟶ X D j
g : D ⟶ E
n : ι
⊢ (dFrom C n ≫ hom (ComplexShape.next c n) n + hom n (ComplexShape.prev c n) ≫ dTo D n) ≫ Hom.f g n =
dFrom C n ≫ hom (ComplexShape.next c n) n ≫ Hom.f g n +
(hom n (ComplexShape.prev c n) ≫ Hom.f g (ComplexShape.prev c n)) ≫ dTo E n
[PROOFSTEP]
simp only [Preadditive.add_comp, Category.assoc, g.comm]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i : ι
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
g : D ⟶ E
⊢ nullHomotopicMap' hom ≫ g = nullHomotopicMap' fun i j hij => hom i j hij ≫ Hom.f g j
[PROOFSTEP]
ext n
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i : ι
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
g : D ⟶ E
n : ι
⊢ Hom.f (nullHomotopicMap' hom ≫ g) n = Hom.f (nullHomotopicMap' fun i j hij => hom i j hij ≫ Hom.f g j) n
[PROOFSTEP]
erw [nullHomotopicMap_comp]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i : ι
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
g : D ⟶ E
n : ι
⊢ Hom.f (nullHomotopicMap fun i j => (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) ≫ Hom.f g j) n =
Hom.f (nullHomotopicMap' fun i j hij => hom i j hij ≫ Hom.f g j) n
[PROOFSTEP]
congr
[GOAL]
case h.e_self.e_hom
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i : ι
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
g : D ⟶ E
n : ι
⊢ (fun i j => (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) ≫ Hom.f g j) = fun i j =>
dite (ComplexShape.Rel c j i) ((fun i j hij => hom i j hij ≫ Hom.f g j) i j) fun x => 0
[PROOFSTEP]
ext i j
[GOAL]
case h.e_self.e_hom.h.h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
g : D ⟶ E
n i j : ι
⊢ (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) ≫ Hom.f g j =
dite (ComplexShape.Rel c j i) ((fun i j hij => hom i j hij ≫ Hom.f g j) i j) fun x => 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
g : D ⟶ E
n i j : ι
h✝ : ComplexShape.Rel c j i
⊢ hom i j h✝ ≫ Hom.f g j = (fun i j hij => hom i j hij ≫ Hom.f g j) i j h✝
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g✝ : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
g : D ⟶ E
n i j : ι
h✝ : ¬ComplexShape.Rel c j i
⊢ 0 ≫ Hom.f g j = 0
[PROOFSTEP]
rw [zero_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
f : C ⟶ D
hom : (i j : ι) → X D i ⟶ X E j
⊢ f ≫ nullHomotopicMap hom = nullHomotopicMap fun i j => Hom.f f i ≫ hom i j
[PROOFSTEP]
ext n
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
f : C ⟶ D
hom : (i j : ι) → X D i ⟶ X E j
n : ι
⊢ Hom.f (f ≫ nullHomotopicMap hom) n = Hom.f (nullHomotopicMap fun i j => Hom.f f i ≫ hom i j) n
[PROOFSTEP]
dsimp [nullHomotopicMap, fromNext, toPrev, AddMonoidHom.mk'_apply]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
f : C ⟶ D
hom : (i j : ι) → X D i ⟶ X E j
n : ι
⊢ Hom.f f n ≫ (dFrom D n ≫ hom (ComplexShape.next c n) n + hom n (ComplexShape.prev c n) ≫ dTo E n) =
dFrom C n ≫ Hom.f f (ComplexShape.next c n) ≫ hom (ComplexShape.next c n) n +
(Hom.f f n ≫ hom n (ComplexShape.prev c n)) ≫ dTo E n
[PROOFSTEP]
simp only [Preadditive.comp_add, Category.assoc, f.comm_assoc]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
f : C ⟶ D
hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j)
⊢ f ≫ nullHomotopicMap' hom = nullHomotopicMap' fun i j hij => Hom.f f i ≫ hom i j hij
[PROOFSTEP]
ext n
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
f : C ⟶ D
hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j)
n : ι
⊢ Hom.f (f ≫ nullHomotopicMap' hom) n = Hom.f (nullHomotopicMap' fun i j hij => Hom.f f i ≫ hom i j hij) n
[PROOFSTEP]
erw [comp_nullHomotopicMap]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
f : C ⟶ D
hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j)
n : ι
⊢ Hom.f (nullHomotopicMap fun i j => Hom.f f i ≫ dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) n =
Hom.f (nullHomotopicMap' fun i j hij => Hom.f f i ≫ hom i j hij) n
[PROOFSTEP]
congr
[GOAL]
case h.e_self.e_hom
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
f : C ⟶ D
hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j)
n : ι
⊢ (fun i j => Hom.f f i ≫ dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) = fun i j =>
dite (ComplexShape.Rel c j i) ((fun i j hij => Hom.f f i ≫ hom i j hij) i j) fun x => 0
[PROOFSTEP]
ext i j
[GOAL]
case h.e_self.e_hom.h.h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
f : C ⟶ D
hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j)
n i j : ι
⊢ (Hom.f f i ≫ dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) =
dite (ComplexShape.Rel c j i) ((fun i j hij => Hom.f f i ≫ hom i j hij) i j) fun x => 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
f : C ⟶ D
hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j)
n i j : ι
h✝ : ComplexShape.Rel c j i
⊢ Hom.f f i ≫ hom i j h✝ = (fun i j hij => Hom.f f i ≫ hom i j hij) i j h✝
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
f : C ⟶ D
hom : (i j : ι) → ComplexShape.Rel c j i → (X D i ⟶ X E j)
n i j : ι
h✝ : ¬ComplexShape.Rel c j i
⊢ Hom.f f i ≫ 0 = 0
[PROOFSTEP]
rw [comp_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.264735, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → X C i ⟶ X D j
i j : ι
⊢ X ((Functor.mapHomologicalComplex G c).obj C) i ⟶ X ((Functor.mapHomologicalComplex G c).obj D) j
[PROOFSTEP]
exact G.map (hom i j)
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → X C i ⟶ X D j
⊢ (Functor.mapHomologicalComplex G c).map (nullHomotopicMap hom) = nullHomotopicMap fun i j => G.map (hom i j)
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → X C i ⟶ X D j
i : ι
⊢ Hom.f ((Functor.mapHomologicalComplex G c).map (nullHomotopicMap hom)) i =
Hom.f (nullHomotopicMap fun i j => G.map (hom i j)) i
[PROOFSTEP]
dsimp [nullHomotopicMap, dNext, prevD]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → X C i ⟶ X D j
i : ι
⊢ G.map
(d C i (ComplexShape.next c i) ≫ hom (ComplexShape.next c i) i +
hom i (ComplexShape.prev c i) ≫ d D (ComplexShape.prev c i) i) =
G.map (d C i (ComplexShape.next c i)) ≫ G.map (hom (ComplexShape.next c i) i) +
G.map (hom i (ComplexShape.prev c i)) ≫ G.map (d D (ComplexShape.prev c i) i)
[PROOFSTEP]
simp only [G.map_comp, Functor.map_add]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.270178, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
i j : ι
hij : ComplexShape.Rel c j i
⊢ X ((Functor.mapHomologicalComplex G c).obj C) i ⟶ X ((Functor.mapHomologicalComplex G c).obj D) j
[PROOFSTEP]
exact G.map (hom i j hij)
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ (Functor.mapHomologicalComplex G c).map (nullHomotopicMap' hom) = nullHomotopicMap' fun i j hij => G.map (hom i j hij)
[PROOFSTEP]
ext n
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
n : ι
⊢ Hom.f ((Functor.mapHomologicalComplex G c).map (nullHomotopicMap' hom)) n =
Hom.f (nullHomotopicMap' fun i j hij => G.map (hom i j hij)) n
[PROOFSTEP]
erw [map_nullHomotopicMap]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
n : ι
⊢ Hom.f (nullHomotopicMap fun i j => G.map (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0)) n =
Hom.f (nullHomotopicMap' fun i j hij => G.map (hom i j hij)) n
[PROOFSTEP]
congr
[GOAL]
case h.e_self.e_hom
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
n : ι
⊢ (fun i j => G.map (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0)) = fun i j =>
dite (ComplexShape.Rel c j i) ((fun i j hij => G.map (hom i j hij)) i j) fun x => 0
[PROOFSTEP]
ext i j
[GOAL]
case h.e_self.e_hom.h.h
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
n i j : ι
⊢ G.map (dite (ComplexShape.Rel c j i) (hom i j) fun x => 0) =
dite (ComplexShape.Rel c j i) ((fun i j hij => G.map (hom i j hij)) i j) fun x => 0
[PROOFSTEP]
split_ifs
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
n i j : ι
h✝ : ComplexShape.Rel c j i
⊢ G.map (hom i j h✝) = (fun i j hij => G.map (hom i j hij)) i j h✝
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
G : V ⥤ W
inst✝ : Functor.Additive G
hom : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
n i j : ι
h✝ : ¬ComplexShape.Rel c j i
⊢ G.map 0 = 0
[PROOFSTEP]
rw [G.map_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
hom : (i j : ι) → X C i ⟶ X D j
zero : ∀ (i j : ι), ¬ComplexShape.Rel c j i → hom i j = 0
⊢ ∀ (i : ι), Hom.f (nullHomotopicMap hom) i = ↑(dNext i) hom + ↑(prevD i) hom + Hom.f 0 i
[PROOFSTEP]
intro i
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → X C i ⟶ X D j
zero : ∀ (i j : ι), ¬ComplexShape.Rel c j i → hom i j = 0
i : ι
⊢ Hom.f (nullHomotopicMap hom) i = ↑(dNext i) hom + ↑(prevD i) hom + Hom.f 0 i
[PROOFSTEP]
rw [HomologicalComplex.zero_f_apply, add_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
hom : (i j : ι) → X C i ⟶ X D j
zero : ∀ (i j : ι), ¬ComplexShape.Rel c j i → hom i j = 0
i : ι
⊢ Hom.f (nullHomotopicMap hom) i = ↑(dNext i) hom + ↑(prevD i) hom
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i : ι
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ Homotopy (nullHomotopicMap' h) 0
[PROOFSTEP]
apply nullHomotopy fun i j => dite (c.Rel j i) (h i j) fun _ => 0
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i : ι
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ ∀ (i j : ι), ¬ComplexShape.Rel c j i → (dite (ComplexShape.Rel c j i) (h i j) fun x => 0) = 0
[PROOFSTEP]
intro i j hij
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
i j : ι
hij : ¬ComplexShape.Rel c j i
⊢ (dite (ComplexShape.Rel c j i) (h i j) fun x => 0) = 0
[PROOFSTEP]
rw [dite_eq_right_iff]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
i j : ι
hij : ¬ComplexShape.Rel c j i
⊢ ∀ (h_1 : ComplexShape.Rel c j i), h i j h_1 = 0
[PROOFSTEP]
intro hij'
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
i j : ι
hij : ¬ComplexShape.Rel c j i
hij' : ComplexShape.Rel c j i
⊢ h i j hij' = 0
[PROOFSTEP]
exfalso
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
i j : ι
hij : ¬ComplexShape.Rel c j i
hij' : ComplexShape.Rel c j i
⊢ False
[PROOFSTEP]
exact hij hij'
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₂ k₁ k₀ : ι
r₂₁ : ComplexShape.Rel c k₂ k₁
r₁₀ : ComplexShape.Rel c k₁ k₀
hom : (i j : ι) → X C i ⟶ X D j
⊢ Hom.f (nullHomotopicMap hom) k₁ = d C k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ d D k₂ k₁
[PROOFSTEP]
dsimp only [nullHomotopicMap]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₂ k₁ k₀ : ι
r₂₁ : ComplexShape.Rel c k₂ k₁
r₁₀ : ComplexShape.Rel c k₁ k₀
hom : (i j : ι) → X C i ⟶ X D j
⊢ ↑(dNext k₁) hom + ↑(prevD k₁) hom = d C k₁ k₀ ≫ hom k₀ k₁ + hom k₁ k₂ ≫ d D k₂ k₁
[PROOFSTEP]
rw [dNext_eq hom r₁₀, prevD_eq hom r₂₁]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₂ k₁ k₀ : ι
r₂₁ : ComplexShape.Rel c k₂ k₁
r₁₀ : ComplexShape.Rel c k₁ k₀
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ Hom.f (nullHomotopicMap' h) k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁
[PROOFSTEP]
simp only [nullHomotopicMap']
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₂ k₁ k₀ : ι
r₂₁ : ComplexShape.Rel c k₂ k₁
r₁₀ : ComplexShape.Rel c k₁ k₀
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ Hom.f (nullHomotopicMap fun i j => dite (ComplexShape.Rel c j i) (h i j) fun x => 0) k₁ =
d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁
[PROOFSTEP]
rw [nullHomotopicMap_f r₂₁ r₁₀]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₂ k₁ k₀ : ι
r₂₁ : ComplexShape.Rel c k₂ k₁
r₁₀ : ComplexShape.Rel c k₁ k₀
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ (d C k₁ k₀ ≫ dite (ComplexShape.Rel c k₁ k₀) (h k₀ k₁) fun x => 0) +
(dite (ComplexShape.Rel c k₂ k₁) (h k₁ k₂) fun x => 0) ≫ d D k₂ k₁ =
d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁
[PROOFSTEP]
split_ifs
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₂ k₁ k₀ : ι
r₂₁ : ComplexShape.Rel c k₂ k₁
r₁₀ : ComplexShape.Rel c k₁ k₀
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀ + h k₁ k₂ r₂₁ ≫ d D k₂ k₁
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
hom : (i j : ι) → X C i ⟶ X D j
⊢ Hom.f (nullHomotopicMap hom) k₀ = hom k₀ k₁ ≫ d D k₁ k₀
[PROOFSTEP]
dsimp only [nullHomotopicMap]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
hom : (i j : ι) → X C i ⟶ X D j
⊢ ↑(dNext k₀) hom + ↑(prevD k₀) hom = hom k₀ k₁ ≫ d D k₁ k₀
[PROOFSTEP]
rw [prevD_eq hom r₁₀, dNext, AddMonoidHom.mk'_apply, C.shape, zero_comp, zero_add]
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
hom : (i j : ι) → X C i ⟶ X D j
⊢ ¬ComplexShape.Rel c k₀ (ComplexShape.next c k₀)
[PROOFSTEP]
exact hk₀ _
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ Hom.f (nullHomotopicMap' h) k₀ = h k₀ k₁ r₁₀ ≫ d D k₁ k₀
[PROOFSTEP]
simp only [nullHomotopicMap']
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ Hom.f (nullHomotopicMap fun i j => dite (ComplexShape.Rel c j i) (h i j) fun x => 0) k₀ = h k₀ k₁ r₁₀ ≫ d D k₁ k₀
[PROOFSTEP]
rw [nullHomotopicMap_f_of_not_rel_left r₁₀ hk₀]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ (dite (ComplexShape.Rel c k₁ k₀) (h k₀ k₁) fun x => 0) ≫ d D k₁ k₀ = h k₀ k₁ r₁₀ ≫ d D k₁ k₀
[PROOFSTEP]
split_ifs
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ h k₀ k₁ r₁₀ ≫ d D k₁ k₀ = h k₀ k₁ r₁₀ ≫ d D k₁ k₀
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁
hom : (i j : ι) → X C i ⟶ X D j
⊢ Hom.f (nullHomotopicMap hom) k₁ = d C k₁ k₀ ≫ hom k₀ k₁
[PROOFSTEP]
dsimp only [nullHomotopicMap]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁
hom : (i j : ι) → X C i ⟶ X D j
⊢ ↑(dNext k₁) hom + ↑(prevD k₁) hom = d C k₁ k₀ ≫ hom k₀ k₁
[PROOFSTEP]
rw [dNext_eq hom r₁₀, prevD, AddMonoidHom.mk'_apply, D.shape, comp_zero, add_zero]
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁
hom : (i j : ι) → X C i ⟶ X D j
⊢ ¬ComplexShape.Rel c (ComplexShape.prev c k₁) k₁
[PROOFSTEP]
exact hk₁ _
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ Hom.f (nullHomotopicMap' h) k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀
[PROOFSTEP]
simp only [nullHomotopicMap']
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ Hom.f (nullHomotopicMap fun i j => dite (ComplexShape.Rel c j i) (h i j) fun x => 0) k₁ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀
[PROOFSTEP]
rw [nullHomotopicMap_f_of_not_rel_right r₁₀ hk₁]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ (d C k₁ k₀ ≫ dite (ComplexShape.Rel c k₁ k₀) (h k₀ k₁) fun x => 0) = d C k₁ k₀ ≫ h k₀ k₁ r₁₀
[PROOFSTEP]
split_ifs
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₁ k₀ : ι
r₁₀ : ComplexShape.Rel c k₁ k₀
hk₁ : ∀ (l : ι), ¬ComplexShape.Rel c l k₁
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ d C k₁ k₀ ≫ h k₀ k₁ r₁₀ = d C k₁ k₀ ≫ h k₀ k₁ r₁₀
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₀ : ι
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀
hom : (i j : ι) → X C i ⟶ X D j
⊢ Hom.f (nullHomotopicMap hom) k₀ = 0
[PROOFSTEP]
dsimp [nullHomotopicMap, dNext, prevD]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₀ : ι
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀
hom : (i j : ι) → X C i ⟶ X D j
⊢ d C k₀ (ComplexShape.next c k₀) ≫ hom (ComplexShape.next c k₀) k₀ +
hom k₀ (ComplexShape.prev c k₀) ≫ d D (ComplexShape.prev c k₀) k₀ =
0
[PROOFSTEP]
rw [C.shape, D.shape, zero_comp, comp_zero, add_zero]
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₀ : ι
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀
hom : (i j : ι) → X C i ⟶ X D j
⊢ ¬ComplexShape.Rel c (ComplexShape.prev c k₀) k₀
[PROOFSTEP]
apply_assumption
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i k₀ : ι
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀
hom : (i j : ι) → X C i ⟶ X D j
⊢ ¬ComplexShape.Rel c k₀ (ComplexShape.next c k₀)
[PROOFSTEP]
apply_assumption
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₀ : ι
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ Hom.f (nullHomotopicMap' h) k₀ = 0
[PROOFSTEP]
simp only [nullHomotopicMap']
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i k₀ : ι
hk₀ : ∀ (l : ι), ¬ComplexShape.Rel c k₀ l
hk₀' : ∀ (l : ι), ¬ComplexShape.Rel c l k₀
h : (i j : ι) → ComplexShape.Rel c j i → (X C i ⟶ X D j)
⊢ Hom.f (nullHomotopicMap fun i j => dite (ComplexShape.Rel c j i) (h i j) fun x => 0) k₀ = 0
[PROOFSTEP]
apply nullHomotopicMap_f_eq_zero hk₀ hk₀'
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
j : ℕ
⊢ ↑(prevD j) f = f j (j + 1) ≫ d Q (j + 1) j
[PROOFSTEP]
dsimp [prevD]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
j : ℕ
⊢ f j (ComplexShape.prev (ComplexShape.down ℕ) j) ≫ d Q (ComplexShape.prev (ComplexShape.down ℕ) j) j =
f j (j + 1) ≫ d Q (j + 1) j
[PROOFSTEP]
have : (ComplexShape.down ℕ).prev j = j + 1 := ChainComplex.prev ℕ j
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
j : ℕ
this : ComplexShape.prev (ComplexShape.down ℕ) j = j + 1
⊢ f j (ComplexShape.prev (ComplexShape.down ℕ) j) ≫ d Q (ComplexShape.prev (ComplexShape.down ℕ) j) j =
f j (j + 1) ≫ d Q (j + 1) j
[PROOFSTEP]
congr 2
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
i : ℕ
⊢ ↑(dNext (i + 1)) f = d P (i + 1) i ≫ f i (i + 1)
[PROOFSTEP]
dsimp [dNext]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
i : ℕ
⊢ d P (i + 1) (ComplexShape.next (ComplexShape.down ℕ) (i + 1)) ≫
f (ComplexShape.next (ComplexShape.down ℕ) (i + 1)) (i + 1) =
d P (i + 1) i ≫ f i (i + 1)
[PROOFSTEP]
have : (ComplexShape.down ℕ).next (i + 1) = i := ChainComplex.next_nat_succ _
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
i : ℕ
this : ComplexShape.next (ComplexShape.down ℕ) (i + 1) = i
⊢ d P (i + 1) (ComplexShape.next (ComplexShape.down ℕ) (i + 1)) ≫
f (ComplexShape.next (ComplexShape.down ℕ) (i + 1)) (i + 1) =
d P (i + 1) i ≫ f i (i + 1)
[PROOFSTEP]
congr 2
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ ↑(dNext 0) f = 0
[PROOFSTEP]
dsimp [dNext]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ d P 0 (ComplexShape.next (ComplexShape.down ℕ) 0) ≫ f (ComplexShape.next (ComplexShape.down ℕ) 0) 0 = 0
[PROOFSTEP]
rw [P.shape, zero_comp]
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) 0 (ComplexShape.next (ComplexShape.down ℕ) 0)
[PROOFSTEP]
rw [ChainComplex.next_nat_zero]
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) 0 0
[PROOFSTEP]
dsimp
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ ¬0 + 1 = 0
[PROOFSTEP]
decide
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
⊢ Hom.f e 0 = dFrom P 0 ≫ 0 + (zero ≫ (xPrevIso Q (_ : 0 + 1 = 0 + 1)).inv) ≫ dTo Q 0
[PROOFSTEP]
simpa using comm_zero
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
n : ℕ
I : (f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1) :=
mkInductiveAux₁ e zero one comm_one succ n
⊢ Hom.f e (n + 1) =
dFrom P (n + 1) ≫ (xNextIso P (_ : n + 1 = n + 1)).hom ≫ I.fst +
(I.snd.fst ≫ (xPrevIso Q (_ : n + 1 + 1 = n + 1 + 1)).inv) ≫ dTo Q (n + 1)
[PROOFSTEP]
simpa using I.2.2
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i j : ℕ
h : i + 1 = j
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom =
(xNextIso P h).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ j).fst
[PROOFSTEP]
subst j
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q (_ : i + 1 = i + 1)).hom =
(xNextIso P (_ : i + 1 = i + 1)).inv ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ (i + 1)).fst
[PROOFSTEP]
rcases i with (_ | _ | i)
[GOAL]
case zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ Nat.zero).snd.fst ≫
(xPrevIso Q (_ : Nat.zero + 1 = Nat.zero + 1)).hom =
(xNextIso P (_ : Nat.zero + 1 = Nat.zero + 1)).inv ≫
(mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.zero + 1)).fst
[PROOFSTEP]
simp [mkInductiveAux₂]
[GOAL]
case succ.zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ Nat.zero)).snd.fst ≫
(xPrevIso Q (_ : Nat.succ Nat.zero + 1 = Nat.succ Nat.zero + 1)).hom =
(xNextIso P (_ : Nat.succ Nat.zero + 1 = Nat.succ Nat.zero + 1)).inv ≫
(mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ Nat.zero + 1)).fst
[PROOFSTEP]
simp [mkInductiveAux₂]
[GOAL]
case succ.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ (Nat.succ i))).snd.fst ≫
(xPrevIso Q (_ : Nat.succ (Nat.succ i) + 1 = Nat.succ (Nat.succ i) + 1)).hom =
(xNextIso P (_ : Nat.succ (Nat.succ i) + 1 = Nat.succ (Nat.succ i) + 1)).inv ≫
(mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ (Nat.succ i) + 1)).fst
[PROOFSTEP]
simp [mkInductiveAux₂]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i j : ℕ
w : ¬ComplexShape.Rel (ComplexShape.down ℕ) j i
⊢ (fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0)
i j =
0
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i j : ℕ
w : ¬ComplexShape.Rel (ComplexShape.down ℕ) j i
⊢ (if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0) = 0
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i j : ℕ
w : ¬ComplexShape.Rel (ComplexShape.down ℕ) j i
⊢ ¬i + 1 = j
[PROOFSTEP]
exact w
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ Hom.f e i =
((↑(dNext i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0) +
↑(prevD i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0) +
Hom.f 0 i
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ Hom.f e i =
(dFrom P i ≫
↑(fromNext i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0) +
(↑(toPrev i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0) ≫
dTo Q i +
0
[PROOFSTEP]
simp only [add_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ Hom.f e i =
(dFrom P i ≫
↑(fromNext i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0) +
(↑(toPrev i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0) ≫
dTo Q i
[PROOFSTEP]
refine' (mkInductiveAux₂ e zero comm_zero one comm_one succ i).2.2.trans _
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ dFrom P i ≫ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).fst +
(mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ dTo Q i =
(dFrom P i ≫
↑(fromNext i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0) +
(↑(toPrev i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0) ≫
dTo Q i
[PROOFSTEP]
congr
[GOAL]
case e_a.e_a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).fst =
↑(fromNext i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0
[PROOFSTEP]
cases i
[GOAL]
case e_a.e_a.zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ Nat.zero).fst =
↑(fromNext Nat.zero) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0
[PROOFSTEP]
dsimp [fromNext, mkInductiveAux₂]
[GOAL]
case e_a.e_a.zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
⊢ 0 =
if h : ComplexShape.next (ComplexShape.down ℕ) 0 + 1 = 0 then
(match ComplexShape.next (ComplexShape.down ℕ) 0 with
| 0 =>
{ fst := 0,
snd :=
{ fst := zero ≫ (xPrevIso Q mkInductiveAux₂.proof_1).inv,
snd := (_ : Hom.f e 0 = dFrom P 0 ≫ 0 + (zero ≫ (xPrevIso Q (_ : 0 + 1 = 0 + 1)).inv) ≫ dTo Q 0) } }
| Nat.succ n =>
{ fst := (xNextIso P (_ : n + 1 = n + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n).fst,
snd :=
{
fst :=
(mkInductiveAux₁ e zero one comm_one succ n).snd.fst ≫
(xPrevIso Q (_ : n + 1 + 1 = n + 1 + 1)).inv,
snd :=
(_ :
Hom.f e (n + 1) =
dFrom P (n + 1) ≫
(xNextIso P (_ : n + 1 = n + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n).fst +
((mkInductiveAux₁ e zero one comm_one succ n).snd.fst ≫
(xPrevIso Q (_ : n + 1 + 1 = n + 1 + 1)).inv) ≫
dTo Q (n + 1)) } }).snd.fst ≫
(xPrevIso Q h).hom
else 0
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case e_a.e_a.zero.hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
⊢ ¬ComplexShape.next (ComplexShape.down ℕ) 0 + 1 = 0
[PROOFSTEP]
simp only
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
n✝ : ℕ
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ n✝)).fst =
↑(fromNext (Nat.succ n✝)) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0
[PROOFSTEP]
dsimp [fromNext]
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
n✝ : ℕ
⊢ (xNextIso P (_ : n✝ + 1 = n✝ + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst =
if h : ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝ then
(mkInductiveAux₂ e zero comm_zero one comm_one succ
(ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝))).snd.fst ≫
(xPrevIso Q h).hom
else 0
[PROOFSTEP]
simp only [ChainComplex.next_nat_succ, dite_true]
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
n✝ : ℕ
⊢ (xNextIso P (_ : n✝ + 1 = n✝ + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst =
(mkInductiveAux₂ e zero comm_zero one comm_one succ
(ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝))).snd.fst ≫
(xPrevIso Q (_ : ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝)).hom
[PROOFSTEP]
rw [mkInductiveAux₃ e zero comm_zero one comm_one succ]
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
n✝ : ℕ
⊢ (xNextIso P (_ : n✝ + 1 = n✝ + 1)).hom ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst =
(xNextIso P (_ : ComplexShape.next (ComplexShape.down ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝)).inv ≫
(mkInductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ n✝)).fst
[PROOFSTEP]
dsimp [xNextIso]
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
n✝ : ℕ
⊢ eqToHom (_ : xNext P (n✝ + 1) = X P n✝) ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst =
𝟙 (xNext P (Nat.succ n✝)) ≫
eqToHom (_ : xNext P (n✝ + 1) = X P n✝) ≫ (mkInductiveAux₁ e zero one comm_one succ n✝).fst
[PROOFSTEP]
rw [Category.id_comp]
[GOAL]
case e_a.e_a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst =
↑(toPrev i) fun i j =>
if h : i + 1 = j then (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom else 0
[PROOFSTEP]
dsimp [toPrev]
[GOAL]
case e_a.e_a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ (mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst =
if h : i + 1 = ComplexShape.prev (ComplexShape.down ℕ) i then
(mkInductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst ≫ (xPrevIso Q h).hom
else 0
[PROOFSTEP]
erw [dif_pos, Category.comp_id]
[GOAL]
case e_a.e_a.hc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ i + 1 = ComplexShape.prev (ComplexShape.down ℕ) i
case e_a.e_a.hc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : ChainComplex V ℕ
e : P ⟶ Q
zero : X P 0 ⟶ X Q 1
comm_zero : Hom.f e 0 = zero ≫ d Q 1 0
one : X P 1 ⟶ X Q 2
comm_one : Hom.f e 1 = d P 1 0 ≫ zero + one ≫ d Q 2 1
succ :
(n : ℕ) →
(p :
(f : X P n ⟶ X Q (n + 1)) ×'
(f' : X P (n + 1) ⟶ X Q (n + 2)) ×' Hom.f e (n + 1) = d P (n + 1) n ≫ f + f' ≫ d Q (n + 2) (n + 1)) →
(f'' : X P (n + 2) ⟶ X Q (n + 3)) ×' Hom.f e (n + 2) = d P (n + 2) (n + 1) ≫ p.snd.fst + f'' ≫ d Q (n + 3) (n + 2)
i : ℕ
⊢ i + 1 = ComplexShape.prev (ComplexShape.down ℕ) i
[PROOFSTEP]
simp only [ChainComplex.prev]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
j : ℕ
⊢ ↑(dNext j) f = d P j (j + 1) ≫ f (j + 1) j
[PROOFSTEP]
dsimp [dNext]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
j : ℕ
⊢ d P j (ComplexShape.next (ComplexShape.up ℕ) j) ≫ f (ComplexShape.next (ComplexShape.up ℕ) j) j =
d P j (j + 1) ≫ f (j + 1) j
[PROOFSTEP]
have : (ComplexShape.up ℕ).next j = j + 1 := CochainComplex.next ℕ j
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
j : ℕ
this : ComplexShape.next (ComplexShape.up ℕ) j = j + 1
⊢ d P j (ComplexShape.next (ComplexShape.up ℕ) j) ≫ f (ComplexShape.next (ComplexShape.up ℕ) j) j =
d P j (j + 1) ≫ f (j + 1) j
[PROOFSTEP]
congr 2
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
i : ℕ
⊢ ↑(prevD (i + 1)) f = f (i + 1) i ≫ d Q i (i + 1)
[PROOFSTEP]
dsimp [prevD]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
i : ℕ
⊢ f (i + 1) (ComplexShape.prev (ComplexShape.up ℕ) (i + 1)) ≫
d Q (ComplexShape.prev (ComplexShape.up ℕ) (i + 1)) (i + 1) =
f (i + 1) i ≫ d Q i (i + 1)
[PROOFSTEP]
have : (ComplexShape.up ℕ).prev (i + 1) = i := CochainComplex.prev_nat_succ i
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
i : ℕ
this : ComplexShape.prev (ComplexShape.up ℕ) (i + 1) = i
⊢ f (i + 1) (ComplexShape.prev (ComplexShape.up ℕ) (i + 1)) ≫
d Q (ComplexShape.prev (ComplexShape.up ℕ) (i + 1)) (i + 1) =
f (i + 1) i ≫ d Q i (i + 1)
[PROOFSTEP]
congr 2
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ ↑(prevD 0) f = 0
[PROOFSTEP]
dsimp [prevD]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ f 0 (ComplexShape.prev (ComplexShape.up ℕ) 0) ≫ d Q (ComplexShape.prev (ComplexShape.up ℕ) 0) 0 = 0
[PROOFSTEP]
rw [Q.shape, comp_zero]
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) (ComplexShape.prev (ComplexShape.up ℕ) 0) 0
[PROOFSTEP]
rw [CochainComplex.prev_nat_zero]
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) 0 0
[PROOFSTEP]
dsimp
[GOAL]
case a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
f : (i j : ℕ) → X P i ⟶ X Q j
⊢ ¬0 + 1 = 0
[PROOFSTEP]
decide
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
⊢ Hom.f e 0 = 0 ≫ dTo Q 0 + dFrom P 0 ≫ (xNextIso P (_ : 0 + 1 = 0 + 1)).hom ≫ zero
[PROOFSTEP]
simpa using comm_zero
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
n : ℕ
I : (f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f' :=
mkCoinductiveAux₁ e zero one comm_one succ n
⊢ Hom.f e (n + 1) =
(I.fst ≫ (xPrevIso Q (_ : n + 1 = n + 1)).inv) ≫ dTo Q (n + 1) +
dFrom P (n + 1) ≫ (xNextIso P (_ : n + 1 + 1 = n + 1 + 1)).hom ≫ I.snd.fst
[PROOFSTEP]
simpa using I.2.2
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i j : ℕ
h : i + 1 = j
⊢ (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst =
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).fst ≫ (xPrevIso Q h).hom
[PROOFSTEP]
subst j
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ (xNextIso P (_ : i + 1 = i + 1)).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst =
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ (i + 1)).fst ≫ (xPrevIso Q (_ : i + 1 = i + 1)).hom
[PROOFSTEP]
rcases i with (_ | _ | i)
[GOAL]
case zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
⊢ (xNextIso P (_ : Nat.zero + 1 = Nat.zero + 1)).inv ≫
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ Nat.zero).snd.fst =
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.zero + 1)).fst ≫
(xPrevIso Q (_ : Nat.zero + 1 = Nat.zero + 1)).hom
[PROOFSTEP]
simp [mkCoinductiveAux₂]
[GOAL]
case succ.zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
⊢ (xNextIso P (_ : Nat.succ Nat.zero + 1 = Nat.succ Nat.zero + 1)).inv ≫
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ Nat.zero)).snd.fst =
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ Nat.zero + 1)).fst ≫
(xPrevIso Q (_ : Nat.succ Nat.zero + 1 = Nat.succ Nat.zero + 1)).hom
[PROOFSTEP]
simp [mkCoinductiveAux₂]
[GOAL]
case succ.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ (xNextIso P (_ : Nat.succ (Nat.succ i) + 1 = Nat.succ (Nat.succ i) + 1)).inv ≫
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ (Nat.succ i))).snd.fst =
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ (Nat.succ i) + 1)).fst ≫
(xPrevIso Q (_ : Nat.succ (Nat.succ i) + 1 = Nat.succ (Nat.succ i) + 1)).hom
[PROOFSTEP]
simp [mkCoinductiveAux₂]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i j : ℕ
w : ¬ComplexShape.Rel (ComplexShape.up ℕ) j i
⊢ (fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0)
i j =
0
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i j : ℕ
w : ¬ComplexShape.Rel (ComplexShape.up ℕ) j i
⊢ (if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0) =
0
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i j : ℕ
w : ¬ComplexShape.Rel (ComplexShape.up ℕ) j i
⊢ ¬j + 1 = i
[PROOFSTEP]
exact w
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ Hom.f e i =
((↑(dNext i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0) +
↑(prevD i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0) +
Hom.f 0 i
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ Hom.f e i =
(dFrom P i ≫
↑(fromNext i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0) +
(↑(toPrev i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0) ≫
dTo Q i +
0
[PROOFSTEP]
simp only [add_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ Hom.f e i =
(dFrom P i ≫
↑(fromNext i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0) +
(↑(toPrev i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0) ≫
dTo Q i
[PROOFSTEP]
rw [add_comm]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ Hom.f e i =
(↑(toPrev i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0) ≫
dTo Q i +
dFrom P i ≫
↑(fromNext i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0
[PROOFSTEP]
refine' (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).2.2.trans _
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).fst ≫ dTo Q i +
dFrom P i ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst =
(↑(toPrev i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0) ≫
dTo Q i +
dFrom P i ≫
↑(fromNext i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst
else 0
[PROOFSTEP]
congr
[GOAL]
case e_a.e_a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).fst =
↑(toPrev i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0
[PROOFSTEP]
cases i
[GOAL]
case e_a.e_a.zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ Nat.zero).fst =
↑(toPrev Nat.zero) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0
[PROOFSTEP]
dsimp [toPrev, mkCoinductiveAux₂]
[GOAL]
case e_a.e_a.zero
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
⊢ 0 =
if h : ComplexShape.prev (ComplexShape.up ℕ) 0 + 1 = 0 then
(xNextIso P h).inv ≫
(match ComplexShape.prev (ComplexShape.up ℕ) 0 with
| 0 =>
{ fst := 0,
snd :=
{ fst := (xNextIso P mkCoinductiveAux₂.proof_1).hom ≫ zero,
snd := (_ : Hom.f e 0 = 0 ≫ dTo Q 0 + dFrom P 0 ≫ (xNextIso P (_ : 0 + 1 = 0 + 1)).hom ≫ zero) } }
| Nat.succ n =>
{ fst := (mkCoinductiveAux₁ e zero one comm_one succ n).fst ≫ (xPrevIso Q (_ : n + 1 = n + 1)).inv,
snd :=
{
fst :=
(xNextIso P (_ : n + 1 + 1 = n + 1 + 1)).hom ≫
(mkCoinductiveAux₁ e zero one comm_one succ n).snd.fst,
snd :=
(_ :
Hom.f e (n + 1) =
((mkCoinductiveAux₁ e zero one comm_one succ n).fst ≫ (xPrevIso Q (_ : n + 1 = n + 1)).inv) ≫
dTo Q (n + 1) +
dFrom P (n + 1) ≫
(xNextIso P (_ : n + 1 + 1 = n + 1 + 1)).hom ≫
(mkCoinductiveAux₁ e zero one comm_one succ n).snd.fst) } }).snd.fst
else 0
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case e_a.e_a.zero.hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
⊢ ¬ComplexShape.prev (ComplexShape.up ℕ) 0 + 1 = 0
[PROOFSTEP]
simp only
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
n✝ : ℕ
⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ n✝)).fst =
↑(toPrev (Nat.succ n✝)) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0
[PROOFSTEP]
dsimp [toPrev]
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
n✝ : ℕ
⊢ (mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ (xPrevIso Q (_ : n✝ + 1 = n✝ + 1)).inv =
if h : ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝ then
(xNextIso P h).inv ≫
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ
(ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝))).snd.fst
else 0
[PROOFSTEP]
simp only [CochainComplex.prev_nat_succ, dite_true]
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
n✝ : ℕ
⊢ (mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ (xPrevIso Q (_ : n✝ + 1 = n✝ + 1)).inv =
(xNextIso P (_ : ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝)).inv ≫
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ
(ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝))).snd.fst
[PROOFSTEP]
rw [mkCoinductiveAux₃ e zero comm_zero one comm_one succ]
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
n✝ : ℕ
⊢ (mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ (xPrevIso Q (_ : n✝ + 1 = n✝ + 1)).inv =
(mkCoinductiveAux₂ e zero comm_zero one comm_one succ (Nat.succ n✝)).fst ≫
(xPrevIso Q (_ : ComplexShape.prev (ComplexShape.up ℕ) (Nat.succ n✝) + 1 = Nat.succ n✝)).hom
[PROOFSTEP]
dsimp [xPrevIso]
[GOAL]
case e_a.e_a.succ
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
n✝ : ℕ
⊢ (mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ eqToHom (_ : X Q n✝ = xPrev Q (n✝ + 1)) =
((mkCoinductiveAux₁ e zero one comm_one succ n✝).fst ≫ eqToHom (_ : X Q n✝ = xPrev Q (n✝ + 1))) ≫
𝟙 (xPrev Q (Nat.succ n✝))
[PROOFSTEP]
rw [Category.comp_id]
[GOAL]
case e_a.e_a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst =
↑(fromNext i) fun i j =>
if h : j + 1 = i then (xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ j).snd.fst else 0
[PROOFSTEP]
dsimp [fromNext]
[GOAL]
case e_a.e_a
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst =
if h : i + 1 = ComplexShape.next (ComplexShape.up ℕ) i then
(xNextIso P h).inv ≫ (mkCoinductiveAux₂ e zero comm_zero one comm_one succ i).snd.fst
else 0
[PROOFSTEP]
erw [dif_pos, Category.id_comp]
[GOAL]
case e_a.e_a.hc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ i + 1 = ComplexShape.next (ComplexShape.up ℕ) i
case e_a.e_a.hc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
P Q : CochainComplex V ℕ
e : P ⟶ Q
zero : X P 1 ⟶ X Q 0
comm_zero : Hom.f e 0 = d P 0 1 ≫ zero
one : X P 2 ⟶ X Q 1
comm_one : Hom.f e 1 = zero ≫ d Q 0 1 + d P 1 2 ≫ one
succ :
(n : ℕ) →
(p :
(f : X P (n + 1) ⟶ X Q n) ×'
(f' : X P (n + 2) ⟶ X Q (n + 1)) ×' Hom.f e (n + 1) = f ≫ d Q n (n + 1) + d P (n + 1) (n + 2) ≫ f') →
(f'' : X P (n + 3) ⟶ X Q (n + 2)) ×' Hom.f e (n + 2) = p.snd.fst ≫ d Q (n + 1) (n + 2) + d P (n + 2) (n + 3) ≫ f''
i : ℕ
⊢ i + 1 = ComplexShape.next (ComplexShape.up ℕ) i
[PROOFSTEP]
simp only [CochainComplex.next]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D E : HomologicalComplex V c
f g : C✝ ⟶ D
h k : D ⟶ E
i : ι
C : HomologicalComplex V c
⊢ 𝟙 C ≫ 𝟙 C = 𝟙 C
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D E : HomologicalComplex V c
f g : C✝ ⟶ D
h k : D ⟶ E
i : ι
C : HomologicalComplex V c
⊢ 𝟙 C ≫ 𝟙 C = 𝟙 C
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E✝ : HomologicalComplex V c
f✝ g✝ : C✝ ⟶ D✝
h k : D✝ ⟶ E✝
i : ι
C D E : HomologicalComplex V c
f : HomotopyEquiv C D
g : HomotopyEquiv D E
⊢ Homotopy ((f.hom ≫ g.hom) ≫ g.inv ≫ f.inv) (𝟙 C)
[PROOFSTEP]
simpa using ((g.homotopyHomInvId.compRightId f.inv).compLeft f.hom).trans f.homotopyHomInvId
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C✝ D✝ E✝ : HomologicalComplex V c
f✝ g✝ : C✝ ⟶ D✝
h k : D✝ ⟶ E✝
i : ι
C D E : HomologicalComplex V c
f : HomotopyEquiv C D
g : HomotopyEquiv D E
⊢ Homotopy ((g.inv ≫ f.inv) ≫ f.hom ≫ g.hom) (𝟙 E)
[PROOFSTEP]
simpa using ((f.homotopyInvHomId.compRightId g.hom).compLeft g.inv).trans g.homotopyInvHomId
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ (homologyFunctor V c i).map f = (homologyFunctor V c i).map g
[PROOFSTEP]
dsimp [homologyFunctor]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo f i) (Hom.sqFrom f i)
(_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) =
homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo g i) (Hom.sqFrom g i)
(_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right)
[PROOFSTEP]
apply eq_of_sub_eq_zero
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo f i) (Hom.sqFrom f i)
(_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) -
homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo g i) (Hom.sqFrom g i)
(_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right) =
0
[PROOFSTEP]
ext
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ homology.π (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0) ≫
(homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo f i) (Hom.sqFrom f i)
(_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) -
homology.map (_ : dTo C i ≫ dFrom C i = 0) (_ : dTo D i ≫ dFrom D i = 0) (Hom.sqTo g i) (Hom.sqFrom g i)
(_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right)) =
homology.π (dTo C i) (dFrom C i) (_ : dTo C i ≫ dFrom C i = 0) ≫ 0
[PROOFSTEP]
simp only [homology.π_map, comp_zero, Preadditive.comp_sub]
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ kernelSubobjectMap (Hom.sqFrom f i) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) -
kernelSubobjectMap (Hom.sqFrom g i) ≫ homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) =
0
[PROOFSTEP]
dsimp [kernelSubobjectMap]
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f f i)
(_ :
Subobject.Factors (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom f i).left)) ≫
homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) -
Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)
(_ :
Subobject.Factors (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom g i).left)) ≫
homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) =
0
[PROOFSTEP]
simp_rw [h.comm i]
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ Subobject.factorThru (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (↑(dNext i) h.hom + ↑(prevD i) h.hom + Hom.f g i))
(_ :
Subobject.Factors (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (↑(dNext i) h.hom + ↑(prevD i) h.hom + Hom.f g i))) ≫
homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) -
Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)
(_ :
Subobject.Factors (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom g i).left)) ≫
homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) =
0
[PROOFSTEP]
simp only [zero_add, zero_comp, dNext_eq_dFrom_fromNext, kernelSubobject_arrow_comp_assoc, Preadditive.comp_add]
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ Subobject.factorThru (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom +
Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)
(_ :
Subobject.Factors (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom +
Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)) ≫
homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) -
Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)
(_ :
Subobject.Factors (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom g i).left)) ≫
homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) =
0
[PROOFSTEP]
rw [← Preadditive.sub_comp]
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ (Subobject.factorThru (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom +
Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)
(_ :
Subobject.Factors (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom +
Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)) -
Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ Hom.f g i)
(_ :
Subobject.Factors (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ (Hom.sqFrom g i).left))) ≫
homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) =
0
[PROOFSTEP]
simp only [CategoryTheory.Subobject.factorThru_add_sub_factorThru_right]
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ Subobject.factorThru (kernelSubobject (dFrom D i)) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom)
(_ :
Subobject.Factors (kernelSubobject (dFrom D i))
(Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom)) ≫
homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) =
0
[PROOFSTEP]
erw [Subobject.factorThru_ofLE (D.boundaries_le_cycles i)]
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ (Subobject.factorThru (boundaries D i) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom) ?h.p ≫
Subobject.ofLE (boundaries D i) (cycles D i) (_ : boundaries D i ≤ cycles D i)) ≫
homology.π (dTo D i) (dFrom D i) (_ : dTo D i ≫ dFrom D i = 0) =
0
[PROOFSTEP]
simp
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ Subobject.Factors (boundaries D i) (Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(prevD i) h.hom)
[PROOFSTEP]
rw [prevD_eq_toPrev_dTo, ← Category.assoc]
[GOAL]
case h.p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
h : Homotopy f g
i : ι
⊢ Subobject.Factors (boundaries D i) ((Subobject.arrow (kernelSubobject (dFrom C i)) ≫ ↑(toPrev i) h.hom) ≫ dTo D i)
[PROOFSTEP]
apply imageSubobject_factors_comp_self
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
f : HomotopyEquiv C D
i : ι
⊢ (homologyFunctor V c i).map f.hom ≫ (homologyFunctor V c i).map f.inv = 𝟙 ((homologyFunctor V c i).obj C)
[PROOFSTEP]
rw [← Functor.map_comp, homology_map_eq_of_homotopy f.homotopyHomInvId, CategoryTheory.Functor.map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
inst✝³ : HasEqualizers V
inst✝² : HasCokernels V
inst✝¹ : HasImages V
inst✝ : HasImageMaps V
f : HomotopyEquiv C D
i : ι
⊢ (homologyFunctor V c i).map f.inv ≫ (homologyFunctor V c i).map f.hom = 𝟙 ((homologyFunctor V c i).obj D)
[PROOFSTEP]
rw [← Functor.map_comp, homology_map_eq_of_homotopy f.homotopyInvHomId, CategoryTheory.Functor.map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.479401, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
f g : C ⟶ D
h : Homotopy f g
i j : ι
w : ¬ComplexShape.Rel c j i
⊢ (fun i j => F.map (Homotopy.hom h i j)) i j = 0
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.479401, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
f g : C ⟶ D
h : Homotopy f g
i j : ι
w : ¬ComplexShape.Rel c j i
⊢ F.map (Homotopy.hom h i j) = 0
[PROOFSTEP]
rw [h.zero i j w, F.map_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.479401, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
f g : C ⟶ D
h : Homotopy f g
i : ι
⊢ Hom.f ((mapHomologicalComplex F c).map f) i =
((↑(dNext i) fun i j => F.map (Homotopy.hom h i j)) + ↑(prevD i) fun i j => F.map (Homotopy.hom h i j)) +
Hom.f ((mapHomologicalComplex F c).map g) i
[PROOFSTEP]
have H := h.comm i
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.479401, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
f g : C ⟶ D
h : Homotopy f g
i : ι
H : Hom.f f i = ↑(dNext i) h.hom + ↑(prevD i) h.hom + Hom.f g i
⊢ Hom.f ((mapHomologicalComplex F c).map f) i =
((↑(dNext i) fun i j => F.map (Homotopy.hom h i j)) + ↑(prevD i) fun i j => F.map (Homotopy.hom h i j)) +
Hom.f ((mapHomologicalComplex F c).map g) i
[PROOFSTEP]
dsimp [dNext, prevD] at H ⊢
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.479401, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
f g : C ⟶ D
h : Homotopy f g
i : ι
H :
Hom.f f i =
d C i (ComplexShape.next c i) ≫ Homotopy.hom h (ComplexShape.next c i) i +
Homotopy.hom h i (ComplexShape.prev c i) ≫ d D (ComplexShape.prev c i) i +
Hom.f g i
⊢ F.map (Hom.f f i) =
F.map (d C i (ComplexShape.next c i)) ≫ F.map (Homotopy.hom h (ComplexShape.next c i) i) +
F.map (Homotopy.hom h i (ComplexShape.prev c i)) ≫ F.map (d D (ComplexShape.prev c i) i) +
F.map (Hom.f g i)
[PROOFSTEP]
simp [H]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{?u.486182, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
h : HomotopyEquiv C D
⊢ Homotopy ((mapHomologicalComplex F c).map h.hom ≫ (mapHomologicalComplex F c).map h.inv)
(𝟙 ((mapHomologicalComplex F c).obj C))
[PROOFSTEP]
rw [← (F.mapHomologicalComplex c).map_comp, ← (F.mapHomologicalComplex c).map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{?u.486182, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
h : HomotopyEquiv C D
⊢ Homotopy ((mapHomologicalComplex F c).map (h.hom ≫ h.inv)) ((mapHomologicalComplex F c).map (𝟙 C))
[PROOFSTEP]
exact F.mapHomotopy h.homotopyHomInvId
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{?u.486182, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
h : HomotopyEquiv C D
⊢ Homotopy ((mapHomologicalComplex F c).map h.inv ≫ (mapHomologicalComplex F c).map h.hom)
(𝟙 ((mapHomologicalComplex F c).obj D))
[PROOFSTEP]
rw [← (F.mapHomologicalComplex c).map_comp, ← (F.mapHomologicalComplex c).map_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{?u.486182, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
h : HomotopyEquiv C D
⊢ Homotopy ((mapHomologicalComplex F c).map (h.inv ≫ h.hom)) ((mapHomologicalComplex F c).map (𝟙 D))
[PROOFSTEP]
exact F.mapHomotopy h.homotopyInvHomId
| {"mathlib_filename": "Mathlib.Algebra.Homology.Homotopy", "llama_tokens": 64601} |
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
s : Finset α
hs : f.support ⊆ s
g : α → M → N
h : ∀ (i : α), i ∈ s → g i 0 = 1
⊢ prod f g = ∏ x in s, g x (↑f x)
[PROOFSTEP]
refine Finset.prod_subset hs fun x hxs hx => h x hxs ▸ (congr_arg (g x) ?_)
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x✝ : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
s : Finset α
hs : f.support ⊆ s
g : α → M → N
h : ∀ (i : α), i ∈ s → g i 0 = 1
x : α
hxs : x ∈ s
hx : ¬x ∈ f.support
⊢ ↑f x = 0
[PROOFSTEP]
exact not_mem_support_iff.1 hx
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
a : α
b : M
h : α → M → N
h_zero : h a 0 = 1
⊢ ∏ x in {a}, h x (↑(single a b) x) = h a b
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0✝ : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H✝ : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : M → M'
hf : f 0 = 0
g : α →₀ M
h : α → M' → N
h0 : ∀ (a : α), h a 0 = 1
x✝¹ : α
x✝ : x✝¹ ∈ g.support
H : ¬x✝¹ ∈ (mapRange f hf g).support
⊢ h x✝¹ (↑(mapRange f hf g) x✝¹) = 1
[PROOFSTEP]
rw [not_mem_support_iff.1 H, h0]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁶ : AddCommMonoid A
inst✝⁵ : AddCommMonoid B
inst✝⁴ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝³ : Zero M
inst✝² : Zero M'
inst✝¹ : CommMonoid N
inst✝ : DecidableEq α
f : α →₀ M
a : α
b : α → M → N
⊢ (prod f fun x v => if a = x then b x v else 1) = if a ∈ f.support then b a (↑f a) else 1
[PROOFSTEP]
dsimp [Finsupp.prod]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁶ : AddCommMonoid A
inst✝⁵ : AddCommMonoid B
inst✝⁴ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝³ : Zero M
inst✝² : Zero M'
inst✝¹ : CommMonoid N
inst✝ : DecidableEq α
f : α →₀ M
a : α
b : α → M → N
⊢ (∏ a_1 in f.support, if a = a_1 then b a_1 (↑f a_1) else 1) = if a ∈ f.support then b a (↑f a) else 1
[PROOFSTEP]
rw [f.support.prod_ite_eq]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁷ : AddCommMonoid A
inst✝⁶ : AddCommMonoid B
inst✝⁵ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N✝ : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝⁴ : Zero M
inst✝³ : Zero M'
inst✝² : CommMonoid N✝
inst✝¹ : DecidableEq α
N : Type u_16
inst✝ : AddCommMonoid N
f : α →₀ N
a : α
⊢ (sum f fun x v => if a = x then v else 0) = ↑f a
[PROOFSTEP]
classical
convert f.sum_ite_eq a fun _ => id
simp [ite_eq_right_iff.2 Eq.symm]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁷ : AddCommMonoid A
inst✝⁶ : AddCommMonoid B
inst✝⁵ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N✝ : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝⁴ : Zero M
inst✝³ : Zero M'
inst✝² : CommMonoid N✝
inst✝¹ : DecidableEq α
N : Type u_16
inst✝ : AddCommMonoid N
f : α →₀ N
a : α
⊢ (sum f fun x v => if a = x then v else 0) = ↑f a
[PROOFSTEP]
convert f.sum_ite_eq a fun _ => id
[GOAL]
case h.e'_3
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁷ : AddCommMonoid A
inst✝⁶ : AddCommMonoid B
inst✝⁵ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N✝ : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝⁴ : Zero M
inst✝³ : Zero M'
inst✝² : CommMonoid N✝
inst✝¹ : DecidableEq α
N : Type u_16
inst✝ : AddCommMonoid N
f : α →₀ N
a : α
⊢ ↑f a = if a ∈ f.support then id (↑f a) else 0
[PROOFSTEP]
simp [ite_eq_right_iff.2 Eq.symm]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁷ : AddCommMonoid A
inst✝⁶ : AddCommMonoid B
inst✝⁵ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N✝ : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝⁴ : Zero M
inst✝³ : Zero M'
inst✝² : CommMonoid N✝
inst✝¹ : DecidableEq α
N : Type u_16
inst✝ : AddCommMonoid N
f : α →₀ N
a : α
⊢ (if a ∈ f.support then ↑f a else 0) = ↑f a
[PROOFSTEP]
simp only [mem_support_iff, ne_eq, ite_eq_left_iff, not_not]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁷ : AddCommMonoid A
inst✝⁶ : AddCommMonoid B
inst✝⁵ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N✝ : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝⁴ : Zero M
inst✝³ : Zero M'
inst✝² : CommMonoid N✝
inst✝¹ : DecidableEq α
N : Type u_16
inst✝ : AddCommMonoid N
f : α →₀ N
a : α
⊢ ↑f a = 0 → 0 = ↑f a
[PROOFSTEP]
exact fun h ↦ h.symm
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁶ : AddCommMonoid A
inst✝⁵ : AddCommMonoid B
inst✝⁴ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝³ : Zero M
inst✝² : Zero M'
inst✝¹ : CommMonoid N
inst✝ : DecidableEq α
f : α →₀ M
a : α
b : α → M → N
⊢ (prod f fun x v => if x = a then b x v else 1) = if a ∈ f.support then b a (↑f a) else 1
[PROOFSTEP]
dsimp [Finsupp.prod]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁶ : AddCommMonoid A
inst✝⁵ : AddCommMonoid B
inst✝⁴ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝³ : Zero M
inst✝² : Zero M'
inst✝¹ : CommMonoid N
inst✝ : DecidableEq α
f : α →₀ M
a : α
b : α → M → N
⊢ (∏ a_1 in f.support, if a_1 = a then b a_1 (↑f a_1) else 1) = if a ∈ f.support then b a (↑f a) else 1
[PROOFSTEP]
rw [f.support.prod_ite_eq']
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁷ : AddCommMonoid A
inst✝⁶ : AddCommMonoid B
inst✝⁵ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N✝ : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝⁴ : Zero M
inst✝³ : Zero M'
inst✝² : CommMonoid N✝
inst✝¹ : DecidableEq α
N : Type u_16
inst✝ : AddCommMonoid N
f : α →₀ N
a : α
⊢ (sum f fun x v => if x = a then v else 0) = ↑f a
[PROOFSTEP]
classical
convert f.sum_ite_eq' a fun _ => id
simp [ite_eq_right_iff.2 Eq.symm]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁷ : AddCommMonoid A
inst✝⁶ : AddCommMonoid B
inst✝⁵ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N✝ : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝⁴ : Zero M
inst✝³ : Zero M'
inst✝² : CommMonoid N✝
inst✝¹ : DecidableEq α
N : Type u_16
inst✝ : AddCommMonoid N
f : α →₀ N
a : α
⊢ (sum f fun x v => if x = a then v else 0) = ↑f a
[PROOFSTEP]
convert f.sum_ite_eq' a fun _ => id
[GOAL]
case h.e'_3
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁷ : AddCommMonoid A
inst✝⁶ : AddCommMonoid B
inst✝⁵ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N✝ : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝⁴ : Zero M
inst✝³ : Zero M'
inst✝² : CommMonoid N✝
inst✝¹ : DecidableEq α
N : Type u_16
inst✝ : AddCommMonoid N
f : α →₀ N
a : α
⊢ ↑f a = if a ∈ f.support then id (↑f a) else 0
[PROOFSTEP]
simp [ite_eq_right_iff.2 Eq.symm]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
s : Finset α
f : α → M
g : α → M → N
hf : ∀ (a : α), f a ≠ 0 → a ∈ s
hg : ∀ (a : α), g a 0 = 1
⊢ ∀ (x : α), x ∈ s → ¬x ∈ (onFinset s f hf).support → g x (↑(onFinset s f hf) x) = 1
[PROOFSTEP]
simp (config := { contextual := true }) [*]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
y : α
g : α → M → N
hyf : y ∈ f.support
⊢ g y (↑f y) * prod (erase y f) g = prod f g
[PROOFSTEP]
classical
rw [Finsupp.prod, Finsupp.prod, ← Finset.mul_prod_erase _ _ hyf, Finsupp.support_erase, Finset.prod_congr rfl]
intro h hx
rw [Finsupp.erase_ne (ne_of_mem_erase hx)]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
y : α
g : α → M → N
hyf : y ∈ f.support
⊢ g y (↑f y) * prod (erase y f) g = prod f g
[PROOFSTEP]
rw [Finsupp.prod, Finsupp.prod, ← Finset.mul_prod_erase _ _ hyf, Finsupp.support_erase, Finset.prod_congr rfl]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
y : α
g : α → M → N
hyf : y ∈ f.support
⊢ ∀ (x : α), x ∈ Finset.erase f.support y → g x (↑(erase y f) x) = g x (↑f x)
[PROOFSTEP]
intro h hx
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
y : α
g : α → M → N
hyf : y ∈ f.support
h : α
hx : h ∈ Finset.erase f.support y
⊢ g h (↑(erase y f) h) = g h (↑f h)
[PROOFSTEP]
rw [Finsupp.erase_ne (ne_of_mem_erase hx)]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
y : α
g : α → M → N
hg : ∀ (i : α), g i 0 = 1
⊢ g y (↑f y) * prod (erase y f) g = prod f g
[PROOFSTEP]
classical
by_cases hyf : y ∈ f.support
· exact Finsupp.mul_prod_erase f y g hyf
· rw [not_mem_support_iff.mp hyf, hg y, erase_of_not_mem_support hyf, one_mul]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
y : α
g : α → M → N
hg : ∀ (i : α), g i 0 = 1
⊢ g y (↑f y) * prod (erase y f) g = prod f g
[PROOFSTEP]
by_cases hyf : y ∈ f.support
[GOAL]
case pos
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
y : α
g : α → M → N
hg : ∀ (i : α), g i 0 = 1
hyf : y ∈ f.support
⊢ g y (↑f y) * prod (erase y f) g = prod f g
[PROOFSTEP]
exact Finsupp.mul_prod_erase f y g hyf
[GOAL]
case neg
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : Zero M
inst✝¹ : Zero M'
inst✝ : CommMonoid N
f : α →₀ M
y : α
g : α → M → N
hg : ∀ (i : α), g i 0 = 1
hyf : ¬y ∈ f.support
⊢ g y (↑f y) * prod (erase y f) g = prod f g
[PROOFSTEP]
rw [not_mem_support_iff.mp hyf, hg y, erase_of_not_mem_support hyf, one_mul]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝¹ : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s✝ : Multiset M
a✝ : α
a : M
s : Multiset M
ih : single a✝ (Multiset.sum s) = Multiset.sum (Multiset.map (single a✝) s)
⊢ single a✝ (Multiset.sum (a ::ₘ s)) = Multiset.sum (Multiset.map (single a✝) (a ::ₘ s))
[PROOFSTEP]
rw [Multiset.sum_cons, single_add, ih, Multiset.map_cons, Multiset.sum_cons]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s : Finset ι
f : ι → M
a : α
⊢ single a (∑ b in s, f b) = ∑ b in s, single a (f b)
[PROOFSTEP]
trans
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s : Finset ι
f : ι → M
a : α
⊢ single a (∑ b in s, f b) = ?m.275536
[PROOFSTEP]
apply single_multiset_sum
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s : Finset ι
f : ι → M
a : α
⊢ Multiset.sum (Multiset.map (single a) (Multiset.map (fun b => f b) s.val)) = ∑ b in s, single a (f b)
[PROOFSTEP]
rw [Multiset.map_map]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s : Finset ι
f : ι → M
a : α
⊢ Multiset.sum (Multiset.map (single a ∘ fun b => f b) s.val) = ∑ b in s, single a (f b)
[PROOFSTEP]
rfl
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : DecidableEq β
inst✝¹ : Zero M
inst✝ : AddCommMonoid N
f : α →₀ M
g : α → M → β →₀ N
⊢ (sum f g).support ⊆ Finset.biUnion f.support fun a => (g a (↑f a)).support
[PROOFSTEP]
have : ∀ c, (f.sum fun a b => g a b c) ≠ 0 → ∃ a, f a ≠ 0 ∧ ¬(g a (f a)) c = 0 := fun a₁ h =>
let ⟨a, ha, ne⟩ := Finset.exists_ne_zero_of_sum_ne_zero h
⟨a, mem_support_iff.mp ha, ne⟩
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : DecidableEq β
inst✝¹ : Zero M
inst✝ : AddCommMonoid N
f : α →₀ M
g : α → M → β →₀ N
this : ∀ (c : β), (sum f fun a b => ↑(g a b) c) ≠ 0 → ∃ a, ↑f a ≠ 0 ∧ ¬↑(g a (↑f a)) c = 0
⊢ (sum f g).support ⊆ Finset.biUnion f.support fun a => (g a (↑f a)).support
[PROOFSTEP]
simpa only [Finset.subset_iff, mem_support_iff, Finset.mem_biUnion, sum_apply, exists_prop]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : DecidableEq β
inst✝ : AddCommMonoid M
s : Finset α
f : α → β →₀ M
⊢ (Finset.sum s f).support ⊆ Finset.biUnion s fun x => (f x).support
[PROOFSTEP]
rw [← Finset.sup_eq_biUnion]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : DecidableEq β
inst✝ : AddCommMonoid M
s : Finset α
f : α → β →₀ M
⊢ (Finset.sum s f).support ⊆ sup s fun x => (f x).support
[PROOFSTEP]
induction' s using Finset.cons_induction_on with a s ha ih
[GOAL]
case h₁
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : DecidableEq β
inst✝ : AddCommMonoid M
f : α → β →₀ M
⊢ (Finset.sum ∅ f).support ⊆ sup ∅ fun x => (f x).support
[PROOFSTEP]
rfl
[GOAL]
case h₂
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : DecidableEq β
inst✝ : AddCommMonoid M
f : α → β →₀ M
a : α
s : Finset α
ha : ¬a ∈ s
ih : (Finset.sum s f).support ⊆ sup s fun x => (f x).support
⊢ (Finset.sum (cons a s ha) f).support ⊆ sup (cons a s ha) fun x => (f x).support
[PROOFSTEP]
rw [Finset.sum_cons, Finset.sup_cons]
[GOAL]
case h₂
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : DecidableEq β
inst✝ : AddCommMonoid M
f : α → β →₀ M
a : α
s : Finset α
ha : ¬a ∈ s
ih : (Finset.sum s f).support ⊆ sup s fun x => (f x).support
⊢ (f a + ∑ x in s, f x).support ⊆ (f a).support ⊔ sup s fun x => (f x).support
[PROOFSTEP]
exact support_add.trans (Finset.union_subset_union (Finset.Subset.refl _) ih)
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : DecidableEq α
inst✝¹ : AddZeroClass M
inst✝ : CommMonoid N
f g : α →₀ M
h : α → M → N
h_zero : ∀ (a : α), a ∈ f.support ∪ g.support → h a 0 = 1
h_add : ∀ (a : α), a ∈ f.support ∪ g.support → ∀ (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂
⊢ prod (f + g) h = prod f h * prod g h
[PROOFSTEP]
rw [Finsupp.prod_of_support_subset f (subset_union_left _ g.support) h h_zero,
Finsupp.prod_of_support_subset g (subset_union_right f.support _) h h_zero, ← Finset.prod_mul_distrib,
Finsupp.prod_of_support_subset (f + g) Finsupp.support_add h h_zero]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : DecidableEq α
inst✝¹ : AddZeroClass M
inst✝ : CommMonoid N
f g : α →₀ M
h : α → M → N
h_zero : ∀ (a : α), a ∈ f.support ∪ g.support → h a 0 = 1
h_add : ∀ (a : α), a ∈ f.support ∪ g.support → ∀ (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂
⊢ ∏ x in f.support ∪ g.support, h x (↑(f + g) x) = ∏ x in f.support ∪ g.support, h x (↑f x) * h x (↑g x)
[PROOFSTEP]
exact Finset.prod_congr rfl fun x hx => by apply h_add x hx
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x✝ : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : DecidableEq α
inst✝¹ : AddZeroClass M
inst✝ : CommMonoid N
f g : α →₀ M
h : α → M → N
h_zero : ∀ (a : α), a ∈ f.support ∪ g.support → h a 0 = 1
h_add : ∀ (a : α), a ∈ f.support ∪ g.support → ∀ (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂
x : α
hx : x ∈ f.support ∪ g.support
⊢ h x (↑(f + g) x) = h x (↑f x) * h x (↑g x)
[PROOFSTEP]
apply h_add x hx
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddZeroClass M
inst✝ : CommMonoid N
f g : α →₀ M
h : α → M → N
h_zero : ∀ (a : α), h a 0 = 1
h_add : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂
⊢ prod (f + g) h = prod f h * prod g h
[PROOFSTEP]
classical exact prod_add_index (fun a _ => h_zero a) fun a _ => h_add a
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddZeroClass M
inst✝ : CommMonoid N
f g : α →₀ M
h : α → M → N
h_zero : ∀ (a : α), h a 0 = 1
h_add : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂
⊢ prod (f + g) h = prod f h * prod g h
[PROOFSTEP]
exact prod_add_index (fun a _ => h_zero a) fun a _ => h_add a
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddZeroClass M
inst✝ : AddCommMonoid N
F : α → M →+ N
⊢ (fun F x => AddMonoidHom.comp F (singleAddHom x))
((fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
F) =
F
[PROOFSTEP]
ext
[GOAL]
case h.h
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddZeroClass M
inst✝ : AddCommMonoid N
F : α → M →+ N
x✝¹ : α
x✝ : M
⊢ ↑((fun F x => AddMonoidHom.comp F (singleAddHom x))
((fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
F)
x✝¹)
x✝ =
↑(F x✝¹) x✝
[PROOFSTEP]
simp [singleAddHom]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddZeroClass M
inst✝ : AddCommMonoid N
F : (α →₀ M) →+ N
⊢ (fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) =
F
[PROOFSTEP]
apply Finsupp.addHom_ext'
[GOAL]
case H
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddZeroClass M
inst✝ : AddCommMonoid N
F : (α →₀ M) →+ N
⊢ ∀ (x : α),
AddMonoidHom.comp
((fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
((fun F x => AddMonoidHom.comp F (singleAddHom x)) F))
(singleAddHom x) =
AddMonoidHom.comp F (singleAddHom x)
[PROOFSTEP]
simp [singleAddHom, AddMonoidHom.comp, Function.comp]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G✝ : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddZeroClass M
inst✝ : AddCommMonoid N
F G : α → M →+ N
⊢ Equiv.toFun
{
toFun := fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x), map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) },
invFun := fun F x => AddMonoidHom.comp F (singleAddHom x),
left_inv :=
(_ :
∀ (F : α → M →+ N),
(fun F x => AddMonoidHom.comp F (singleAddHom x))
((fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
F) =
F),
right_inv :=
(_ :
∀ (F : (α →₀ M) →+ N),
(fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) =
F) }
(F + G) =
Equiv.toFun
{
toFun := fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) },
invFun := fun F x => AddMonoidHom.comp F (singleAddHom x),
left_inv :=
(_ :
∀ (F : α → M →+ N),
(fun F x => AddMonoidHom.comp F (singleAddHom x))
((fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
F) =
F),
right_inv :=
(_ :
∀ (F : (α →₀ M) →+ N),
(fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) =
F) }
F +
Equiv.toFun
{
toFun := fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) },
invFun := fun F x => AddMonoidHom.comp F (singleAddHom x),
left_inv :=
(_ :
∀ (F : α → M →+ N),
(fun F x => AddMonoidHom.comp F (singleAddHom x))
((fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
F) =
F),
right_inv :=
(_ :
∀ (F : (α →₀ M) →+ N),
(fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) =
F) }
G
[PROOFSTEP]
ext x
[GOAL]
case H.h
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x✝¹ : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G✝ : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddZeroClass M
inst✝ : AddCommMonoid N
F G : α → M →+ N
x : α
x✝ : M
⊢ ↑(AddMonoidHom.comp
(Equiv.toFun
{
toFun := fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) },
invFun := fun F x => AddMonoidHom.comp F (singleAddHom x),
left_inv :=
(_ :
∀ (F : α → M →+ N),
(fun F x => AddMonoidHom.comp F (singleAddHom x))
((fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) =
(sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
F) =
F),
right_inv :=
(_ :
∀ (F : (α →₀ M) →+ N),
(fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) =
(sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) =
F) }
(F + G))
(singleAddHom x))
x✝ =
↑(AddMonoidHom.comp
(Equiv.toFun
{
toFun := fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) },
invFun := fun F x => AddMonoidHom.comp F (singleAddHom x),
left_inv :=
(_ :
∀ (F : α → M →+ N),
(fun F x => AddMonoidHom.comp F (singleAddHom x))
((fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) =
(sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
F) =
F),
right_inv :=
(_ :
∀ (F : (α →₀ M) →+ N),
(fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) =
(sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) =
F) }
F +
Equiv.toFun
{
toFun := fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) = (sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) },
invFun := fun F x => AddMonoidHom.comp F (singleAddHom x),
left_inv :=
(_ :
∀ (F : α → M →+ N),
(fun F x => AddMonoidHom.comp F (singleAddHom x))
((fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) =
(sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
F) =
F),
right_inv :=
(_ :
∀ (F : (α →₀ M) →+ N),
(fun F =>
{
toZeroHom :=
{ toFun := fun f => sum f fun x => ↑(F x),
map_zero' := (_ : ∑ x in ∅, (fun x => ↑(F x)) x (↑0 x) = 0) },
map_add' :=
(_ :
∀ (x x_1 : α →₀ M),
(sum (x + x_1) fun a => ↑(F a)) =
(sum x fun a => ↑(F a)) + sum x_1 fun a => ↑(F a)) })
((fun F x => AddMonoidHom.comp F (singleAddHom x)) F) =
F) }
G)
(singleAddHom x))
x✝
[PROOFSTEP]
exact sum_add
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i✝ : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : Fintype α
i : α
m : M
⊢ ∑ j : α, ↑(single i m) j = m
[PROOFSTEP]
classical rw [single, coe_mk, Finset.sum_pi_single']
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i✝ : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : Fintype α
i : α
m : M
⊢ ∑ j : α, ↑(single i m) j = m
[PROOFSTEP]
rw [single, coe_mk, Finset.sum_pi_single']
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i✝ : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : Fintype α
i : α
m : M
⊢ (if i ∈ univ then m else 0) = m
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i✝ : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : Fintype α
i : α
m : M
⊢ ∑ j : α, ↑(single j m) i = m
[PROOFSTEP]
simp_rw [single, coe_mk]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i✝ : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : Fintype α
i : α
m : M
⊢ ∑ x : α, Pi.single x m i = m
[PROOFSTEP]
classical rw [Finset.sum_pi_single]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i✝ : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : Fintype α
i : α
m : M
⊢ ∑ x : α, Pi.single x m i = m
[PROOFSTEP]
rw [Finset.sum_pi_single]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i✝ : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : Fintype α
i : α
m : M
⊢ (if i ∈ univ then m else 0) = m
[PROOFSTEP]
simp
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁵ : AddCommMonoid A
inst✝⁴ : AddCommMonoid B
inst✝³ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝² : AddCommMonoid M
inst✝¹ : AddCommMonoid N
inst✝ : AddCommMonoid P
g : N →+ P
f : α → M →+ N
a : α
⊢ ↑(AddEquiv.symm liftAddHom) (AddMonoidHom.comp g (↑liftAddHom f)) a = AddMonoidHom.comp g (f a)
[PROOFSTEP]
rw [liftAddHom_symm_apply, AddMonoidHom.comp_assoc, liftAddHom_comp_single]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : Zero M
inst✝ : CommMonoid N
v : α →₀ M
f : α ↪ β
g : β → M → N
⊢ prod (embDomain f v) g = prod v fun a b => g (↑f a) b
[PROOFSTEP]
rw [prod, prod, support_embDomain, Finset.prod_map]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : Zero M
inst✝ : CommMonoid N
v : α →₀ M
f : α ↪ β
g : β → M → N
⊢ ∏ x in v.support, g (↑f x) (↑(embDomain f v) (↑f x)) = ∏ a in v.support, g (↑f a) (↑v a)
[PROOFSTEP]
simp_rw [embDomain_apply]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝¹ : Finset α
f : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : CommMonoid N
s✝ : Finset ι
g : ι → α →₀ M
h : α → M → N
h_zero : ∀ (a : α), h a 0 = 1
h_add : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ * h a b₂
a : ι
s : Finset ι
has : ¬a ∈ s
ih : ∏ i in s, prod (g i) h = prod (∑ i in s, g i) h
⊢ ∏ i in cons a s has, prod (g i) h = prod (∑ i in cons a s has, g i) h
[PROOFSTEP]
rw [prod_cons, ih, sum_cons, prod_add_index' h_zero h_add]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : AddCommMonoid N
f : Multiset (α →₀ M)
h : α → M → N
h₀ : ∀ (a : α), h a 0 = 0
h₁ : ∀ (a : α) (b₁ b₂ : M), h a (b₁ + b₂) = h a b₁ + h a b₂
a : α →₀ M
s : Multiset (α →₀ M)
ih : sum (Multiset.sum s) h = Multiset.sum (Multiset.map (fun g => sum g h) s)
⊢ sum (Multiset.sum (a ::ₘ s)) h = Multiset.sum (Multiset.map (fun g => sum g h) (a ::ₘ s))
[PROOFSTEP]
rw [Multiset.sum_cons, Multiset.map_cons, Multiset.sum_cons, sum_add_index' h₀ h₁, ih]
[GOAL]
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α✝
f : α✝ → ι✝ →₀ A
i : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
⊢ (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support
[PROOFSTEP]
classical
-- Porting note: apply Finset.induction_on s was not working; refine does.
refine Finset.induction_on s ?_ ?_
· simp
· intro i s hi
simp only [hi, sum_insert, not_false_iff, biUnion_insert]
intro hs
rw [Finsupp.support_add_eq, hs]
rw [hs, Finset.disjoint_biUnion_right]
intro j hj
refine' h _ _ (ne_of_mem_of_not_mem hj hi).symm
[GOAL]
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α✝
f : α✝ → ι✝ →₀ A
i : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
⊢ (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support
[PROOFSTEP]
refine Finset.induction_on s ?_ ?_
[GOAL]
case refine_1
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α✝
f : α✝ → ι✝ →₀ A
i : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
⊢ (∑ i in ∅, g i).support = Finset.biUnion ∅ fun i => (g i).support
[PROOFSTEP]
simp
[GOAL]
case refine_2
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α✝
f : α✝ → ι✝ →₀ A
i : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
⊢ ∀ ⦃a : ι⦄ {s : Finset ι},
¬a ∈ s →
((∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support) →
(∑ i in insert a s, g i).support = Finset.biUnion (insert a s) fun i => (g i).support
[PROOFSTEP]
intro i s hi
[GOAL]
case refine_2
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝¹ : Finset α✝
f : α✝ → ι✝ →₀ A
i✝ : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s✝ : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
i : ι
s : Finset ι
hi : ¬i ∈ s
⊢ ((∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support) →
(∑ i in insert i s, g i).support = Finset.biUnion (insert i s) fun i => (g i).support
[PROOFSTEP]
simp only [hi, sum_insert, not_false_iff, biUnion_insert]
[GOAL]
case refine_2
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝¹ : Finset α✝
f : α✝ → ι✝ →₀ A
i✝ : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s✝ : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
i : ι
s : Finset ι
hi : ¬i ∈ s
⊢ ((∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support) →
(g i + ∑ i in s, g i).support = (g i).support ∪ Finset.biUnion s fun i => (g i).support
[PROOFSTEP]
intro hs
[GOAL]
case refine_2
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝¹ : Finset α✝
f : α✝ → ι✝ →₀ A
i✝ : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s✝ : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
i : ι
s : Finset ι
hi : ¬i ∈ s
hs : (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support
⊢ (g i + ∑ i in s, g i).support = (g i).support ∪ Finset.biUnion s fun i => (g i).support
[PROOFSTEP]
rw [Finsupp.support_add_eq, hs]
[GOAL]
case refine_2
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝¹ : Finset α✝
f : α✝ → ι✝ →₀ A
i✝ : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s✝ : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
i : ι
s : Finset ι
hi : ¬i ∈ s
hs : (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support
⊢ Disjoint (g i).support (∑ i in s, g i).support
[PROOFSTEP]
rw [hs, Finset.disjoint_biUnion_right]
[GOAL]
case refine_2
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝¹ : Finset α✝
f : α✝ → ι✝ →₀ A
i✝ : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s✝ : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
i : ι
s : Finset ι
hi : ¬i ∈ s
hs : (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support
⊢ ∀ (i_1 : ι), i_1 ∈ s → Disjoint (g i).support (g i_1).support
[PROOFSTEP]
intro j hj
[GOAL]
case refine_2
α✝ : Type u_1
ι✝ : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι✝ → A → C
h0 : ∀ (i : ι✝), t i 0 = 0
h1 : ∀ (i : ι✝) (x y : A), t i (x + y) = t i x + t i y
s✝¹ : Finset α✝
f : α✝ → ι✝ →₀ A
i✝ : ι✝
g✝ : ι✝ →₀ A
k : ι✝ → A → γ → B
x : γ
β : Type u_7
M✝ : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
α : Type u_16
ι : Type u_17
M : Type u_18
inst✝¹ : DecidableEq α
inst✝ : AddCommMonoid M
g : ι → α →₀ M
s✝ : Finset ι
h : ∀ (i₁ i₂ : ι), i₁ ≠ i₂ → Disjoint (g i₁).support (g i₂).support
i : ι
s : Finset ι
hi : ¬i ∈ s
hs : (∑ i in s, g i).support = Finset.biUnion s fun i => (g i).support
j : ι
hj : j ∈ s
⊢ Disjoint (g i).support (g j).support
[PROOFSTEP]
refine' h _ _ (ne_of_mem_of_not_mem hj hi).symm
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β✝ : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
f1 f2 : α →₀ M
hd : Disjoint f1.support f2.support
β : Type u_16
inst✝ : CommMonoid β
g : α → M → β
⊢ prod (f1 + f2) g = prod f1 g * prod f2 g
[PROOFSTEP]
have : ∀ {f1 f2 : α →₀ M}, Disjoint f1.support f2.support → (∏ x in f1.support, g x (f1 x + f2 x)) = f1.prod g :=
fun hd => Finset.prod_congr rfl fun x hx => by simp only [not_mem_support_iff.mp (disjoint_left.mp hd hx), add_zero]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x✝ : γ
β✝ : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
f1 f2 : α →₀ M
hd✝ : Disjoint f1.support f2.support
β : Type u_16
inst✝ : CommMonoid β
g : α → M → β
f1✝ f2✝ : α →₀ M
hd : Disjoint f1✝.support f2✝.support
x : α
hx : x ∈ f1✝.support
⊢ g x (↑f1✝ x + ↑f2✝ x) = g x (↑f1✝ x)
[PROOFSTEP]
simp only [not_mem_support_iff.mp (disjoint_left.mp hd hx), add_zero]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β✝ : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
f1 f2 : α →₀ M
hd : Disjoint f1.support f2.support
β : Type u_16
inst✝ : CommMonoid β
g : α → M → β
this : ∀ {f1 f2 : α →₀ M}, Disjoint f1.support f2.support → ∏ x in f1.support, g x (↑f1 x + ↑f2 x) = prod f1 g
⊢ prod (f1 + f2) g = prod f1 g * prod f2 g
[PROOFSTEP]
classical simp_rw [← this hd, ← this hd.symm, add_comm (f2 _), Finsupp.prod, support_add_eq hd, prod_union hd,
add_apply]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g✝ : ι →₀ A
k : ι → A → γ → B
x : γ
β✝ : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
f1 f2 : α →₀ M
hd : Disjoint f1.support f2.support
β : Type u_16
inst✝ : CommMonoid β
g : α → M → β
this : ∀ {f1 f2 : α →₀ M}, Disjoint f1.support f2.support → ∏ x in f1.support, g x (↑f1 x + ↑f2 x) = prod f1 g
⊢ prod (f1 + f2) g = prod f1 g * prod f2 g
[PROOFSTEP]
simp_rw [← this hd, ← this hd.symm, add_comm (f2 _), Finsupp.prod, support_add_eq hd, prod_union hd, add_apply]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : CommMonoid N
f1 f2 : α →₀ M
g1 g2 : α → M → N
h1 : f1.support ⊆ f2.support
h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a)
⊢ prod f1 g1 ∣ prod f2 g2
[PROOFSTEP]
classical
simp only [Finsupp.prod, Finsupp.prod_mul]
rw [← sdiff_union_of_subset h1, prod_union sdiff_disjoint]
apply dvd_mul_of_dvd_right
apply prod_dvd_prod_of_dvd
exact h2
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : CommMonoid N
f1 f2 : α →₀ M
g1 g2 : α → M → N
h1 : f1.support ⊆ f2.support
h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a)
⊢ prod f1 g1 ∣ prod f2 g2
[PROOFSTEP]
simp only [Finsupp.prod, Finsupp.prod_mul]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : CommMonoid N
f1 f2 : α →₀ M
g1 g2 : α → M → N
h1 : f1.support ⊆ f2.support
h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a)
⊢ ∏ x in f1.support, g1 x (↑f1 x) ∣ ∏ x in f2.support, g2 x (↑f2 x)
[PROOFSTEP]
rw [← sdiff_union_of_subset h1, prod_union sdiff_disjoint]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : CommMonoid N
f1 f2 : α →₀ M
g1 g2 : α → M → N
h1 : f1.support ⊆ f2.support
h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a)
⊢ ∏ x in f1.support, g1 x (↑f1 x) ∣ (∏ x in f2.support \ f1.support, g2 x (↑f2 x)) * ∏ x in f1.support, g2 x (↑f2 x)
[PROOFSTEP]
apply dvd_mul_of_dvd_right
[GOAL]
case h
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : CommMonoid N
f1 f2 : α →₀ M
g1 g2 : α → M → N
h1 : f1.support ⊆ f2.support
h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a)
⊢ ∏ x in f1.support, g1 x (↑f1 x) ∣ ∏ x in f1.support, g2 x (↑f2 x)
[PROOFSTEP]
apply prod_dvd_prod_of_dvd
[GOAL]
case h.h
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1✝ : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : AddCommMonoid M
inst✝ : CommMonoid N
f1 f2 : α →₀ M
g1 g2 : α → M → N
h1 : f1.support ⊆ f2.support
h2 : ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a)
⊢ ∀ (a : α), a ∈ f1.support → g1 a (↑f1 a) ∣ g2 a (↑f2 a)
[PROOFSTEP]
exact h2
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s : Finset α
f : (a : α) → a ∈ s → M
⊢ indicator s f = ∑ x in attach s, single (↑x) (f ↑x (_ : ↑x ∈ s))
[PROOFSTEP]
rw [← sum_single (indicator s f), sum, sum_subset (support_indicator_subset _ _), ← sum_attach]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s : Finset α
f : (a : α) → a ∈ s → M
⊢ ∑ x in attach s, single (↑x) (↑(indicator s f) ↑x) = ∑ x in attach s, single (↑x) (f ↑x (_ : ↑x ∈ s))
[PROOFSTEP]
refine' Finset.sum_congr rfl (fun _ _ => _)
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s : Finset α
f : (a : α) → a ∈ s → M
x✝¹ : { x // x ∈ s }
x✝ : x✝¹ ∈ attach s
⊢ single (↑x✝¹) (↑(indicator s f) ↑x✝¹) = single (↑x✝¹) (f ↑x✝¹ (_ : ↑x✝¹ ∈ s))
[PROOFSTEP]
rw [indicator_of_mem]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s : Finset α
f : (a : α) → a ∈ s → M
⊢ ∀ (x : α), x ∈ s → ¬x ∈ (indicator s f).support → single x (↑(indicator s f) x) = 0
[PROOFSTEP]
intro i _ hi
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝³ : AddCommMonoid A
inst✝² : AddCommMonoid B
inst✝¹ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i✝ : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝ : AddCommMonoid M
s : Finset α
f : (a : α) → a ∈ s → M
i : α
a✝ : i ∈ s
hi : ¬i ∈ (indicator s f).support
⊢ single i (↑(indicator s f) i) = 0
[PROOFSTEP]
rw [not_mem_support_iff.mp hi, single_zero]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : Zero M
inst✝ : CommMonoid N
s : Finset α
f : (a : α) → a ∈ s → M
h : α → M → N
h_zero : ∀ (a : α), a ∈ s → h a 0 = 1
⊢ prod (indicator s f) h = ∏ x in attach s, h (↑x) (f ↑x (_ : ↑x ∈ s))
[PROOFSTEP]
rw [prod_of_support_subset _ (support_indicator_subset _ _) h h_zero, ← prod_attach]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : Zero M
inst✝ : CommMonoid N
s : Finset α
f : (a : α) → a ∈ s → M
h : α → M → N
h_zero : ∀ (a : α), a ∈ s → h a 0 = 1
⊢ ∏ x in attach s, h (↑x) (↑(indicator s f) ↑x) = ∏ x in attach s, h (↑x) (f ↑x (_ : ↑x ∈ s))
[PROOFSTEP]
refine' Finset.prod_congr rfl (fun _ _ => _)
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : Zero M
inst✝ : CommMonoid N
s : Finset α
f : (a : α) → a ∈ s → M
h : α → M → N
h_zero : ∀ (a : α), a ∈ s → h a 0 = 1
x✝¹ : { x // x ∈ s }
x✝ : x✝¹ ∈ attach s
⊢ h (↑x✝¹) (↑(indicator s f) ↑x✝¹) = h (↑x✝¹) (f ↑x✝¹ (_ : ↑x✝¹ ∈ s))
[PROOFSTEP]
rw [indicator_of_mem]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
a : α
s : Finset α
has : ¬a ∈ s
ih : sum (∑ x in s, f x) t = ∑ x in s, sum (f x) t
⊢ sum (∑ x in insert a s, f x) t = ∑ x in insert a s, sum (f x) t
[PROOFSTEP]
simp_rw [Finset.sum_insert has, Finsupp.sum_add_index' h0 h1, ih]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : NonUnitalNonAssocSemiring R
inst✝ : NonUnitalNonAssocSemiring S
b : S
s : α →₀ R
f : α → R → S
⊢ sum s f * b = sum s fun a c => f a c * b
[PROOFSTEP]
simp only [Finsupp.sum, Finset.sum_mul]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝⁴ : AddCommMonoid A
inst✝³ : AddCommMonoid B
inst✝² : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s✝ : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
inst✝¹ : NonUnitalNonAssocSemiring R
inst✝ : NonUnitalNonAssocSemiring S
b : S
s : α →₀ R
f : α → R → S
⊢ b * sum s f = sum s fun a c => b * f a c
[PROOFSTEP]
simp only [Finsupp.sum, Finset.mul_sum]
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H✝ : Type u_13
R : Type u_14
S : Type u_15
f : ℕ →₀ ℕ
hf : ¬0 ∈ f.support
a : ℕ
ha : a ∈ f.support
H : a = 0
⊢ False
[PROOFSTEP]
subst H
[GOAL]
α : Type u_1
ι : Type u_2
γ : Type u_3
A : Type u_4
B : Type u_5
C : Type u_6
inst✝² : AddCommMonoid A
inst✝¹ : AddCommMonoid B
inst✝ : AddCommMonoid C
t : ι → A → C
h0 : ∀ (i : ι), t i 0 = 0
h1 : ∀ (i : ι) (x y : A), t i (x + y) = t i x + t i y
s : Finset α
f✝ : α → ι →₀ A
i : ι
g : ι →₀ A
k : ι → A → γ → B
x : γ
β : Type u_7
M : Type u_8
M' : Type u_9
N : Type u_10
P : Type u_11
G : Type u_12
H : Type u_13
R : Type u_14
S : Type u_15
f : ℕ →₀ ℕ
hf : ¬0 ∈ f.support
ha : 0 ∈ f.support
⊢ False
[PROOFSTEP]
exact hf ha
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Finsupp", "llama_tokens": 42515} |
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
n : ℕ
f : C ⟶ D
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ (fun i => n • Hom.f f i) i ≫ d D i j = d C i j ≫ (fun i => n • Hom.f f i) j
[PROOFSTEP]
simp [Preadditive.nsmul_comp, Preadditive.comp_nsmul]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
n : ℤ
f : C ⟶ D
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ (fun i => n • Hom.f f i) i ≫ d D i j = d C i j ≫ (fun i => n • Hom.f f i) j
[PROOFSTEP]
simp [Preadditive.zsmul_comp, Preadditive.comp_zsmul]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
⊢ 0.f = 0
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
⊢ ∀ (x y : C ⟶ D), (x + y).f = x.f + y.f
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
⊢ ∀ (x : C ⟶ D), (-x).f = -x.f
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
⊢ ∀ (x y : C ⟶ D), (x - y).f = x.f - y.f
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
⊢ ∀ (x : C ⟶ D) (n : ℕ), (n • x).f = n • x.f
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
⊢ ∀ (x : C ⟶ D) (n : ℤ), (n • x).f = n • x.f
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
x✝² x✝¹ x✝ : HomologicalComplex V c
f f' : x✝² ⟶ x✝¹
g : x✝¹ ⟶ x✝
⊢ (f + f') ≫ g = f ≫ g + f' ≫ g
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
x✝² x✝¹ x✝ : HomologicalComplex V c
f f' : x✝² ⟶ x✝¹
g : x✝¹ ⟶ x✝
i✝ : ι
⊢ Hom.f ((f + f') ≫ g) i✝ = Hom.f (f ≫ g + f' ≫ g) i✝
[PROOFSTEP]
simp only [comp_f, add_f_apply]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
x✝² x✝¹ x✝ : HomologicalComplex V c
f f' : x✝² ⟶ x✝¹
g : x✝¹ ⟶ x✝
i✝ : ι
⊢ (Hom.f f i✝ + Hom.f f' i✝) ≫ Hom.f g i✝ = Hom.f f i✝ ≫ Hom.f g i✝ + Hom.f f' i✝ ≫ Hom.f g i✝
[PROOFSTEP]
rw [Preadditive.add_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
x✝² x✝¹ x✝ : HomologicalComplex V c
f : x✝² ⟶ x✝¹
g g' : x✝¹ ⟶ x✝
⊢ f ≫ (g + g') = f ≫ g + f ≫ g'
[PROOFSTEP]
ext
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
x✝² x✝¹ x✝ : HomologicalComplex V c
f : x✝² ⟶ x✝¹
g g' : x✝¹ ⟶ x✝
i✝ : ι
⊢ Hom.f (f ≫ (g + g')) i✝ = Hom.f (f ≫ g + f ≫ g') i✝
[PROOFSTEP]
simp only [comp_f, add_f_apply]
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
x✝² x✝¹ x✝ : HomologicalComplex V c
f : x✝² ⟶ x✝¹
g g' : x✝¹ ⟶ x✝
i✝ : ι
⊢ Hom.f f i✝ ≫ (Hom.f g i✝ + Hom.f g' i✝) = Hom.f f i✝ ≫ Hom.f g i✝ + Hom.f f i✝ ≫ Hom.f g' i✝
[PROOFSTEP]
rw [Preadditive.comp_add]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
inst✝³ : HasImages V
inst✝² : HasImageMaps V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
x✝¹ x✝ : HomologicalComplex V c
f g : x✝¹ ⟶ x✝
⊢ (homologyFunctor V c i).map (f + g) = (homologyFunctor V c i).map f + (homologyFunctor V c i).map g
[PROOFSTEP]
dsimp [homologyFunctor]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
inst✝³ : HasImages V
inst✝² : HasImageMaps V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
x✝¹ x✝ : HomologicalComplex V c
f g : x✝¹ ⟶ x✝
⊢ homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo (f + g) i)
(Hom.sqFrom (f + g) i) (_ : (Hom.sqTo (f + g) i).right = (Hom.sqTo (f + g) i).right) =
homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i)
(_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) +
homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo g i) (Hom.sqFrom g i)
(_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right)
[PROOFSTEP]
ext
[GOAL]
case p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
inst✝³ : HasImages V
inst✝² : HasImageMaps V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
x✝¹ x✝ : HomologicalComplex V c
f g : x✝¹ ⟶ x✝
⊢ homology.π (dTo x✝¹ i) (dFrom x✝¹ i) (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) ≫
homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo (f + g) i)
(Hom.sqFrom (f + g) i) (_ : (Hom.sqTo (f + g) i).right = (Hom.sqTo (f + g) i).right) =
homology.π (dTo x✝¹ i) (dFrom x✝¹ i) (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) ≫
(homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo f i) (Hom.sqFrom f i)
(_ : (Hom.sqTo f i).right = (Hom.sqTo f i).right) +
homology.map (_ : dTo x✝¹ i ≫ dFrom x✝¹ i = 0) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) (Hom.sqTo g i) (Hom.sqFrom g i)
(_ : (Hom.sqTo g i).right = (Hom.sqTo g i).right))
[PROOFSTEP]
simp only [homology.π_map, Preadditive.comp_add, ← Preadditive.add_comp]
[GOAL]
case p
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
inst✝³ : HasImages V
inst✝² : HasImageMaps V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
x✝¹ x✝ : HomologicalComplex V c
f g : x✝¹ ⟶ x✝
⊢ kernelSubobjectMap (Hom.sqFrom (f + g) i) ≫ homology.π (dTo x✝ i) (dFrom x✝ i) (_ : dTo x✝ i ≫ dFrom x✝ i = 0) =
(kernelSubobjectMap (Hom.sqFrom f i) + kernelSubobjectMap (Hom.sqFrom g i)) ≫
homology.π (dTo x✝ i) (dFrom x✝ i) (_ : dTo x✝ i ≫ dFrom x✝ i = 0)
[PROOFSTEP]
congr
[GOAL]
case p.e_a
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
inst✝³ : HasImages V
inst✝² : HasImageMaps V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
x✝¹ x✝ : HomologicalComplex V c
f g : x✝¹ ⟶ x✝
⊢ kernelSubobjectMap (Hom.sqFrom (f + g) i) = kernelSubobjectMap (Hom.sqFrom f i) + kernelSubobjectMap (Hom.sqFrom g i)
[PROOFSTEP]
ext
[GOAL]
case p.e_a.h
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g✝ : C ⟶ D
h k : D ⟶ E
i : ι
inst✝³ : HasImages V
inst✝² : HasImageMaps V
inst✝¹ : HasEqualizers V
inst✝ : HasCokernels V
x✝¹ x✝ : HomologicalComplex V c
f g : x✝¹ ⟶ x✝
⊢ kernelSubobjectMap (Hom.sqFrom (f + g) i) ≫ Subobject.arrow (kernelSubobject (dFrom x✝ i)) =
(kernelSubobjectMap (Hom.sqFrom f i) + kernelSubobjectMap (Hom.sqFrom g i)) ≫
Subobject.arrow (kernelSubobject (dFrom x✝ i))
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c✝ : ComplexShape ι
C✝ D E : HomologicalComplex V c✝
f g : C✝ ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.55346, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
w : ¬ComplexShape.Rel c i j
⊢ (fun i j => F.map (d C i j)) i j = 0
[PROOFSTEP]
dsimp only
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c✝ : ComplexShape ι
C✝ D E : HomologicalComplex V c✝
f g : C✝ ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.55346, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
w : ¬ComplexShape.Rel c i j
⊢ F.map (d C i j) = 0
[PROOFSTEP]
rw [C.shape _ _ w, F.map_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c✝ : ComplexShape ι
C✝ D E : HomologicalComplex V c✝
f g : C✝ ⟶ D
h k✝ : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.55346, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
c : ComplexShape ι
C : HomologicalComplex V c
i j k : ι
x✝¹ : ComplexShape.Rel c i j
x✝ : ComplexShape.Rel c j k
⊢ (fun i j => F.map (d C i j)) i j ≫ (fun i j => F.map (d C i j)) j k = 0
[PROOFSTEP]
rw [← F.map_comp, C.d_comp_d, F.map_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.55346, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
c : ComplexShape ι
X✝ Y✝ : HomologicalComplex V c
f : X✝ ⟶ Y✝
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ (fun i => F.map (Hom.f f i)) i ≫
d ((fun C => HomologicalComplex.mk (fun i => F.obj (X C i)) fun i j => F.map (d C i j)) Y✝) i j =
d ((fun C => HomologicalComplex.mk (fun i => F.obj (X C i)) fun i j => F.map (d C i j)) X✝) i j ≫
(fun i => F.map (Hom.f f i)) j
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
W : Type u_2
inst✝² : Category.{?u.55346, u_2} W
inst✝¹ : Preadditive W
F : V ⥤ W
inst✝ : Additive F
c : ComplexShape ι
X✝ Y✝ : HomologicalComplex V c
f : X✝ ⟶ Y✝
i j : ι
x✝ : ComplexShape.Rel c i j
⊢ F.map (Hom.f f i) ≫ F.map (d Y✝ i j) = F.map (d X✝ i j) ≫ F.map (Hom.f f j)
[PROOFSTEP]
rw [← F.map_comp, ← F.map_comp, f.comm]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝³ : Category.{?u.91619, u_2} W
inst✝² : Preadditive W
F : V ⥤ W
inst✝¹ : Additive F
inst✝ : ReflectsIsomorphisms F
c : ComplexShape ι
A✝ B✝ : HomologicalComplex V c
f : A✝ ⟶ B✝
⊢ ∀ [inst : IsIso ((mapHomologicalComplex F c).map f)], IsIso f
[PROOFSTEP]
intro
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝⁴ : Category.{?u.91619, u_2} W
inst✝³ : Preadditive W
F : V ⥤ W
inst✝² : Additive F
inst✝¹ : ReflectsIsomorphisms F
c : ComplexShape ι
A✝ B✝ : HomologicalComplex V c
f : A✝ ⟶ B✝
inst✝ : IsIso ((mapHomologicalComplex F c).map f)
⊢ IsIso f
[PROOFSTEP]
haveI : ∀ n : ι, IsIso (F.map (f.f n)) := fun n =>
IsIso.of_iso ((HomologicalComplex.eval W c n).mapIso (asIso ((F.mapHomologicalComplex c).map f)))
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝⁴ : Category.{?u.91619, u_2} W
inst✝³ : Preadditive W
F : V ⥤ W
inst✝² : Additive F
inst✝¹ : ReflectsIsomorphisms F
c : ComplexShape ι
A✝ B✝ : HomologicalComplex V c
f : A✝ ⟶ B✝
inst✝ : IsIso ((mapHomologicalComplex F c).map f)
this : ∀ (n : ι), IsIso (F.map (Hom.f f n))
⊢ IsIso f
[PROOFSTEP]
haveI := fun n => isIso_of_reflects_iso (f.f n) F
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝⁴ : Category.{?u.91619, u_2} W
inst✝³ : Preadditive W
F : V ⥤ W
inst✝² : Additive F
inst✝¹ : ReflectsIsomorphisms F
c : ComplexShape ι
A✝ B✝ : HomologicalComplex V c
f : A✝ ⟶ B✝
inst✝ : IsIso ((mapHomologicalComplex F c).map f)
this✝ : ∀ (n : ι), IsIso (F.map (Hom.f f n))
this : ∀ (n : ι), IsIso (Hom.f f n)
⊢ IsIso f
[PROOFSTEP]
exact HomologicalComplex.Hom.isIso_of_components f
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝² : Category.{u_3, u_2} W
inst✝¹ : Preadditive W
c : ComplexShape ι
F : V ⥤ W
inst✝ : Functor.Additive F
⊢ mapHomologicalComplex (𝟙 F) c = 𝟙 (Functor.mapHomologicalComplex F c)
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝⁴ : Category.{u_3, u_2} W
inst✝³ : Preadditive W
c : ComplexShape ι
F G H : V ⥤ W
inst✝² : Functor.Additive F
inst✝¹ : Functor.Additive G
inst✝ : Functor.Additive H
α : F ⟶ G
β : G ⟶ H
⊢ mapHomologicalComplex (α ≫ β) c = mapHomologicalComplex α c ≫ mapHomologicalComplex β c
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c✝ : ComplexShape ι
C✝ D✝ E : HomologicalComplex V c✝
f✝ g : C✝ ⟶ D✝
h k : D✝ ⟶ E
i : ι
W : Type u_2
inst✝³ : Category.{u_3, u_2} W
inst✝² : Preadditive W
c : ComplexShape ι
F G : V ⥤ W
inst✝¹ : Functor.Additive F
inst✝ : Functor.Additive G
α : F ⟶ G
C D : HomologicalComplex V c
f : C ⟶ D
⊢ (Functor.mapHomologicalComplex F c).map f ≫ app (mapHomologicalComplex α c) D =
app (mapHomologicalComplex α c) C ≫ (Functor.mapHomologicalComplex G c).map f
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝³ : Category.{?u.106581, u_2} W
inst✝² : Preadditive W
F G : V ⥤ W
inst✝¹ : Functor.Additive F
inst✝ : Functor.Additive G
α : F ≅ G
c : ComplexShape ι
⊢ NatTrans.mapHomologicalComplex α.hom c ≫ NatTrans.mapHomologicalComplex α.inv c =
𝟙 (Functor.mapHomologicalComplex F c)
[PROOFSTEP]
simp only [← NatTrans.mapHomologicalComplex_comp, α.hom_inv_id, NatTrans.mapHomologicalComplex_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁵ : Category.{v, u} V
inst✝⁴ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝³ : Category.{?u.106581, u_2} W
inst✝² : Preadditive W
F G : V ⥤ W
inst✝¹ : Functor.Additive F
inst✝ : Functor.Additive G
α : F ≅ G
c : ComplexShape ι
⊢ NatTrans.mapHomologicalComplex α.inv c ≫ NatTrans.mapHomologicalComplex α.hom c =
𝟙 (Functor.mapHomologicalComplex G c)
[PROOFSTEP]
simp only [← NatTrans.mapHomologicalComplex_comp, α.inv_hom_id, NatTrans.mapHomologicalComplex_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁷ : Category.{v, u} V
inst✝⁶ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝⁵ : Category.{?u.119648, u_2} W
inst✝⁴ : Preadditive W
α : Type u_3
inst✝³ : AddRightCancelSemigroup α
inst✝² : One α
inst✝¹ : DecidableEq α
F : V ⥤ W
inst✝ : Functor.Additive F
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
n : α
⊢ (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0
[PROOFSTEP]
rw [← F.map_comp, sq n, Functor.map_zero]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁷ : Category.{v, u} V
inst✝⁶ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝⁵ : Category.{u_4, u_2} W
inst✝⁴ : Preadditive W
α : Type u_3
inst✝³ : AddRightCancelSemigroup α
inst✝² : One α
inst✝¹ : DecidableEq α
F : V ⥤ W
inst✝ : Functor.Additive F
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
⊢ (Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq) =
of (fun n => F.obj (X n)) (fun n => F.map (d n))
(_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0)
[PROOFSTEP]
refine' HomologicalComplex.ext rfl _
[GOAL]
ι : Type u_1
V : Type u
inst✝⁷ : Category.{v, u} V
inst✝⁶ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝⁵ : Category.{u_4, u_2} W
inst✝⁴ : Preadditive W
α : Type u_3
inst✝³ : AddRightCancelSemigroup α
inst✝² : One α
inst✝¹ : DecidableEq α
F : V ⥤ W
inst✝ : Functor.Additive F
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
⊢ ∀ (i j : α),
ComplexShape.Rel (ComplexShape.down α) i j →
HomologicalComplex.d ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) i j ≫
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) j =
HomologicalComplex.X
(of (fun n => F.obj (X n)) (fun n => F.map (d n))
(_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0))
j) =
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) i =
HomologicalComplex.X
(of (fun n => F.obj (X n)) (fun n => F.map (d n))
(_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0))
i) ≫
HomologicalComplex.d
(of (fun n => F.obj (X n)) (fun n => F.map (d n))
(_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0))
i j
[PROOFSTEP]
rintro i j (rfl : j + 1 = i)
[GOAL]
ι : Type u_1
V : Type u
inst✝⁷ : Category.{v, u} V
inst✝⁶ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
W : Type u_2
inst✝⁵ : Category.{u_4, u_2} W
inst✝⁴ : Preadditive W
α : Type u_3
inst✝³ : AddRightCancelSemigroup α
inst✝² : One α
inst✝¹ : DecidableEq α
F : V ⥤ W
inst✝ : Functor.Additive F
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
j : α
⊢ HomologicalComplex.d ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) (j + 1) j ≫
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) j =
HomologicalComplex.X
(of (fun n => F.obj (X n)) (fun n => F.map (d n))
(_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0))
j) =
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F (ComplexShape.down α)).obj (of X d sq)) (j + 1) =
HomologicalComplex.X
(of (fun n => F.obj (X n)) (fun n => F.map (d n))
(_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0))
(j + 1)) ≫
HomologicalComplex.d
(of (fun n => F.obj (X n)) (fun n => F.map (d n))
(_ : ∀ (n : α), (fun n => F.map (d n)) (n + 1) ≫ (fun n => F.map (d n)) n = 0))
(j + 1) j
[PROOFSTEP]
simp only [CategoryTheory.Functor.mapHomologicalComplex_obj_d, of_d, eqToHom_refl, comp_id, id_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
h : i = j
⊢ HomologicalComplex.X ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X) i =
HomologicalComplex.X ((F ⋙ single W c j).obj X) i
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
h : i = j
⊢ HomologicalComplex.X ((F ⋙ single W c j).obj X) i =
HomologicalComplex.X ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X) i
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
⊢ ((Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i =
HomologicalComplex.X ((single W c j).obj (F.obj X)) i)
else 0) ≫
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((single W c j).obj (F.obj X)) i =
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i)
else 0) =
𝟙 ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X)
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
⊢ Hom.f
((Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i =
HomologicalComplex.X ((single W c j).obj (F.obj X)) i)
else 0) ≫
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((single W c j).obj (F.obj X)) i =
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i)
else 0)
i =
Hom.f (𝟙 ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X)) i
[PROOFSTEP]
dsimp
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
⊢ ((if h : i = j then eqToHom (_ : F.obj (if i = j then X else 0) = if i = j then F.obj X else 0) else 0) ≫
if h : i = j then eqToHom (_ : (if i = j then F.obj X else 0) = F.obj (if i = j then X else 0)) else 0) =
𝟙 (F.obj (if i = j then X else 0))
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
h : i = j
⊢ eqToHom (_ : F.obj (if i = j then X else 0) = if i = j then F.obj X else 0) ≫
eqToHom (_ : (if i = j then F.obj X else 0) = F.obj (if i = j then X else 0)) =
𝟙 (F.obj (if i = j then X else 0))
[PROOFSTEP]
simp [h]
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
h : ¬i = j
⊢ 0 ≫ 0 = 𝟙 (F.obj (if i = j then X else 0))
[PROOFSTEP]
rw [zero_comp, if_neg h]
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
h : ¬i = j
⊢ 0 = 𝟙 (F.obj 0)
[PROOFSTEP]
exact (zero_of_source_iso_zero _ F.mapZeroObject).symm
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
⊢ ((Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((single W c j).obj (F.obj X)) i =
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i)
else 0) ≫
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i =
HomologicalComplex.X ((single W c j).obj (F.obj X)) i)
else 0) =
𝟙 ((F ⋙ single W c j).obj X)
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
⊢ Hom.f
((Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((single W c j).obj (F.obj X)) i =
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i)
else 0) ≫
Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i =
HomologicalComplex.X ((single W c j).obj (F.obj X)) i)
else 0)
i =
Hom.f (𝟙 ((F ⋙ single W c j).obj X)) i
[PROOFSTEP]
dsimp
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
⊢ ((if h : i = j then eqToHom (_ : (if i = j then F.obj X else 0) = F.obj (if i = j then X else 0)) else 0) ≫
if h : i = j then eqToHom (_ : F.obj (if i = j then X else 0) = if i = j then F.obj X else 0) else 0) =
𝟙 (if i = j then F.obj X else 0)
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
h : i = j
⊢ eqToHom (_ : (if i = j then F.obj X else 0) = F.obj (if i = j then X else 0)) ≫
eqToHom (_ : F.obj (if i = j then X else 0) = if i = j then F.obj X else 0) =
𝟙 (if i = j then F.obj X else 0)
[PROOFSTEP]
simp [h]
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
h : ¬i = j
⊢ 0 ≫ 0 = 𝟙 (if i = j then F.obj X else 0)
[PROOFSTEP]
rw [zero_comp, if_neg h]
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X : V
i : ι
h : ¬i = j
⊢ 0 = 𝟙 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ (single V c j ⋙ Functor.mapHomologicalComplex F c).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i =
HomologicalComplex.X ((single W c j).obj (F.obj X)) i)
else 0)
(Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((single W c j).obj (F.obj X)) i =
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i)
else 0))
Y✝).hom =
((fun X =>
Iso.mk
(Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i =
HomologicalComplex.X ((single W c j).obj (F.obj X)) i)
else 0)
(Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((single W c j).obj (F.obj X)) i =
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i)
else 0))
X✝).hom ≫
(F ⋙ single W c j).map f
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : X✝ ⟶ Y✝
i : ι
⊢ Hom.f
((single V c j ⋙ Functor.mapHomologicalComplex F c).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i =
HomologicalComplex.X ((single W c j).obj (F.obj X)) i)
else 0)
(Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((single W c j).obj (F.obj X)) i =
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i)
else 0))
Y✝).hom)
i =
Hom.f
(((fun X =>
Iso.mk
(Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i =
HomologicalComplex.X ((single W c j).obj (F.obj X)) i)
else 0)
(Hom.mk fun i =>
if h : i = j then
eqToHom
(_ :
HomologicalComplex.X ((single W c j).obj (F.obj X)) i =
HomologicalComplex.X ((Functor.mapHomologicalComplex F c).obj ((single V c j).obj X)) i)
else 0))
X✝).hom ≫
(F ⋙ single W c j).map f)
i
[PROOFSTEP]
dsimp
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : X✝ ⟶ Y✝
i : ι
⊢ (F.map
(if h : i = j then
eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝) ≫
f ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i)
else 0) ≫
if h : i = j then eqToHom (_ : F.obj (if i = j then Y✝ else 0) = if i = j then F.obj Y✝ else 0) else 0) =
(if h : i = j then eqToHom (_ : F.obj (if i = j then X✝ else 0) = if i = j then F.obj X✝ else 0) else 0) ≫
if h : i = j then
eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) (F.obj X✝)) i = F.obj X✝) ≫
F.map f ≫
eqToHom (_ : F.obj Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) (F.obj Y✝)) i)
else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : X✝ ⟶ Y✝
i : ι
h : i = j
⊢ F.map
(eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) X✝) i = X✝) ≫
f ≫ eqToHom (_ : Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) Y✝) i)) ≫
eqToHom (_ : F.obj (if i = j then Y✝ else 0) = if i = j then F.obj Y✝ else 0) =
eqToHom (_ : F.obj (if i = j then X✝ else 0) = if i = j then F.obj X✝ else 0) ≫
eqToHom (_ : X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) (F.obj X✝)) i = F.obj X✝) ≫
F.map f ≫
eqToHom (_ : F.obj Y✝ = X ((fun A => mk (fun i => if i = j then A else 0) fun i j_1 => 0) (F.obj Y✝)) i)
[PROOFSTEP]
simp [h]
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c✝ : ComplexShape ι
C D E : HomologicalComplex V c✝
f✝ g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.125669, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
c : ComplexShape ι
j : ι
X✝ Y✝ : V
f : X✝ ⟶ Y✝
i : ι
h : ¬i = j
⊢ F.map 0 ≫ 0 = 0 ≫ 0
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.161257, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
j : ι
X : V
⊢ HomologicalComplex.X ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X) j =
HomologicalComplex.X ((F ⋙ single W c j).obj X) j
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{u_3, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
j : ι
X : V
⊢ Hom.f (NatTrans.app (singleMapHomologicalComplex F c j).hom X) j =
eqToHom (_ : F.obj (if j = j then X else 0) = if j = j then F.obj X else 0)
[PROOFSTEP]
simp [singleMapHomologicalComplex]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{u_3, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
i j : ι
h : i ≠ j
X : V
⊢ Hom.f (NatTrans.app (singleMapHomologicalComplex F c j).hom X) i = 0
[PROOFSTEP]
simp [singleMapHomologicalComplex, h]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.177119, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
j : ι
X : V
⊢ HomologicalComplex.X ((F ⋙ single W c j).obj X) j =
HomologicalComplex.X ((single V c j ⋙ Functor.mapHomologicalComplex F c).obj X) j
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{u_3, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
j : ι
X : V
⊢ Hom.f (NatTrans.app (singleMapHomologicalComplex F c j).inv X) j =
eqToHom (_ : (if j = j then F.obj X else 0) = F.obj (if j = j then X else 0))
[PROOFSTEP]
simp [singleMapHomologicalComplex]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h✝ k : D ⟶ E
i✝ : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{u_3, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
i j : ι
h : i ≠ j
X : V
⊢ Hom.f (NatTrans.app (singleMapHomologicalComplex F c j).inv X) i = 0
[PROOFSTEP]
simp [singleMapHomologicalComplex, h]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.192981, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
⊢ ((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv) =
𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X)
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.192981, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
⊢ Hom.f
((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv)
Nat.zero =
Hom.f (𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X)) Nat.zero
[PROOFSTEP]
simp
[GOAL]
case h.succ
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.192981, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv)
(Nat.succ n✝) =
Hom.f (𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X)) (Nat.succ n✝)
[PROOFSTEP]
exact IsZero.eq_of_src (IsZero.of_iso (isZero_zero _) F.mapZeroObject) _ _
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.192981, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
⊢ ((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom) =
𝟙 ((F ⋙ single₀ W).obj X)
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.192981, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
⊢ Hom.f
((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
Nat.zero =
Hom.f (𝟙 ((F ⋙ single₀ W).obj X)) Nat.zero
[PROOFSTEP]
simp
[GOAL]
case h.succ
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.192981, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Nat.succ n✝) =
Hom.f (𝟙 ((F ⋙ single₀ W).obj X)) (Nat.succ n✝)
[PROOFSTEP]
exact IsZero.eq_of_src (isZero_zero _) _ _
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.192981, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ (single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
Y✝).hom =
((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
X✝).hom ≫
(F ⋙ single₀ W).map f
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.192981, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ Hom.f
((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙
(HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X)
0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
Y✝).hom)
Nat.zero =
Hom.f
(((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙
(HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X)
0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
X✝).hom ≫
(F ⋙ single₀ W).map f)
Nat.zero
[PROOFSTEP]
simp
[GOAL]
case h.succ
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.192981, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X✝ Y✝ : V
f : X✝ ⟶ Y✝
n✝ : ℕ
⊢ Hom.f
((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙
(HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X)
0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
Y✝).hom)
(Nat.succ n✝) =
Hom.f
(((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙
(HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.down ℕ)).obj X)
0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
X✝).hom ≫
(F ⋙ single₀ W).map f)
(Nat.succ n✝)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.241808, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
⊢ ((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv) =
𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X)
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.241808, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
⊢ Hom.f
((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv)
Nat.zero =
Hom.f (𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X)) Nat.zero
[PROOFSTEP]
simp
[GOAL]
case h.succ
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.241808, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv)
(Nat.succ n✝) =
Hom.f (𝟙 ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X)) (Nat.succ n✝)
[PROOFSTEP]
exact IsZero.eq_of_src (IsZero.of_iso (isZero_zero _) F.mapZeroObject) _ _
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.241808, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
⊢ ((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom) =
𝟙 ((F ⋙ single₀ W).obj X)
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.241808, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
⊢ Hom.f
((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
Nat.zero =
Hom.f (𝟙 ((F ⋙ single₀ W).obj X)) Nat.zero
[PROOFSTEP]
simp
[GOAL]
case h.succ
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.241808, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X : V
n✝ : ℕ
⊢ Hom.f
((Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv) ≫
Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Nat.succ n✝) =
Hom.f (𝟙 ((F ⋙ single₀ W).obj X)) (Nat.succ n✝)
[PROOFSTEP]
exact IsZero.eq_of_src (isZero_zero _) _ _
[GOAL]
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.241808, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ (single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
Y✝).hom =
((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
X✝).hom ≫
(F ⋙ single₀ W).map f
[PROOFSTEP]
ext (_ | _)
[GOAL]
case h.zero
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.241808, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X✝ Y✝ : V
f : X✝ ⟶ Y✝
⊢ Hom.f
((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
Y✝).hom)
Nat.zero =
Hom.f
(((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
X✝).hom ≫
(F ⋙ single₀ W).map f)
Nat.zero
[PROOFSTEP]
simp
[GOAL]
case h.succ
ι : Type u_1
V : Type u
inst✝⁶ : Category.{v, u} V
inst✝⁵ : Preadditive V
c : ComplexShape ι
C D E : HomologicalComplex V c
f✝ g : C ⟶ D
h k : D ⟶ E
i : ι
inst✝⁴ : HasZeroObject V
W : Type u_2
inst✝³ : Category.{?u.241808, u_2} W
inst✝² : Preadditive W
inst✝¹ : HasZeroObject W
F : V ⥤ W
inst✝ : Functor.Additive F
X✝ Y✝ : V
f : X✝ ⟶ Y✝
n✝ : ℕ
⊢ Hom.f
((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).map f ≫
((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
Y✝).hom)
(Nat.succ n✝) =
Hom.f
(((fun X =>
Iso.mk
(Hom.mk fun i =>
match i with
| 0 =>
𝟙 (HomologicalComplex.X ((single₀ V ⋙ Functor.mapHomologicalComplex F (ComplexShape.up ℕ)).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).hom)
(Hom.mk fun i =>
match i with
| 0 => 𝟙 (HomologicalComplex.X ((F ⋙ single₀ W).obj X) 0)
| Nat.succ n => (Functor.mapZeroObject F).inv))
X✝).hom ≫
(F ⋙ single₀ W).map f)
(Nat.succ n✝)
[PROOFSTEP]
simp
| {"mathlib_filename": "Mathlib.Algebra.Homology.Additive", "llama_tokens": 27570} |
[GOAL]
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
⊢ MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A), AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0
[PROOFSTEP]
ext a
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
a : A
⊢ ↑(MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0)
a =
↑0 a
[PROOFSTEP]
exact zero_mul a
[GOAL]
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
⊢ ∀ (x y : A),
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_zero' :=
(_ :
MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom
(x * y) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_zero' :=
(_ :
MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom
x *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_zero' :=
(_ :
MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom
y
[PROOFSTEP]
intro a b
[GOAL]
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
a b : A
⊢ MulActionHom.toFun
{
toMulActionHom :=
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_zero' :=
(_ :
MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom
(a * b) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_zero' :=
(_ :
MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom
a *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_zero' :=
(_ :
MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom
b
[PROOFSTEP]
ext c
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
a b c : A
⊢ ↑(MulActionHom.toFun
{
toMulActionHom :=
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_zero' :=
(_ :
MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom
(a * b))
c =
↑(MulActionHom.toFun
{
toMulActionHom :=
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_zero' :=
(_ :
MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom
a *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) },
map_zero' :=
(_ :
MulActionHom.toFun
{ toFun := src✝.toFun,
map_smul' :=
(_ :
∀ (r : R) (x : A),
AddHom.toFun src✝.toAddHom (r • x) = ↑(RingHom.id R) r • AddHom.toFun src✝.toAddHom x) }
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) }.toMulActionHom
b)
c
[PROOFSTEP]
exact mul_assoc a b c
[GOAL]
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
a b : A
⊢ Commute (mulLeft R a) (mulRight R b)
[PROOFSTEP]
ext c
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
a b c : A
⊢ ↑(mulLeft R a * mulRight R b) c = ↑(mulRight R b * mulLeft R a) c
[PROOFSTEP]
exact (mul_assoc a c b).symm
[GOAL]
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
a b : A
⊢ mulLeft R (a * b) = comp (mulLeft R a) (mulLeft R b)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
a b x✝ : A
⊢ ↑(mulLeft R (a * b)) x✝ = ↑(comp (mulLeft R a) (mulLeft R b)) x✝
[PROOFSTEP]
simp only [mulLeft_apply, comp_apply, mul_assoc]
[GOAL]
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
a b : A
⊢ mulRight R (a * b) = comp (mulRight R b) (mulRight R a)
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝⁴ : CommSemiring R
inst✝³ : NonUnitalSemiring A
inst✝² : Module R A
inst✝¹ : SMulCommClass R A A
inst✝ : IsScalarTower R A A
a b x✝ : A
⊢ ↑(mulRight R (a * b)) x✝ = ↑(comp (mulRight R b) (mulRight R a)) x✝
[PROOFSTEP]
simp only [mulRight_apply, comp_apply, mul_assoc]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
⊢ AddHom.toFun src✝.toAddHom 1 = 1
[PROOFSTEP]
ext a
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
a : A
⊢ ↑(AddHom.toFun src✝.toAddHom 1) a = ↑1 a
[PROOFSTEP]
exact one_mul a
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
⊢ ∀ (x y : A),
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (x * y) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } x *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } y
[PROOFSTEP]
intro a b
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
a b : A
⊢ OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b
[PROOFSTEP]
ext c
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
a b c : A
⊢ ↑(OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b)) c =
↑(OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b)
c
[PROOFSTEP]
exact mul_assoc a b c
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
⊢ OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) },
map_mul' :=
(_ :
∀ (a b : A),
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) })
0 =
0
[PROOFSTEP]
ext a
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
a : A
⊢ ↑(OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) },
map_mul' :=
(_ :
∀ (a b : A),
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) })
0)
a =
↑0 a
[PROOFSTEP]
exact zero_mul a
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
⊢ ∀ (r : R),
OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) },
map_mul' :=
(_ :
∀ (a b : A),
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }
(a * b) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }
b) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) },
map_mul' :=
(_ :
∀ (a b : A),
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }
(a * b) =
OneHom.toFun
{ toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a *
OneHom.toFun
{ toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) })
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) })
(↑(algebraMap R A) r) =
↑(algebraMap R (End R A)) r
[PROOFSTEP]
intro r
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
r : R
⊢ OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) },
map_mul' :=
(_ :
∀ (a b : A),
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } (a * b) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) },
map_mul' :=
(_ :
∀ (a b : A),
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }
(a * b) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }
a *
OneHom.toFun
{ toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } b) })
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) = AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) })
(↑(algebraMap R A) r) =
↑(algebraMap R (End R A)) r
[PROOFSTEP]
ext a
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
src✝ : A →ₗ[R] A →ₗ[R] A := mul R A
r : R
a : A
⊢ ↑(OneHom.toFun
(↑↑{
toMonoidHom :=
{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) },
map_mul' :=
(_ :
∀ (a b : A),
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }
(a * b) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }
b) },
map_zero' :=
(_ :
OneHom.toFun
(↑{ toOneHom := { toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) },
map_mul' :=
(_ :
∀ (a b : A),
OneHom.toFun
{ toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }
(a * b) =
OneHom.toFun
{ toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) } a *
OneHom.toFun
{ toFun := src✝.toFun, map_one' := (_ : AddHom.toFun src✝.toAddHom 1 = 1) }
b) })
0 =
0),
map_add' :=
(_ :
∀ (x y : A),
AddHom.toFun src✝.toAddHom (x + y) =
AddHom.toFun src✝.toAddHom x + AddHom.toFun src✝.toAddHom y) })
(↑(algebraMap R A) r))
a =
↑(↑(algebraMap R (End R A)) r) a
[PROOFSTEP]
exact (Algebra.smul_def r a).symm
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
⊢ mulLeft R a = 0 ↔ a = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
⊢ mulLeft R a = 0 → a = 0
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
⊢ a = 0 → mulLeft R a = 0
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
h : mulLeft R a = 0
⊢ a = 0
[PROOFSTEP]
rw [← mul_one a, ← @mulLeft_apply R _ _ _ _ _ _ a 1, h, LinearMap.zero_apply]
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
h : a = 0
⊢ mulLeft R a = 0
[PROOFSTEP]
rw [h]
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
h : a = 0
⊢ mulLeft R 0 = 0
[PROOFSTEP]
exact mulLeft_zero_eq_zero
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
⊢ mulRight R a = 0 ↔ a = 0
[PROOFSTEP]
constructor
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
⊢ mulRight R a = 0 → a = 0
[PROOFSTEP]
intro h
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
⊢ a = 0 → mulRight R a = 0
[PROOFSTEP]
intro h
[GOAL]
case mp
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
h : mulRight R a = 0
⊢ a = 0
[PROOFSTEP]
rw [← one_mul a, ← @mulRight_apply R _ _ _ _ _ _ a 1, h, LinearMap.zero_apply]
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
h : a = 0
⊢ mulRight R a = 0
[PROOFSTEP]
rw [h]
[GOAL]
case mpr
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
h : a = 0
⊢ mulRight R 0 = 0
[PROOFSTEP]
exact mulRight_zero_eq_zero
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
⊢ mulLeft R 1 = id
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
x✝ : A
⊢ ↑(mulLeft R 1) x✝ = ↑id x✝
[PROOFSTEP]
simp only [LinearMap.id_coe, one_mul, id.def, mulLeft_apply]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
⊢ mulRight R 1 = id
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
x✝ : A
⊢ ↑(mulRight R 1) x✝ = ↑id x✝
[PROOFSTEP]
simp only [LinearMap.id_coe, mul_one, id.def, mulRight_apply]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
n : ℕ
⊢ mulLeft R a ^ n = mulLeft R (a ^ n)
[PROOFSTEP]
simpa only [mulLeft, ← Algebra.coe_lmul_eq_mul] using ((Algebra.lmul R A).map_pow a n).symm
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
n : ℕ
⊢ mulRight R a ^ n = mulRight R (a ^ n)
[PROOFSTEP]
simp only [mulRight, ← Algebra.coe_lmul_eq_mul]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
a : A
n : ℕ
⊢ ↑(flip (mul R A)) a ^ n = ↑(flip (mul R A)) (a ^ n)
[PROOFSTEP]
exact LinearMap.coe_injective (((mulRight R a).coe_pow n).symm ▸ mul_right_iterate a n)
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : NoZeroDivisors A
x : A
hx : x ≠ 0
⊢ Function.Injective ↑(mulLeft R x)
[PROOFSTEP]
letI : Nontrivial A := ⟨⟨x, 0, hx⟩⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : NoZeroDivisors A
x : A
hx : x ≠ 0
this : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) }
⊢ Function.Injective ↑(mulLeft R x)
[PROOFSTEP]
letI := NoZeroDivisors.to_isDomain A
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : NoZeroDivisors A
x : A
hx : x ≠ 0
this✝ : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) }
this : IsDomain A := NoZeroDivisors.to_isDomain A
⊢ Function.Injective ↑(mulLeft R x)
[PROOFSTEP]
exact mul_right_injective₀ hx
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : NoZeroDivisors A
x : A
hx : x ≠ 0
⊢ Function.Injective ↑(mulRight R x)
[PROOFSTEP]
letI : Nontrivial A := ⟨⟨x, 0, hx⟩⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : NoZeroDivisors A
x : A
hx : x ≠ 0
this : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) }
⊢ Function.Injective ↑(mulRight R x)
[PROOFSTEP]
letI := NoZeroDivisors.to_isDomain A
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : NoZeroDivisors A
x : A
hx : x ≠ 0
this✝ : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) }
this : IsDomain A := NoZeroDivisors.to_isDomain A
⊢ Function.Injective ↑(mulRight R x)
[PROOFSTEP]
exact mul_left_injective₀ hx
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : NoZeroDivisors A
x : A
hx : x ≠ 0
⊢ Function.Injective ↑(↑(mul R A) x)
[PROOFSTEP]
letI : Nontrivial A := ⟨⟨x, 0, hx⟩⟩
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : NoZeroDivisors A
x : A
hx : x ≠ 0
this : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) }
⊢ Function.Injective ↑(↑(mul R A) x)
[PROOFSTEP]
letI := NoZeroDivisors.to_isDomain A
[GOAL]
R : Type u_1
A : Type u_2
inst✝³ : CommSemiring R
inst✝² : Ring A
inst✝¹ : Algebra R A
inst✝ : NoZeroDivisors A
x : A
hx : x ≠ 0
this✝ : Nontrivial A := { exists_pair_ne := Exists.intro x (Exists.intro 0 hx) }
this : IsDomain A := NoZeroDivisors.to_isDomain A
⊢ Function.Injective ↑(↑(mul R A) x)
[PROOFSTEP]
exact mul_right_injective₀ hx
| {"mathlib_filename": "Mathlib.Algebra.Algebra.Bilinear", "llama_tokens": 11347} |
{"mathlib_filename": "Mathlib.Algebra.Module.Opposites", "llama_tokens": 0} |
|
{"mathlib_filename": "Mathlib.Algebra.Module.Algebra", "llama_tokens": 0} |
|
[GOAL]
K : Type u_1
ι : Type u_2
R : ι → Type u_3
inst✝ : (i : ι) → SMul K (R i)
r : K
s : Set ι
t : (i : ι) → Set (R i)
⊢ r • pi s t ⊆ pi s (r • t)
[PROOFSTEP]
rintro x ⟨y, h, rfl⟩ i hi
[GOAL]
case intro.intro
K : Type u_1
ι : Type u_2
R : ι → Type u_3
inst✝ : (i : ι) → SMul K (R i)
r : K
s : Set ι
t : (i : ι) → Set (R i)
y : (i : ι) → R i
h : y ∈ pi s t
i : ι
hi : i ∈ s
⊢ (fun x => r • x) y i ∈ (r • t) i
[PROOFSTEP]
exact smul_mem_smul_set (h i hi)
[GOAL]
K : Type u_1
ι : Type u_2
R : ι → Type u_3
inst✝ : (i : ι) → SMul K (R i)
r : K
t : (i : ι) → Set (R i)
x : (i : ι) → R i
h : x ∈ pi univ (r • t)
⊢ x ∈ r • pi univ t
[PROOFSTEP]
refine' ⟨fun i ↦ Classical.choose (h i <| Set.mem_univ _), fun i _ ↦ _, funext fun i ↦ _⟩
[GOAL]
case refine'_1
K : Type u_1
ι : Type u_2
R : ι → Type u_3
inst✝ : (i : ι) → SMul K (R i)
r : K
t : (i : ι) → Set (R i)
x : (i : ι) → R i
h : x ∈ pi univ (r • t)
i : ι
x✝ : i ∈ univ
⊢ (fun i => Classical.choose (_ : x i ∈ (r • t) i)) i ∈ t i
[PROOFSTEP]
exact (Classical.choose_spec (h i <| Set.mem_univ i)).left
[GOAL]
case refine'_2
K : Type u_1
ι : Type u_2
R : ι → Type u_3
inst✝ : (i : ι) → SMul K (R i)
r : K
t : (i : ι) → Set (R i)
x : (i : ι) → R i
h : x ∈ pi univ (r • t)
i : ι
⊢ (fun x => r • x) (fun i => Classical.choose (_ : x i ∈ (r • t) i)) i = x i
[PROOFSTEP]
exact (Classical.choose_spec (h i <| Set.mem_univ i)).right
| {"mathlib_filename": "Mathlib.Algebra.Module.PointwisePi", "llama_tokens": 773} |
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S T : Subalgebra R A
⊢ ↑toSubmodule S * ↑toSubmodule T ≤ ↑toSubmodule (S ⊔ T)
[PROOFSTEP]
rw [Submodule.mul_le]
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S T : Subalgebra R A
⊢ ∀ (m : A), m ∈ ↑toSubmodule S → ∀ (n : A), n ∈ ↑toSubmodule T → m * n ∈ ↑toSubmodule (S ⊔ T)
[PROOFSTEP]
intro y hy z hz
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S T : Subalgebra R A
y : A
hy : y ∈ ↑toSubmodule S
z : A
hz : z ∈ ↑toSubmodule T
⊢ y * z ∈ ↑toSubmodule (S ⊔ T)
[PROOFSTEP]
show y * z ∈ S ⊔ T
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S T : Subalgebra R A
y : A
hy : y ∈ ↑toSubmodule S
z : A
hz : z ∈ ↑toSubmodule T
⊢ y * z ∈ S ⊔ T
[PROOFSTEP]
exact mul_mem (Algebra.mem_sup_left hy) (Algebra.mem_sup_right hz)
[GOAL]
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S : Subalgebra R A
⊢ ↑toSubmodule S * ↑toSubmodule S = ↑toSubmodule S
[PROOFSTEP]
apply le_antisymm
[GOAL]
case a
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S : Subalgebra R A
⊢ ↑toSubmodule S * ↑toSubmodule S ≤ ↑toSubmodule S
[PROOFSTEP]
refine' (mul_toSubmodule_le _ _).trans_eq _
[GOAL]
case a
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S : Subalgebra R A
⊢ ↑toSubmodule (S ⊔ S) = ↑toSubmodule S
[PROOFSTEP]
rw [sup_idem]
[GOAL]
case a
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S : Subalgebra R A
⊢ ↑toSubmodule S ≤ ↑toSubmodule S * ↑toSubmodule S
[PROOFSTEP]
intro x hx1
[GOAL]
case a
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S : Subalgebra R A
x : A
hx1 : x ∈ ↑toSubmodule S
⊢ x ∈ ↑toSubmodule S * ↑toSubmodule S
[PROOFSTEP]
rw [← mul_one x]
[GOAL]
case a
R : Type u_1
A : Type u_2
inst✝² : CommSemiring R
inst✝¹ : Semiring A
inst✝ : Algebra R A
S : Subalgebra R A
x : A
hx1 : x ∈ ↑toSubmodule S
⊢ x * 1 ∈ ↑toSubmodule S * ↑toSubmodule S
[PROOFSTEP]
exact Submodule.mul_mem_mul hx1 (show (1 : A) ∈ S from one_mem S)
[GOAL]
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
⊢ ↑toSubmodule S * ↑toSubmodule T = ↑toSubmodule (S ⊔ T)
[PROOFSTEP]
refine' le_antisymm (mul_toSubmodule_le _ _) _
[GOAL]
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
⊢ ↑toSubmodule (S ⊔ T) ≤ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
rintro x (hx : x ∈ Algebra.adjoin R (S ∪ T : Set A))
[GOAL]
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x : A
hx : x ∈ Algebra.adjoin R (↑S ∪ ↑T)
⊢ x ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
refine' Algebra.adjoin_induction hx (fun x hx => _) (fun r => _) (fun _ _ => Submodule.add_mem _) fun x y hx hy => _
[GOAL]
case refine'_1
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x✝ : A
hx✝ : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T)
x : A
hx : x ∈ ↑S ∪ ↑T
⊢ x ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
cases' hx with hxS hxT
[GOAL]
case refine'_1.inl
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x✝ : A
hx : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T)
x : A
hxS : x ∈ ↑S
⊢ x ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
rw [← mul_one x]
[GOAL]
case refine'_1.inl
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x✝ : A
hx : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T)
x : A
hxS : x ∈ ↑S
⊢ x * 1 ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
exact Submodule.mul_mem_mul hxS (show (1 : A) ∈ T from one_mem T)
[GOAL]
case refine'_1.inr
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x✝ : A
hx : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T)
x : A
hxT : x ∈ ↑T
⊢ x ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
rw [← one_mul x]
[GOAL]
case refine'_1.inr
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x✝ : A
hx : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T)
x : A
hxT : x ∈ ↑T
⊢ 1 * x ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
exact Submodule.mul_mem_mul (show (1 : A) ∈ S from one_mem S) hxT
[GOAL]
case refine'_2
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x : A
hx : x ∈ Algebra.adjoin R (↑S ∪ ↑T)
r : R
⊢ ↑(algebraMap R A) r ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
rw [← one_mul (algebraMap _ _ _)]
[GOAL]
case refine'_2
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x : A
hx : x ∈ Algebra.adjoin R (↑S ∪ ↑T)
r : R
⊢ 1 * ↑(algebraMap R A) r ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
exact Submodule.mul_mem_mul (show (1 : A) ∈ S from one_mem S) (algebraMap_mem T _)
[GOAL]
case refine'_3
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x✝ : A
hx✝ : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T)
x y : A
hx : x ∈ ↑toSubmodule S * ↑toSubmodule T
hy : y ∈ ↑toSubmodule S * ↑toSubmodule T
⊢ x * y ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
have := Submodule.mul_mem_mul hx hy
[GOAL]
case refine'_3
R✝ : Type u_1
A✝ : Type u_2
inst✝⁵ : CommSemiring R✝
inst✝⁴ : Semiring A✝
inst✝³ : Algebra R✝ A✝
R : Type u_3
A : Type u_4
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S T : Subalgebra R A
x✝ : A
hx✝ : x✝ ∈ Algebra.adjoin R (↑S ∪ ↑T)
x y : A
hx : x ∈ ↑toSubmodule S * ↑toSubmodule T
hy : y ∈ ↑toSubmodule S * ↑toSubmodule T
this : x * y ∈ ↑toSubmodule S * ↑toSubmodule T * (↑toSubmodule S * ↑toSubmodule T)
⊢ x * y ∈ ↑toSubmodule S * ↑toSubmodule T
[PROOFSTEP]
rwa [mul_assoc, mul_comm _ (Subalgebra.toSubmodule T), ← mul_assoc _ _ (Subalgebra.toSubmodule S), mul_self,
mul_comm (Subalgebra.toSubmodule T), ← mul_assoc, mul_self] at this
| {"mathlib_filename": "Mathlib.Algebra.Algebra.Subalgebra.Pointwise", "llama_tokens": 3875} |
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra R A
inst✝³ : Algebra S B
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
U : Subalgebra S A
x : R
⊢ ↑(algebraMap R A) x ∈ U.carrier
[PROOFSTEP]
rw [algebraMap_apply R S A]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra R A
inst✝³ : Algebra S B
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
U : Subalgebra S A
x : R
⊢ ↑(algebraMap S A) (↑(algebraMap R S) x) ∈ U.carrier
[PROOFSTEP]
exact U.algebraMap_mem _
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra R A
inst✝³ : Algebra S B
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
⊢ ↑(restrictScalars R ⊤) = ↑⊤
[PROOFSTEP]
dsimp
-- porting note: why does `rfl` not work instead of `by dsimp`?
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra R A
inst✝³ : Algebra S B
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
U V : Subalgebra S A
H : restrictScalars R U = restrictScalars R V
x : A
⊢ x ∈ U ↔ x ∈ V
[PROOFSTEP]
rw [← mem_restrictScalars R, H, mem_restrictScalars]
[GOAL]
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S : Subalgebra R A
⊢ LinearMap.range (toAlgHom R { x // x ∈ S } A) = ↑toSubmodule S
[PROOFSTEP]
ext
[GOAL]
case h
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S : Subalgebra R A
x✝ : A
⊢ x✝ ∈ LinearMap.range (toAlgHom R { x // x ∈ S } A) ↔ x✝ ∈ ↑toSubmodule S
[PROOFSTEP]
simp only [← Submodule.range_subtype (Subalgebra.toSubmodule S), LinearMap.mem_range, IsScalarTower.coe_toAlgHom',
Subalgebra.mem_toSubmodule]
[GOAL]
case h
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝² : CommSemiring R
inst✝¹ : CommSemiring A
inst✝ : Algebra R A
S : Subalgebra R A
x✝ : A
⊢ (∃ y, ↑(algebraMap { x // x ∈ S } A) y = x✝) ↔ ∃ y, ↑(Submodule.subtype (↑toSubmodule S)) y = x✝
[PROOFSTEP]
rfl
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring S
inst✝⁴ : CommSemiring A
inst✝³ : Algebra R S
inst✝² : Algebra S A
inst✝¹ : Algebra R A
inst✝ : IsScalarTower R S A
t : Set A
z : A
⊢ z ∈ Subsemiring.closure (Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) ∪ t) ↔
z ∈ Subsemiring.closure (Set.range ↑(algebraMap S A) ∪ t)
[PROOFSTEP]
suffices Set.range (algebraMap (toAlgHom R S A).range A) = Set.range (algebraMap S A) by rw [this]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring S
inst✝⁴ : CommSemiring A
inst✝³ : Algebra R S
inst✝² : Algebra S A
inst✝¹ : Algebra R A
inst✝ : IsScalarTower R S A
t : Set A
z : A
this : Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) = Set.range ↑(algebraMap S A)
⊢ z ∈ Subsemiring.closure (Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) ∪ t) ↔
z ∈ Subsemiring.closure (Set.range ↑(algebraMap S A) ∪ t)
[PROOFSTEP]
rw [this]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring S
inst✝⁴ : CommSemiring A
inst✝³ : Algebra R S
inst✝² : Algebra S A
inst✝¹ : Algebra R A
inst✝ : IsScalarTower R S A
t : Set A
z : A
⊢ Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) = Set.range ↑(algebraMap S A)
[PROOFSTEP]
ext z
[GOAL]
case h
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : CommSemiring R
inst✝⁵ : CommSemiring S
inst✝⁴ : CommSemiring A
inst✝³ : Algebra R S
inst✝² : Algebra S A
inst✝¹ : Algebra R A
inst✝ : IsScalarTower R S A
t : Set A
z✝ z : A
⊢ z ∈ Set.range ↑(algebraMap { x // x ∈ AlgHom.range (toAlgHom R S A) } A) ↔ z ∈ Set.range ↑(algebraMap S A)
[PROOFSTEP]
exact ⟨fun ⟨⟨_, y, h1⟩, h2⟩ ↦ ⟨y, h2 ▸ h1⟩, fun ⟨y, hy⟩ ↦ ⟨⟨z, y, hy⟩, rfl⟩⟩
| {"mathlib_filename": "Mathlib.Algebra.Algebra.Subalgebra.Tower", "llama_tokens": 2200} |
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁵ : CommSemiring R
inst✝⁴ : Semiring A
inst✝³ : Algebra R A
inst✝² : SMul R M
inst✝¹ : MulAction A M
inst✝ : IsScalarTower R A M
r : R
x : M
⊢ ↑(algebraMap R A) r • x = r • x
[PROOFSTEP]
rw [Algebra.algebraMap_eq_smul_one, smul_assoc, one_smul]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : CommSemiring R
inst✝⁶ : CommSemiring S
inst✝⁵ : Semiring A
inst✝⁴ : Semiring B
inst✝³ : Algebra R S
inst✝² : Algebra S A
inst✝¹ : Algebra S B
inst✝ : Algebra R A
h : ∀ (x : R), ↑(algebraMap R A) x = ↑(algebraMap S A) (↑(algebraMap R S) x)
x : R
y : S
z : A
⊢ (x • y) • z = x • y • z
[PROOFSTEP]
simp_rw [Algebra.smul_def, RingHom.map_mul, mul_assoc, h]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra S B
inst✝³ : Algebra R A
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
x : R
⊢ ↑(algebraMap R A) x = ↑(RingHom.comp (algebraMap S A) (algebraMap R S)) x
[PROOFSTEP]
simp_rw [RingHom.comp_apply, Algebra.algebraMap_eq_smul_one, smul_assoc, one_smul]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra S B
inst✝³ : Algebra R A
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
x : R
⊢ ↑(algebraMap R A) x = ↑(algebraMap S A) (↑(algebraMap R S) x)
[PROOFSTEP]
rw [algebraMap_eq R S A, RingHom.comp_apply]
[GOAL]
R : Type u
S✝ : Type v
A✝ : Type w
B : Type u₁
M : Type v₁
inst✝¹² : CommSemiring R
inst✝¹¹ : CommSemiring S✝
inst✝¹⁰ : Semiring A✝
inst✝⁹ : Semiring B
inst✝⁸ : Algebra R S✝
inst✝⁷ : Algebra S✝ A✝
inst✝⁶ : Algebra S✝ B
inst✝⁵ : Algebra R A✝
inst✝⁴ : Algebra R B
inst✝³ : IsScalarTower R S✝ A✝
inst✝² : IsScalarTower R S✝ B
S : Type u
A : Type v
inst✝¹ : CommSemiring S
inst✝ : Semiring A
h1 h2 : Algebra S A
r : S
x : A
⊢ A
[PROOFSTEP]
have I := h1
[GOAL]
R : Type u
S✝ : Type v
A✝ : Type w
B : Type u₁
M : Type v₁
inst✝¹² : CommSemiring R
inst✝¹¹ : CommSemiring S✝
inst✝¹⁰ : Semiring A✝
inst✝⁹ : Semiring B
inst✝⁸ : Algebra R S✝
inst✝⁷ : Algebra S✝ A✝
inst✝⁶ : Algebra S✝ B
inst✝⁵ : Algebra R A✝
inst✝⁴ : Algebra R B
inst✝³ : IsScalarTower R S✝ A✝
inst✝² : IsScalarTower R S✝ B
S : Type u
A : Type v
inst✝¹ : CommSemiring S
inst✝ : Semiring A
h1 h2 : Algebra S A
r : S
x : A
I : Algebra S A
⊢ A
[PROOFSTEP]
exact r • x
[GOAL]
R : Type u
S✝ : Type v
A✝ : Type w
B : Type u₁
M : Type v₁
inst✝¹² : CommSemiring R
inst✝¹¹ : CommSemiring S✝
inst✝¹⁰ : Semiring A✝
inst✝⁹ : Semiring B
inst✝⁸ : Algebra R S✝
inst✝⁷ : Algebra S✝ A✝
inst✝⁶ : Algebra S✝ B
inst✝⁵ : Algebra R A✝
inst✝⁴ : Algebra R B
inst✝³ : IsScalarTower R S✝ A✝
inst✝² : IsScalarTower R S✝ B
S : Type u
A : Type v
inst✝¹ : CommSemiring S
inst✝ : Semiring A
h1 h2 : Algebra S A
h :
∀ (r : S) (x : A),
(let_fun I := h1;
r • x) =
r • x
r : S
⊢ ↑(algebraMap S A) r = ↑(algebraMap S A) r
[PROOFSTEP]
simpa only [@Algebra.smul_def _ _ _ _ h1, @Algebra.smul_def _ _ _ _ h2, mul_one] using h r 1
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra S B
inst✝³ : Algebra R A
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
f : A →ₐ[S] B
r : R
⊢ ↑f (↑(algebraMap R A) r) = ↑(algebraMap R B) r
[PROOFSTEP]
rw [algebraMap_apply R S A r, f.commutes, ← algebraMap_apply R S B]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra S B
inst✝³ : Algebra R A
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
f : A →ₐ[S] B
src✝ : A →+* B := ↑f
r : R
⊢ OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap R A) r) =
↑(algebraMap R B) r
[PROOFSTEP]
rw [algebraMap_apply R S A, algebraMap_apply R S B]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra S B
inst✝³ : Algebra R A
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
f : A →ₐ[S] B
src✝ : A →+* B := ↑f
r : R
⊢ OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap S A) (↑(algebraMap R S) r)) =
↑(algebraMap S B) (↑(algebraMap R S) r)
[PROOFSTEP]
exact f.commutes (algebraMap R S r)
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra S B
inst✝³ : Algebra R A
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
f : A ≃ₐ[S] B
src✝ : A ≃+* B := ↑f
r : R
⊢ Equiv.toFun src✝.toEquiv (↑(algebraMap R A) r) = ↑(algebraMap R B) r
[PROOFSTEP]
rw [algebraMap_apply R S A, algebraMap_apply R S B]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹⁰ : CommSemiring R
inst✝⁹ : CommSemiring S
inst✝⁸ : Semiring A
inst✝⁷ : Semiring B
inst✝⁶ : Algebra R S
inst✝⁵ : Algebra S A
inst✝⁴ : Algebra S B
inst✝³ : Algebra R A
inst✝² : Algebra R B
inst✝¹ : IsScalarTower R S A
inst✝ : IsScalarTower R S B
f : A ≃ₐ[S] B
src✝ : A ≃+* B := ↑f
r : R
⊢ Equiv.toFun src✝.toEquiv (↑(algebraMap S A) (↑(algebraMap R S) r)) = ↑(algebraMap S B) (↑(algebraMap R S) r)
[PROOFSTEP]
exact f.commutes (algebraMap R S r)
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : Module A M
inst✝ : IsScalarTower R A M
hsur : Function.Surjective ↑(algebraMap R A)
X : Set M
⊢ restrictScalars R (span A X) = span R X
[PROOFSTEP]
refine' ((span_le_restrictScalars R A X).antisymm fun m hm => _).symm
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : Module A M
inst✝ : IsScalarTower R A M
hsur : Function.Surjective ↑(algebraMap R A)
X : Set M
m : M
hm : m ∈ restrictScalars R (span A X)
⊢ m ∈ span R X
[PROOFSTEP]
refine' span_induction hm subset_span (zero_mem _) (fun _ _ => add_mem) fun a m hm => _
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : Module A M
inst✝ : IsScalarTower R A M
hsur : Function.Surjective ↑(algebraMap R A)
X : Set M
m✝ : M
hm✝ : m✝ ∈ restrictScalars R (span A X)
a : A
m : M
hm : m ∈ span R X
⊢ a • m ∈ span R X
[PROOFSTEP]
obtain ⟨r, rfl⟩ := hsur a
[GOAL]
case intro
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : CommSemiring R
inst✝⁵ : Semiring A
inst✝⁴ : Algebra R A
inst✝³ : AddCommMonoid M
inst✝² : Module R M
inst✝¹ : Module A M
inst✝ : IsScalarTower R A M
hsur : Function.Surjective ↑(algebraMap R A)
X : Set M
m✝ : M
hm✝ : m✝ ∈ restrictScalars R (span A X)
m : M
hm : m ∈ span R X
r : R
⊢ ↑(algebraMap R A) r • m ∈ span R X
[PROOFSTEP]
simpa [algebraMap_smul] using smul_mem _ r hm
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : Semiring R
inst✝⁵ : Semiring S
inst✝⁴ : AddCommMonoid A
inst✝³ : Module R S
inst✝² : Module S A
inst✝¹ : Module R A
inst✝ : IsScalarTower R S A
s : Set S
t : Set A
k : S
hks : k ∈ span R s
x : A
hx : x ∈ t
⊢ 0 • x ∈ span R (s • t)
[PROOFSTEP]
rw [zero_smul]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : Semiring R
inst✝⁵ : Semiring S
inst✝⁴ : AddCommMonoid A
inst✝³ : Module R S
inst✝² : Module S A
inst✝¹ : Module R A
inst✝ : IsScalarTower R S A
s : Set S
t : Set A
k : S
hks : k ∈ span R s
x : A
hx : x ∈ t
⊢ 0 ∈ span R (s • t)
[PROOFSTEP]
exact zero_mem _
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : Semiring R
inst✝⁵ : Semiring S
inst✝⁴ : AddCommMonoid A
inst✝³ : Module R S
inst✝² : Module S A
inst✝¹ : Module R A
inst✝ : IsScalarTower R S A
s : Set S
t : Set A
k : S
hks : k ∈ span R s
x : A
hx : x ∈ t
c₁ c₂ : S
ih₁ : c₁ • x ∈ span R (s • t)
ih₂ : c₂ • x ∈ span R (s • t)
⊢ (c₁ + c₂) • x ∈ span R (s • t)
[PROOFSTEP]
rw [add_smul]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : Semiring R
inst✝⁵ : Semiring S
inst✝⁴ : AddCommMonoid A
inst✝³ : Module R S
inst✝² : Module S A
inst✝¹ : Module R A
inst✝ : IsScalarTower R S A
s : Set S
t : Set A
k : S
hks : k ∈ span R s
x : A
hx : x ∈ t
c₁ c₂ : S
ih₁ : c₁ • x ∈ span R (s • t)
ih₂ : c₂ • x ∈ span R (s • t)
⊢ c₁ • x + c₂ • x ∈ span R (s • t)
[PROOFSTEP]
exact add_mem ih₁ ih₂
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : Semiring R
inst✝⁵ : Semiring S
inst✝⁴ : AddCommMonoid A
inst✝³ : Module R S
inst✝² : Module S A
inst✝¹ : Module R A
inst✝ : IsScalarTower R S A
s : Set S
t : Set A
k : S
hks : k ∈ span R s
x : A
hx : x ∈ t
b : R
c : S
hc : c • x ∈ span R (s • t)
⊢ (b • c) • x ∈ span R (s • t)
[PROOFSTEP]
rw [IsScalarTower.smul_assoc]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁶ : Semiring R
inst✝⁵ : Semiring S
inst✝⁴ : AddCommMonoid A
inst✝³ : Module R S
inst✝² : Module S A
inst✝¹ : Module R A
inst✝ : IsScalarTower R S A
s : Set S
t : Set A
k : S
hks : k ∈ span R s
x : A
hx : x ∈ t
b : R
c : S
hc : c • x ∈ span R (s • t)
⊢ b • c • x ∈ span R (s • t)
[PROOFSTEP]
exact smul_mem _ _ hc
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x : A
hx : x ∈ span R t
⊢ k • 0 ∈ span R (s • t)
[PROOFSTEP]
rw [smul_zero]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x : A
hx : x ∈ span R t
⊢ 0 ∈ span R (s • t)
[PROOFSTEP]
exact zero_mem _
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x✝ : A
hx : x✝ ∈ span R t
x y : A
ihx : k • x ∈ span R (s • t)
ihy : k • y ∈ span R (s • t)
⊢ k • (x + y) ∈ span R (s • t)
[PROOFSTEP]
rw [smul_add]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x✝ : A
hx : x✝ ∈ span R t
x y : A
ihx : k • x ∈ span R (s • t)
ihy : k • y ∈ span R (s • t)
⊢ k • x + k • y ∈ span R (s • t)
[PROOFSTEP]
exact add_mem ihx ihy
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x✝ : A
hx✝ : x✝ ∈ span R (s • t)
x : A
hx : x ∈ s • t
⊢ k • x ∈ span R (s • t)
[PROOFSTEP]
let ⟨p, q, _hp, hq, hpq⟩ := Set.mem_smul.1 hx
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x✝ : A
hx✝ : x✝ ∈ span R (s • t)
x : A
hx : x ∈ s • t
p : S
q : A
_hp : p ∈ s
hq : q ∈ t
hpq : p • q = x
⊢ k • x ∈ span R (s • t)
[PROOFSTEP]
rw [← hpq, smul_smul]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x✝ : A
hx✝ : x✝ ∈ span R (s • t)
x : A
hx : x ∈ s • t
p : S
q : A
_hp : p ∈ s
hq : q ∈ t
hpq : p • q = x
⊢ (k * p) • q ∈ span R (s • t)
[PROOFSTEP]
exact smul_mem_span_smul_of_mem (hs.symm ▸ mem_top) hq
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x : A
hx : x ∈ span R (s • t)
⊢ k • 0 ∈ span R (s • t)
[PROOFSTEP]
rw [smul_zero]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x : A
hx : x ∈ span R (s • t)
⊢ 0 ∈ span R (s • t)
[PROOFSTEP]
exact zero_mem _
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x✝ : A
hx : x✝ ∈ span R (s • t)
x y : A
ihx : k • x ∈ span R (s • t)
ihy : k • y ∈ span R (s • t)
⊢ k • (x + y) ∈ span R (s • t)
[PROOFSTEP]
rw [smul_add]
[GOAL]
R : Type u
S : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝⁷ : Semiring R
inst✝⁶ : Semiring S
inst✝⁵ : AddCommMonoid A
inst✝⁴ : Module R S
inst✝³ : Module S A
inst✝² : Module R A
inst✝¹ : IsScalarTower R S A
inst✝ : SMulCommClass R S A
s : Set S
hs : span R s = ⊤
t : Set A
k : S
x✝ : A
hx : x✝ ∈ span R (s • t)
x y : A
ihx : k • x ∈ span R (s • t)
ihy : k • y ∈ span R (s • t)
⊢ k • x + k • y ∈ span R (s • t)
[PROOFSTEP]
exact add_mem ihx ihy
[GOAL]
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹² : CommSemiring R
inst✝¹¹ : Semiring S✝
inst✝¹⁰ : AddCommMonoid A
inst✝⁹ : Algebra R S✝
inst✝⁸ : Module S✝ A
inst✝⁷ : Module R A
inst✝⁶ : IsScalarTower R S✝ A
S : Type u_1
T : Type u_2
inst✝⁵ : CommSemiring S
inst✝⁴ : Semiring T
inst✝³ : Algebra R S
inst✝² : Algebra R T
inst✝¹ : Algebra S T
inst✝ : IsScalarTower R S T
x : S
a : Set S
hx : x ∈ span R a
⊢ ↑(algebraMap S T) x ∈ span R (↑(algebraMap S T) '' a)
[PROOFSTEP]
rw [span_algebraMap_image_of_tower, mem_map]
[GOAL]
R : Type u
S✝ : Type v
A : Type w
B : Type u₁
M : Type v₁
inst✝¹² : CommSemiring R
inst✝¹¹ : Semiring S✝
inst✝¹⁰ : AddCommMonoid A
inst✝⁹ : Algebra R S✝
inst✝⁸ : Module S✝ A
inst✝⁷ : Module R A
inst✝⁶ : IsScalarTower R S✝ A
S : Type u_1
T : Type u_2
inst✝⁵ : CommSemiring S
inst✝⁴ : Semiring T
inst✝³ : Algebra R S
inst✝² : Algebra R T
inst✝¹ : Algebra S T
inst✝ : IsScalarTower R S T
x : S
a : Set S
hx : x ∈ span R a
⊢ ∃ y, y ∈ span R a ∧ ↑(↑R (Algebra.linearMap S T)) y = ↑(algebraMap S T) x
[PROOFSTEP]
exact ⟨x, hx, rfl⟩
| {"mathlib_filename": "Mathlib.Algebra.Algebra.Tower", "llama_tokens": 8273} |
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
N : Type u_4
r : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : NoZeroSMulDivisors R N
⊢ ∀ {c : R} {x : M × N}, c • x = 0 → c = 0 ∨ x = 0
[PROOFSTEP]
intro c ⟨x, y⟩ h
[GOAL]
R : Type u_1
S : Type u_2
M : Type u_3
N : Type u_4
r : Semiring R
inst✝⁵ : AddCommMonoid M
inst✝⁴ : AddCommMonoid N
inst✝³ : Module R M
inst✝² : Module R N
inst✝¹ : NoZeroSMulDivisors R M
inst✝ : NoZeroSMulDivisors R N
c : R
x : M
y : N
h : c • (x, y) = 0
⊢ c = 0 ∨ (x, y) = 0
[PROOFSTEP]
exact
or_iff_not_imp_left.mpr fun hc =>
mk.inj_iff.mpr
⟨(smul_eq_zero.mp (congr_arg fst h)).resolve_left hc, (smul_eq_zero.mp (congr_arg snd h)).resolve_left hc⟩
| {"mathlib_filename": "Mathlib.Algebra.Module.Prod", "llama_tokens": 413} |
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
⊢ f * (g + h) = f * g + f * h
[PROOFSTEP]
haveI := Classical.decEq G
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
⊢ f * (g + h) = f * g + f * h
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
⊢ (sum f fun a₁ b₁ => sum (g + h) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
(sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) +
sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
[PROOFSTEP]
refine Eq.trans (congr_arg (sum f) (funext₂ fun a₁ b₁ => sum_add_index ?_ ?_)) ?_
[GOAL]
case refine_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
a₁ : G
b₁ : k
⊢ ∀ (a : G), a ∈ g.support ∪ h.support → single (a₁ * a) (b₁ * 0) = 0
[PROOFSTEP]
simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add]
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
a₁ : G
b₁ : k
⊢ ∀ (a : G),
a ∈ g.support ∪ h.support →
∀ (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
[PROOFSTEP]
simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add]
[GOAL]
case refine_3
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
⊢ (sum f fun a₁ b₁ => (sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) + sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
(sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) +
sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
[PROOFSTEP]
simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
⊢ (f + g) * h = f * h + g * h
[PROOFSTEP]
haveI := Classical.decEq G
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
⊢ (f + g) * h = f * h + g * h
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
⊢ (sum (f + g) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
(sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) +
sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
[PROOFSTEP]
refine Eq.trans (sum_add_index ?_ ?_) ?_
[GOAL]
case refine_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
⊢ ∀ (a : G), a ∈ f.support ∪ g.support → (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
[PROOFSTEP]
simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add]
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
⊢ ∀ (a : G),
a ∈ f.support ∪ g.support →
∀ (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add]
[GOAL]
case refine_3
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : MonoidAlgebra k G
this : DecidableEq G
⊢ ((sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) +
sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
(sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) +
sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
[PROOFSTEP]
simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f : MonoidAlgebra k G
⊢ 0 * f = 0
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f : MonoidAlgebra k G
⊢ (sum 0 fun a₁ b₁ => sum f fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = 0
[PROOFSTEP]
exact sum_zero_index
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f : MonoidAlgebra k G
⊢ f * 0 = 0
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f : MonoidAlgebra k G
⊢ (sum f fun a₁ b₁ => sum 0 fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = 0
[PROOFSTEP]
exact Eq.trans (congr_arg (sum f) (funext₂ fun a₁ b₁ => sum_zero_index)) sum_zero
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : Mul G
inst✝¹ : Semiring R
g_hom : Type u_3
inst✝ : MulHomClass g_hom G R
f : k →+* R
g : g_hom
a b : MonoidAlgebra k G
h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y)
⊢ ↑(liftNC ↑f ↑g) (a * b) = ↑(liftNC ↑f ↑g) a * ↑(liftNC ↑f ↑g) b
[PROOFSTEP]
conv_rhs =>
rw [← sum_single a, ← sum_single b]
-- Porting note: `(liftNC _ g).map_finsupp_sum` → `map_finsupp_sum`
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : Mul G
inst✝¹ : Semiring R
g_hom : Type u_3
inst✝ : MulHomClass g_hom G R
f : k →+* R
g : g_hom
a b : MonoidAlgebra k G
h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y)
| ↑(liftNC ↑f ↑g) a * ↑(liftNC ↑f ↑g) b
[PROOFSTEP]
rw [← sum_single a, ← sum_single b]
-- Porting note: `(liftNC _ g).map_finsupp_sum` → `map_finsupp_sum`
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : Mul G
inst✝¹ : Semiring R
g_hom : Type u_3
inst✝ : MulHomClass g_hom G R
f : k →+* R
g : g_hom
a b : MonoidAlgebra k G
h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y)
| ↑(liftNC ↑f ↑g) a * ↑(liftNC ↑f ↑g) b
[PROOFSTEP]
rw [← sum_single a, ← sum_single b]
-- Porting note: `(liftNC _ g).map_finsupp_sum` → `map_finsupp_sum`
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : Mul G
inst✝¹ : Semiring R
g_hom : Type u_3
inst✝ : MulHomClass g_hom G R
f : k →+* R
g : g_hom
a b : MonoidAlgebra k G
h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y)
| ↑(liftNC ↑f ↑g) a * ↑(liftNC ↑f ↑g) b
[PROOFSTEP]
rw [← sum_single a, ← sum_single b]
-- Porting note: `(liftNC _ g).map_finsupp_sum` → `map_finsupp_sum`
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : Mul G
inst✝¹ : Semiring R
g_hom : Type u_3
inst✝ : MulHomClass g_hom G R
f : k →+* R
g : g_hom
a b : MonoidAlgebra k G
h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y)
⊢ ↑(liftNC ↑f ↑g) (a * b) = ↑(liftNC ↑f ↑g) (sum a single) * ↑(liftNC ↑f ↑g) (sum b single)
[PROOFSTEP]
simp_rw [mul_def, map_finsupp_sum, liftNC_single, Finsupp.sum_mul, Finsupp.mul_sum]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : Mul G
inst✝¹ : Semiring R
g_hom : Type u_3
inst✝ : MulHomClass g_hom G R
f : k →+* R
g : g_hom
a b : MonoidAlgebra k G
h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y)
⊢ (sum a fun a b_1 => sum b fun a_1 b => ↑↑f (b_1 * b) * ↑g (a * a_1)) =
sum a fun a c => sum b fun a_1 c_1 => ↑↑f c * ↑g a * (↑↑f c_1 * ↑g a_1)
[PROOFSTEP]
refine Finset.sum_congr rfl fun y hy => Finset.sum_congr rfl fun x _hx => ?_
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : Mul G
inst✝¹ : Semiring R
g_hom : Type u_3
inst✝ : MulHomClass g_hom G R
f : k →+* R
g : g_hom
a b : MonoidAlgebra k G
h_comm : ∀ {x y : G}, y ∈ a.support → Commute (↑f (↑b x)) (↑g y)
y : G
hy : y ∈ a.support
x : G
_hx : x ∈ b.support
⊢ (fun a_1 b => ↑↑f (↑a y * b) * ↑g (y * a_1)) x (↑b x) = (fun a_1 c => ↑↑f (↑a y) * ↑g y * (↑↑f c * ↑g a_1)) x (↑b x)
[PROOFSTEP]
simp [mul_assoc, (h_comm hy).left_comm]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ f * g * h = f * (g * h)
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ (sum (sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₁ b₁ =>
sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
sum f fun a₁ b₁ =>
sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
[PROOFSTEP]
rw [sum_sum_index]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ (sum f fun a b =>
sum (sum g fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
sum f fun a₁ b₁ =>
sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
congr
[GOAL]
case e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ (fun a b =>
sum (sum g fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
fun a₁ b₁ =>
sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
ext a₁ b₁
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ (sum (sum g fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
rw [sum_sum_index, sum_sum_index]
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ (sum g fun a b => sum (single (a₁ * a) (b₁ * b)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
sum g fun a b => sum (sum h fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
congr
[GOAL]
case e_g.h.h.e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ (fun a b => sum (single (a₁ * a) (b₁ * b)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) = fun a b =>
sum (sum h fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
ext a₂ b₂
[GOAL]
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum (single (a₁ * a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) =
sum (sum h fun a₂_1 b₂_1 => single (a₂ * a₂_1) (b₂ * b₂_1)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
rw [sum_sum_index, sum_single_index]
[GOAL]
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂_1 => single (a₁ * a₂ * a₂_1) (b₁ * b₂ * b₂_1)) =
sum h fun a b => sum (single (a₂ * a) (b₂ * b)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
congr
[GOAL]
case e_g.h.h.e_g.h.h.e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (fun a₂_1 b₂_1 => single (a₁ * a₂ * a₂_1) (b₁ * b₂ * b₂_1)) = fun a b =>
sum (single (a₂ * a) (b₂ * b)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
ext a₃ b₃
[GOAL]
case e_g.h.h.e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
a₃ : G
b₃ : k
⊢ single (a₁ * a₂ * a₃) (b₁ * b₂ * b₃) = sum (single (a₂ * a₃) (b₂ * b₃)) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
rw [sum_single_index, mul_assoc, mul_assoc]
[GOAL]
case e_g.h.h.e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
a₃ : G
b₃ : k
⊢ single (a₁ * (a₂ * a₃)) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
all_goals simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
a₃ : G
b₃ : k
⊢ single (a₁ * (a₂ * a₃)) (b₁ * 0) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ * a₂ * a₂_1) (0 * b₂)) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ * a) (b₁ * 0) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ * a) (b₁ * (b₁_1 + b₂)) = single (a₁ * a) (b₁ * b₁_1) + single (a₁ * a) (b₁ * b₂)
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a * a₂) (0 * b₂)) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Semigroup G
inst✝ : Semiring R
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : MonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a * a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a * a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a * a₂) (b₂ * b₂_1)
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : NonAssocSemiring R
inst✝² : Semiring k
inst✝¹ : One G
g_hom : Type u_3
inst✝ : OneHomClass g_hom G R
f : k →+* R
g : g_hom
⊢ ↑(liftNC ↑f ↑g) 1 = 1
[PROOFSTEP]
simp [one_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : MulOneClass G
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f : MonoidAlgebra k G
⊢ 1 * f = f
[PROOFSTEP]
simp only [mul_def, one_def, sum_single_index, zero_mul, single_zero, sum_zero, zero_add, one_mul, sum_single]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : MulOneClass G
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
f : MonoidAlgebra k G
⊢ f * 1 = f
[PROOFSTEP]
simp only [mul_def, one_def, sum_single_index, mul_zero, single_zero, sum_zero, add_zero, mul_one, sum_single]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : MulOneClass G
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
⊢ NatCast.natCast 0 = 0
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : MulOneClass G
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
x✝ : ℕ
⊢ NatCast.natCast (x✝ + 1) = NatCast.natCast x✝ + 1
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : MulOneClass G
src✝ : NonUnitalNonAssocSemiring (MonoidAlgebra k G) := nonUnitalNonAssocSemiring
x✝ : ℕ
⊢ Finsupp.single 1 ↑x✝ + Finsupp.single 1 1 = single 1 ↑x✝ + 1
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : CommSemiring k
inst✝ : CommSemigroup G
src✝ : NonUnitalSemiring (MonoidAlgebra k G) := nonUnitalSemiring
f g : MonoidAlgebra k G
⊢ f * g = g * f
[PROOFSTEP]
simp only [mul_def, Finsupp.sum, mul_comm]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : CommSemiring k
inst✝ : CommSemigroup G
src✝ : NonUnitalSemiring (MonoidAlgebra k G) := nonUnitalSemiring
f g : MonoidAlgebra k G
⊢ ∑ x in f.support, ∑ x_1 in g.support, single (x * x_1) (↑f x * ↑g x_1) =
∑ x in g.support, ∑ x_1 in f.support, single (x * x_1) (↑f x_1 * ↑g x)
[PROOFSTEP]
rw [Finset.sum_comm]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : CommSemiring k
inst✝ : CommSemigroup G
src✝ : NonUnitalSemiring (MonoidAlgebra k G) := nonUnitalSemiring
f g : MonoidAlgebra k G
⊢ ∑ y in g.support, ∑ x in f.support, single (x * y) (↑f x * ↑g y) =
∑ x in g.support, ∑ x_1 in f.support, single (x * x_1) (↑f x_1 * ↑g x)
[PROOFSTEP]
simp only [mul_comm]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Ring k
inst✝ : MulOneClass G
src✝¹ : AddCommGroup (MonoidAlgebra k G) := addCommGroup
src✝ : NonAssocSemiring (MonoidAlgebra k G) := nonAssocSemiring
n : ℕ
⊢ IntCast.intCast ↑n = ↑n
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Ring k
inst✝ : MulOneClass G
src✝¹ : AddCommGroup (MonoidAlgebra k G) := addCommGroup
src✝ : NonAssocSemiring (MonoidAlgebra k G) := nonAssocSemiring
n : ℕ
⊢ single 1 ↑n = ↑n
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Ring k
inst✝ : MulOneClass G
src✝¹ : AddCommGroup (MonoidAlgebra k G) := addCommGroup
src✝ : NonAssocSemiring (MonoidAlgebra k G) := nonAssocSemiring
n : ℕ
⊢ IntCast.intCast (Int.negSucc n) = -↑(n + 1)
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Ring k
inst✝ : MulOneClass G
src✝¹ : AddCommGroup (MonoidAlgebra k G) := addCommGroup
src✝ : NonAssocSemiring (MonoidAlgebra k G) := nonAssocSemiring
n : ℕ
⊢ -Finsupp.single 1 1 + -Finsupp.single 1 ↑n = -1 + -↑n
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : DecidableEq G
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
⊢ ↑(f * g) x = sum f fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ * a₂ = x then b₁ * b₂ else 0
[PROOFSTEP]
rw [mul_def, Finsupp.sum_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : DecidableEq G
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
⊢ (sum f fun a₁ b => ↑(sum g fun a₂ b₂ => single (a₁ * a₂) (b * b₂)) x) =
sum f fun a₁ b₁ => sum g fun a₂ b₂ => if a₁ * a₂ = x then b₁ * b₂ else 0
[PROOFSTEP]
congr
[GOAL]
case e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : DecidableEq G
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
⊢ (fun a₁ b => ↑(sum g fun a₂ b₂ => single (a₁ * a₂) (b * b₂)) x) = fun a₁ b₁ =>
sum g fun a₂ b₂ => if a₁ * a₂ = x then b₁ * b₂ else 0
[PROOFSTEP]
ext
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : DecidableEq G
inst✝ : Mul G
f g : MonoidAlgebra k G
x x✝¹ : G
x✝ : k
⊢ ↑(sum g fun a₂ b₂ => single (x✝¹ * a₂) (x✝ * b₂)) x = sum g fun a₂ b₂ => if x✝¹ * a₂ = x then x✝ * b₂ else 0
[PROOFSTEP]
rw [Finsupp.sum_apply]
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : DecidableEq G
inst✝ : Mul G
f g : MonoidAlgebra k G
x x✝¹ : G
x✝ : k
⊢ (sum g fun a₁ b => ↑(single (x✝¹ * a₁) (x✝ * b)) x) = sum g fun a₂ b₂ => if x✝¹ * a₂ = x then x✝ * b₂ else 0
[PROOFSTEP]
congr
[GOAL]
case e_g.h.h.e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : DecidableEq G
inst✝ : Mul G
f g : MonoidAlgebra k G
x x✝¹ : G
x✝ : k
⊢ (fun a₁ b => ↑(single (x✝¹ * a₁) (x✝ * b)) x) = fun a₂ b₂ => if x✝¹ * a₂ = x then x✝ * b₂ else 0
[PROOFSTEP]
ext
[GOAL]
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : DecidableEq G
inst✝ : Mul G
f g : MonoidAlgebra k G
x x✝³ : G
x✝² : k
x✝¹ : G
x✝ : k
⊢ ↑(single (x✝³ * x✝¹) (x✝² * x✝)) x = if x✝³ * x✝¹ = x then x✝² * x✝ else 0
[PROOFSTEP]
apply single_apply
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
s : Finset (G × G)
hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x
⊢ ↑(f * g) x = ∑ p in s, ↑f p.fst * ↑g p.snd
[PROOFSTEP]
classical exact
let F : G × G → k := fun p => if p.1 * p.2 = x then f p.1 * g p.2 else 0
calc
(f * g) x = ∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂) := mul_apply f g x
_ = ∑ p in f.support ×ˢ g.support, F p := Finset.sum_product.symm
_ = ∑ p in (f.support ×ˢ g.support).filter fun p : G × G => p.1 * p.2 = x, f p.1 * g p.2 :=
(Finset.sum_filter _ _).symm
_ = ∑ p in s.filter fun p : G × G => p.1 ∈ f.support ∧ p.2 ∈ g.support, f p.1 * g p.2 :=
(sum_congr
(by
ext
simp only [mem_filter, mem_product, hs, and_comm])
fun _ _ => rfl)
_ = ∑ p in s, f p.1 * g p.2 :=
sum_subset (filter_subset _ _) fun p hps hp =>
by
simp only [mem_filter, mem_support_iff, not_and, Classical.not_not] at hp ⊢
by_cases h1 : f p.1 = 0
· rw [h1, zero_mul]
· rw [hp hps h1, mul_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
s : Finset (G × G)
hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x
⊢ ↑(f * g) x = ∑ p in s, ↑f p.fst * ↑g p.snd
[PROOFSTEP]
exact
let F : G × G → k := fun p => if p.1 * p.2 = x then f p.1 * g p.2 else 0
calc
(f * g) x = ∑ a₁ in f.support, ∑ a₂ in g.support, F (a₁, a₂) := mul_apply f g x
_ = ∑ p in f.support ×ˢ g.support, F p := Finset.sum_product.symm
_ = ∑ p in (f.support ×ˢ g.support).filter fun p : G × G => p.1 * p.2 = x, f p.1 * g p.2 :=
(Finset.sum_filter _ _).symm
_ = ∑ p in s.filter fun p : G × G => p.1 ∈ f.support ∧ p.2 ∈ g.support, f p.1 * g p.2 :=
(sum_congr
(by
ext
simp only [mem_filter, mem_product, hs, and_comm])
fun _ _ => rfl)
_ = ∑ p in s, f p.1 * g p.2 :=
sum_subset (filter_subset _ _) fun p hps hp =>
by
simp only [mem_filter, mem_support_iff, not_and, Classical.not_not] at hp ⊢
by_cases h1 : f p.1 = 0
· rw [h1, zero_mul]
· rw [hp hps h1, mul_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
s : Finset (G × G)
hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x
F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0
⊢ Finset.filter (fun p => p.fst * p.snd = x) (f.support ×ˢ g.support) =
Finset.filter (fun p => p.fst ∈ f.support ∧ p.snd ∈ g.support) s
[PROOFSTEP]
ext
[GOAL]
case a
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
s : Finset (G × G)
hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x
F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0
a✝ : G × G
⊢ a✝ ∈ Finset.filter (fun p => p.fst * p.snd = x) (f.support ×ˢ g.support) ↔
a✝ ∈ Finset.filter (fun p => p.fst ∈ f.support ∧ p.snd ∈ g.support) s
[PROOFSTEP]
simp only [mem_filter, mem_product, hs, and_comm]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
s : Finset (G × G)
hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x
F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0
p : G × G
hps : p ∈ s
hp : ¬p ∈ Finset.filter (fun p => p.fst ∈ f.support ∧ p.snd ∈ g.support) s
⊢ ↑f p.fst * ↑g p.snd = 0
[PROOFSTEP]
simp only [mem_filter, mem_support_iff, not_and, Classical.not_not] at hp ⊢
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
s : Finset (G × G)
hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x
F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0
p : G × G
hps : p ∈ s
hp : p ∈ s → ↑f p.fst ≠ 0 → ↑g p.snd = 0
⊢ ↑f p.fst * ↑g p.snd = 0
[PROOFSTEP]
by_cases h1 : f p.1 = 0
[GOAL]
case pos
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
s : Finset (G × G)
hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x
F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0
p : G × G
hps : p ∈ s
hp : p ∈ s → ↑f p.fst ≠ 0 → ↑g p.snd = 0
h1 : ↑f p.fst = 0
⊢ ↑f p.fst * ↑g p.snd = 0
[PROOFSTEP]
rw [h1, zero_mul]
[GOAL]
case neg
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f g : MonoidAlgebra k G
x : G
s : Finset (G × G)
hs : ∀ {p : G × G}, p ∈ s ↔ p.fst * p.snd = x
F : G × G → k := fun p => if p.fst * p.snd = x then ↑f p.fst * ↑g p.snd else 0
p : G × G
hps : p ∈ s
hp : p ∈ s → ↑f p.fst ≠ 0 → ↑g p.snd = 0
h1 : ¬↑f p.fst = 0
⊢ ↑f p.fst * ↑g p.snd = 0
[PROOFSTEP]
rw [hp hps h1, mul_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
a₁ a₂ : G
b₁ b₂ : k
⊢ (sum (single a₂ b₂) fun a₂ b₂ => single (a₁ * a₂) (0 * b₂)) = 0
[PROOFSTEP]
simp only [zero_mul, single_zero, sum_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
a₁ a₂ : G
b₁ b₂ : k
⊢ single (a₁ * a₂) (b₁ * 0) = 0
[PROOFSTEP]
rw [mul_zero, single_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
a : G
b : k
⊢ single a b ^ 0 = single (a ^ 0) (b ^ 0)
[PROOFSTEP]
simp only [pow_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
a : G
b : k
⊢ 1 = single 1 1
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
a : G
b : k
n : ℕ
⊢ single a b ^ (n + 1) = single (a ^ (n + 1)) (b ^ (n + 1))
[PROOFSTEP]
simp only [pow_succ, single_pow n, single_mul_single]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : One α
inst✝¹ : One α₂
F : Type u_6
inst✝ : OneHomClass F α α₂
f : F
⊢ mapDomain (↑f) 1 = 1
[PROOFSTEP]
simp_rw [one_def, mapDomain_single, map_one]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Mul α
inst✝¹ : Mul α₂
F : Type u_6
inst✝ : MulHomClass F α α₂
f : F
x y : MonoidAlgebra β α
⊢ mapDomain (↑f) (x * y) = mapDomain (↑f) x * mapDomain (↑f) y
[PROOFSTEP]
simp_rw [mul_def, mapDomain_sum, mapDomain_single, map_mul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Mul α
inst✝¹ : Mul α₂
F : Type u_6
inst✝ : MulHomClass F α α₂
f : F
x y : MonoidAlgebra β α
⊢ (sum x fun a b => sum y fun a_1 b_1 => Finsupp.single (↑f a * ↑f a_1) (b * b_1)) =
sum (mapDomain (↑f) x) fun a₁ b₁ => sum (mapDomain (↑f) y) fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)
[PROOFSTEP]
rw [Finsupp.sum_mapDomain_index]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Mul α
inst✝¹ : Mul α₂
F : Type u_6
inst✝ : MulHomClass F α α₂
f : F
x y : MonoidAlgebra β α
⊢ (sum x fun a b => sum y fun a_1 b_1 => Finsupp.single (↑f a * ↑f a_1) (b * b_1)) =
sum x fun a m => sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a * a₂) (m * b₂)
[PROOFSTEP]
congr
[GOAL]
case e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Mul α
inst✝¹ : Mul α₂
F : Type u_6
inst✝ : MulHomClass F α α₂
f : F
x y : MonoidAlgebra β α
⊢ (fun a b => sum y fun a_1 b_1 => Finsupp.single (↑f a * ↑f a_1) (b * b_1)) = fun a m =>
sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a * a₂) (m * b₂)
[PROOFSTEP]
ext a b
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Mul α
inst✝¹ : Mul α₂
F : Type u_6
inst✝ : MulHomClass F α α₂
f : F
x y : MonoidAlgebra β α
a : α
b : β
⊢ (sum y fun a_1 b_1 => Finsupp.single (↑f a * ↑f a_1) (b * b_1)) =
sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a * a₂) (b * b₂)
[PROOFSTEP]
rw [Finsupp.sum_mapDomain_index]
[GOAL]
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Mul α
inst✝¹ : Mul α₂
F : Type u_6
inst✝ : MulHomClass F α α₂
f : F
x y : MonoidAlgebra β α
a : α
b : β
⊢ ∀ (b_1 : α₂), single (↑f a * b_1) (b * 0) = 0
[PROOFSTEP]
simp
[GOAL]
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Mul α
inst✝¹ : Mul α₂
F : Type u_6
inst✝ : MulHomClass F α α₂
f : F
x y : MonoidAlgebra β α
a : α
b : β
⊢ ∀ (b_1 : α₂) (m₁ m₂ : β),
single (↑f a * b_1) (b * (m₁ + m₂)) = single (↑f a * b_1) (b * m₁) + single (↑f a * b_1) (b * m₂)
[PROOFSTEP]
simp [mul_add]
[GOAL]
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Mul α
inst✝¹ : Mul α₂
F : Type u_6
inst✝ : MulHomClass F α α₂
f : F
x y : MonoidAlgebra β α
⊢ ∀ (b : α₂), (sum (mapDomain (↑f) y) fun a₂ b₂ => single (b * a₂) (0 * b₂)) = 0
[PROOFSTEP]
simp
[GOAL]
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Mul α
inst✝¹ : Mul α₂
F : Type u_6
inst✝ : MulHomClass F α α₂
f : F
x y : MonoidAlgebra β α
⊢ ∀ (b : α₂) (m₁ m₂ : β),
(sum (mapDomain (↑f) y) fun a₂ b₂ => single (b * a₂) ((m₁ + m₂) * b₂)) =
(sum (mapDomain (↑f) y) fun a₂ b₂ => single (b * a₂) (m₁ * b₂)) +
sum (mapDomain (↑f) y) fun a₂ b₂ => single (b * a₂) (m₂ * b₂)
[PROOFSTEP]
simp [add_mul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
a b : G
⊢ (fun a => single a 1) (a * b) = (fun a => single a 1) a * (fun a => single a 1) b
[PROOFSTEP]
simp only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : MulOneClass G
g : G
r : k
⊢ r • ↑(of k G) g = single g r
[PROOFSTEP]
rw [of_apply, smul_single', mul_one]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : MulOneClass G
inst✝ : Nontrivial k
a b : G
h : ↑(of k G) a = ↑(of k G) b
⊢ a = b
[PROOFSTEP]
simpa using (single_eq_single_iff _ _ _ _).mp h
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), a * x = z ↔ a = y
⊢ ↑(f * single x r) z = ↑f y * r
[PROOFSTEP]
classical exact
have A : ∀ a₁ b₁, ((single x r).sum fun a₂ b₂ => ite (a₁ * a₂ = z) (b₁ * b₂) 0) = ite (a₁ * x = z) (b₁ * r) 0 :=
fun a₁ b₁ => sum_single_index <| by simp
calc
(HMul.hMul (β := MonoidAlgebra k G) f (single x r)) z = sum f fun a b => if a = y then b * r else 0 := by
simp only [mul_apply, A, H]
_ = if y ∈ f.support then f y * r else 0 := (f.support.sum_ite_eq' _ _)
_ = f y * r := by split_ifs with h <;> simp at h <;> simp [h]
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), a * x = z ↔ a = y
⊢ ↑(f * single x r) z = ↑f y * r
[PROOFSTEP]
exact
have A : ∀ a₁ b₁, ((single x r).sum fun a₂ b₂ => ite (a₁ * a₂ = z) (b₁ * b₂) 0) = ite (a₁ * x = z) (b₁ * r) 0 :=
fun a₁ b₁ => sum_single_index <| by simp
calc
(HMul.hMul (β := MonoidAlgebra k G) f (single x r)) z = sum f fun a b => if a = y then b * r else 0 := by
simp only [mul_apply, A, H]
_ = if y ∈ f.support then f y * r else 0 := (f.support.sum_ite_eq' _ _)
_ = f y * r := by split_ifs with h <;> simp at h <;> simp [h]
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), a * x = z ↔ a = y
a₁ : G
b₁ : k
⊢ (if a₁ * x = z then b₁ * 0 else 0) = 0
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), a * x = z ↔ a = y
A :
∀ (a₁ : G) (b₁ : k),
(sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0
⊢ ↑(f * single x r) z = sum f fun a b => if a = y then b * r else 0
[PROOFSTEP]
simp only [mul_apply, A, H]
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), a * x = z ↔ a = y
A :
∀ (a₁ : G) (b₁ : k),
(sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0
⊢ (if y ∈ f.support then ↑f y * r else 0) = ↑f y * r
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), a * x = z ↔ a = y
A :
∀ (a₁ : G) (b₁ : k),
(sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0
h : y ∈ f.support
⊢ ↑f y * r = ↑f y * r
[PROOFSTEP]
simp at h
[GOAL]
case neg
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), a * x = z ↔ a = y
A :
∀ (a₁ : G) (b₁ : k),
(sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0
h : ¬y ∈ f.support
⊢ 0 = ↑f y * r
[PROOFSTEP]
simp at h
[GOAL]
case pos
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), a * x = z ↔ a = y
A :
∀ (a₁ : G) (b₁ : k),
(sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0
h : ¬↑f y = 0
⊢ ↑f y * r = ↑f y * r
[PROOFSTEP]
simp [h]
[GOAL]
case neg
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), a * x = z ↔ a = y
A :
∀ (a₁ : G) (b₁ : k),
(sum (single x r) fun a₂ b₂ => if a₁ * a₂ = z then b₁ * b₂ else 0) = if a₁ * x = z then b₁ * r else 0
h : ↑f y = 0
⊢ 0 = ↑f y * r
[PROOFSTEP]
simp [h]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : MulOneClass G
f : MonoidAlgebra k G
r : k
x a : G
⊢ a * 1 = x ↔ a = x
[PROOFSTEP]
rw [mul_one]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = d * g
⊢ ↑(x * single g r) g' = 0
[PROOFSTEP]
classical
rw [mul_apply, Finsupp.sum_comm, Finsupp.sum_single_index]
swap
· simp_rw [Finsupp.sum, mul_zero, ite_self, Finset.sum_const_zero]
· apply Finset.sum_eq_zero
simp_rw [ite_eq_right_iff]
rintro g'' _hg'' rfl
exfalso
exact h ⟨_, rfl⟩
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = d * g
⊢ ↑(x * single g r) g' = 0
[PROOFSTEP]
rw [mul_apply, Finsupp.sum_comm, Finsupp.sum_single_index]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = d * g
⊢ (sum x fun x v => if x * g = g' then v * r else 0) = 0
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = d * g
⊢ (sum x fun x v => if x * g = g' then v * 0 else 0) = 0
[PROOFSTEP]
swap
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = d * g
⊢ (sum x fun x v => if x * g = g' then v * 0 else 0) = 0
[PROOFSTEP]
simp_rw [Finsupp.sum, mul_zero, ite_self, Finset.sum_const_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = d * g
⊢ (sum x fun x v => if x * g = g' then v * r else 0) = 0
[PROOFSTEP]
apply Finset.sum_eq_zero
[GOAL]
case h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = d * g
⊢ ∀ (x_1 : G), x_1 ∈ x.support → (fun x v => if x * g = g' then v * r else 0) x_1 (↑x x_1) = 0
[PROOFSTEP]
simp_rw [ite_eq_right_iff]
[GOAL]
case h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = d * g
⊢ ∀ (x_1 : G), x_1 ∈ x.support → x_1 * g = g' → ↑x x_1 * r = 0
[PROOFSTEP]
rintro g'' _hg'' rfl
[GOAL]
case h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g : G
x : MonoidAlgebra k G
g'' : G
_hg'' : g'' ∈ x.support
h : ¬∃ d, g'' * g = d * g
⊢ ↑x g'' * r = 0
[PROOFSTEP]
exfalso
[GOAL]
case h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g : G
x : MonoidAlgebra k G
g'' : G
_hg'' : g'' ∈ x.support
h : ¬∃ d, g'' * g = d * g
⊢ False
[PROOFSTEP]
exact h ⟨_, rfl⟩
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), x * a = y ↔ a = z
⊢ ↑(single x r * f) y = r * ↑f z
[PROOFSTEP]
classical exact
have : (f.sum fun a b => ite (x * a = y) (0 * b) 0) = 0 := by simp
calc
(HMul.hMul (α := MonoidAlgebra k G) (single x r) f) y = sum f fun a b => ite (x * a = y) (r * b) 0 :=
(mul_apply _ _ _).trans <| sum_single_index this
_ = f.sum fun a b => ite (a = z) (r * b) 0 := by simp only [H]
_ = if z ∈ f.support then r * f z else 0 := (f.support.sum_ite_eq' _ _)
_ = _ := by split_ifs with h <;> simp at h <;> simp [h]
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), x * a = y ↔ a = z
⊢ ↑(single x r * f) y = r * ↑f z
[PROOFSTEP]
exact
have : (f.sum fun a b => ite (x * a = y) (0 * b) 0) = 0 := by simp
calc
(HMul.hMul (α := MonoidAlgebra k G) (single x r) f) y = sum f fun a b => ite (x * a = y) (r * b) 0 :=
(mul_apply _ _ _).trans <| sum_single_index this
_ = f.sum fun a b => ite (a = z) (r * b) 0 := by simp only [H]
_ = if z ∈ f.support then r * f z else 0 := (f.support.sum_ite_eq' _ _)
_ = _ := by split_ifs with h <;> simp at h <;> simp [h]
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), x * a = y ↔ a = z
⊢ (sum f fun a b => if x * a = y then 0 * b else 0) = 0
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), x * a = y ↔ a = z
this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0
⊢ (sum f fun a b => if x * a = y then r * b else 0) = sum f fun a b => if a = z then r * b else 0
[PROOFSTEP]
simp only [H]
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), x * a = y ↔ a = z
this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0
⊢ (if z ∈ f.support then r * ↑f z else 0) = r * ↑f z
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), x * a = y ↔ a = z
this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0
h : z ∈ f.support
⊢ r * ↑f z = r * ↑f z
[PROOFSTEP]
simp at h
[GOAL]
case neg
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), x * a = y ↔ a = z
this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0
h : ¬z ∈ f.support
⊢ 0 = r * ↑f z
[PROOFSTEP]
simp at h
[GOAL]
case pos
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), x * a = y ↔ a = z
this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0
h : ¬↑f z = 0
⊢ r * ↑f z = r * ↑f z
[PROOFSTEP]
simp [h]
[GOAL]
case neg
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
f : MonoidAlgebra k G
r : k
x y z : G
H : ∀ (a : G), x * a = y ↔ a = z
this : (sum f fun a b => if x * a = y then 0 * b else 0) = 0
h : ↑f z = 0
⊢ 0 = r * ↑f z
[PROOFSTEP]
simp [h]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : MulOneClass G
f : MonoidAlgebra k G
r : k
x a : G
⊢ 1 * a = x ↔ a = x
[PROOFSTEP]
rw [one_mul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = g * d
⊢ ↑(single g r * x) g' = 0
[PROOFSTEP]
classical
rw [mul_apply, Finsupp.sum_single_index]
swap
· simp_rw [Finsupp.sum, zero_mul, ite_self, Finset.sum_const_zero]
· apply Finset.sum_eq_zero
simp_rw [ite_eq_right_iff]
rintro g'' _hg'' rfl
exfalso
exact h ⟨_, rfl⟩
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = g * d
⊢ ↑(single g r * x) g' = 0
[PROOFSTEP]
rw [mul_apply, Finsupp.sum_single_index]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = g * d
⊢ (sum x fun a₂ b₂ => if g * a₂ = g' then r * b₂ else 0) = 0
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = g * d
⊢ (sum x fun a₂ b₂ => if g * a₂ = g' then 0 * b₂ else 0) = 0
[PROOFSTEP]
swap
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = g * d
⊢ (sum x fun a₂ b₂ => if g * a₂ = g' then 0 * b₂ else 0) = 0
[PROOFSTEP]
simp_rw [Finsupp.sum, zero_mul, ite_self, Finset.sum_const_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = g * d
⊢ (sum x fun a₂ b₂ => if g * a₂ = g' then r * b₂ else 0) = 0
[PROOFSTEP]
apply Finset.sum_eq_zero
[GOAL]
case h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = g * d
⊢ ∀ (x_1 : G), x_1 ∈ x.support → (fun a₂ b₂ => if g * a₂ = g' then r * b₂ else 0) x_1 (↑x x_1) = 0
[PROOFSTEP]
simp_rw [ite_eq_right_iff]
[GOAL]
case h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g g' : G
x : MonoidAlgebra k G
h : ¬∃ d, g' = g * d
⊢ ∀ (x_1 : G), x_1 ∈ x.support → g * x_1 = g' → r * ↑x x_1 = 0
[PROOFSTEP]
rintro g'' _hg'' rfl
[GOAL]
case h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g : G
x : MonoidAlgebra k G
g'' : G
_hg'' : g'' ∈ x.support
h : ¬∃ d, g * g'' = g * d
⊢ r * ↑x g'' = 0
[PROOFSTEP]
exfalso
[GOAL]
case h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
r : k
g : G
x : MonoidAlgebra k G
g'' : G
_hg'' : g'' ∈ x.support
h : ¬∃ d, g * g'' = g * d
⊢ False
[PROOFSTEP]
exact h ⟨_, rfl⟩
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R✝ : Type u_2
inst✝² : Semiring k
inst✝¹ : MulOneClass G
R : Type u_3
inst✝ : Semiring R
f : k →+* R
g : G →* R
c : k
φ : MonoidAlgebra k G
⊢ ↑(liftNC ↑f ↑g) (c • φ) = ↑f c * ↑(liftNC ↑f ↑g) φ
[PROOFSTEP]
suffices : (liftNC (↑f) g).comp (smulAddHom k (MonoidAlgebra k G) c) = (AddMonoidHom.mulLeft (f c)).comp (liftNC (↑f) g)
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R✝ : Type u_2
inst✝² : Semiring k
inst✝¹ : MulOneClass G
R : Type u_3
inst✝ : Semiring R
f : k →+* R
g : G →* R
c : k
φ : MonoidAlgebra k G
this :
AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (MonoidAlgebra k G)) c) =
AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g)
⊢ ↑(liftNC ↑f ↑g) (c • φ) = ↑f c * ↑(liftNC ↑f ↑g) φ
case this
k : Type u₁
G : Type u₂
H : Type u_1
R✝ : Type u_2
inst✝² : Semiring k
inst✝¹ : MulOneClass G
R : Type u_3
inst✝ : Semiring R
f : k →+* R
g : G →* R
c : k
φ : MonoidAlgebra k G
⊢ AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (MonoidAlgebra k G)) c) =
AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g)
[PROOFSTEP]
exact FunLike.congr_fun this φ
[GOAL]
case this
k : Type u₁
G : Type u₂
H : Type u_1
R✝ : Type u_2
inst✝² : Semiring k
inst✝¹ : MulOneClass G
R : Type u_3
inst✝ : Semiring R
f : k →+* R
g : G →* R
c : k
φ : MonoidAlgebra k G
⊢ AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (MonoidAlgebra k G)) c) =
AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g)
[PROOFSTEP]
refine
addHom_ext' fun a =>
AddMonoidHom.ext fun b =>
?_
-- Porting note: `reducible` cannot be `local` so the proof gets more complex.
[GOAL]
case this
k : Type u₁
G : Type u₂
H : Type u_1
R✝ : Type u_2
inst✝² : Semiring k
inst✝¹ : MulOneClass G
R : Type u_3
inst✝ : Semiring R
f : k →+* R
g : G →* R
c : k
φ : MonoidAlgebra k G
a : G
b : k
⊢ ↑(AddMonoidHom.comp (AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (MonoidAlgebra k G)) c)) (singleAddHom a)) b =
↑(AddMonoidHom.comp (AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g)) (singleAddHom a)) b
[PROOFSTEP]
unfold MonoidAlgebra
[GOAL]
case this
k : Type u₁
G : Type u₂
H : Type u_1
R✝ : Type u_2
inst✝² : Semiring k
inst✝¹ : MulOneClass G
R : Type u_3
inst✝ : Semiring R
f : k →+* R
g : G →* R
c : k
φ : MonoidAlgebra k G
a : G
b : k
⊢ ↑(AddMonoidHom.comp (AddMonoidHom.comp (liftNC ↑f ↑g) (↑(smulAddHom k (G →₀ k)) c)) (singleAddHom a)) b =
↑(AddMonoidHom.comp (AddMonoidHom.comp (AddMonoidHom.mulLeft (↑f c)) (liftNC ↑f ↑g)) (singleAddHom a)) b
[PROOFSTEP]
simp
[GOAL]
case this
k : Type u₁
G : Type u₂
H : Type u_1
R✝ : Type u_2
inst✝² : Semiring k
inst✝¹ : MulOneClass G
R : Type u_3
inst✝ : Semiring R
f : k →+* R
g : G →* R
c : k
φ : MonoidAlgebra k G
a : G
b : k
⊢ ↑(liftNC ↑f ↑g) (Finsupp.single a (c * b)) = ↑f c * ↑(liftNC ↑f ↑g) (Finsupp.single a b)
[PROOFSTEP]
rw [liftNC_single, liftNC_single, AddMonoidHom.coe_coe, map_mul, mul_assoc]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : IsScalarTower R k k
t : R
a b : MonoidAlgebra k G
⊢ (t • a) • b = t • a • b
[PROOFSTEP]
refine
Finsupp.ext fun m =>
?_
-- Porting note: `refine` & `rw` are required because `simp` behaves differently.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : IsScalarTower R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ ↑((t • a) • b) m = ↑(t • a • b) m
[PROOFSTEP]
classical
simp only [smul_eq_mul, mul_apply]
rw [coe_smul]
refine Eq.trans (sum_smul_index' (g := a) (b := t) ?_) ?_ <;>
simp only [mul_apply, Finsupp.smul_sum, smul_ite, smul_mul_assoc, zero_mul, ite_self, imp_true_iff, sum_zero,
Pi.smul_apply, smul_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : IsScalarTower R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ ↑((t • a) • b) m = ↑(t • a • b) m
[PROOFSTEP]
simp only [smul_eq_mul, mul_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : IsScalarTower R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ (sum (t • a) fun a₁ b₁ => sum b fun a₂ b₂ => if a₁ * a₂ = m then b₁ * b₂ else 0) = ↑(t • (a * b)) m
[PROOFSTEP]
rw [coe_smul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : IsScalarTower R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ (sum (t • a) fun a₁ b₁ => sum b fun a₂ b₂ => if a₁ * a₂ = m then b₁ * b₂ else 0) = (t • ↑(a * b)) m
[PROOFSTEP]
refine Eq.trans (sum_smul_index' (g := a) (b := t) ?_) ?_
[GOAL]
case refine_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : IsScalarTower R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ ∀ (i : G), (sum b fun a₂ b₂ => if i * a₂ = m then 0 * b₂ else 0) = 0
[PROOFSTEP]
simp only [mul_apply, Finsupp.smul_sum, smul_ite, smul_mul_assoc, zero_mul, ite_self, imp_true_iff, sum_zero,
Pi.smul_apply, smul_zero]
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : IsScalarTower R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ (sum a fun i c => sum b fun a₂ b₂ => if i * a₂ = m then t • c * b₂ else 0) = (t • ↑(a * b)) m
[PROOFSTEP]
simp only [mul_apply, Finsupp.smul_sum, smul_ite, smul_mul_assoc, zero_mul, ite_self, imp_true_iff, sum_zero,
Pi.smul_apply, smul_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : SMulCommClass R k k
t : R
a b : MonoidAlgebra k G
⊢ t • a • b = a • t • b
[PROOFSTEP]
refine
Finsupp.ext fun m =>
?_
-- Porting note: `refine` & `rw` are required because `simp` behaves differently.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : SMulCommClass R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ ↑(t • a • b) m = ↑(a • t • b) m
[PROOFSTEP]
classical
simp only [smul_eq_mul, mul_apply]
rw [coe_smul]
refine Eq.symm (Eq.trans (congr_arg (sum a) (funext₂ fun a₁ b₁ => sum_smul_index' (g := b) (b := t) ?_)) ?_) <;>
simp only [mul_apply, Finsupp.sum, Finset.smul_sum, smul_ite, mul_smul_comm, imp_true_iff, ite_eq_right_iff,
Pi.smul_apply, mul_zero, smul_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : SMulCommClass R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ ↑(t • a • b) m = ↑(a • t • b) m
[PROOFSTEP]
simp only [smul_eq_mul, mul_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : SMulCommClass R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ ↑(t • (a * b)) m = sum a fun a₁ b₁ => sum (t • b) fun a₂ b₂ => if a₁ * a₂ = m then b₁ * b₂ else 0
[PROOFSTEP]
rw [coe_smul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : SMulCommClass R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ (t • ↑(a * b)) m = sum a fun a₁ b₁ => sum (t • b) fun a₂ b₂ => if a₁ * a₂ = m then b₁ * b₂ else 0
[PROOFSTEP]
refine Eq.symm (Eq.trans (congr_arg (sum a) (funext₂ fun a₁ b₁ => sum_smul_index' (g := b) (b := t) ?_)) ?_)
[GOAL]
case refine_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : SMulCommClass R k k
t : R
a b : MonoidAlgebra k G
m a₁ : G
b₁ : k
⊢ ∀ (i : G), (if a₁ * i = m then b₁ * 0 else 0) = 0
[PROOFSTEP]
simp only [mul_apply, Finsupp.sum, Finset.smul_sum, smul_ite, mul_smul_comm, imp_true_iff, ite_eq_right_iff,
Pi.smul_apply, mul_zero, smul_zero]
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : SMulCommClass R k k
t : R
a b : MonoidAlgebra k G
m : G
⊢ (sum a fun a₁ b₁ => sum b fun i c => if a₁ * i = m then b₁ * t • c else 0) = (t • ↑(a * b)) m
[PROOFSTEP]
simp only [mul_apply, Finsupp.sum, Finset.smul_sum, smul_ite, mul_smul_comm, imp_true_iff, ite_eq_right_iff,
Pi.smul_apply, mul_zero, smul_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : SMulCommClass k R k
t : MonoidAlgebra k G
a : R
b : MonoidAlgebra k G
⊢ t • a • b = a • t • b
[PROOFSTEP]
haveI := SMulCommClass.symm k R k
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : Semiring k
inst✝² : DistribSMul R k
inst✝¹ : Mul G
inst✝ : SMulCommClass k R k
t : MonoidAlgebra k G
a : R
b : MonoidAlgebra k G
this : SMulCommClass R k k
⊢ t • a • b = a • t • b
[PROOFSTEP]
rw [← smul_comm]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
t' : k
a : MonoidAlgebra k G
⊢ (fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a
[PROOFSTEP]
dsimp only []
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
t' : k
a : MonoidAlgebra k G
⊢ (sum (t' • a) fun m t => t • ↑f m) = t' • sum a fun m t => t • ↑f m
[PROOFSTEP]
rw [Finsupp.smul_sum, sum_smul_index']
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
t' : k
a : MonoidAlgebra k G
⊢ (sum a fun i c => (t' • c) • ↑f i) = sum a fun a b => t' • b • ↑f a
[PROOFSTEP]
simp_rw [smul_assoc]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
t' : k
a : MonoidAlgebra k G
⊢ ∀ (i : G), 0 • ↑f i = 0
[PROOFSTEP]
intro m
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
t' : k
a : MonoidAlgebra k G
m : G
⊢ 0 • ↑f m = 0
[PROOFSTEP]
exact zero_smul k (f m)
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
⊢ MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
(a₁ * a₂) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
a₁ *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
a₂
[PROOFSTEP]
let g : G → k → A := fun m t => t • f m
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
⊢ MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
(a₁ * a₂) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
a₁ *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
a₂
[PROOFSTEP]
have h₁ : ∀ m, g m 0 = 0 := by
intro m
exact zero_smul k (f m)
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
⊢ ∀ (m : G), g m 0 = 0
[PROOFSTEP]
intro m
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
m : G
⊢ g m 0 = 0
[PROOFSTEP]
exact zero_smul k (f m)
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
⊢ MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
(a₁ * a₂) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
a₁ *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
a₂
[PROOFSTEP]
have h₂ : ∀ (m) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂ :=
by
intros
rw [← add_smul]
-- Porting note: `reducible` cannot be `local` so proof gets long.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
⊢ ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂
[PROOFSTEP]
intros
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
m✝ : G
t₁✝ t₂✝ : k
⊢ g m✝ (t₁✝ + t₂✝) = g m✝ t₁✝ + g m✝ t₂✝
[PROOFSTEP]
rw [← add_smul]
-- Porting note: `reducible` cannot be `local` so proof gets long.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂
⊢ MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
(a₁ * a₂) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
a₁ *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src✝) (x + y) = ZeroHom.toFun (↑src✝) x + ZeroHom.toFun (↑src✝) y) }.toMulActionHom
a₂
[PROOFSTEP]
simp_rw [Finsupp.mul_sum, Finsupp.sum_mul, smul_mul_smul, ← f.map_mul, mul_def, sum_comm a₂ a₁]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂
⊢ (sum (sum a₁ fun a₁ b₁ => sum a₂ fun a₂ b₂ => single (a₁ * a₂) (b₁ * b₂)) fun m t => t • ↑f m) =
sum a₁ fun x' v' => sum a₂ fun x v => (v' * v) • ↑f (x' * x)
[PROOFSTEP]
rw [sum_sum_index h₁ h₂]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂
⊢ (sum a₁ fun a b => sum (sum a₂ fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a => g a) =
sum a₁ fun x' v' => sum a₂ fun x v => (v' * v) • ↑f (x' * x)
[PROOFSTEP]
congr
[GOAL]
case e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂
⊢ (fun a b => sum (sum a₂ fun a₂ b₂ => single (a * a₂) (b * b₂)) fun a => g a) = fun x' v' =>
sum a₂ fun x v => (v' * v) • ↑f (x' * x)
[PROOFSTEP]
ext
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂
x✝¹ : G
x✝ : k
⊢ (sum (sum a₂ fun a₂ b₂ => single (x✝¹ * a₂) (x✝ * b₂)) fun a => g a) = sum a₂ fun x v => (x✝ * v) • ↑f (x✝¹ * x)
[PROOFSTEP]
rw [sum_sum_index h₁ h₂]
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂
x✝¹ : G
x✝ : k
⊢ (sum a₂ fun a b => sum (single (x✝¹ * a) (x✝ * b)) fun a => g a) = sum a₂ fun x v => (x✝ * v) • ↑f (x✝¹ * x)
[PROOFSTEP]
congr
[GOAL]
case e_g.h.h.e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂
x✝¹ : G
x✝ : k
⊢ (fun a b => sum (single (x✝¹ * a) (x✝ * b)) fun a => g a) = fun x v => (x✝ * v) • ↑f (x✝¹ * x)
[PROOFSTEP]
ext
[GOAL]
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
src✝ : (fun x => (G →₀ k) →+ A) fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x) :=
↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x)
a₁ a₂ : MonoidAlgebra k G
g : G → k → A := fun m t => t • ↑f m
h₁ : ∀ (m : G), g m 0 = 0
h₂ : ∀ (m : G) (t₁ t₂ : k), g m (t₁ + t₂) = g m t₁ + g m t₂
x✝³ : G
x✝² : k
x✝¹ : G
x✝ : k
⊢ (sum (single (x✝³ * x✝¹) (x✝² * x✝)) fun a => g a) = (x✝² * x✝) • ↑f (x✝³ * x✝¹)
[PROOFSTEP]
rw [sum_single_index (h₁ _)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
⊢ (fun F => MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G))
((fun f =>
let src := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x);
{
toDistribMulActionHom :=
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_mul' :=
(_ :
∀ (a₁ a₂ : MonoidAlgebra k G),
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
(a₁ * a₂) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
a₁ *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
a₂) })
f) =
f
[PROOFSTEP]
ext m
[GOAL]
case h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
f : G →ₙ* A
m : G
⊢ ↑((fun F => MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G))
((fun f =>
let src := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x);
{
toDistribMulActionHom :=
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_mul' :=
(_ :
∀ (a₁ a₂ : MonoidAlgebra k G),
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
(a₁ * a₂) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
a₁ *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
a₂) })
f))
m =
↑f m
[PROOFSTEP]
simp only [NonUnitalAlgHom.coe_mk, ofMagma_apply, NonUnitalAlgHom.toMulHom_eq_coe, sum_single_index,
Function.comp_apply, one_smul, zero_smul, MulHom.coe_comp, NonUnitalAlgHom.coe_to_mulHom]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
F : MonoidAlgebra k G →ₙₐ[k] A
⊢ (fun f =>
let src := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x);
{
toDistribMulActionHom :=
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) = t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k), ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_mul' :=
(_ :
∀ (a₁ a₂ : MonoidAlgebra k G),
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
(a₁ * a₂) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
a₁ *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
a₂) })
((fun F => MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G)) F) =
F
[PROOFSTEP]
refine nonUnitalAlgHom_ext' k (MulHom.ext fun m => ?_)
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : Semiring k
inst✝⁵ : DistribSMul R k
inst✝⁴ : Mul G
A : Type u₃
inst✝³ : NonUnitalNonAssocSemiring A
inst✝² : Module k A
inst✝¹ : IsScalarTower k A A
inst✝ : SMulCommClass k A A
F : MonoidAlgebra k G →ₙₐ[k] A
m : G
⊢ ↑(MulHom.comp
(NonUnitalAlgHom.toMulHom
((fun f =>
let src := ↑liftAddHom fun x => ↑(AddMonoidHom.flip (smulAddHom k A)) (↑f x);
{
toDistribMulActionHom :=
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) = ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) },
map_mul' :=
(_ :
∀ (a₁ a₂ : MonoidAlgebra k G),
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
(a₁ * a₂) =
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
a₁ *
MulActionHom.toFun
{
toMulActionHom :=
{ toFun := fun a => sum a fun m t => t • ↑f m,
map_smul' :=
(_ :
∀ (t' : k) (a : MonoidAlgebra k G),
(fun a => sum a fun m t => t • ↑f m) (t' • a) =
t' • (fun a => sum a fun m t => t • ↑f m) a) },
map_zero' := (_ : ZeroHom.toFun (↑src) 0 = 0),
map_add' :=
(_ :
∀ (x y : G →₀ k),
ZeroHom.toFun (↑src) (x + y) =
ZeroHom.toFun (↑src) x + ZeroHom.toFun (↑src) y) }.toMulActionHom
a₂) })
((fun F => MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G)) F)))
(ofMagma k G))
m =
↑(MulHom.comp (NonUnitalAlgHom.toMulHom F) (ofMagma k G)) m
[PROOFSTEP]
simp only [NonUnitalAlgHom.coe_mk, ofMagma_apply, NonUnitalAlgHom.toMulHom_eq_coe, sum_single_index,
Function.comp_apply, one_smul, zero_smul, MulHom.coe_comp, NonUnitalAlgHom.coe_to_mulHom]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : CommSemiring k
inst✝ : MulOneClass G
r : k
f : MonoidAlgebra k G
⊢ single 1 r * f = f * single 1 r
[PROOFSTEP]
refine Finsupp.ext fun _ => ?_
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : CommSemiring k
inst✝ : MulOneClass G
r : k
f : MonoidAlgebra k G
x✝ : G
⊢ ↑(single 1 r * f) x✝ = ↑(f * single 1 r) x✝
[PROOFSTEP]
rw [single_one_mul_apply, mul_single_one_apply, mul_comm]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : MulOneClass G
src✝ : k →+ G →₀ k := singleAddHom 1
x y : k
⊢ OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } (x * y) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } x *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } y
[PROOFSTEP]
simp only [ZeroHom.toFun_eq_coe, AddMonoidHom.toZeroHom_coe, singleAddHom_apply, single_mul_single, mul_one]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R✝ : Type u_2
R : Type u_3
inst✝² : Semiring k
inst✝¹ : MulOneClass G
inst✝ : Semiring R
f g : MonoidAlgebra k G →+* R
h₁ : ∀ (b : k), ↑f (single 1 b) = ↑g (single 1 b)
h_of : ∀ (a : G), ↑f (single a 1) = ↑g (single a 1)
a : G
b : k
⊢ ↑((fun f => ↑f) f) (Finsupp.single a b) = ↑((fun f => ↑f) g) (Finsupp.single a b)
[PROOFSTEP]
rw [← single, ← one_mul a, ← mul_one b, ← single_mul_single, AddMonoidHom.coe_coe f, AddMonoidHom.coe_coe g, f.map_mul,
g.map_mul, h₁, h_of]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
A : Type u_3
inst✝³ : CommSemiring k
inst✝² : Semiring A
inst✝¹ : Algebra k A
inst✝ : Monoid G
src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A)
r : k
f : (fun x => MonoidAlgebra A G) r
⊢ ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
f =
f *
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r
[PROOFSTEP]
refine Finsupp.ext fun _ => ?_
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
A : Type u_3
inst✝³ : CommSemiring k
inst✝² : Semiring A
inst✝¹ : Algebra k A
inst✝ : Monoid G
src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A)
r : k
f : (fun x => MonoidAlgebra A G) r
x✝ : G
⊢ ↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
f)
x✝ =
↑(f *
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r)
x✝
[PROOFSTEP]
simp [single_one_mul_apply, mul_single_one_apply, Algebra.commutes]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
A : Type u_3
inst✝³ : CommSemiring k
inst✝² : Semiring A
inst✝¹ : Algebra k A
inst✝ : Monoid G
src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A)
r : k
a : (fun x => MonoidAlgebra A G) r
⊢ r • a =
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
a
[PROOFSTEP]
refine
Finsupp.ext fun _ =>
?_
-- Porting note: Newly required.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
A : Type u_3
inst✝³ : CommSemiring k
inst✝² : Semiring A
inst✝¹ : Algebra k A
inst✝ : Monoid G
src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A)
r : k
a : (fun x => MonoidAlgebra A G) r
x✝ : G
⊢ ↑(r • a) x✝ =
↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
a)
x✝
[PROOFSTEP]
rw [Finsupp.coe_smul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
A : Type u_3
inst✝³ : CommSemiring k
inst✝² : Semiring A
inst✝¹ : Algebra k A
inst✝ : Monoid G
src✝ : k →+* MonoidAlgebra A G := RingHom.comp singleOneRingHom (algebraMap k A)
r : k
a : (fun x => MonoidAlgebra A G) r
x✝ : G
⊢ (r • ↑a) x✝ =
↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
a)
x✝
[PROOFSTEP]
simp [single_one_mul_apply, Algebra.smul_def, Pi.smul_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
A : Type u_3
inst✝³ : CommSemiring k
inst✝² : Semiring A
inst✝¹ : Algebra k A
inst✝ : Monoid G
src✝ : A →+* MonoidAlgebra A G := singleOneRingHom
r : k
⊢ OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap k A) r) =
↑(algebraMap k (MonoidAlgebra A G)) r
[PROOFSTEP]
refine Finsupp.ext fun _ => ?_
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
A : Type u_3
inst✝³ : CommSemiring k
inst✝² : Semiring A
inst✝¹ : Algebra k A
inst✝ : Monoid G
src✝ : A →+* MonoidAlgebra A G := singleOneRingHom
r : k
x✝ : G
⊢ ↑(OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : A), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap k A) r))
x✝ =
↑(↑(algebraMap k (MonoidAlgebra A G)) r) x✝
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
A : Type u_3
inst✝³ : CommSemiring k
inst✝² : Semiring A
inst✝¹ : Algebra k A
inst✝ : Monoid G
src✝ : A →+* MonoidAlgebra A G := singleOneRingHom
r : k
x✝ : G
⊢ ↑(Finsupp.single 1 (↑(algebraMap k A) r)) x✝ = ↑(↑(algebraMap k (MonoidAlgebra A G)) r) x✝
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : CommSemiring k
inst✝ : Monoid G
a : G
b : k
⊢ single a b = ↑(algebraMap k (MonoidAlgebra k G)) b * ↑(of k G) a
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
A : Type u_3
inst✝³ : CommSemiring k
inst✝² : Semiring A
inst✝¹ : Algebra k A
inst✝ : Monoid G
a : G
b : k
⊢ single a (↑(algebraMap k A) b) = ↑(algebraMap k (MonoidAlgebra A G)) b * ↑(of A G) a
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
p : MonoidAlgebra k G → Prop
f : MonoidAlgebra k G
hM : ∀ (g : G), p (↑(of k G) g)
hadd : ∀ (f g : MonoidAlgebra k G), p f → p g → p (f + g)
hsmul : ∀ (r : k) (f : MonoidAlgebra k G), p f → p (r • f)
⊢ p f
[PROOFSTEP]
refine' Finsupp.induction_linear f _ (fun f g hf hg => hadd f g hf hg) fun g r => _
[GOAL]
case refine'_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
p : MonoidAlgebra k G → Prop
f : MonoidAlgebra k G
hM : ∀ (g : G), p (↑(of k G) g)
hadd : ∀ (f g : MonoidAlgebra k G), p f → p g → p (f + g)
hsmul : ∀ (r : k) (f : MonoidAlgebra k G), p f → p (r • f)
⊢ p 0
[PROOFSTEP]
simpa using hsmul 0 (of k G 1) (hM 1)
[GOAL]
case refine'_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
p : MonoidAlgebra k G → Prop
f : MonoidAlgebra k G
hM : ∀ (g : G), p (↑(of k G) g)
hadd : ∀ (f g : MonoidAlgebra k G), p f → p g → p (f + g)
hsmul : ∀ (r : k) (f : MonoidAlgebra k G), p f → p (r • f)
g : G
r : k
⊢ p (Finsupp.single g r)
[PROOFSTEP]
convert
hsmul r (of k G g)
(hM g)
-- Porting note: Was `simp only`.
[GOAL]
case h.e'_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
p : MonoidAlgebra k G → Prop
f : MonoidAlgebra k G
hM : ∀ (g : G), p (↑(of k G) g)
hadd : ∀ (f g : MonoidAlgebra k G), p f → p g → p (f + g)
hsmul : ∀ (r : k) (f : MonoidAlgebra k G), p f → p (r • f)
g : G
r : k
⊢ Finsupp.single g r = r • ↑(of k G) g
[PROOFSTEP]
rw [of_apply, smul_single', mul_one]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
f : A →ₐ[k] B
g : G →* B
h_comm : ∀ (x : A) (y : G), Commute (↑f x) (↑g y)
src✝ : MonoidAlgebra A G →+* B := liftNCRingHom (↑f) g h_comm
⊢ ∀ (r : k),
OneHom.toFun
(↑↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(liftNCRingHom (↑f) g h_comm), map_one' := (_ : OneHom.toFun (↑↑src✝) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : MonoidAlgebra A G),
OneHom.toFun (↑↑src✝) (x * y) = OneHom.toFun (↑↑src✝) x * OneHom.toFun (↑↑src✝) y) },
map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : MonoidAlgebra A G),
OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap k (MonoidAlgebra A G)) r) =
↑(algebraMap k B) r
[PROOFSTEP]
simp [liftNCRingHom]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
f : G →* A
⊢ (fun f => MonoidHom.comp (↑f) (of k G))
((fun F =>
liftNCAlgHom (Algebra.ofId k A) F
(_ :
∀ (x : k) (x_1 : G),
↑(algebraMap k ((fun x => A) x)) x * ↑F x_1 = ↑F x_1 * ↑(algebraMap k ((fun x => A) x)) x))
f) =
f
[PROOFSTEP]
ext
[GOAL]
case h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
f : G →* A
x✝ : G
⊢ ↑((fun f => MonoidHom.comp (↑f) (of k G))
((fun F =>
liftNCAlgHom (Algebra.ofId k A) F
(_ :
∀ (x : k) (x_1 : G),
↑(algebraMap k ((fun x => A) x)) x * ↑F x_1 = ↑F x_1 * ↑(algebraMap k ((fun x => A) x)) x))
f))
x✝ =
↑f x✝
[PROOFSTEP]
simp [liftNCAlgHom, liftNCRingHom]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : MonoidAlgebra k G →ₐ[k] A
⊢ (fun F =>
liftNCAlgHom (Algebra.ofId k A) F
(_ :
∀ (x : k) (x_1 : G),
↑(algebraMap k ((fun x => A) x)) x * ↑F x_1 = ↑F x_1 * ↑(algebraMap k ((fun x => A) x)) x))
((fun f => MonoidHom.comp (↑f) (of k G)) F) =
F
[PROOFSTEP]
ext
[GOAL]
case h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : MonoidAlgebra k G →ₐ[k] A
x✝ : G
⊢ ↑(MonoidHom.comp
(↑((fun F =>
liftNCAlgHom (Algebra.ofId k A) F
(_ :
∀ (x : k) (x_1 : G),
↑(algebraMap k ((fun x => A) x)) x * ↑F x_1 = ↑F x_1 * ↑(algebraMap k ((fun x => A) x)) x))
((fun f => MonoidHom.comp (↑f) (of k G)) F)))
(of k G))
x✝ =
↑(MonoidHom.comp (↑F) (of k G)) x✝
[PROOFSTEP]
simp [liftNCAlgHom, liftNCRingHom]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : G →* A
f : MonoidAlgebra k G
⊢ ↑(↑(lift k G A) F) f = sum f fun a b => b • ↑F a
[PROOFSTEP]
simp only [lift_apply', Algebra.smul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : G →* A
x : G
⊢ ↑(↑(lift k G A) F) (↑(of k G) x) = ↑F x
[PROOFSTEP]
rw [of_apply, ← lift_symm_apply, Equiv.symm_apply_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : G →* A
a : G
b : k
⊢ ↑(↑(lift k G A) F) (single a b) = b • ↑F a
[PROOFSTEP]
rw [lift_def, liftNC_single, Algebra.smul_def, AddMonoidHom.coe_coe]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : MonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
⊢ ↑F f = sum f fun a b => b • ↑F (single a 1)
[PROOFSTEP]
conv_lhs =>
rw [lift_unique' F]
simp [lift_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : MonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
| ↑F f
[PROOFSTEP]
rw [lift_unique' F]
simp [lift_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : MonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
| ↑F f
[PROOFSTEP]
rw [lift_unique' F]
simp [lift_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : MonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
| ↑F f
[PROOFSTEP]
rw [lift_unique' F]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁶ : CommSemiring k
inst✝⁵ : Monoid G
inst✝⁴ : Monoid H
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : MonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
| ↑(↑(lift k G A) (MonoidHom.comp (↑F) (of k G))) f
[PROOFSTEP]
simp [lift_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁷ : CommSemiring k
inst✝⁶ : Monoid G
inst✝⁵ : Monoid H
A : Type u₃
inst✝⁴ : Semiring A
inst✝³ : Algebra k A
B : Type u_3
inst✝² : Semiring B
inst✝¹ : Algebra k B
F : Type u_4
inst✝ : MonoidHomClass F G H
f : F
r : k
⊢ mapDomain (↑f) (↑(algebraMap k (MonoidAlgebra A G)) r) = ↑(algebraMap k (MonoidAlgebra A H)) r
[PROOFSTEP]
simp only [coe_algebraMap, mapDomain_single, map_one, (· ∘ ·)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁹ : Monoid G
inst✝⁸ : CommSemiring k
V : Type u₃
W : Type u₄
inst✝⁷ : AddCommMonoid V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
inst✝³ : AddCommMonoid W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[k] W
h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v
v v' : V
⊢ ↑f (v + v') = ↑f v + ↑f v'
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁹ : Monoid G
inst✝⁸ : CommSemiring k
V : Type u₃
W : Type u₄
inst✝⁷ : AddCommMonoid V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
inst✝³ : AddCommMonoid W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[k] W
h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v
c : MonoidAlgebra k G
v : V
⊢ AddHom.toFun { toFun := ↑f, map_add' := (_ : ∀ (v v' : V), ↑f (v + v') = ↑f v + ↑f v') } (c • v) =
↑(RingHom.id (MonoidAlgebra k G)) c •
AddHom.toFun { toFun := ↑f, map_add' := (_ : ∀ (v v' : V), ↑f (v + v') = ↑f v + ↑f v') } v
[PROOFSTEP]
dsimp only []
-- Porting note: Was `apply`.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁹ : Monoid G
inst✝⁸ : CommSemiring k
V : Type u₃
W : Type u₄
inst✝⁷ : AddCommMonoid V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
inst✝³ : AddCommMonoid W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[k] W
h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v
c : MonoidAlgebra k G
v : V
⊢ ↑f (c • v) = ↑(RingHom.id (MonoidAlgebra k G)) c • ↑f v
[PROOFSTEP]
refine Finsupp.induction c ?_ ?_
[GOAL]
case refine_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁹ : Monoid G
inst✝⁸ : CommSemiring k
V : Type u₃
W : Type u₄
inst✝⁷ : AddCommMonoid V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
inst✝³ : AddCommMonoid W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[k] W
h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v
c : MonoidAlgebra k G
v : V
⊢ ↑f (0 • v) = ↑(RingHom.id (MonoidAlgebra k G)) 0 • ↑f v
[PROOFSTEP]
simp
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁹ : Monoid G
inst✝⁸ : CommSemiring k
V : Type u₃
W : Type u₄
inst✝⁷ : AddCommMonoid V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
inst✝³ : AddCommMonoid W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[k] W
h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v
c : MonoidAlgebra k G
v : V
⊢ ∀ (a : G) (b : k) (f_1 : G →₀ k),
¬a ∈ f_1.support →
b ≠ 0 →
↑f (f_1 • v) = ↑(RingHom.id (MonoidAlgebra k G)) f_1 • ↑f v →
↑f ((Finsupp.single a b + f_1) • v) = ↑(RingHom.id (MonoidAlgebra k G)) (Finsupp.single a b + f_1) • ↑f v
[PROOFSTEP]
intro g r c' _nm _nz w
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁹ : Monoid G
inst✝⁸ : CommSemiring k
V : Type u₃
W : Type u₄
inst✝⁷ : AddCommMonoid V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
inst✝³ : AddCommMonoid W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[k] W
h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v
c : MonoidAlgebra k G
v : V
g : G
r : k
c' : G →₀ k
_nm : ¬g ∈ c'.support
_nz : r ≠ 0
w : ↑f (c' • v) = ↑(RingHom.id (MonoidAlgebra k G)) c' • ↑f v
⊢ ↑f ((Finsupp.single g r + c') • v) = ↑(RingHom.id (MonoidAlgebra k G)) (Finsupp.single g r + c') • ↑f v
[PROOFSTEP]
dsimp at *
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁹ : Monoid G
inst✝⁸ : CommSemiring k
V : Type u₃
W : Type u₄
inst✝⁷ : AddCommMonoid V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
inst✝³ : AddCommMonoid W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[k] W
h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v
c : MonoidAlgebra k G
v : V
g : G
r : k
c' : G →₀ k
_nm : ¬g ∈ c'.support
_nz : ¬r = 0
w : ↑f (c' • v) = c' • ↑f v
⊢ ↑f ((Finsupp.single g r + c') • v) = (Finsupp.single g r + c') • ↑f v
[PROOFSTEP]
simp only [add_smul, f.map_add, w, add_left_inj, single_eq_algebraMap_mul_of, ← smul_smul]
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁹ : Monoid G
inst✝⁸ : CommSemiring k
V : Type u₃
W : Type u₄
inst✝⁷ : AddCommMonoid V
inst✝⁶ : Module k V
inst✝⁵ : Module (MonoidAlgebra k G) V
inst✝⁴ : IsScalarTower k (MonoidAlgebra k G) V
inst✝³ : AddCommMonoid W
inst✝² : Module k W
inst✝¹ : Module (MonoidAlgebra k G) W
inst✝ : IsScalarTower k (MonoidAlgebra k G) W
f : V →ₗ[k] W
h : ∀ (g : G) (v : V), ↑f (single g 1 • v) = single g 1 • ↑f v
c : MonoidAlgebra k G
v : V
g : G
r : k
c' : G →₀ k
_nm : ¬g ∈ c'.support
_nz : ¬r = 0
w : ↑f (c' • v) = c' • ↑f v
⊢ ↑f (↑(algebraMap k (MonoidAlgebra k G)) r • ↑(of k G) g • v) + c' • ↑f v =
↑(algebraMap k (MonoidAlgebra k G)) r • ↑(of k G) g • ↑f v + c' • ↑f v
[PROOFSTEP]
erw [algebraMap_smul (MonoidAlgebra k G) r, algebraMap_smul (MonoidAlgebra k G) r, f.map_smul, h g v, of_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
ι : Type ui
inst✝¹ : CommSemiring k
inst✝ : CommMonoid G
s✝ : Finset ι
a✝ : ι → G
b : ι → k
a : ι
s : Finset ι
has : ¬a ∈ s
ih : ∏ i in s, single (a✝ i) (b i) = single (∏ i in s, a✝ i) (∏ i in s, b i)
⊢ ∏ i in cons a s has, single (a✝ i) (b i) = single (∏ i in cons a s has, a✝ i) (∏ i in cons a s has, b i)
[PROOFSTEP]
rw [prod_cons has, ih, single_mul_single, prod_cons has, prod_cons has]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Group G
f g : MonoidAlgebra k G
x : G
⊢ ↑(f * g) x = sum f fun a b => ↑(single a b * g) x
[PROOFSTEP]
rw [← Finsupp.sum_apply, ← Finsupp.sum_mul g f, f.sum_single]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Group G
f g : MonoidAlgebra k G
x : G
⊢ (sum f fun a b => ↑(single a b * g) x) = sum f fun a b => b * ↑g (a⁻¹ * x)
[PROOFSTEP]
simp only [single_mul_apply, Finsupp.sum]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Group G
f g : MonoidAlgebra k G
x : G
⊢ ↑(f * g) x = sum g fun a b => ↑(f * single a b) x
[PROOFSTEP]
rw [← Finsupp.sum_apply, ← Finsupp.mul_sum f g, g.sum_single]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Group G
f g : MonoidAlgebra k G
x : G
⊢ (sum g fun a b => ↑(f * single a b) x) = sum g fun a b => ↑f (x * a⁻¹) * b
[PROOFSTEP]
simp only [mul_single_apply, Finsupp.sum]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) :=
AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv))
⊢ ∀ (x y : (MonoidAlgebra k G)ᵐᵒᵖ),
Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y
[PROOFSTEP]
rw [Equiv.toFun_as_coe, AddEquiv.toEquiv_eq_coe, AddEquiv.coe_toEquiv, ← AddEquiv.coe_toAddMonoidHom]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) :=
AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv))
⊢ ∀ (x y : (MonoidAlgebra k G)ᵐᵒᵖ),
↑(AddEquiv.toAddMonoidHom src✝) (x * y) = ↑(AddEquiv.toAddMonoidHom src✝) x * ↑(AddEquiv.toAddMonoidHom src✝) y
[PROOFSTEP]
refine
Iff.mpr (AddMonoidHom.map_mul_iff (R := (MonoidAlgebra k G)ᵐᵒᵖ) (S := MonoidAlgebra kᵐᵒᵖ Gᵐᵒᵖ) _)
?_
-- Porting note: Was `ext`.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) :=
AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv))
⊢ AddMonoidHom.compr₂ AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝) =
AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝))
(AddEquiv.toAddMonoidHom src✝)
[PROOFSTEP]
refine
AddMonoidHom.mul_op_ext _ _ <|
addHom_ext' fun i₁ =>
AddMonoidHom.ext fun r₁ =>
AddMonoidHom.mul_op_ext _ _ <|
addHom_ext' fun i₂ =>
AddMonoidHom.ext fun r₂ =>
?_
-- Porting note: `reducible` cannot be `local` so proof gets long.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) :=
AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv))
i₁ : G
r₁ : k
i₂ : G
r₂ : k
⊢ ↑(AddMonoidHom.comp
(AddMonoidHom.comp
(↑(AddMonoidHom.comp
(AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝))
(AddEquiv.toAddMonoidHom opAddEquiv))
(singleAddHom i₁))
r₁)
(AddEquiv.toAddMonoidHom opAddEquiv))
(singleAddHom i₂))
r₂ =
↑(AddMonoidHom.comp
(AddMonoidHom.comp
(↑(AddMonoidHom.comp
(AddMonoidHom.comp
(AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝))
(AddEquiv.toAddMonoidHom src✝))
(AddEquiv.toAddMonoidHom opAddEquiv))
(singleAddHom i₁))
r₁)
(AddEquiv.toAddMonoidHom opAddEquiv))
(singleAddHom i₂))
r₂
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) :=
AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv))
i₁ : G
r₁ : k
i₂ : G
r₂ : k
⊢ ↑(AddEquiv.trans (AddEquiv.symm opAddEquiv)
(AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv)))
(↑opAddEquiv (Finsupp.single i₁ r₁) * ↑opAddEquiv (Finsupp.single i₂ r₂)) =
↑(AddEquiv.trans (AddEquiv.symm opAddEquiv)
(AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv)))
(↑opAddEquiv (Finsupp.single i₁ r₁)) *
↑(AddEquiv.trans (AddEquiv.symm opAddEquiv)
(AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv)))
(↑opAddEquiv (Finsupp.single i₂ r₂))
[PROOFSTEP]
rw [AddEquiv.trans_apply, AddEquiv.trans_apply, AddEquiv.trans_apply, AddEquiv.trans_apply, AddEquiv.trans_apply,
AddEquiv.trans_apply, MulOpposite.opAddEquiv_apply, MulOpposite.opAddEquiv_symm_apply,
MulOpposite.unop_mul (α := MonoidAlgebra k G)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (Gᵐᵒᵖ →₀ kᵐᵒᵖ) :=
AddEquiv.trans (AddEquiv.symm opAddEquiv) (AddEquiv.trans (mapRange.addEquiv opAddEquiv) (Finsupp.domCongr opEquiv))
i₁ : G
r₁ : k
i₂ : G
r₂ : k
⊢ ↑(Finsupp.domCongr opEquiv)
(↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₂ r₂)) * unop (op (Finsupp.single i₁ r₁)))) =
↑(Finsupp.domCongr opEquiv) (↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₁ r₁)))) *
↑(Finsupp.domCongr opEquiv) (↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₂ r₂))))
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
r : k
x : G
⊢ ↑MonoidAlgebra.opRingEquiv (op (single x r)) = single (op x) (op r)
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Monoid G
r : kᵐᵒᵖ
x : Gᵐᵒᵖ
⊢ ↑(RingEquiv.symm MonoidAlgebra.opRingEquiv) (single x r) = op (single (unop x) (unop r))
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
V : Type u_3
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : Module (MonoidAlgebra k G) V
inst✝ : IsScalarTower k (MonoidAlgebra k G) V
W : Submodule k V
h : ∀ (g : G) (v : V), v ∈ W → ↑(of k G) g • v ∈ W
⊢ ∀ (c : MonoidAlgebra k G) {x : V},
x ∈
{
toAddSubsemigroup :=
{ carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) },
zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier →
c • x ∈
{
toAddSubsemigroup :=
{ carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) },
zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
intro f v hv
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
V : Type u_3
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : Module (MonoidAlgebra k G) V
inst✝ : IsScalarTower k (MonoidAlgebra k G) V
W : Submodule k V
h : ∀ (g : G) (v : V), v ∈ W → ↑(of k G) g • v ∈ W
f : MonoidAlgebra k G
v : V
hv :
v ∈
{
toAddSubsemigroup :=
{ carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) },
zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier
⊢ f • v ∈
{
toAddSubsemigroup :=
{ carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) },
zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
rw [← Finsupp.sum_single f, Finsupp.sum, Finset.sum_smul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
V : Type u_3
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : Module (MonoidAlgebra k G) V
inst✝ : IsScalarTower k (MonoidAlgebra k G) V
W : Submodule k V
h : ∀ (g : G) (v : V), v ∈ W → ↑(of k G) g • v ∈ W
f : MonoidAlgebra k G
v : V
hv :
v ∈
{
toAddSubsemigroup :=
{ carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) },
zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier
⊢ ∑ i in f.support, Finsupp.single i (↑f i) • v ∈
{
toAddSubsemigroup :=
{ carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) },
zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier
[PROOFSTEP]
simp_rw [← smul_of, smul_assoc]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : Monoid G
V : Type u_3
inst✝³ : AddCommMonoid V
inst✝² : Module k V
inst✝¹ : Module (MonoidAlgebra k G) V
inst✝ : IsScalarTower k (MonoidAlgebra k G) V
W : Submodule k V
h : ∀ (g : G) (v : V), v ∈ W → ↑(of k G) g • v ∈ W
f : MonoidAlgebra k G
v : V
hv :
v ∈
{
toAddSubsemigroup :=
{ carrier := ↑W, add_mem' := (_ : ∀ {a b : V}, a ∈ W.carrier → b ∈ W.carrier → a + b ∈ W.carrier) },
zero_mem' := (_ : 0 ∈ W.carrier) }.toAddSubsemigroup.carrier
⊢ ∑ x in f.support, ↑f x • ↑(of k G) x • v ∈ ↑W
[PROOFSTEP]
exact Submodule.sum_smul_mem W _ fun g _ => h g v hv
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
⊢ ∀ (x : AddMonoidAlgebra k G), (fun n f => n • f) 0 x = 0
[PROOFSTEP]
intros
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
x✝ : AddMonoidAlgebra k G
⊢ (fun n f => n • f) 0 x✝ = 0
[PROOFSTEP]
refine Finsupp.ext fun _ => ?_
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
x✝¹ : AddMonoidAlgebra k G
x✝ : G
⊢ ↑((fun n f => n • f) 0 x✝¹) x✝ = ↑0 x✝
[PROOFSTEP]
simp [-nsmul_eq_mul, add_smul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
⊢ ∀ (n : ℕ) (x : AddMonoidAlgebra k G), (fun n f => n • f) (n + 1) x = x + (fun n f => n • f) n x
[PROOFSTEP]
intros
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
n✝ : ℕ
x✝ : AddMonoidAlgebra k G
⊢ (fun n f => n • f) (n✝ + 1) x✝ = x✝ + (fun n f => n • f) n✝ x✝
[PROOFSTEP]
refine
Finsupp.ext fun _ =>
?_
-- Porting note: The definition of `nsmul_succ` is different, so next line is required.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
n✝ : ℕ
x✝¹ : AddMonoidAlgebra k G
x✝ : G
⊢ ↑((fun n f => n • f) (n✝ + 1) x✝¹) x✝ = ↑(x✝¹ + (fun n f => n • f) n✝ x✝¹) x✝
[PROOFSTEP]
simp only [fun n => Nat.add_comm n 1]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
n✝ : ℕ
x✝¹ : AddMonoidAlgebra k G
x✝ : G
⊢ ↑((1 + n✝) • x✝¹) x✝ = ↑(x✝¹ + n✝ • x✝¹) x✝
[PROOFSTEP]
simp [-nsmul_eq_mul, add_smul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
⊢ f * (g + h) = f * g + f * h
[PROOFSTEP]
haveI := Classical.decEq G
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
⊢ f * (g + h) = f * g + f * h
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
⊢ (sum f fun a₁ b₁ => sum (g + h) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
(sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) +
sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
[PROOFSTEP]
refine Eq.trans (congr_arg (sum f) (funext₂ fun a₁ b₁ => sum_add_index ?_ ?_)) ?_
[GOAL]
case refine_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
a₁ : G
b₁ : k
⊢ ∀ (a : G), a ∈ g.support ∪ h.support → single (a₁ + a) (b₁ * 0) = 0
[PROOFSTEP]
simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add]
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
a₁ : G
b₁ : k
⊢ ∀ (a : G),
a ∈ g.support ∪ h.support →
∀ (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
[PROOFSTEP]
simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add]
[GOAL]
case refine_3
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
⊢ (sum f fun a₁ b₁ => (sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) + sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
(sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) +
sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
[PROOFSTEP]
simp only [mul_add, mul_zero, single_zero, single_add, forall_true_iff, sum_add]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
⊢ (f + g) * h = f * h + g * h
[PROOFSTEP]
haveI := Classical.decEq G
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
⊢ (f + g) * h = f * h + g * h
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
⊢ (sum (f + g) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
(sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) +
sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
[PROOFSTEP]
refine Eq.trans (sum_add_index ?_ ?_) ?_
[GOAL]
case refine_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
⊢ ∀ (a : G), a ∈ f.support ∪ g.support → (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
[PROOFSTEP]
simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add]
[GOAL]
case refine_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
⊢ ∀ (a : G),
a ∈ f.support ∪ g.support →
∀ (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add]
[GOAL]
case refine_3
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f g h : AddMonoidAlgebra k G
this : DecidableEq G
⊢ ((sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) +
sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
(sum f fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) +
sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
[PROOFSTEP]
simp only [add_mul, zero_mul, single_zero, single_add, forall_true_iff, sum_zero, sum_add]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f : AddMonoidAlgebra k G
⊢ 0 * f = 0
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f : AddMonoidAlgebra k G
⊢ (sum 0 fun a₁ b₁ => sum f fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = 0
[PROOFSTEP]
exact sum_zero_index
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f : AddMonoidAlgebra k G
⊢ f * 0 = 0
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : AddCommMonoid (G →₀ k) := Finsupp.addCommMonoid
f : AddMonoidAlgebra k G
⊢ (sum f fun a₁ b₁ => sum 0 fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = 0
[PROOFSTEP]
exact Eq.trans (congr_arg (sum f) (funext₂ fun a₁ b₁ => sum_zero_index)) sum_zero
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ f * g * h = f * (g * h)
[PROOFSTEP]
simp only [mul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ (sum (sum f fun a₁ b₁ => sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₁ b₁ =>
sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
sum f fun a₁ b₁ =>
sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
[PROOFSTEP]
rw [sum_sum_index]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ (sum f fun a b =>
sum (sum g fun a₂ b₂ => single (a + a₂) (b * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
sum f fun a₁ b₁ =>
sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
congr
[GOAL]
case e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ (fun a b =>
sum (sum g fun a₂ b₂ => single (a + a₂) (b * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
fun a₁ b₁ =>
sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
ext a₁ b₁
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ (sum (sum g fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
sum (sum g fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
rw [sum_sum_index, sum_sum_index]
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ (sum g fun a b => sum (single (a₁ + a) (b₁ * b)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
sum g fun a b => sum (sum h fun a₂ b₂ => single (a + a₂) (b * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
congr
[GOAL]
case e_g.h.h.e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ (fun a b => sum (single (a₁ + a) (b₁ * b)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) = fun a b =>
sum (sum h fun a₂ b₂ => single (a + a₂) (b * b₂)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
ext a₂ b₂
[GOAL]
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum (single (a₁ + a₂) (b₁ * b₂)) fun a₁ b₁ => sum h fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)) =
sum (sum h fun a₂_1 b₂_1 => single (a₂ + a₂_1) (b₂ * b₂_1)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
rw [sum_sum_index, sum_single_index]
[GOAL]
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂_1 => single (a₁ + a₂ + a₂_1) (b₁ * b₂ * b₂_1)) =
sum h fun a b => sum (single (a₂ + a) (b₂ * b)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
congr
[GOAL]
case e_g.h.h.e_g.h.h.e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (fun a₂_1 b₂_1 => single (a₁ + a₂ + a₂_1) (b₁ * b₂ * b₂_1)) = fun a b =>
sum (single (a₂ + a) (b₂ * b)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
ext a₃ b₃
[GOAL]
case e_g.h.h.e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
a₃ : G
b₃ : k
⊢ single (a₁ + a₂ + a₃) (b₁ * b₂ * b₃) = sum (single (a₂ + a₃) (b₂ * b₃)) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
rw [sum_single_index, mul_assoc, add_assoc]
[GOAL]
case e_g.h.h.e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
a₃ : G
b₃ : k
⊢ single (a₁ + (a₂ + a₃)) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
all_goals simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
a₃ : G
b₃ : k
⊢ single (a₁ + (a₂ + a₃)) (b₁ * 0) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ (sum h fun a₂_1 b₂ => single (a₁ + a₂ + a₂_1) (0 * b₂)) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
a₂ : G
b₂ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), single (a₁ + a) (b₁ * 0) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁_1 b₂ : k), single (a₁ + a) (b₁ * (b₁_1 + b₂)) = single (a₁ + a) (b₁ * b₁_1) + single (a₁ + a) (b₁ * b₂)
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
a₁ : G
b₁ : k
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G), (sum h fun a₂ b₂ => single (a + a₂) (0 * b₂)) = 0
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddSemigroup G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f g h : AddMonoidAlgebra k G
⊢ ∀ (a : G) (b₁ b₂ : k),
(sum h fun a₂ b₂_1 => single (a + a₂) ((b₁ + b₂) * b₂_1)) =
(sum h fun a₂ b₂ => single (a + a₂) (b₁ * b₂)) + sum h fun a₂ b₂_1 => single (a + a₂) (b₂ * b₂_1)
[PROOFSTEP]
simp only [single_zero, single_add, forall_true_iff, add_mul, mul_add, zero_mul, mul_zero, sum_zero, sum_add]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddZeroClass G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f : AddMonoidAlgebra k G
⊢ 1 * f = f
[PROOFSTEP]
simp only [mul_def, one_def, sum_single_index, zero_mul, single_zero, sum_zero, zero_add, one_mul, sum_single]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddZeroClass G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
f : AddMonoidAlgebra k G
⊢ f * 1 = f
[PROOFSTEP]
simp only [mul_def, one_def, sum_single_index, mul_zero, single_zero, sum_zero, add_zero, mul_one, sum_single]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddZeroClass G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
⊢ NatCast.natCast 0 = 0
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddZeroClass G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
x✝ : ℕ
⊢ NatCast.natCast (x✝ + 1) = NatCast.natCast x✝ + 1
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddZeroClass G
src✝ : NonUnitalNonAssocSemiring (AddMonoidAlgebra k G) := nonUnitalNonAssocSemiring
x✝ : ℕ
⊢ Finsupp.single 0 ↑x✝ + Finsupp.single 0 1 = single 0 ↑x✝ + 1
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Ring k
inst✝ : AddZeroClass G
src✝¹ : AddCommGroup (AddMonoidAlgebra k G) := addCommGroup
src✝ : NonAssocSemiring (AddMonoidAlgebra k G) := nonAssocSemiring
n : ℕ
⊢ IntCast.intCast ↑n = ↑n
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Ring k
inst✝ : AddZeroClass G
src✝¹ : AddCommGroup (AddMonoidAlgebra k G) := addCommGroup
src✝ : NonAssocSemiring (AddMonoidAlgebra k G) := nonAssocSemiring
n : ℕ
⊢ single 0 ↑n = ↑n
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Ring k
inst✝ : AddZeroClass G
src✝¹ : AddCommGroup (AddMonoidAlgebra k G) := addCommGroup
src✝ : NonAssocSemiring (AddMonoidAlgebra k G) := nonAssocSemiring
n : ℕ
⊢ IntCast.intCast (Int.negSucc n) = -↑(n + 1)
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Ring k
inst✝ : AddZeroClass G
src✝¹ : AddCommGroup (AddMonoidAlgebra k G) := addCommGroup
src✝ : NonAssocSemiring (AddMonoidAlgebra k G) := nonAssocSemiring
n : ℕ
⊢ -Finsupp.single 0 1 + -Finsupp.single 0 ↑n = -1 + -↑n
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddMonoid G
a : G
b : k
⊢ single a b ^ 0 = single (0 • a) (b ^ 0)
[PROOFSTEP]
simp only [pow_zero, zero_nsmul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddMonoid G
a : G
b : k
⊢ 1 = single 0 1
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddMonoid G
a : G
b : k
n : ℕ
⊢ single a b ^ (n + 1) = single ((n + 1) • a) (b ^ (n + 1))
[PROOFSTEP]
rw [pow_succ, pow_succ, single_pow n, single_mul_single, add_comm, add_nsmul, one_nsmul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Zero α
inst✝¹ : Zero α₂
F : Type u_6
inst✝ : ZeroHomClass F α α₂
f : F
⊢ mapDomain (↑f) 1 = 1
[PROOFSTEP]
simp_rw [one_def, mapDomain_single, map_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Add α
inst✝¹ : Add α₂
F : Type u_6
inst✝ : AddHomClass F α α₂
f : F
x y : AddMonoidAlgebra β α
⊢ mapDomain (↑f) (x * y) = mapDomain (↑f) x * mapDomain (↑f) y
[PROOFSTEP]
simp_rw [mul_def, mapDomain_sum, mapDomain_single, map_add]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Add α
inst✝¹ : Add α₂
F : Type u_6
inst✝ : AddHomClass F α α₂
f : F
x y : AddMonoidAlgebra β α
⊢ (sum x fun a b => sum y fun a_1 b_1 => single (↑f a + ↑f a_1) (b * b_1)) =
sum (mapDomain (↑f) x) fun a₁ b₁ => sum (mapDomain (↑f) y) fun a₂ b₂ => single (a₁ + a₂) (b₁ * b₂)
[PROOFSTEP]
rw [Finsupp.sum_mapDomain_index]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Add α
inst✝¹ : Add α₂
F : Type u_6
inst✝ : AddHomClass F α α₂
f : F
x y : AddMonoidAlgebra β α
⊢ (sum x fun a b => sum y fun a_1 b_1 => single (↑f a + ↑f a_1) (b * b_1)) =
sum x fun a m => sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a + a₂) (m * b₂)
[PROOFSTEP]
congr
[GOAL]
case e_g
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Add α
inst✝¹ : Add α₂
F : Type u_6
inst✝ : AddHomClass F α α₂
f : F
x y : AddMonoidAlgebra β α
⊢ (fun a b => sum y fun a_1 b_1 => single (↑f a + ↑f a_1) (b * b_1)) = fun a m =>
sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a + a₂) (m * b₂)
[PROOFSTEP]
ext a b
[GOAL]
case e_g.h.h
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Add α
inst✝¹ : Add α₂
F : Type u_6
inst✝ : AddHomClass F α α₂
f : F
x y : AddMonoidAlgebra β α
a : α
b : β
⊢ (sum y fun a_1 b_1 => single (↑f a + ↑f a_1) (b * b_1)) =
sum (mapDomain (↑f) y) fun a₂ b₂ => single (↑f a + a₂) (b * b₂)
[PROOFSTEP]
rw [Finsupp.sum_mapDomain_index]
[GOAL]
case e_g.h.h.h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Add α
inst✝¹ : Add α₂
F : Type u_6
inst✝ : AddHomClass F α α₂
f : F
x y : AddMonoidAlgebra β α
a : α
b : β
⊢ ∀ (b_1 : α₂), single (↑f a + b_1) (b * 0) = 0
[PROOFSTEP]
simp
[GOAL]
case e_g.h.h.h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Add α
inst✝¹ : Add α₂
F : Type u_6
inst✝ : AddHomClass F α α₂
f : F
x y : AddMonoidAlgebra β α
a : α
b : β
⊢ ∀ (b_1 : α₂) (m₁ m₂ : β),
single (↑f a + b_1) (b * (m₁ + m₂)) = single (↑f a + b_1) (b * m₁) + single (↑f a + b_1) (b * m₂)
[PROOFSTEP]
simp [mul_add]
[GOAL]
case h_zero
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Add α
inst✝¹ : Add α₂
F : Type u_6
inst✝ : AddHomClass F α α₂
f : F
x y : AddMonoidAlgebra β α
⊢ ∀ (b : α₂), (sum (mapDomain (↑f) y) fun a₂ b₂ => single (b + a₂) (0 * b₂)) = 0
[PROOFSTEP]
simp
[GOAL]
case h_add
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁴ : Semiring k
α : Type u_3
β : Type u_4
α₂ : Type u_5
inst✝³ : Semiring β
inst✝² : Add α
inst✝¹ : Add α₂
F : Type u_6
inst✝ : AddHomClass F α α₂
f : F
x y : AddMonoidAlgebra β α
⊢ ∀ (b : α₂) (m₁ m₂ : β),
(sum (mapDomain (↑f) y) fun a₂ b₂ => single (b + a₂) ((m₁ + m₂) * b₂)) =
(sum (mapDomain (↑f) y) fun a₂ b₂ => single (b + a₂) (m₁ * b₂)) +
sum (mapDomain (↑f) y) fun a₂ b₂ => single (b + a₂) (m₂ * b₂)
[PROOFSTEP]
simp [add_mul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
a b : Multiplicative G
⊢ (fun a => single a 1) (a * b) = (fun a => single a 1) a * (fun a => single a 1) b
[PROOFSTEP]
simp only [mul_def, mul_one, sum_single_index, single_eq_zero, mul_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
a b : Multiplicative G
⊢ single (a * b) 1 = single (a + b) 1
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝² : Semiring k
inst✝¹ : Nontrivial k
inst✝ : AddZeroClass G
a b : Multiplicative G
h : ↑(of k G) a = ↑(of k G) b
⊢ a = b
[PROOFSTEP]
simpa using (single_eq_single_iff _ _ _ _).mp h
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddZeroClass G
f : AddMonoidAlgebra k G
r : k
x a : G
⊢ a + 0 = x ↔ a = x
[PROOFSTEP]
rw [add_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddZeroClass G
f : AddMonoidAlgebra k G
r : k
x a : G
⊢ 0 + a = x ↔ a = x
[PROOFSTEP]
rw [zero_add]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddMonoid G
p : AddMonoidAlgebra k G → Prop
f : AddMonoidAlgebra k G
hM : ∀ (g : G), p (↑(of k G) (↑Multiplicative.ofAdd g))
hadd : ∀ (f g : AddMonoidAlgebra k G), p f → p g → p (f + g)
hsmul : ∀ (r : k) (f : AddMonoidAlgebra k G), p f → p (r • f)
⊢ p f
[PROOFSTEP]
refine' Finsupp.induction_linear f _ (fun f g hf hg => hadd f g hf hg) fun g r => _
[GOAL]
case refine'_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddMonoid G
p : AddMonoidAlgebra k G → Prop
f : AddMonoidAlgebra k G
hM : ∀ (g : G), p (↑(of k G) (↑Multiplicative.ofAdd g))
hadd : ∀ (f g : AddMonoidAlgebra k G), p f → p g → p (f + g)
hsmul : ∀ (r : k) (f : AddMonoidAlgebra k G), p f → p (r • f)
⊢ p 0
[PROOFSTEP]
simpa using hsmul 0 (of k G (Multiplicative.ofAdd 0)) (hM 0)
[GOAL]
case refine'_2
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddMonoid G
p : AddMonoidAlgebra k G → Prop
f : AddMonoidAlgebra k G
hM : ∀ (g : G), p (↑(of k G) (↑Multiplicative.ofAdd g))
hadd : ∀ (f g : AddMonoidAlgebra k G), p f → p g → p (f + g)
hsmul : ∀ (r : k) (f : AddMonoidAlgebra k G), p f → p (r • f)
g : G
r : k
⊢ p (Finsupp.single g r)
[PROOFSTEP]
convert
hsmul r (of k G (Multiplicative.ofAdd g))
(hM g)
-- Porting note: Was `simp only`.
[GOAL]
case h.e'_1
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddMonoid G
p : AddMonoidAlgebra k G → Prop
f : AddMonoidAlgebra k G
hM : ∀ (g : G), p (↑(of k G) (↑Multiplicative.ofAdd g))
hadd : ∀ (f g : AddMonoidAlgebra k G), p f → p g → p (f + g)
hsmul : ∀ (r : k) (f : AddMonoidAlgebra k G), p f → p (r • f)
g : G
r : k
⊢ Finsupp.single g r = r • ↑(of k G) (↑Multiplicative.ofAdd g)
[PROOFSTEP]
rw [of_apply, toAdd_ofAdd, smul_single', mul_one]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd
x y : AddMonoidAlgebra k G
⊢ Equiv.toFun
{ toFun := equivMapDomain Multiplicative.ofAdd, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(x * y) =
Equiv.toFun
{ toFun := equivMapDomain Multiplicative.ofAdd, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
x *
Equiv.toFun
{ toFun := equivMapDomain Multiplicative.ofAdd, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
y
[PROOFSTEP]
dsimp only []
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd
x y : AddMonoidAlgebra k G
⊢ equivMapDomain Multiplicative.ofAdd (x * y) =
equivMapDomain Multiplicative.ofAdd x * equivMapDomain Multiplicative.ofAdd y
[PROOFSTEP]
repeat' rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd
x y : AddMonoidAlgebra k G
⊢ equivMapDomain Multiplicative.ofAdd (x * y) =
equivMapDomain Multiplicative.ofAdd x * equivMapDomain Multiplicative.ofAdd y
[PROOFSTEP]
rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd
x y : AddMonoidAlgebra k G
⊢ Finsupp.mapDomain (↑Multiplicative.ofAdd) (x * y) =
equivMapDomain Multiplicative.ofAdd x * equivMapDomain Multiplicative.ofAdd y
[PROOFSTEP]
rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd
x y : AddMonoidAlgebra k G
⊢ Finsupp.mapDomain (↑Multiplicative.ofAdd) (x * y) =
Finsupp.mapDomain (↑Multiplicative.ofAdd) x * equivMapDomain Multiplicative.ofAdd y
[PROOFSTEP]
rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd
x y : AddMonoidAlgebra k G
⊢ Finsupp.mapDomain (↑Multiplicative.ofAdd) (x * y) =
Finsupp.mapDomain (↑Multiplicative.ofAdd) x * Finsupp.mapDomain (↑Multiplicative.ofAdd) y
[PROOFSTEP]
rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd
x y : AddMonoidAlgebra k G
⊢ Finsupp.mapDomain (↑Multiplicative.ofAdd) (x * y) =
Finsupp.mapDomain (↑Multiplicative.ofAdd) x * Finsupp.mapDomain (↑Multiplicative.ofAdd) y
[PROOFSTEP]
dsimp [Multiplicative.ofAdd]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Add G
src✝ : (G →₀ k) ≃+ (Multiplicative G →₀ k) := Finsupp.domCongr Multiplicative.ofAdd
x y : AddMonoidAlgebra k G
⊢ Finsupp.mapDomain (fun x => x) (x * y) = Finsupp.mapDomain (fun x => x) x * Finsupp.mapDomain (fun x => x) y
[PROOFSTEP]
exact MonoidAlgebra.mapDomain_mul (α := Multiplicative G) (β := k) (MulHom.id (Multiplicative G)) x y
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul
x y : MonoidAlgebra k G
⊢ Equiv.toFun
{ toFun := equivMapDomain Additive.ofMul, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
(x * y) =
Equiv.toFun
{ toFun := equivMapDomain Additive.ofMul, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
x *
Equiv.toFun
{ toFun := equivMapDomain Additive.ofMul, invFun := src✝.invFun,
left_inv := (_ : Function.LeftInverse src✝.invFun src✝.toFun),
right_inv := (_ : Function.RightInverse src✝.invFun src✝.toFun) }
y
[PROOFSTEP]
dsimp only []
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul
x y : MonoidAlgebra k G
⊢ equivMapDomain Additive.ofMul (x * y) = equivMapDomain Additive.ofMul x * equivMapDomain Additive.ofMul y
[PROOFSTEP]
repeat' rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul
x y : MonoidAlgebra k G
⊢ equivMapDomain Additive.ofMul (x * y) = equivMapDomain Additive.ofMul x * equivMapDomain Additive.ofMul y
[PROOFSTEP]
rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul
x y : MonoidAlgebra k G
⊢ Finsupp.mapDomain (↑Additive.ofMul) (x * y) = equivMapDomain Additive.ofMul x * equivMapDomain Additive.ofMul y
[PROOFSTEP]
rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul
x y : MonoidAlgebra k G
⊢ Finsupp.mapDomain (↑Additive.ofMul) (x * y) = Finsupp.mapDomain (↑Additive.ofMul) x * equivMapDomain Additive.ofMul y
[PROOFSTEP]
rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul
x y : MonoidAlgebra k G
⊢ Finsupp.mapDomain (↑Additive.ofMul) (x * y) =
Finsupp.mapDomain (↑Additive.ofMul) x * Finsupp.mapDomain (↑Additive.ofMul) y
[PROOFSTEP]
rw [equivMapDomain_eq_mapDomain (M := k)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul
x y : MonoidAlgebra k G
⊢ Finsupp.mapDomain (↑Additive.ofMul) (x * y) =
Finsupp.mapDomain (↑Additive.ofMul) x * Finsupp.mapDomain (↑Additive.ofMul) y
[PROOFSTEP]
dsimp [Additive.ofMul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : Mul G
src✝ : (G →₀ k) ≃+ (Additive G →₀ k) := Finsupp.domCongr Additive.ofMul
x y : MonoidAlgebra k G
⊢ Finsupp.mapDomain (fun x => x) (x * y) = Finsupp.mapDomain (fun x => x) x * Finsupp.mapDomain (fun x => x) y
[PROOFSTEP]
convert MonoidAlgebra.mapDomain_mul (β := k) (MulHom.id G) x y
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddMonoid G
src✝ : k →+ G →₀ k := singleAddHom 0
x y : k
⊢ OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } (x * y) =
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } x *
OneHom.toFun { toFun := src✝.toFun, map_one' := (_ : ZeroHom.toFun (↑src✝) 1 = ZeroHom.toFun (↑src✝) 1) } y
[PROOFSTEP]
simp only [singleAddHom, single_mul_single, zero_add]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCommMonoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)
⊢ ∀ (x y : (AddMonoidAlgebra k G)ᵐᵒᵖ),
Equiv.toFun src✝.toEquiv (x * y) = Equiv.toFun src✝.toEquiv x * Equiv.toFun src✝.toEquiv y
[PROOFSTEP]
rw [Equiv.toFun_as_coe, AddEquiv.toEquiv_eq_coe, AddEquiv.coe_toEquiv, ← AddEquiv.coe_toAddMonoidHom]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCommMonoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)
⊢ ∀ (x y : (AddMonoidAlgebra k G)ᵐᵒᵖ),
↑(AddEquiv.toAddMonoidHom src✝) (x * y) = ↑(AddEquiv.toAddMonoidHom src✝) x * ↑(AddEquiv.toAddMonoidHom src✝) y
[PROOFSTEP]
refine
Iff.mpr (AddMonoidHom.map_mul_iff (R := (AddMonoidAlgebra k G)ᵐᵒᵖ) (S := AddMonoidAlgebra kᵐᵒᵖ G) _)
?_
-- Porting note: Was `ext`.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCommMonoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)
⊢ AddMonoidHom.compr₂ AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝) =
AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝))
(AddEquiv.toAddMonoidHom src✝)
[PROOFSTEP]
refine
AddMonoidHom.mul_op_ext _ _ <|
addHom_ext' fun i₁ =>
AddMonoidHom.ext fun r₁ =>
AddMonoidHom.mul_op_ext _ _ <|
addHom_ext' fun i₂ =>
AddMonoidHom.ext fun r₂ =>
?_
-- Porting note: `reducible` cannot be `local` so proof gets long.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCommMonoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)
i₁ : G
r₁ : k
i₂ : G
r₂ : k
⊢ ↑(AddMonoidHom.comp
(AddMonoidHom.comp
(↑(AddMonoidHom.comp
(AddMonoidHom.comp (AddMonoidHom.compr₂ AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝))
(AddEquiv.toAddMonoidHom opAddEquiv))
(singleAddHom i₁))
r₁)
(AddEquiv.toAddMonoidHom opAddEquiv))
(singleAddHom i₂))
r₂ =
↑(AddMonoidHom.comp
(AddMonoidHom.comp
(↑(AddMonoidHom.comp
(AddMonoidHom.comp
(AddMonoidHom.compl₂ (AddMonoidHom.comp AddMonoidHom.mul (AddEquiv.toAddMonoidHom src✝))
(AddEquiv.toAddMonoidHom src✝))
(AddEquiv.toAddMonoidHom opAddEquiv))
(singleAddHom i₁))
r₁)
(AddEquiv.toAddMonoidHom opAddEquiv))
(singleAddHom i₂))
r₂
[PROOFSTEP]
dsimp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCommMonoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)
i₁ : G
r₁ : k
i₂ : G
r₂ : k
⊢ ↑(AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv))
(↑opAddEquiv (Finsupp.single i₁ r₁) * ↑opAddEquiv (Finsupp.single i₂ r₂)) =
↑(AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)) (↑opAddEquiv (Finsupp.single i₁ r₁)) *
↑(AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)) (↑opAddEquiv (Finsupp.single i₂ r₂))
[PROOFSTEP]
rw [AddEquiv.trans_apply, AddEquiv.trans_apply, AddEquiv.trans_apply, MulOpposite.opAddEquiv_apply,
MulOpposite.opAddEquiv_symm_apply, MulOpposite.unop_mul (α := AddMonoidAlgebra k G)]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCommMonoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)
i₁ : G
r₁ : k
i₂ : G
r₂ : k
⊢ ↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₂ r₂)) * unop (op (Finsupp.single i₁ r₁))) =
↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₁ r₁))) *
↑(mapRange.addEquiv opAddEquiv) (unop (op (Finsupp.single i₂ r₂)))
[PROOFSTEP]
dsimp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCommMonoid G
src✝ : (G →₀ k)ᵐᵒᵖ ≃+ (G →₀ kᵐᵒᵖ) := AddEquiv.trans (AddEquiv.symm opAddEquiv) (mapRange.addEquiv opAddEquiv)
i₁ : G
r₁ : k
i₂ : G
r₂ : k
⊢ mapRange op (_ : ↑opAddEquiv 0 = 0) (Finsupp.single i₂ r₂ * Finsupp.single i₁ r₁) =
mapRange op (_ : ↑opAddEquiv 0 = 0) (Finsupp.single i₁ r₁) *
mapRange op (_ : ↑opAddEquiv 0 = 0) (Finsupp.single i₂ r₂)
[PROOFSTEP]
simp only [mapRange_single, single_mul_single, ← op_mul, add_comm]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCommMonoid G
r : k
x : G
⊢ ↑AddMonoidAlgebra.opRingEquiv (op (single x r)) = single x (op r)
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝¹ : Semiring k
inst✝ : AddCommMonoid G
r : kᵐᵒᵖ
x : Gᵐᵒᵖ
⊢ ↑(RingEquiv.symm AddMonoidAlgebra.opRingEquiv) (single x r) = op (single x (unop r))
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : AddMonoid G
src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k)
r : R
f : (fun x => AddMonoidAlgebra k G) r
⊢ ↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
f =
f *
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r
[PROOFSTEP]
refine Finsupp.ext fun _ => ?_
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : AddMonoid G
src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k)
r : R
f : (fun x => AddMonoidAlgebra k G) r
x✝ : G
⊢ ↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
f)
x✝ =
↑(f *
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r)
x✝
[PROOFSTEP]
simp [single_zero_mul_apply, mul_single_zero_apply, Algebra.commutes]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : AddMonoid G
src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k)
r : R
a : (fun x => AddMonoidAlgebra k G) r
⊢ r • a =
↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
a
[PROOFSTEP]
refine
Finsupp.ext fun _ =>
?_
-- Porting note: Newly required.
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : AddMonoid G
src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k)
r : R
a : (fun x => AddMonoidAlgebra k G) r
x✝ : G
⊢ ↑(r • a) x✝ =
↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
a)
x✝
[PROOFSTEP]
rw [Finsupp.coe_smul]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : AddMonoid G
src✝ : R →+* AddMonoidAlgebra k G := RingHom.comp singleZeroRingHom (algebraMap R k)
r : R
a : (fun x => AddMonoidAlgebra k G) r
x✝ : G
⊢ (r • ↑a) x✝ =
↑(↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : R), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) }
r *
a)
x✝
[PROOFSTEP]
simp [single_zero_mul_apply, Algebra.smul_def, Pi.smul_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : AddMonoid G
src✝ : k →+* AddMonoidAlgebra k G := singleZeroRingHom
r : R
⊢ OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ : ∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap R k) r) =
↑(algebraMap R (AddMonoidAlgebra k G)) r
[PROOFSTEP]
refine Finsupp.ext fun _ => ?_
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : AddMonoid G
src✝ : k →+* AddMonoidAlgebra k G := singleZeroRingHom
r : R
x✝ : G
⊢ ↑(OneHom.toFun
(↑↑{ toMonoidHom := ↑src✝, map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : k), OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap R k) r))
x✝ =
↑(↑(algebraMap R (AddMonoidAlgebra k G)) r) x✝
[PROOFSTEP]
simp
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : AddMonoid G
src✝ : k →+* AddMonoidAlgebra k G := singleZeroRingHom
r : R
x✝ : G
⊢ ↑(Finsupp.single 0 (↑(algebraMap R k) r)) x✝ = ↑(↑(algebraMap R (AddMonoidAlgebra k G)) r) x✝
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
f : A →ₐ[k] B
g : Multiplicative G →* B
h_comm : ∀ (x : A) (y : Multiplicative G), Commute (↑f x) (↑g y)
src✝ : AddMonoidAlgebra A G →+* B := liftNCRingHom (↑f) g h_comm
⊢ ∀ (r : k),
OneHom.toFun
(↑↑{
toMonoidHom :=
{
toOneHom :=
{ toFun := ↑(liftNCRingHom (↑f) g h_comm), map_one' := (_ : OneHom.toFun (↑↑src✝) 1 = 1) },
map_mul' :=
(_ :
∀ (x y : AddMonoidAlgebra A G),
OneHom.toFun (↑↑src✝) (x * y) = OneHom.toFun (↑↑src✝) x * OneHom.toFun (↑↑src✝) y) },
map_zero' := (_ : OneHom.toFun (↑↑src✝) 0 = 0),
map_add' :=
(_ :
∀ (x y : AddMonoidAlgebra A G),
OneHom.toFun (↑↑src✝) (x + y) = OneHom.toFun (↑↑src✝) x + OneHom.toFun (↑↑src✝) y) })
(↑(algebraMap k (AddMonoidAlgebra A G)) r) =
↑(algebraMap k B) r
[PROOFSTEP]
simp [liftNCRingHom]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : Multiplicative G →* A
f : MonoidAlgebra k G
⊢ ↑(↑(lift k G A) F) f = sum f fun a b => b • ↑F (↑Multiplicative.ofAdd a)
[PROOFSTEP]
simp only [lift_apply', Algebra.smul_def]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : Multiplicative G →* A
x : Multiplicative G
⊢ ↑(↑(lift k G A) F) (↑(of k G) x) = ↑F x
[PROOFSTEP]
rw [of_apply, ← lift_symm_apply, Equiv.symm_apply_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : Multiplicative G →* A
a : G
b : k
⊢ ↑(↑(lift k G A) F) (single a b) = b • ↑F (↑Multiplicative.ofAdd a)
[PROOFSTEP]
rw [lift_def, liftNC_single, Algebra.smul_def, AddMonoidHom.coe_coe]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : AddMonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
⊢ ↑F f = sum f fun a b => b • ↑F (single a 1)
[PROOFSTEP]
conv_lhs =>
rw [lift_unique' F]
simp [lift_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : AddMonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
| ↑F f
[PROOFSTEP]
rw [lift_unique' F]
simp [lift_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : AddMonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
| ↑F f
[PROOFSTEP]
rw [lift_unique' F]
simp [lift_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : AddMonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
| ↑F f
[PROOFSTEP]
rw [lift_unique' F]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
F : AddMonoidAlgebra k G →ₐ[k] A
f : MonoidAlgebra k G
| ↑(↑(lift k G A) (MonoidHom.comp (↑F) (of k G))) f
[PROOFSTEP]
simp [lift_apply]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
φ₁ φ₂ : AddMonoidAlgebra k G →ₐ[k] A
⊢ φ₁ = φ₂ → ∀ (x : G), ↑φ₁ (Finsupp.single x 1) = ↑φ₂ (Finsupp.single x 1)
[PROOFSTEP]
rintro rfl _
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝⁵ : CommSemiring k
inst✝⁴ : AddMonoid G
A : Type u₃
inst✝³ : Semiring A
inst✝² : Algebra k A
B : Type u_3
inst✝¹ : Semiring B
inst✝ : Algebra k B
φ₁ : AddMonoidAlgebra k G →ₐ[k] A
x✝ : G
⊢ ↑φ₁ (Finsupp.single x✝ 1) = ↑φ₁ (Finsupp.single x✝ 1)
[PROOFSTEP]
rfl
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
ι : Type ui
inst✝¹ : CommSemiring k
inst✝ : AddCommMonoid G
s✝ : Finset ι
a✝ : ι → G
b : ι → k
a : ι
s : Finset ι
has : ¬a ∈ s
ih : ∏ i in s, single (a✝ i) (b i) = single (∑ i in s, a✝ i) (∏ i in s, b i)
⊢ ∏ i in cons a s has, single (a✝ i) (b i) = single (∑ i in cons a s has, a✝ i) (∏ i in cons a s has, b i)
[PROOFSTEP]
rw [prod_cons has, ih, single_mul_single, sum_cons has, prod_cons has]
[GOAL]
k : Type u₁
G : Type u₂
H✝ : Type u_1
R : Type u_2
A : Type u_3
H : Type u_4
F : Type u_5
inst✝⁵ : CommSemiring k
inst✝⁴ : Semiring A
inst✝³ : Algebra k A
inst✝² : AddMonoid G
inst✝¹ : AddMonoid H
inst✝ : AddMonoidHomClass F G H
f : F
r : k
⊢ mapDomain (↑f) (↑(algebraMap k (AddMonoidAlgebra A G)) r) = ↑(algebraMap k (AddMonoidAlgebra A H)) r
[PROOFSTEP]
simp only [Function.comp_apply, mapDomain_single, AddMonoidAlgebra.coe_algebraMap, map_zero]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : AddMonoid G
src✝ : AddMonoidAlgebra k G ≃+* MonoidAlgebra k (Multiplicative G) := AddMonoidAlgebra.toMultiplicative k G
r : R
⊢ Equiv.toFun src✝.toEquiv (↑(algebraMap R (AddMonoidAlgebra k G)) r) =
↑(algebraMap R (MonoidAlgebra k (Multiplicative G))) r
[PROOFSTEP]
simp [AddMonoidAlgebra.toMultiplicative]
[GOAL]
k : Type u₁
G : Type u₂
H : Type u_1
R : Type u_2
inst✝³ : CommSemiring R
inst✝² : Semiring k
inst✝¹ : Algebra R k
inst✝ : Monoid G
src✝ : MonoidAlgebra k G ≃+* AddMonoidAlgebra k (Additive G) := MonoidAlgebra.toAdditive k G
r : R
⊢ Equiv.toFun src✝.toEquiv (↑(algebraMap R (MonoidAlgebra k G)) r) = ↑(algebraMap R (AddMonoidAlgebra k (Additive G))) r
[PROOFSTEP]
simp [MonoidAlgebra.toAdditive]
| {"mathlib_filename": "Mathlib.Algebra.MonoidAlgebra.Basic", "llama_tokens": 106642} |
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
M : Type u_4
ι : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s✝ : R
x y : M
s : Multiset R
t : Multiset M
⊢ sum s • sum t = sum (map (fun p => p.fst • p.snd) (s ×ˢ t))
[PROOFSTEP]
induction' s using Multiset.induction with a s ih
[GOAL]
case empty
α : Type u_1
β : Type u_2
R : Type u_3
M : Type u_4
ι : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s : R
x y : M
t : Multiset M
⊢ sum 0 • sum t = sum (map (fun p => p.fst • p.snd) (0 ×ˢ t))
[PROOFSTEP]
simp
[GOAL]
case cons
α : Type u_1
β : Type u_2
R : Type u_3
M : Type u_4
ι : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s✝ : R
x y : M
t : Multiset M
a : R
s : Multiset R
ih : sum s • sum t = sum (map (fun p => p.fst • p.snd) (s ×ˢ t))
⊢ sum (a ::ₘ s) • sum t = sum (map (fun p => p.fst • p.snd) ((a ::ₘ s) ×ˢ t))
[PROOFSTEP]
simp [add_smul, ih, ← Multiset.smul_sum]
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
M : Type u_4
ι : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s✝ : R
x y : M
f : α → R
g : β → M
s : Finset α
t : Finset β
⊢ (∑ i in s, f i) • ∑ i in t, g i = ∑ p in s ×ˢ t, f p.fst • g p.snd
[PROOFSTEP]
rw [Finset.sum_product, Finset.sum_smul, Finset.sum_congr rfl]
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
M : Type u_4
ι : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s✝ : R
x y : M
f : α → R
g : β → M
s : Finset α
t : Finset β
⊢ ∀ (x : α), x ∈ s → f x • ∑ i in t, g i = ∑ y in t, f (x, y).fst • g (x, y).snd
[PROOFSTEP]
intros
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
M : Type u_4
ι : Type u_5
inst✝² : Semiring R
inst✝¹ : AddCommMonoid M
inst✝ : Module R M
r s✝ : R
x y : M
f : α → R
g : β → M
s : Finset α
t : Finset β
x✝ : α
a✝ : x✝ ∈ s
⊢ f x✝ • ∑ i in t, g i = ∑ y in t, f (x✝, y).fst • g (x✝, y).snd
[PROOFSTEP]
rw [Finset.smul_sum]
[GOAL]
α : Type u_1
β : Type u_2
R : Type u_3
M : Type u_4
ι : Type u_5
inst✝ : CommSemiring R
s : Finset α
⊢ ↑(card s) = ∑ a in s, 1
[PROOFSTEP]
rw [Finset.sum_const, Nat.smul_one_eq_coe]
| {"mathlib_filename": "Mathlib.Algebra.Module.BigOperators", "llama_tokens": 1155} |
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
r : (i : I) → Semiring (f i)
m : (i : I) → AddCommMonoid (g i)
inst✝ : (i : I) → Module (f i) (g i)
⊢ ∀ (r_1 s : (i : I) → f i) (x : (i : I) → g i), (r_1 + s) • x = r_1 • x + s • x
[PROOFSTEP]
intros
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
r : (i : I) → Semiring (f i)
m : (i : I) → AddCommMonoid (g i)
inst✝ : (i : I) → Module (f i) (g i)
r✝ s✝ : (i : I) → f i
x✝ : (i : I) → g i
⊢ (r✝ + s✝) • x✝ = r✝ • x✝ + s✝ • x✝
[PROOFSTEP]
ext1
[GOAL]
case h
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
r : (i : I) → Semiring (f i)
m : (i : I) → AddCommMonoid (g i)
inst✝ : (i : I) → Module (f i) (g i)
r✝ s✝ : (i : I) → f i
x✝¹ : (i : I) → g i
x✝ : I
⊢ ((r✝ + s✝) • x✝¹) x✝ = (r✝ • x✝¹ + s✝ • x✝¹) x✝
[PROOFSTEP]
apply add_smul
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
r : (i : I) → Semiring (f i)
m : (i : I) → AddCommMonoid (g i)
inst✝ : (i : I) → Module (f i) (g i)
⊢ ∀ (x : (i : I) → g i), 0 • x = 0
[PROOFSTEP]
intros
[GOAL]
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
r : (i : I) → Semiring (f i)
m : (i : I) → AddCommMonoid (g i)
inst✝ : (i : I) → Module (f i) (g i)
x✝ : (i : I) → g i
⊢ 0 • x✝ = 0
[PROOFSTEP]
ext1
-- Porting note: not sure why `apply zero_smul` fails here.
[GOAL]
case h
I : Type u
f : I → Type v
x y : (i : I) → f i
i : I
g : I → Type u_1
r : (i : I) → Semiring (f i)
m : (i : I) → AddCommMonoid (g i)
inst✝ : (i : I) → Module (f i) (g i)
x✝¹ : (i : I) → g i
x✝ : I
⊢ (0 • x✝¹) x✝ = OfNat.ofNat 0 x✝
[PROOFSTEP]
rw [zero_smul]
| {"mathlib_filename": "Mathlib.Algebra.Module.Pi", "llama_tokens": 982} |
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j k : ι
⊢ d C i j ≫ d C j k = 0
[PROOFSTEP]
by_cases hij : c.Rel i j
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j k : ι
hij : ComplexShape.Rel c i j
⊢ d C i j ≫ d C j k = 0
[PROOFSTEP]
by_cases hjk : c.Rel j k
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j k : ι
hij : ComplexShape.Rel c i j
hjk : ComplexShape.Rel c j k
⊢ d C i j ≫ d C j k = 0
[PROOFSTEP]
exact C.d_comp_d' i j k hij hjk
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j k : ι
hij : ComplexShape.Rel c i j
hjk : ¬ComplexShape.Rel c j k
⊢ d C i j ≫ d C j k = 0
[PROOFSTEP]
rw [C.shape j k hjk, comp_zero]
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j k : ι
hij : ¬ComplexShape.Rel c i j
⊢ d C i j ≫ d C j k = 0
[PROOFSTEP]
rw [C.shape i j hij, zero_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C₁ C₂ : HomologicalComplex V c
h_X : C₁.X = C₂.X
h_d :
∀ (i j : ι),
ComplexShape.Rel c i j → d C₁ i j ≫ eqToHom (_ : X C₁ j = X C₂ j) = eqToHom (_ : X C₁ i = X C₂ i) ≫ d C₂ i j
⊢ C₁ = C₂
[PROOFSTEP]
obtain ⟨X₁, d₁, s₁, h₁⟩ := C₁
[GOAL]
case mk
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C₂ : HomologicalComplex V c
X₁ : ι → V
d₁ : (i j : ι) → X₁ i ⟶ X₁ j
s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0
h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0
h_X : (mk X₁ d₁).X = C₂.X
h_d :
∀ (i j : ι),
ComplexShape.Rel c i j →
d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X C₂ j) = eqToHom (_ : X (mk X₁ d₁) i = X C₂ i) ≫ d C₂ i j
⊢ mk X₁ d₁ = C₂
[PROOFSTEP]
obtain ⟨X₂, d₂, s₂, h₂⟩ := C₂
[GOAL]
case mk.mk
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
X₁ : ι → V
d₁ : (i j : ι) → X₁ i ⟶ X₁ j
s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0
h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0
X₂ : ι → V
d₂ : (i j : ι) → X₂ i ⟶ X₂ j
s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0
h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0
h_X : (mk X₁ d₁).X = (mk X₂ d₂).X
h_d :
∀ (i j : ι),
ComplexShape.Rel c i j →
d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₂ d₂) j) =
eqToHom (_ : X (mk X₁ d₁) i = X (mk X₂ d₂) i) ≫ d (mk X₂ d₂) i j
⊢ mk X₁ d₁ = mk X₂ d₂
[PROOFSTEP]
dsimp at h_X
[GOAL]
case mk.mk
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
X₁ : ι → V
d₁ : (i j : ι) → X₁ i ⟶ X₁ j
s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0
h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0
X₂ : ι → V
d₂ : (i j : ι) → X₂ i ⟶ X₂ j
s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0
h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0
h_X : X₁ = X₂
h_d :
∀ (i j : ι),
ComplexShape.Rel c i j →
d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₂ d₂) j) =
eqToHom (_ : X (mk X₁ d₁) i = X (mk X₂ d₂) i) ≫ d (mk X₂ d₂) i j
⊢ mk X₁ d₁ = mk X₂ d₂
[PROOFSTEP]
subst h_X
[GOAL]
case mk.mk
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
X₁ : ι → V
d₁ : (i j : ι) → X₁ i ⟶ X₁ j
s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0
h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0
d₂ : (i j : ι) → X₁ i ⟶ X₁ j
s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0
h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0
h_d :
∀ (i j : ι),
ComplexShape.Rel c i j →
d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) =
eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j
⊢ mk X₁ d₁ = mk X₁ d₂
[PROOFSTEP]
simp only [mk.injEq, heq_eq_eq, true_and]
[GOAL]
case mk.mk
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
X₁ : ι → V
d₁ : (i j : ι) → X₁ i ⟶ X₁ j
s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0
h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0
d₂ : (i j : ι) → X₁ i ⟶ X₁ j
s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0
h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0
h_d :
∀ (i j : ι),
ComplexShape.Rel c i j →
d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) =
eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j
⊢ d₁ = d₂
[PROOFSTEP]
ext i j
[GOAL]
case mk.mk.h.h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
X₁ : ι → V
d₁ : (i j : ι) → X₁ i ⟶ X₁ j
s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0
h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0
d₂ : (i j : ι) → X₁ i ⟶ X₁ j
s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0
h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0
h_d :
∀ (i j : ι),
ComplexShape.Rel c i j →
d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) =
eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j
i j : ι
⊢ d₁ i j = d₂ i j
[PROOFSTEP]
by_cases hij : c.Rel i j
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
X₁ : ι → V
d₁ : (i j : ι) → X₁ i ⟶ X₁ j
s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0
h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0
d₂ : (i j : ι) → X₁ i ⟶ X₁ j
s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0
h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0
h_d :
∀ (i j : ι),
ComplexShape.Rel c i j →
d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) =
eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j
i j : ι
hij : ComplexShape.Rel c i j
⊢ d₁ i j = d₂ i j
[PROOFSTEP]
simpa only [comp_id, id_comp, eqToHom_refl] using h_d i j hij
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
X₁ : ι → V
d₁ : (i j : ι) → X₁ i ⟶ X₁ j
s₁ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₁ i j = 0
h₁ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₁ i j ≫ d₁ j k = 0
d₂ : (i j : ι) → X₁ i ⟶ X₁ j
s₂ : ∀ (i j : ι), ¬ComplexShape.Rel c i j → d₂ i j = 0
h₂ : ∀ (i j k : ι), ComplexShape.Rel c i j → ComplexShape.Rel c j k → d₂ i j ≫ d₂ j k = 0
h_d :
∀ (i j : ι),
ComplexShape.Rel c i j →
d (mk X₁ d₁) i j ≫ eqToHom (_ : X (mk X₁ d₁) j = X (mk X₁ d₂) j) =
eqToHom (_ : X (mk X₁ d₁) i = X (mk X₁ d₂) i) ≫ d (mk X₁ d₂) i j
i j : ι
hij : ¬ComplexShape.Rel c i j
⊢ d₁ i j = d₂ i j
[PROOFSTEP]
rw [s₁ i j hij, s₂ i j hij]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p q : ι
h : p = q
⊢ X K p = X K q
[PROOFSTEP]
rw [h]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₂ p₃ : ι
h₁₂ : p₁ = p₂
h₂₃ : p₂ = p₃
⊢ (XIsoOfEq K h₁₂).hom ≫ (XIsoOfEq K h₂₃).hom = (XIsoOfEq K (_ : p₁ = p₃)).hom
[PROOFSTEP]
dsimp [XIsoOfEq]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₂ p₃ : ι
h₁₂ : p₁ = p₂
h₂₃ : p₂ = p₃
⊢ eqToHom (_ : X K p₁ = X K p₂) ≫ eqToHom (_ : X K p₂ = X K p₃) = eqToHom (_ : X K p₁ = X K p₃)
[PROOFSTEP]
simp only [eqToHom_trans]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₂ p₃ : ι
h₁₂ : p₁ = p₂
h₃₂ : p₃ = p₂
⊢ (XIsoOfEq K h₁₂).hom ≫ (XIsoOfEq K h₃₂).inv = (XIsoOfEq K (_ : p₁ = p₃)).hom
[PROOFSTEP]
dsimp [XIsoOfEq]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₂ p₃ : ι
h₁₂ : p₁ = p₂
h₃₂ : p₃ = p₂
⊢ eqToHom (_ : X K p₁ = X K p₂) ≫ eqToHom (_ : X K p₂ = X K p₃) = eqToHom (_ : X K p₁ = X K p₃)
[PROOFSTEP]
simp only [eqToHom_trans]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₂ p₃ : ι
h₂₁ : p₂ = p₁
h₂₃ : p₂ = p₃
⊢ (XIsoOfEq K h₂₁).inv ≫ (XIsoOfEq K h₂₃).hom = (XIsoOfEq K (_ : p₁ = p₃)).hom
[PROOFSTEP]
dsimp [XIsoOfEq]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₂ p₃ : ι
h₂₁ : p₂ = p₁
h₂₃ : p₂ = p₃
⊢ eqToHom (_ : X K p₁ = X K p₂) ≫ eqToHom (_ : X K p₂ = X K p₃) = eqToHom (_ : X K p₁ = X K p₃)
[PROOFSTEP]
simp only [eqToHom_trans]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₂ p₃ : ι
h₂₁ : p₂ = p₁
h₃₂ : p₃ = p₂
⊢ (XIsoOfEq K h₂₁).inv ≫ (XIsoOfEq K h₃₂).inv = (XIsoOfEq K (_ : p₁ = p₃)).hom
[PROOFSTEP]
dsimp [XIsoOfEq]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₂ p₃ : ι
h₂₁ : p₂ = p₁
h₃₂ : p₃ = p₂
⊢ eqToHom (_ : X K p₁ = X K p₂) ≫ eqToHom (_ : X K p₂ = X K p₃) = eqToHom (_ : X K p₁ = X K p₃)
[PROOFSTEP]
simp only [eqToHom_trans]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₂ : ι
h : p₁ = p₂
p₃ : ι
⊢ (XIsoOfEq K h).hom ≫ d K p₂ p₃ = d K p₁ p₃
[PROOFSTEP]
subst h
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₁ p₃ : ι
⊢ (XIsoOfEq K (_ : p₁ = p₁)).hom ≫ d K p₁ p₃ = d K p₁ p₃
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₂ p₁ : ι
h : p₂ = p₁
p₃ : ι
⊢ (XIsoOfEq K h).inv ≫ d K p₂ p₃ = d K p₁ p₃
[PROOFSTEP]
subst h
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₂ p₃ : ι
⊢ (XIsoOfEq K (_ : p₂ = p₂)).inv ≫ d K p₂ p₃ = d K p₂ p₃
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₂ p₃ : ι
h : p₂ = p₃
p₁ : ι
⊢ d K p₁ p₂ ≫ (XIsoOfEq K h).hom = d K p₁ p₃
[PROOFSTEP]
subst h
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₂ p₁ : ι
⊢ d K p₁ p₂ ≫ (XIsoOfEq K (_ : p₂ = p₂)).hom = d K p₁ p₂
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₂ p₃ : ι
h : p₃ = p₂
p₁ : ι
⊢ d K p₁ p₂ ≫ (XIsoOfEq K h).inv = d K p₁ p₃
[PROOFSTEP]
subst h
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
K : HomologicalComplex V c
p₃ p₁ : ι
⊢ d K p₁ p₃ ≫ (XIsoOfEq K (_ : p₃ = p₃)).inv = d K p₁ p₃
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
⊢ ComplexShape.next (ComplexShape.down ℕ) 0 = 0
[PROOFSTEP]
classical
refine' dif_neg _
push_neg
intro
apply Nat.noConfusion
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
⊢ ComplexShape.next (ComplexShape.down ℕ) 0 = 0
[PROOFSTEP]
refine' dif_neg _
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
⊢ ¬∃ j, ComplexShape.Rel (ComplexShape.down ℕ) 0 j
[PROOFSTEP]
push_neg
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
⊢ ∀ (j : ℕ), ¬ComplexShape.Rel (ComplexShape.down ℕ) 0 j
[PROOFSTEP]
intro
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
j✝ : ℕ
⊢ ¬ComplexShape.Rel (ComplexShape.down ℕ) 0 j✝
[PROOFSTEP]
apply Nat.noConfusion
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
⊢ ComplexShape.prev (ComplexShape.up ℕ) 0 = 0
[PROOFSTEP]
classical
refine' dif_neg _
push_neg
intro
apply Nat.noConfusion
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
⊢ ComplexShape.prev (ComplexShape.up ℕ) 0 = 0
[PROOFSTEP]
refine' dif_neg _
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
⊢ ¬∃ i, ComplexShape.Rel (ComplexShape.up ℕ) i 0
[PROOFSTEP]
push_neg
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
⊢ ∀ (i : ℕ), ¬ComplexShape.Rel (ComplexShape.up ℕ) i 0
[PROOFSTEP]
intro
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
i✝ : ℕ
⊢ ¬ComplexShape.Rel (ComplexShape.up ℕ) i✝ 0
[PROOFSTEP]
apply Nat.noConfusion
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C A B : HomologicalComplex V c
f : Hom A B
i j : ι
⊢ HomologicalComplex.Hom.f f i ≫ d B i j = d A i j ≫ HomologicalComplex.Hom.f f j
[PROOFSTEP]
by_cases hij : c.Rel i j
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C A B : HomologicalComplex V c
f : Hom A B
i j : ι
hij : ComplexShape.Rel c i j
⊢ HomologicalComplex.Hom.f f i ≫ d B i j = d A i j ≫ HomologicalComplex.Hom.f f j
[PROOFSTEP]
exact f.comm' i j hij
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C A B : HomologicalComplex V c
f : Hom A B
i j : ι
hij : ¬ComplexShape.Rel c i j
⊢ HomologicalComplex.Hom.f f i ≫ d B i j = d A i j ≫ HomologicalComplex.Hom.f f j
[PROOFSTEP]
rw [A.shape i j hij, B.shape i j hij, comp_zero, zero_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C✝ C D : HomologicalComplex V c
f g : C ⟶ D
h : ∀ (i : ι), Hom.f f i = Hom.f g i
⊢ f = g
[PROOFSTEP]
apply Hom.ext
[GOAL]
case f
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C✝ C D : HomologicalComplex V c
f g : C ⟶ D
h : ∀ (i : ι), Hom.f f i = Hom.f g i
⊢ f.f = g.f
[PROOFSTEP]
funext
[GOAL]
case f.h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C✝ C D : HomologicalComplex V c
f g : C ⟶ D
h : ∀ (i : ι), Hom.f f i = Hom.f g i
x✝ : ι
⊢ Hom.f f x✝ = Hom.f g x✝
[PROOFSTEP]
apply h
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ : HomologicalComplex V c
h : C₁ = C₂
n : ι
⊢ Hom.f (eqToHom h) n = eqToHom (_ : X C₁ n = X C₂ n)
[PROOFSTEP]
subst h
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ : HomologicalComplex V c
n : ι
⊢ Hom.f (eqToHom (_ : C₁ = C₁)) n = eqToHom (_ : X C₁ n = X C₁ n)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ : HomologicalComplex V c
⊢ Function.Injective fun f => f.f
[PROOFSTEP]
aesop_cat
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasZeroObject V
⊢ IsZero zero
[PROOFSTEP]
refine' ⟨fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩, fun X => ⟨⟨⟨0⟩, fun f => _⟩⟩⟩
[GOAL]
case refine'_1
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasZeroObject V
X : HomologicalComplex V c
f : zero ⟶ X
⊢ f = default
case refine'_2
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasZeroObject V
X : HomologicalComplex V c
f : X ⟶ zero
⊢ f = default
[PROOFSTEP]
all_goals
ext
dsimp [zero]
apply Subsingleton.elim
[GOAL]
case refine'_1
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasZeroObject V
X : HomologicalComplex V c
f : zero ⟶ X
⊢ f = default
[PROOFSTEP]
ext
[GOAL]
case refine'_1.h
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasZeroObject V
X : HomologicalComplex V c
f : zero ⟶ X
i✝ : ι
⊢ Hom.f f i✝ = Hom.f default i✝
[PROOFSTEP]
dsimp [zero]
[GOAL]
case refine'_1.h
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasZeroObject V
X : HomologicalComplex V c
f : zero ⟶ X
i✝ : ι
⊢ Hom.f f i✝ = 0
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
case refine'_2
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasZeroObject V
X : HomologicalComplex V c
f : X ⟶ zero
⊢ f = default
[PROOFSTEP]
ext
[GOAL]
case refine'_2.h
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasZeroObject V
X : HomologicalComplex V c
f : X ⟶ zero
i✝ : ι
⊢ Hom.f f i✝ = Hom.f default i✝
[PROOFSTEP]
dsimp [zero]
[GOAL]
case refine'_2.h
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasZeroObject V
X : HomologicalComplex V c
f : X ⟶ zero
i✝ : ι
⊢ Hom.f f i✝ = 0
[PROOFSTEP]
apply Subsingleton.elim
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j j' : ι
rij : ComplexShape.Rel c i j
rij' : ComplexShape.Rel c i j'
⊢ d C i j' ≫ eqToHom (_ : X C j' = X C j) = d C i j
[PROOFSTEP]
obtain rfl := c.next_eq rij rij'
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
rij rij' : ComplexShape.Rel c i j
⊢ d C i j ≫ eqToHom (_ : X C j = X C j) = d C i j
[PROOFSTEP]
simp only [eqToHom_refl, comp_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i i' j : ι
rij : ComplexShape.Rel c i j
rij' : ComplexShape.Rel c i' j
⊢ eqToHom (_ : X C i = X C i') ≫ d C i' j = d C i j
[PROOFSTEP]
obtain rfl := c.prev_eq rij rij'
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
rij rij' : ComplexShape.Rel c i j
⊢ eqToHom (_ : X C i = X C i) ≫ d C i j = d C i j
[PROOFSTEP]
simp only [eqToHom_refl, id_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
i j j' : ι
r : ComplexShape.Rel c i j
r' : ComplexShape.Rel c i j'
⊢ kernelSubobject (d C i j) = kernelSubobject (d C i j')
[PROOFSTEP]
rw [← d_comp_eqToHom C r r']
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
i j j' : ι
r : ComplexShape.Rel c i j
r' : ComplexShape.Rel c i j'
⊢ kernelSubobject (d C i j' ≫ eqToHom (_ : X C j' = X C j)) = kernelSubobject (d C i j')
[PROOFSTEP]
apply kernelSubobject_comp_mono
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝¹ : HasImages V
inst✝ : HasEqualizers V
i i' j : ι
r : ComplexShape.Rel c i j
r' : ComplexShape.Rel c i' j
⊢ imageSubobject (d C i j) = imageSubobject (d C i' j)
[PROOFSTEP]
rw [← eqToHom_comp_d C r r']
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝¹ : HasImages V
inst✝ : HasEqualizers V
i i' j : ι
r : ComplexShape.Rel c i j
r' : ComplexShape.Rel c i' j
⊢ imageSubobject (eqToHom (_ : X C i = X C i') ≫ d C i' j) = imageSubobject (d C i' j)
[PROOFSTEP]
apply imageSubobject_iso_comp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
r : ComplexShape.Rel c i j
⊢ xPrev C j = X C i
[PROOFSTEP]
rw [← c.prev_eq' r]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ ComplexShape.prev c j = j
[PROOFSTEP]
dsimp [ComplexShape.prev]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ (if h : ∃ i, ComplexShape.Rel c i j then Exists.choose h else j) = j
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ ¬∃ i, ComplexShape.Rel c i j
[PROOFSTEP]
push_neg
[GOAL]
case hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ ∀ (i : ι), ¬ComplexShape.Rel c i j
[PROOFSTEP]
intro i hi
[GOAL]
case hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
i : ι
hi : ComplexShape.Rel c i j
⊢ False
[PROOFSTEP]
have : c.prev j = i := c.prev_eq' hi
[GOAL]
case hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
i : ι
hi : ComplexShape.Rel c i j
this : ComplexShape.prev c j = i
⊢ False
[PROOFSTEP]
rw [this] at h
[GOAL]
case hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
j i : ι
h : ¬ComplexShape.Rel c i j
hi : ComplexShape.Rel c i j
this : ComplexShape.prev c j = i
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
r : ComplexShape.Rel c i j
⊢ xNext C i = X C j
[PROOFSTEP]
rw [← c.next_eq' r]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i : ι
h : ¬ComplexShape.Rel c i (ComplexShape.next c i)
⊢ ComplexShape.next c i = i
[PROOFSTEP]
dsimp [ComplexShape.next]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i : ι
h : ¬ComplexShape.Rel c i (ComplexShape.next c i)
⊢ (if h : ∃ j, ComplexShape.Rel c i j then Exists.choose h else i) = i
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case hnc
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i : ι
h : ¬ComplexShape.Rel c i (ComplexShape.next c i)
⊢ ¬∃ j, ComplexShape.Rel c i j
[PROOFSTEP]
rintro ⟨j, hj⟩
[GOAL]
case hnc.intro
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i : ι
h : ¬ComplexShape.Rel c i (ComplexShape.next c i)
j : ι
hj : ComplexShape.Rel c i j
⊢ False
[PROOFSTEP]
have : c.next i = j := c.next_eq' hj
[GOAL]
case hnc.intro
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i : ι
h : ¬ComplexShape.Rel c i (ComplexShape.next c i)
j : ι
hj : ComplexShape.Rel c i j
this : ComplexShape.next c i = j
⊢ False
[PROOFSTEP]
rw [this] at h
[GOAL]
case hnc.intro
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
h : ¬ComplexShape.Rel c i j
hj : ComplexShape.Rel c i j
this : ComplexShape.next c i = j
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
r : ComplexShape.Rel c i j
⊢ dTo C j = (xPrevIso C r).hom ≫ d C i j
[PROOFSTEP]
obtain rfl := c.prev_eq' r
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
j : ι
r : ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ dTo C j = (xPrevIso C r).hom ≫ d C (ComplexShape.prev c j) j
[PROOFSTEP]
exact (Category.id_comp _).symm
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
r : ComplexShape.Rel c i j
⊢ dFrom C i = d C i j ≫ (xNextIso C r).inv
[PROOFSTEP]
obtain rfl := c.next_eq' r
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i : ι
r : ComplexShape.Rel c i (ComplexShape.next c i)
⊢ dFrom C i = d C i (ComplexShape.next c i) ≫ (xNextIso C r).inv
[PROOFSTEP]
exact (Category.comp_id _).symm
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
r : ComplexShape.Rel c i j
⊢ (xPrevIso C r).inv ≫ dTo C j = d C i j
[PROOFSTEP]
simp [C.dTo_eq r]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
j : ι
h : ¬ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ (xPrevIsoSelf C h).inv ≫ dTo C j = 0
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i j : ι
r : ComplexShape.Rel c i j
⊢ dFrom C i ≫ (xNextIso C r).hom = d C i j
[PROOFSTEP]
simp [C.dFrom_eq r]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
i : ι
h : ¬ComplexShape.Rel c i (ComplexShape.next c i)
⊢ dFrom C i ≫ (xNextIsoSelf C h).hom = 0
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
i j : ι
r : ComplexShape.Rel c i j
⊢ kernelSubobject (dFrom C i) = kernelSubobject (d C i j)
[PROOFSTEP]
rw [C.dFrom_eq r]
[GOAL]
ι : Type u_1
V : Type u
inst✝² : Category.{v, u} V
inst✝¹ : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝ : HasKernels V
i j : ι
r : ComplexShape.Rel c i j
⊢ kernelSubobject (d C i j ≫ (xNextIso C r).inv) = kernelSubobject (d C i j)
[PROOFSTEP]
apply kernelSubobject_comp_mono
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝¹ : HasImages V
inst✝ : HasEqualizers V
i j : ι
r : ComplexShape.Rel c i j
⊢ imageSubobject (dTo C j) = imageSubobject (d C i j)
[PROOFSTEP]
rw [C.dTo_eq r]
[GOAL]
ι : Type u_1
V : Type u
inst✝³ : Category.{v, u} V
inst✝² : HasZeroMorphisms V
c : ComplexShape ι
C : HomologicalComplex V c
inst✝¹ : HasImages V
inst✝ : HasEqualizers V
i j : ι
r : ComplexShape.Rel c i j
⊢ imageSubobject ((xPrevIso C r).hom ≫ d C i j) = imageSubobject (d C i j)
[PROOFSTEP]
apply imageSubobject_iso_comp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : (i : ι) → X C₁ i ≅ X C₂ i
hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝
i j : ι
hij : ComplexShape.Rel c i j
⊢ (f i).inv ≫ d C₁ i j = (f i).inv ≫ (d C₁ i j ≫ (f j).hom) ≫ (f j).inv
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : (i : ι) → X C₁ i ≅ X C₂ i
hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝
i j : ι
hij : ComplexShape.Rel c i j
⊢ (f i).inv ≫ (d C₁ i j ≫ (f j).hom) ≫ (f j).inv = (f i).inv ≫ ((f i).hom ≫ d C₂ i j) ≫ (f j).inv
[PROOFSTEP]
rw [hf i j hij]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : (i : ι) → X C₁ i ≅ X C₂ i
hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝
i j : ι
hij : ComplexShape.Rel c i j
⊢ (f i).inv ≫ ((f i).hom ≫ d C₂ i j) ≫ (f j).inv = d C₂ i j ≫ (f j).inv
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : (i : ι) → X C₁ i ≅ X C₂ i
hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝
⊢ ((mk fun i => (f i).hom) ≫ mk fun i => (f i).inv) = 𝟙 C₁
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : (i : ι) → X C₁ i ≅ X C₂ i
hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝
i : ι
⊢ HomologicalComplex.Hom.f ((mk fun i => (f i).hom) ≫ mk fun i => (f i).inv) i = HomologicalComplex.Hom.f (𝟙 C₁) i
[PROOFSTEP]
exact (f i).hom_inv_id
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : (i : ι) → X C₁ i ≅ X C₂ i
hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝
⊢ ((mk fun i => (f i).inv) ≫ mk fun i => (f i).hom) = 𝟙 C₂
[PROOFSTEP]
ext i
[GOAL]
case h
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : (i : ι) → X C₁ i ≅ X C₂ i
hf : autoParam (∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom) _auto✝
i : ι
⊢ HomologicalComplex.Hom.f ((mk fun i => (f i).inv) ≫ mk fun i => (f i).hom) i = HomologicalComplex.Hom.f (𝟙 C₂) i
[PROOFSTEP]
exact (f i).inv_hom_id
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : (i : ι) → X C₁ i ≅ X C₂ i
hf : ∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom
i : ι
⊢ isoApp (isoOfComponents f) i = f i
[PROOFSTEP]
ext
[GOAL]
case w
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : (i : ι) → X C₁ i ≅ X C₂ i
hf : ∀ (i j : ι), ComplexShape.Rel c i j → (f i).hom ≫ d C₂ i j = d C₁ i j ≫ (f j).hom
i : ι
⊢ (isoApp (isoOfComponents f) i).hom = (f i).hom
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : Hom C₁ C₂
i j : ι
w : ComplexShape.Rel c i j
⊢ prev f j = (xPrevIso C₁ w).hom ≫ HomologicalComplex.Hom.f f i ≫ (xPrevIso C₂ w).inv
[PROOFSTEP]
obtain rfl := c.prev_eq' w
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : Hom C₁ C₂
j : ι
w : ComplexShape.Rel c (ComplexShape.prev c j) j
⊢ prev f j = (xPrevIso C₁ w).hom ≫ HomologicalComplex.Hom.f f (ComplexShape.prev c j) ≫ (xPrevIso C₂ w).inv
[PROOFSTEP]
simp only [xPrevIso, eqToIso_refl, Iso.refl_hom, Iso.refl_inv, comp_id, id_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : Hom C₁ C₂
i j : ι
w : ComplexShape.Rel c i j
⊢ next f i = (xNextIso C₁ w).hom ≫ HomologicalComplex.Hom.f f j ≫ (xNextIso C₂ w).inv
[PROOFSTEP]
obtain rfl := c.next_eq' w
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
c : ComplexShape ι
C C₁ C₂ C₃ : HomologicalComplex V c
f : Hom C₁ C₂
i : ι
w : ComplexShape.Rel c i (ComplexShape.next c i)
⊢ next f i = (xNextIso C₁ w).hom ≫ HomologicalComplex.Hom.f f (ComplexShape.next c i) ≫ (xNextIso C₂ w).inv
[PROOFSTEP]
simp only [xNextIso, eqToIso_refl, Iso.refl_hom, Iso.refl_inv, comp_id, id_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
i j : α
h : i = j + 1
⊢ X i = X (j + 1)
[PROOFSTEP]
rw [h]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
i j : α
w : ¬ComplexShape.Rel (ComplexShape.down α) i j
⊢ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) i j = 0
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
i j : α
w : ¬ComplexShape.Rel (ComplexShape.down α) i j
⊢ (if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) = 0
[PROOFSTEP]
rw [dif_neg (Ne.symm w)]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
i j k : α
hij : ComplexShape.Rel (ComplexShape.down α) i j
hjk : ComplexShape.Rel (ComplexShape.down α) j k
⊢ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) i j ≫
(fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) j k =
0
[PROOFSTEP]
dsimp at hij hjk
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
i j k : α
hij : j + 1 = i
hjk : k + 1 = j
⊢ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) i j ≫
(fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) j k =
0
[PROOFSTEP]
substs hij hjk
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
k : α
⊢ (fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) (k + 1 + 1) (k + 1) ≫
(fun i j => if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) (k + 1) k =
0
[PROOFSTEP]
simp only [eqToHom_refl, id_comp, dite_eq_ite, ite_true, sq]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
j : α
⊢ HomologicalComplex.d (of X d sq) (j + 1) j = d j
[PROOFSTEP]
dsimp [of]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
j : α
⊢ (if j + 1 = j + 1 then 𝟙 (X (j + 1)) ≫ d j else 0) = d j
[PROOFSTEP]
rw [if_pos rfl, Category.id_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
i j : α
h : i ≠ j + 1
⊢ HomologicalComplex.d (of X d sq) i j = 0
[PROOFSTEP]
dsimp [of]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X (n + 1) ⟶ X n
sq : ∀ (n : α), d (n + 1) ≫ d n = 0
i j : α
h : i ≠ j + 1
⊢ (if h : i = j + 1 then eqToHom (_ : X i = X (j + 1)) ≫ d j else 0) = 0
[PROOFSTEP]
rw [dif_neg h]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X (n + 1) ⟶ X n
sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0
Y : α → V
d_Y : (n : α) → Y (n + 1) ⟶ Y n
sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i
n m : α
⊢ ComplexShape.Rel (ComplexShape.down α) n m →
f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m
[PROOFSTEP]
by_cases h : n = m + 1
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X (n + 1) ⟶ X n
sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0
Y : α → V
d_Y : (n : α) → Y (n + 1) ⟶ Y n
sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i
n m : α
h : n = m + 1
⊢ ComplexShape.Rel (ComplexShape.down α) n m →
f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m
[PROOFSTEP]
subst h
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X (n + 1) ⟶ X n
sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0
Y : α → V
d_Y : (n : α) → Y (n + 1) ⟶ Y n
sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i
m : α
⊢ ComplexShape.Rel (ComplexShape.down α) (m + 1) m →
f (m + 1) ≫ HomologicalComplex.d (of Y d_Y sq_Y) (m + 1) m = HomologicalComplex.d (of X d_X sq_X) (m + 1) m ≫ f m
[PROOFSTEP]
simpa using comm m
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X (n + 1) ⟶ X n
sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0
Y : α → V
d_Y : (n : α) → Y (n + 1) ⟶ Y n
sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i
n m : α
h : ¬n = m + 1
⊢ ComplexShape.Rel (ComplexShape.down α) n m →
f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m
[PROOFSTEP]
rw [of_d_ne X _ _ h, of_d_ne Y _ _ h]
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X (n + 1) ⟶ X n
sq_X : ∀ (n : α), d_X (n + 1) ≫ d_X n = 0
Y : α → V
d_Y : (n : α) → Y (n + 1) ⟶ Y n
sq_Y : ∀ (n : α), d_Y (n + 1) ≫ d_Y n = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f (i + 1) ≫ d_Y i = d_X i ≫ f i
n m : α
h : ¬n = m + 1
⊢ ComplexShape.Rel (ComplexShape.down α) n m → f n ≫ 0 = 0 ≫ f m
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₁ ⟶ X₀
d₁ : X₂ ⟶ X₁
s : d₁ ≫ d₀ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) →
(X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0
⊢ HomologicalComplex.d (mk X₀ X₁ X₂ d₀ d₁ s succ) 1 0 = d₀
[PROOFSTEP]
change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₁ ⟶ X₀
d₁ : X₂ ⟶ X₁
s : d₁ ≫ d₀ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) →
(X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0
⊢ (if 1 = 0 + 1 then 𝟙 X₁ ≫ d₀ else 0) = d₀
[PROOFSTEP]
rw [if_pos rfl, Category.id_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₁ ⟶ X₀
d₁ : X₂ ⟶ X₁
s : d₁ ≫ d₀ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) →
(X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0
⊢ HomologicalComplex.d (mk X₀ X₁ X₂ d₀ d₁ s succ) 2 1 = d₁
[PROOFSTEP]
change ite (2 = 1 + 1) (𝟙 X₂ ≫ d₁) 0 = d₁
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₁ ⟶ X₀
d₁ : X₂ ⟶ X₁
s : d₁ ≫ d₀ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) →
(X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0
⊢ (if 2 = 1 + 1 then 𝟙 X₂ ≫ d₁ else 0) = d₁
[PROOFSTEP]
rw [if_pos rfl, Category.id_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₁ ⟶ X₀
d₁ : X₂ ⟶ X₁
s : d₁ ≫ d₀ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) →
(X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0
succ' : (t : (X₀ : V) × (X₁ : V) × (X₁ ⟶ X₀)) → (X₂ : V) ×' (d : X₂ ⟶ t.snd.fst) ×' d ≫ t.snd.snd = 0
⊢ HomologicalComplex.d (mk' X₀ X₁ d₀ succ') 1 0 = d₀
[PROOFSTEP]
change ite (1 = 0 + 1) (𝟙 X₁ ≫ d₀) 0 = d₀
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₁ ⟶ X₀
d₁ : X₂ ⟶ X₁
s : d₁ ≫ d₀ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₁ ⟶ X₀) ×' (d₁ : X₂ ⟶ X₁) ×' d₁ ≫ d₀ = 0) →
(X₃ : V) ×' (d₂ : X₃ ⟶ t.snd.snd.fst) ×' d₂ ≫ t.snd.snd.snd.snd.fst = 0
succ' : (t : (X₀ : V) × (X₁ : V) × (X₁ ⟶ X₀)) → (X₂ : V) ×' (d : X₂ ⟶ t.snd.fst) ×' d ≫ t.snd.snd = 0
⊢ (if 1 = 0 + 1 then 𝟙 X₁ ≫ d₀ else 0) = d₀
[PROOFSTEP]
rw [if_pos rfl, Category.id_comp]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
P Q : ChainComplex V ℕ
zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0
one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1
one_zero_comm : one ≫ HomologicalComplex.d Q 1 0 = HomologicalComplex.d P 1 0 ≫ zero
succ :
(n : ℕ) →
(p :
(f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×'
(f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×'
f' ≫ HomologicalComplex.d Q (n + 1) n = HomologicalComplex.d P (n + 1) n ≫ f) →
(f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×'
f'' ≫ HomologicalComplex.d Q (n + 2) (n + 1) = HomologicalComplex.d P (n + 2) (n + 1) ≫ p.snd.fst
n m : ℕ
⊢ ComplexShape.Rel (ComplexShape.down ℕ) n m →
(fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) n ≫ HomologicalComplex.d Q n m =
HomologicalComplex.d P n m ≫ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) m
[PROOFSTEP]
rintro (rfl : m + 1 = n)
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
P Q : ChainComplex V ℕ
zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0
one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1
one_zero_comm : one ≫ HomologicalComplex.d Q 1 0 = HomologicalComplex.d P 1 0 ≫ zero
succ :
(n : ℕ) →
(p :
(f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×'
(f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×'
f' ≫ HomologicalComplex.d Q (n + 1) n = HomologicalComplex.d P (n + 1) n ≫ f) →
(f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×'
f'' ≫ HomologicalComplex.d Q (n + 2) (n + 1) = HomologicalComplex.d P (n + 2) (n + 1) ≫ p.snd.fst
m : ℕ
⊢ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) (m + 1) ≫ HomologicalComplex.d Q (m + 1) m =
HomologicalComplex.d P (m + 1) m ≫ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) m
[PROOFSTEP]
exact (mkHomAux P Q zero one one_zero_comm succ m).2.2
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
P Q : ChainComplex V ℕ
zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0
one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1
one_zero_comm : one ≫ HomologicalComplex.d Q 1 0 = HomologicalComplex.d P 1 0 ≫ zero
succ :
(n : ℕ) →
(p :
(f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×'
(f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×'
f' ≫ HomologicalComplex.d Q (n + 1) n = HomologicalComplex.d P (n + 1) n ≫ f) →
(f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×'
f'' ≫ HomologicalComplex.d Q (n + 2) (n + 1) = HomologicalComplex.d P (n + 2) (n + 1) ≫ p.snd.fst
n : ℕ
⊢ HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 2) =
(succ n
{ fst := HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) n,
snd :=
{ fst := HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 1),
snd :=
(_ :
HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 1) ≫
HomologicalComplex.d Q (n + 1) n =
HomologicalComplex.d P (n + 1) n ≫
HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) n) } }).fst
[PROOFSTEP]
dsimp [mkHom, mkHomAux]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j : α
h : i + 1 = j
⊢ X (i + 1) = X j
[PROOFSTEP]
rw [h]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j : α
w : ¬ComplexShape.Rel (ComplexShape.up α) i j
⊢ (fun i j => if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) i j = 0
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j : α
w : ¬ComplexShape.Rel (ComplexShape.up α) i j
⊢ (if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) = 0
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case hnc
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j : α
w : ¬ComplexShape.Rel (ComplexShape.up α) i j
⊢ ¬i + 1 = j
[PROOFSTEP]
exact w
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j k : α
⊢ ComplexShape.Rel (ComplexShape.up α) i j →
ComplexShape.Rel (ComplexShape.up α) j k →
(fun i j => if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) i j ≫
(fun i j => if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) j k =
0
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j k : α
⊢ i + 1 = j →
j + 1 = k →
((if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) ≫
if h : j + 1 = k then d j ≫ eqToHom (_ : X (j + 1) = X k) else 0) =
0
[PROOFSTEP]
split_ifs with h h' h'
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j k : α
h : i + 1 = j
h' : j + 1 = k
⊢ i + 1 = j → j + 1 = k → (d i ≫ eqToHom (_ : X (i + 1) = X j)) ≫ d j ≫ eqToHom (_ : X (j + 1) = X k) = 0
[PROOFSTEP]
substs h h'
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i : α
⊢ i + 1 = i + 1 →
i + 1 + 1 = i + 1 + 1 →
(d i ≫ eqToHom (_ : X (i + 1) = X (i + 1))) ≫ d (i + 1) ≫ eqToHom (_ : X (i + 1 + 1) = X (i + 1 + 1)) = 0
[PROOFSTEP]
simp [sq]
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j k : α
h : i + 1 = j
h' : ¬j + 1 = k
⊢ i + 1 = j → j + 1 = k → (d i ≫ eqToHom (_ : X (i + 1) = X j)) ≫ 0 = 0
case pos
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j k : α
h : ¬i + 1 = j
h' : j + 1 = k
⊢ i + 1 = j → j + 1 = k → 0 ≫ d j ≫ eqToHom (_ : X (j + 1) = X k) = 0
case neg
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j k : α
h : ¬i + 1 = j
h' : ¬j + 1 = k
⊢ i + 1 = j → j + 1 = k → 0 ≫ 0 = 0
[PROOFSTEP]
all_goals simp
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j k : α
h : i + 1 = j
h' : ¬j + 1 = k
⊢ i + 1 = j → j + 1 = k → (d i ≫ eqToHom (_ : X (i + 1) = X j)) ≫ 0 = 0
[PROOFSTEP]
simp
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j k : α
h : ¬i + 1 = j
h' : j + 1 = k
⊢ i + 1 = j → j + 1 = k → 0 ≫ d j ≫ eqToHom (_ : X (j + 1) = X k) = 0
[PROOFSTEP]
simp
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j k : α
h : ¬i + 1 = j
h' : ¬j + 1 = k
⊢ i + 1 = j → j + 1 = k → 0 ≫ 0 = 0
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
j : α
⊢ HomologicalComplex.d (of X d sq) j (j + 1) = d j
[PROOFSTEP]
dsimp [of]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
j : α
⊢ (if j + 1 = j + 1 then d j ≫ 𝟙 (X (j + 1)) else 0) = d j
[PROOFSTEP]
rw [if_pos rfl, Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j : α
h : i + 1 ≠ j
⊢ HomologicalComplex.d (of X d sq) i j = 0
[PROOFSTEP]
dsimp [of]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d : (n : α) → X n ⟶ X (n + 1)
sq : ∀ (n : α), d n ≫ d (n + 1) = 0
i j : α
h : i + 1 ≠ j
⊢ (if h : i + 1 = j then d i ≫ eqToHom (_ : X (i + 1) = X j) else 0) = 0
[PROOFSTEP]
rw [dif_neg h]
[GOAL]
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X n ⟶ X (n + 1)
sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0
Y : α → V
d_Y : (n : α) → Y n ⟶ Y (n + 1)
sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1)
n m : α
⊢ ComplexShape.Rel (ComplexShape.up α) n m →
f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m
[PROOFSTEP]
by_cases h : n + 1 = m
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X n ⟶ X (n + 1)
sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0
Y : α → V
d_Y : (n : α) → Y n ⟶ Y (n + 1)
sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1)
n m : α
h : n + 1 = m
⊢ ComplexShape.Rel (ComplexShape.up α) n m →
f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m
[PROOFSTEP]
subst h
[GOAL]
case pos
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X n ⟶ X (n + 1)
sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0
Y : α → V
d_Y : (n : α) → Y n ⟶ Y (n + 1)
sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1)
n : α
⊢ ComplexShape.Rel (ComplexShape.up α) n (n + 1) →
f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n (n + 1) = HomologicalComplex.d (of X d_X sq_X) n (n + 1) ≫ f (n + 1)
[PROOFSTEP]
simpa using comm n
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X n ⟶ X (n + 1)
sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0
Y : α → V
d_Y : (n : α) → Y n ⟶ Y (n + 1)
sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1)
n m : α
h : ¬n + 1 = m
⊢ ComplexShape.Rel (ComplexShape.up α) n m →
f n ≫ HomologicalComplex.d (of Y d_Y sq_Y) n m = HomologicalComplex.d (of X d_X sq_X) n m ≫ f m
[PROOFSTEP]
rw [of_d_ne X _ _ h, of_d_ne Y _ _ h]
[GOAL]
case neg
ι : Type u_1
V : Type u
inst✝⁴ : Category.{v, u} V
inst✝³ : HasZeroMorphisms V
α : Type u_2
inst✝² : AddRightCancelSemigroup α
inst✝¹ : One α
inst✝ : DecidableEq α
X : α → V
d_X : (n : α) → X n ⟶ X (n + 1)
sq_X : ∀ (n : α), d_X n ≫ d_X (n + 1) = 0
Y : α → V
d_Y : (n : α) → Y n ⟶ Y (n + 1)
sq_Y : ∀ (n : α), d_Y n ≫ d_Y (n + 1) = 0
f : (i : α) → X i ⟶ Y i
comm : ∀ (i : α), f i ≫ d_Y i = d_X i ≫ f (i + 1)
n m : α
h : ¬n + 1 = m
⊢ ComplexShape.Rel (ComplexShape.up α) n m → f n ≫ 0 = 0 ≫ f m
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₀ ⟶ X₁
d₁ : X₁ ⟶ X₂
s : d₀ ≫ d₁ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) →
(X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0
⊢ HomologicalComplex.d (mk X₀ X₁ X₂ d₀ d₁ s succ) 0 1 = d₀
[PROOFSTEP]
change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₀ ⟶ X₁
d₁ : X₁ ⟶ X₂
s : d₀ ≫ d₁ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) →
(X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0
⊢ (if 1 = 0 + 1 then d₀ ≫ 𝟙 X₁ else 0) = d₀
[PROOFSTEP]
rw [if_pos rfl, Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₀ ⟶ X₁
d₁ : X₁ ⟶ X₂
s : d₀ ≫ d₁ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) →
(X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0
⊢ HomologicalComplex.d (mk X₀ X₁ X₂ d₀ d₁ s succ) 1 2 = d₁
[PROOFSTEP]
change ite (2 = 1 + 1) (d₁ ≫ 𝟙 X₂) 0 = d₁
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₀ ⟶ X₁
d₁ : X₁ ⟶ X₂
s : d₀ ≫ d₁ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) →
(X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0
⊢ (if 2 = 1 + 1 then d₁ ≫ 𝟙 X₂ else 0) = d₁
[PROOFSTEP]
rw [if_pos rfl, Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₀ ⟶ X₁
d₁ : X₁ ⟶ X₂
s : d₀ ≫ d₁ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) →
(X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0
succ' : (t : (X₀ : V) × (X₁ : V) × (X₀ ⟶ X₁)) → (X₂ : V) ×' (d : t.snd.fst ⟶ X₂) ×' t.snd.snd ≫ d = 0
⊢ HomologicalComplex.d (mk' X₀ X₁ d₀ succ') 0 1 = d₀
[PROOFSTEP]
change ite (1 = 0 + 1) (d₀ ≫ 𝟙 X₁) 0 = d₀
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
X₀ X₁ X₂ : V
d₀ : X₀ ⟶ X₁
d₁ : X₁ ⟶ X₂
s : d₀ ≫ d₁ = 0
succ :
(t : (X₀ : V) ×' (X₁ : V) ×' (X₂ : V) ×' (d₀ : X₀ ⟶ X₁) ×' (d₁ : X₁ ⟶ X₂) ×' d₀ ≫ d₁ = 0) →
(X₃ : V) ×' (d₂ : t.snd.snd.fst ⟶ X₃) ×' t.snd.snd.snd.snd.fst ≫ d₂ = 0
succ' : (t : (X₀ : V) × (X₁ : V) × (X₀ ⟶ X₁)) → (X₂ : V) ×' (d : t.snd.fst ⟶ X₂) ×' t.snd.snd ≫ d = 0
⊢ (if 1 = 0 + 1 then d₀ ≫ 𝟙 X₁ else 0) = d₀
[PROOFSTEP]
rw [if_pos rfl, Category.comp_id]
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
P Q : CochainComplex V ℕ
zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0
one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1
one_zero_comm : zero ≫ HomologicalComplex.d Q 0 1 = HomologicalComplex.d P 0 1 ≫ one
succ :
(n : ℕ) →
(p :
(f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×'
(f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×'
f ≫ HomologicalComplex.d Q n (n + 1) = HomologicalComplex.d P n (n + 1) ≫ f') →
(f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×'
p.snd.fst ≫ HomologicalComplex.d Q (n + 1) (n + 2) = HomologicalComplex.d P (n + 1) (n + 2) ≫ f''
n m : ℕ
⊢ ComplexShape.Rel (ComplexShape.up ℕ) n m →
(fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) n ≫ HomologicalComplex.d Q n m =
HomologicalComplex.d P n m ≫ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) m
[PROOFSTEP]
rintro (rfl : n + 1 = m)
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
P Q : CochainComplex V ℕ
zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0
one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1
one_zero_comm : zero ≫ HomologicalComplex.d Q 0 1 = HomologicalComplex.d P 0 1 ≫ one
succ :
(n : ℕ) →
(p :
(f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×'
(f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×'
f ≫ HomologicalComplex.d Q n (n + 1) = HomologicalComplex.d P n (n + 1) ≫ f') →
(f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×'
p.snd.fst ≫ HomologicalComplex.d Q (n + 1) (n + 2) = HomologicalComplex.d P (n + 1) (n + 2) ≫ f''
n : ℕ
⊢ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) n ≫ HomologicalComplex.d Q n (n + 1) =
HomologicalComplex.d P n (n + 1) ≫ (fun n => (mkHomAux P Q zero one one_zero_comm succ n).fst) (n + 1)
[PROOFSTEP]
exact (mkHomAux P Q zero one one_zero_comm succ n).2.2
[GOAL]
ι : Type u_1
V : Type u
inst✝¹ : Category.{v, u} V
inst✝ : HasZeroMorphisms V
P Q : CochainComplex V ℕ
zero : HomologicalComplex.X P 0 ⟶ HomologicalComplex.X Q 0
one : HomologicalComplex.X P 1 ⟶ HomologicalComplex.X Q 1
one_zero_comm : zero ≫ HomologicalComplex.d Q 0 1 = HomologicalComplex.d P 0 1 ≫ one
succ :
(n : ℕ) →
(p :
(f : HomologicalComplex.X P n ⟶ HomologicalComplex.X Q n) ×'
(f' : HomologicalComplex.X P (n + 1) ⟶ HomologicalComplex.X Q (n + 1)) ×'
f ≫ HomologicalComplex.d Q n (n + 1) = HomologicalComplex.d P n (n + 1) ≫ f') →
(f'' : HomologicalComplex.X P (n + 2) ⟶ HomologicalComplex.X Q (n + 2)) ×'
p.snd.fst ≫ HomologicalComplex.d Q (n + 1) (n + 2) = HomologicalComplex.d P (n + 1) (n + 2) ≫ f''
n : ℕ
⊢ HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 2) =
(succ n
{ fst := HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) n,
snd :=
{ fst := HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 1),
snd :=
(_ :
HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) n ≫
HomologicalComplex.d Q n (n + 1) =
HomologicalComplex.d P n (n + 1) ≫
HomologicalComplex.Hom.f (mkHom P Q zero one one_zero_comm succ) (n + 1)) } }).fst
[PROOFSTEP]
dsimp [mkHom, mkHomAux]
| {"mathlib_filename": "Mathlib.Algebra.Homology.HomologicalComplex", "llama_tokens": 32180} |
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors I))
[PROOFSTEP]
let P := factors I
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors I))
[PROOFSTEP]
have prime_of_mem := fun p (hp : p ∈ P.toFinset) => prime_of_factor p (Multiset.mem_toFinset.mp hp)
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors I))
[PROOFSTEP]
apply @torsionBySet_isInternal _ _ _ _ _ _ _ _ (fun p => p ^ P.count p) _
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
⊢ Module.IsTorsionBySet R M ↑(⨅ (i : Ideal R) (_ : i ∈ Multiset.toFinset (factors I)), i ^ Multiset.count i P)
[PROOFSTEP]
convert hM
[GOAL]
case h.e'_6.h.e'_4
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
⊢ ⨅ (i : Ideal R) (_ : i ∈ Multiset.toFinset (factors I)), i ^ Multiset.count i P = I
[PROOFSTEP]
rw [← Finset.inf_eq_iInf, IsDedekindDomain.inf_prime_pow_eq_prod, ← Finset.prod_multiset_count, ← associated_iff_eq]
[GOAL]
case h.e'_6.h.e'_4
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
⊢ Associated (Multiset.prod (factors I)) I
[PROOFSTEP]
exact factors_prod hI
[GOAL]
case h.e'_6.h.e'_4.prime
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
⊢ ∀ (i : Ideal R), i ∈ Multiset.toFinset (factors I) → Prime i
[PROOFSTEP]
exact prime_of_mem
[GOAL]
case h.e'_6.h.e'_4.coprime
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
⊢ ∀ (i : Ideal R),
i ∈ Multiset.toFinset (factors I) → ∀ (j : Ideal R), j ∈ Multiset.toFinset (factors I) → i ≠ j → i ≠ j
[PROOFSTEP]
exact fun _ _ _ _ ij => ij
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
⊢ Set.Pairwise ↑(Multiset.toFinset (factors I)) fun i j =>
(fun p => p ^ Multiset.count p P) i ⊔ (fun p => p ^ Multiset.count p P) j = ⊤
[PROOFSTEP]
intro p hp q hq pq
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
⊢ (fun p => p ^ Multiset.count p P) p ⊔ (fun p => p ^ Multiset.count p P) q = ⊤
[PROOFSTEP]
dsimp
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
⊢ p ^ Multiset.count p (factors I) ⊔ q ^ Multiset.count q (factors I) = ⊤
[PROOFSTEP]
rw [irreducible_pow_sup]
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
⊢ p ^ min (Multiset.count p (normalizedFactors (q ^ Multiset.count q (factors I)))) (Multiset.count p (factors I)) = ⊤
[PROOFSTEP]
suffices (normalizedFactors _).count p = 0 by rw [this, zero_min, pow_zero, Ideal.one_eq_top]
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
this : Multiset.count p (normalizedFactors ?m.97629) = 0
⊢ p ^ min (Multiset.count p (normalizedFactors (q ^ Multiset.count q (factors I)))) (Multiset.count p (factors I)) = ⊤
[PROOFSTEP]
rw [this, zero_min, pow_zero, Ideal.one_eq_top]
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
⊢ Multiset.count p (normalizedFactors (q ^ Multiset.count q (factors I))) = 0
[PROOFSTEP]
rw [Multiset.count_eq_zero, normalizedFactors_of_irreducible_pow (prime_of_mem q hq).irreducible,
Multiset.mem_replicate]
[GOAL]
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
⊢ ¬(Multiset.count q (factors I) ≠ 0 ∧ p = ↑normalize q)
[PROOFSTEP]
exact fun H => pq <| H.2.trans <| normalize_eq q
[GOAL]
case hI
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
⊢ q ^ Multiset.count q (factors I) ≠ ⊥
[PROOFSTEP]
rw [← Ideal.zero_eq_bot]
[GOAL]
case hI
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
⊢ q ^ Multiset.count q (factors I) ≠ 0
[PROOFSTEP]
apply pow_ne_zero
[GOAL]
case hI.h
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
⊢ q ≠ 0
[PROOFSTEP]
exact (prime_of_mem q hq).ne_zero
[GOAL]
case hJ
R : Type u
inst✝⁴ : CommRing R
inst✝³ : IsDomain R
M : Type v
inst✝² : AddCommGroup M
inst✝¹ : Module R M
inst✝ : IsDedekindDomain R
I : Ideal R
hI : I ≠ ⊥
hM : Module.IsTorsionBySet R M ↑I
P : Multiset (Ideal R) := factors I
prime_of_mem : ∀ (p : Ideal R), p ∈ Multiset.toFinset P → Prime p
p : Ideal R
hp : p ∈ ↑(Multiset.toFinset (factors I))
q : Ideal R
hq : q ∈ ↑(Multiset.toFinset (factors I))
pq : p ≠ q
⊢ Irreducible p
[PROOFSTEP]
exact (prime_of_mem p hp).irreducible
[GOAL]
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : IsDedekindDomain R
inst✝ : Module.Finite R M
hM : Module.IsTorsion R M
⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors (annihilator ⊤)))
[PROOFSTEP]
have hM' := Module.isTorsionBySet_annihilator_top R M
[GOAL]
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : IsDedekindDomain R
inst✝ : Module.Finite R M
hM : Module.IsTorsion R M
hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤)
⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors (annihilator ⊤)))
[PROOFSTEP]
have hI := Submodule.annihilator_top_inter_nonZeroDivisors hM
[GOAL]
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : IsDedekindDomain R
inst✝ : Module.Finite R M
hM : Module.IsTorsion R M
hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤)
hI : ↑(annihilator ⊤) ∩ ↑(nonZeroDivisors R) ≠ ∅
⊢ DirectSum.IsInternal fun p => torsionBySet R M ↑(↑p ^ Multiset.count (↑p) (factors (annihilator ⊤)))
[PROOFSTEP]
refine' isInternal_prime_power_torsion_of_is_torsion_by_ideal _ hM'
[GOAL]
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : IsDedekindDomain R
inst✝ : Module.Finite R M
hM : Module.IsTorsion R M
hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤)
hI : ↑(annihilator ⊤) ∩ ↑(nonZeroDivisors R) ≠ ∅
⊢ annihilator ⊤ ≠ ⊥
[PROOFSTEP]
rw [← Set.nonempty_iff_ne_empty] at hI
[GOAL]
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : IsDedekindDomain R
inst✝ : Module.Finite R M
hM : Module.IsTorsion R M
hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤)
hI : Set.Nonempty (↑(annihilator ⊤) ∩ ↑(nonZeroDivisors R))
⊢ annihilator ⊤ ≠ ⊥
[PROOFSTEP]
rw [Submodule.ne_bot_iff]
[GOAL]
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : IsDedekindDomain R
inst✝ : Module.Finite R M
hM : Module.IsTorsion R M
hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤)
hI : Set.Nonempty (↑(annihilator ⊤) ∩ ↑(nonZeroDivisors R))
⊢ ∃ x, x ∈ annihilator ⊤ ∧ x ≠ 0
[PROOFSTEP]
obtain ⟨x, H, hx⟩ := hI
[GOAL]
case intro.intro
R : Type u
inst✝⁵ : CommRing R
inst✝⁴ : IsDomain R
M : Type v
inst✝³ : AddCommGroup M
inst✝² : Module R M
inst✝¹ : IsDedekindDomain R
inst✝ : Module.Finite R M
hM : Module.IsTorsion R M
hM' : Module.IsTorsionBySet R M ↑(annihilator ⊤)
x : R
H : x ∈ ↑(annihilator ⊤)
hx : x ∈ ↑(nonZeroDivisors R)
⊢ ∃ x, x ∈ annihilator ⊤ ∧ x ≠ 0
[PROOFSTEP]
exact ⟨x, H, nonZeroDivisors.ne_zero hx⟩
| {"mathlib_filename": "Mathlib.Algebra.Module.DedekindDomain", "llama_tokens": 5974} |
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
inst✝ : CommMonoid α
s : Finset α
⊢ Multiset.prod s.val = Finset.prod s id
[PROOFSTEP]
rw [Finset.prod, Multiset.map_id]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
s : Finset α
⊢ ∑ x in s, {x} = s.val
[PROOFSTEP]
simp only [sum_eq_multiset_sum, Multiset.sum_map_singleton]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
inst✝² : CommMonoid β
inst✝¹ : CommMonoid γ
G : Type u_2
inst✝ : MonoidHomClass G β γ
g : G
f : α → β
s : Finset α
⊢ ↑g (∏ x in s, f x) = ∏ x in s, ↑g (f x)
[PROOFSTEP]
simp only [Finset.prod_eq_multiset_prod, map_multiset_prod, Multiset.map_map]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
inst✝² : CommMonoid β
inst✝¹ : CommMonoid γ
G : Type u_2
inst✝ : MonoidHomClass G β γ
g : G
f : α → β
s : Finset α
⊢ Multiset.prod (Multiset.map ((fun x => ↑g x) ∘ fun x => f x) s.val) =
Multiset.prod (Multiset.map (fun x => ↑g (f x)) s.val)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : IsEmpty α
s : Finset α
⊢ ∏ i in s, f i = 1
[PROOFSTEP]
rw [eq_empty_of_isEmpty s, prod_empty]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
h : ¬a ∈ s → f a = 1
⊢ ∏ x in insert a s, f x = ∏ x in s, f x
[PROOFSTEP]
by_cases hm : a ∈ s
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
h : ¬a ∈ s → f a = 1
hm : a ∈ s
⊢ ∏ x in insert a s, f x = ∏ x in s, f x
[PROOFSTEP]
simp_rw [insert_eq_of_mem hm]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
h : ¬a ∈ s → f a = 1
hm : ¬a ∈ s
⊢ ∏ x in insert a s, f x = ∏ x in s, f x
[PROOFSTEP]
rw [prod_insert hm, h hm, one_mul]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
a b : α
h : a ≠ b
⊢ ∏ x in {a, b}, f x = f a * f b
[PROOFSTEP]
rw [prod_insert (not_mem_singleton.2 h), prod_singleton]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
⊢ ∏ _x in s, 1 = 1
[PROOFSTEP]
simp only [Finset.prod, Multiset.map_const', Multiset.prod_replicate, one_pow]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
e : α ↪ γ
f : γ → β
⊢ ∏ x in map e s, f x = ∏ x in s, f (↑e x)
[PROOFSTEP]
rw [Finset.prod, Finset.map_val, Multiset.map_map]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
e : α ↪ γ
f : γ → β
⊢ Multiset.prod (Multiset.map ((fun x => f x) ∘ ↑e) s.val) = ∏ x in s, f (↑e x)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h : s₁ = s₂
⊢ (∀ (x : α), x ∈ s₂ → f x = g x) → Finset.prod s₁ f = Finset.prod s₂ g
[PROOFSTEP]
rw [h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h : s₁ = s₂
⊢ (∀ (x : α), x ∈ s₂ → f x = g x) → Finset.prod s₂ f = Finset.prod s₂ g
[PROOFSTEP]
exact fold_congr
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h : Disjoint s₁ s₂
⊢ ∏ x in disjUnion s₁ s₂ h, f x = (∏ x in s₁, f x) * ∏ x in s₂, f x
[PROOFSTEP]
refine' Eq.trans _ (fold_disjUnion h)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h : Disjoint s₁ s₂
⊢ ∏ x in disjUnion s₁ s₂ h, f x = fold (fun x x_1 => x * x_1) (1 * 1) (fun x => f x) (disjUnion s₁ s₂ h)
[PROOFSTEP]
rw [one_mul]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h : Disjoint s₁ s₂
⊢ ∏ x in disjUnion s₁ s₂ h, f x = fold (fun x x_1 => x * x_1) 1 (fun x => f x) (disjUnion s₁ s₂ h)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
s : Finset ι
t : ι → Finset α
h : Set.PairwiseDisjoint (↑s) t
⊢ ∏ x in disjiUnion s t h, f x = ∏ i in s, ∏ x in t i, f x
[PROOFSTEP]
refine' Eq.trans _ (fold_disjiUnion h)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
s : Finset ι
t : ι → Finset α
h : Set.PairwiseDisjoint (↑s) t
⊢ ∏ x in disjiUnion s t h, f x =
fold (fun x x_1 => x * x_1) (fold (fun x x_1 => x * x_1) 1 (fun i => 1) s) (fun x => f x) (disjiUnion s t h)
[PROOFSTEP]
dsimp [Finset.prod, Multiset.prod, Multiset.fold, Finset.disjUnion, Finset.fold]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
s : Finset ι
t : ι → Finset α
h : Set.PairwiseDisjoint (↑s) t
⊢ Multiset.foldr (fun x x_1 => x * x_1) (_ : ∀ (x y z : β), x * (y * z) = y * (x * z)) 1
(Multiset.map (fun x => f x) (Multiset.bind s.val fun a => (t a).val)) =
Multiset.foldr (fun x x_1 => x * x_1) (_ : LeftCommutative fun x x_1 => x * x_1)
(Multiset.foldr (fun x x_1 => x * x_1) (_ : LeftCommutative fun x x_1 => x * x_1) 1
(Multiset.map (fun i => 1) s.val))
(Multiset.map (fun x => f x) (Multiset.bind s.val fun a => (t a).val))
[PROOFSTEP]
congr
[GOAL]
case e_b
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
s : Finset ι
t : ι → Finset α
h : Set.PairwiseDisjoint (↑s) t
⊢ 1 =
Multiset.foldr (fun x x_1 => x * x_1) (_ : LeftCommutative fun x x_1 => x * x_1) 1 (Multiset.map (fun i => 1) s.val)
[PROOFSTEP]
exact prod_const_one.symm
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
h : Disjoint s₁ s₂
⊢ ∏ x in s₁ ∪ s₂, f x = (∏ x in s₁, f x) * ∏ x in s₂, f x
[PROOFSTEP]
rw [← prod_union_inter, disjoint_iff_inter_eq_empty.mp h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
h : Disjoint s₁ s₂
⊢ ∏ x in s₁ ∪ s₂, f x = (∏ x in s₁ ∪ s₂, f x) * ∏ x in ∅, f x
[PROOFSTEP]
exact (mul_one _).symm
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝² : CommMonoid β
s : Finset α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : (x : α) → Decidable ¬p x
f : α → β
⊢ (∏ x in filter p s, f x) * ∏ x in filter (fun x => ¬p x) s, f x = ∏ x in s, f x
[PROOFSTEP]
have := Classical.decEq α
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝² : CommMonoid β
s : Finset α
p : α → Prop
inst✝¹ : DecidablePred p
inst✝ : (x : α) → Decidable ¬p x
f : α → β
this : DecidableEq α
⊢ (∏ x in filter p s, f x) * ∏ x in filter (fun x => ¬p x) s, f x = ∏ x in s, f x
[PROOFSTEP]
rw [← prod_union (disjoint_filter_filter_neg s s p), filter_union_filter_neg_eq]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
⊢ List.prod (List.map f (toList s)) = Finset.prod s f
[PROOFSTEP]
rw [Finset.prod, ← Multiset.coe_prod, ← Multiset.coe_map, Finset.coe_toList]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
σ : Equiv.Perm α
s : Finset α
f : α → β
hs : {a | ↑σ a ≠ a} ⊆ ↑s
⊢ ∏ x in s, f (↑σ x) = ∏ x in s, f x
[PROOFSTEP]
convert (prod_map s σ.toEmbedding f).symm
[GOAL]
case h.e'_3.h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
σ : Equiv.Perm α
s : Finset α
f : α → β
hs : {a | ↑σ a ≠ a} ⊆ ↑s
⊢ s = map (Equiv.toEmbedding σ) s
[PROOFSTEP]
exact (map_perm hs).symm
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
σ : Equiv.Perm α
s : Finset α
f : α → α → β
hs : {a | ↑σ a ≠ a} ⊆ ↑s
⊢ ∏ x in s, f (↑σ x) x = ∏ x in s, f x (↑σ.symm x)
[PROOFSTEP]
convert σ.prod_comp s (fun x => f x (σ.symm x)) hs
[GOAL]
case h.e'_2.a.h.e'_2
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
σ : Equiv.Perm α
s : Finset α
f : α → α → β
hs : {a | ↑σ a ≠ a} ⊆ ↑s
x✝ : α
a✝ : x✝ ∈ s
⊢ x✝ = ↑σ.symm (↑σ x✝)
[PROOFSTEP]
rw [Equiv.symm_apply_apply]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : Fintype α
inst✝ : CommMonoid β
s t : Finset α
h : IsCompl s t
f : α → β
⊢ ∏ x in disjUnion s t (_ : Disjoint s t), f x = ∏ i : α, f i
[PROOFSTEP]
classical rw [Finset.disjUnion_eq_union, ← Finset.sup_eq_union, h.sup_eq_top]; rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : Fintype α
inst✝ : CommMonoid β
s t : Finset α
h : IsCompl s t
f : α → β
⊢ ∏ x in disjUnion s t (_ : Disjoint s t), f x = ∏ i : α, f i
[PROOFSTEP]
rw [Finset.disjUnion_eq_union, ← Finset.sup_eq_union, h.sup_eq_top]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : Fintype α
inst✝ : CommMonoid β
s t : Finset α
h : IsCompl s t
f : α → β
⊢ ∏ x in ⊤, f x = ∏ i : α, f i
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
h : s₁ ⊆ s₂
⊢ (∏ x in s₂ \ s₁, f x) * ∏ x in s₁, f x = ∏ x in s₂, f x
[PROOFSTEP]
rw [← prod_union sdiff_disjoint, sdiff_union_of_subset h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α ⊕ γ → β
⊢ ∏ x in disjSum s t, f x = (∏ x in s, f (Sum.inl x)) * ∏ x in t, f (Sum.inr x)
[PROOFSTEP]
rw [← map_inl_disjUnion_map_inr, prod_disjUnion, prod_map, prod_map]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α ⊕ γ → β
⊢ (∏ x in s, f (↑Function.Embedding.inl x)) * ∏ x in t, f (↑Function.Embedding.inr x) =
(∏ x in s, f (Sum.inl x)) * ∏ x in t, f (Sum.inr x)
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
⊢ ∏ x in disjSum s t, Sum.elim f g x = (∏ x in s, f x) * ∏ x in t, g x
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset γ
t : γ → Finset α
hs : Set.PairwiseDisjoint (↑s) t
⊢ ∏ x in Finset.biUnion s t, f x = ∏ x in s, ∏ i in t x, f i
[PROOFSTEP]
rw [← disjiUnion_eq_biUnion _ _ hs, prod_disjiUnion]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
σ : α → Type u_2
s : Finset α
t : (a : α) → Finset (σ a)
f : Sigma σ → β
⊢ ∏ x in Finset.sigma s t, f x = ∏ a in s, ∏ s in t a, f { fst := a, snd := s }
[PROOFSTEP]
simp_rw [← disjiUnion_map_sigma_mk, prod_disjiUnion, prod_map, Function.Embedding.sigmaMk_apply]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → γ
hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t
h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha)
j : (a : γ) → a ∈ t → α
hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s
left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a
right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a
⊢ ∏ x in s, f x = ∏ x in t, g x
[PROOFSTEP]
refine' prod_bij i hi h _ _
[GOAL]
case refine'_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → γ
hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t
h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha)
j : (a : γ) → a ∈ t → α
hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s
left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a
right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a
⊢ ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s), i a₁ ha₁ = i a₂ ha₂ → a₁ = a₂
[PROOFSTEP]
intro a1 a2 h1 h2 eq
[GOAL]
case refine'_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → γ
hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t
h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha)
j : (a : γ) → a ∈ t → α
hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s
left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a
right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a
a1 a2 : α
h1 : a1 ∈ s
h2 : a2 ∈ s
eq : i a1 h1 = i a2 h2
⊢ a1 = a2
[PROOFSTEP]
rw [← left_inv a1 h1, ← left_inv a2 h2]
[GOAL]
case refine'_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → γ
hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t
h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha)
j : (a : γ) → a ∈ t → α
hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s
left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a
right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a
a1 a2 : α
h1 : a1 ∈ s
h2 : a2 ∈ s
eq : i a1 h1 = i a2 h2
⊢ j (i a1 h1) (_ : i a1 h1 ∈ t) = j (i a2 h2) (_ : i a2 h2 ∈ t)
[PROOFSTEP]
simp only [eq]
[GOAL]
case refine'_2
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → γ
hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t
h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha)
j : (a : γ) → a ∈ t → α
hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s
left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a
right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a
⊢ ∀ (b : γ), b ∈ t → ∃ a ha, b = i a ha
[PROOFSTEP]
intro b hb
[GOAL]
case refine'_2
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → γ
hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t
h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha)
j : (a : γ) → a ∈ t → α
hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s
left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a
right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a
b : γ
hb : b ∈ t
⊢ ∃ a ha, b = i a ha
[PROOFSTEP]
use j b hb
[GOAL]
case h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → γ
hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t
h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha)
j : (a : γ) → a ∈ t → α
hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s
left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a
right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a
b : γ
hb : b ∈ t
⊢ ∃ ha, b = i (j b hb) ha
[PROOFSTEP]
use hj b hb
[GOAL]
case h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → γ
hi : ∀ (a : α) (ha : a ∈ s), i a ha ∈ t
h : ∀ (a : α) (ha : a ∈ s), f a = g (i a ha)
j : (a : γ) → a ∈ t → α
hj : ∀ (a : γ) (ha : a ∈ t), j a ha ∈ s
left_inv : ∀ (a : α) (ha : a ∈ s), j (i a ha) (_ : i a ha ∈ t) = a
right_inv : ∀ (a : γ) (ha : a ∈ t), i (j a ha) (_ : j a ha ∈ s) = a
b : γ
hb : b ∈ t
⊢ b = i (j b hb) (_ : j b hb ∈ s)
[PROOFSTEP]
exact (right_inv b hb).symm
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
ι' : Type u_2
inst✝ : DecidableEq ι
e : ι ≃ ι'
f : ι' → β
s' : Finset ι'
s : Finset ι
h : s = image (↑e.symm) s'
⊢ ∏ i' in s', f i' = ∏ i in s, f (↑e i)
[PROOFSTEP]
rw [h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
ι' : Type u_2
inst✝ : DecidableEq ι
e : ι ≃ ι'
f : ι' → β
s' : Finset ι'
s : Finset ι
h : s = image (↑e.symm) s'
⊢ ∏ i' in s', f i' = ∏ i in image (↑e.symm) s', f (↑e i)
[PROOFSTEP]
refine'
Finset.prod_bij' (fun i' _hi' => e.symm i') (fun a ha => Finset.mem_image_of_mem _ ha)
(fun a _ha => by simp_rw [e.apply_symm_apply]) (fun i _hi => e i) (fun a ha => _)
(fun a _ha => e.apply_symm_apply a) fun a _ha => e.symm_apply_apply a
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
ι' : Type u_2
inst✝ : DecidableEq ι
e : ι ≃ ι'
f : ι' → β
s' : Finset ι'
s : Finset ι
h : s = image (↑e.symm) s'
a : ι'
_ha : a ∈ s'
⊢ f a = f (↑e ((fun i' _hi' => ↑e.symm i') a _ha))
[PROOFSTEP]
simp_rw [e.apply_symm_apply]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
ι' : Type u_2
inst✝ : DecidableEq ι
e : ι ≃ ι'
f : ι' → β
s' : Finset ι'
s : Finset ι
h : s = image (↑e.symm) s'
a : ι
ha : a ∈ image (↑e.symm) s'
⊢ (fun i _hi => ↑e i) a ha ∈ s'
[PROOFSTEP]
rcases Finset.mem_image.mp ha with ⟨i', hi', rfl⟩
[GOAL]
case intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
ι' : Type u_2
inst✝ : DecidableEq ι
e : ι ≃ ι'
f : ι' → β
s' : Finset ι'
s : Finset ι
h : s = image (↑e.symm) s'
i' : ι'
hi' : i' ∈ s'
ha : ↑e.symm i' ∈ image (↑e.symm) s'
⊢ (fun i _hi => ↑e i) (↑e.symm i') ha ∈ s'
[PROOFSTEP]
dsimp only
[GOAL]
case intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
ι' : Type u_2
inst✝ : DecidableEq ι
e : ι ≃ ι'
f : ι' → β
s' : Finset ι'
s : Finset ι
h : s = image (↑e.symm) s'
i' : ι'
hi' : i' ∈ s'
ha : ↑e.symm i' ∈ image (↑e.symm) s'
⊢ ↑e (↑e.symm i') ∈ s'
[PROOFSTEP]
rwa [e.apply_symm_apply]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
r : Finset (γ × α)
s : Finset γ
t : γ → Finset α
h : ∀ (p : γ × α), p ∈ r ↔ p.fst ∈ s ∧ p.snd ∈ t p.fst
f : γ × α → β
⊢ ∏ p in r, f p = ∏ c in s, ∏ a in t c, f (c, a)
[PROOFSTEP]
refine' Eq.trans _ (prod_sigma s t fun p => f (p.1, p.2))
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
r : Finset (γ × α)
s : Finset γ
t : γ → Finset α
h : ∀ (p : γ × α), p ∈ r ↔ p.fst ∈ s ∧ p.snd ∈ t p.fst
f : γ × α → β
⊢ ∏ p in r, f p = ∏ x in Finset.sigma s t, f (x.fst, x.snd)
[PROOFSTEP]
exact
prod_bij' (fun p _hp => ⟨p.1, p.2⟩) (fun p => mem_sigma.mpr ∘ (h p).mp) (fun p hp => congr_arg f Prod.mk.eta.symm)
(fun p _hp => (p.1, p.2)) (fun p => (h (p.1, p.2)).mpr ∘ mem_sigma.mp) (fun p _hp => Prod.mk.eta) fun p _hp => p.eta
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
r : Finset (α × γ)
s : Finset γ
t : γ → Finset α
h : ∀ (p : α × γ), p ∈ r ↔ p.snd ∈ s ∧ p.fst ∈ t p.snd
f : α × γ → β
⊢ ∏ p in r, f p = ∏ c in s, ∏ a in t c, f (a, c)
[PROOFSTEP]
refine' Eq.trans _ (prod_sigma s t fun p => f (p.2, p.1))
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
r : Finset (α × γ)
s : Finset γ
t : γ → Finset α
h : ∀ (p : α × γ), p ∈ r ↔ p.snd ∈ s ∧ p.fst ∈ t p.snd
f : α × γ → β
⊢ ∏ p in r, f p = ∏ x in Finset.sigma s t, f (x.snd, x.fst)
[PROOFSTEP]
exact
prod_bij' (fun p _hp => ⟨p.2, p.1⟩) (fun p => mem_sigma.mpr ∘ (h p).mp) (fun p hp => congr_arg f Prod.mk.eta.symm)
(fun p _hp => (p.2, p.1)) (fun p => (h (p.2, p.1)).mpr ∘ mem_sigma.mp) (fun p _hp => Prod.mk.eta) fun p _hp => p.eta
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq γ
s : Finset α
t : Finset γ
g : α → γ
h : ∀ (x : α), x ∈ s → g x ∈ t
f : α → β
⊢ ∏ y in t, ∏ x in filter (fun x => g x = y) s, f x = ∏ x in s, f x
[PROOFSTEP]
rw [← prod_disjiUnion, disjiUnion_filter_eq_of_maps_to h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
⊢ ∏ x in s, f x * g x = fold (fun x x_1 => x * x_1) (1 * 1) (fun x => f x * g x) s
[PROOFSTEP]
rw [one_mul]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
⊢ ∏ x in s, f x * g x = fold (fun x x_1 => x * x_1) 1 (fun x => f x * g x) s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset γ
t : γ → Finset α
t' : Finset α
s' : α → Finset γ
h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t'
f : γ → α → β
⊢ ∏ x in s, ∏ y in t x, f x y = ∏ y in t', ∏ x in s' y, f x y
[PROOFSTEP]
classical
have : ∀ z : γ × α, (z ∈ s.biUnion fun x => (t x).map <| Function.Embedding.sectr x _) ↔ z.1 ∈ s ∧ z.2 ∈ t z.1 :=
by
rintro ⟨x, y⟩
simp only [mem_biUnion, mem_map, Function.Embedding.sectr_apply, Prod.mk.injEq, exists_eq_right, ← and_assoc]
exact
(prod_finset_product' _ _ _ this).symm.trans
((prod_finset_product_right' _ _ _) fun ⟨x, y⟩ => (this _).trans ((h x y).trans and_comm))
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset γ
t : γ → Finset α
t' : Finset α
s' : α → Finset γ
h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t'
f : γ → α → β
⊢ ∏ x in s, ∏ y in t x, f x y = ∏ y in t', ∏ x in s' y, f x y
[PROOFSTEP]
have : ∀ z : γ × α, (z ∈ s.biUnion fun x => (t x).map <| Function.Embedding.sectr x _) ↔ z.1 ∈ s ∧ z.2 ∈ t z.1 :=
by
rintro ⟨x, y⟩
simp only [mem_biUnion, mem_map, Function.Embedding.sectr_apply, Prod.mk.injEq, exists_eq_right, ← and_assoc]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset γ
t : γ → Finset α
t' : Finset α
s' : α → Finset γ
h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t'
f : γ → α → β
⊢ ∀ (z : γ × α), (z ∈ Finset.biUnion s fun x => map (Function.Embedding.sectr x α) (t x)) ↔ z.fst ∈ s ∧ z.snd ∈ t z.fst
[PROOFSTEP]
rintro ⟨x, y⟩
[GOAL]
case mk
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset γ
t : γ → Finset α
t' : Finset α
s' : α → Finset γ
h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t'
f : γ → α → β
x : γ
y : α
⊢ ((x, y) ∈ Finset.biUnion s fun x => map (Function.Embedding.sectr x α) (t x)) ↔
(x, y).fst ∈ s ∧ (x, y).snd ∈ t (x, y).fst
[PROOFSTEP]
simp only [mem_biUnion, mem_map, Function.Embedding.sectr_apply, Prod.mk.injEq, exists_eq_right, ← and_assoc]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset γ
t : γ → Finset α
t' : Finset α
s' : α → Finset γ
h : ∀ (x : γ) (y : α), x ∈ s ∧ y ∈ t x ↔ x ∈ s' y ∧ y ∈ t'
f : γ → α → β
this :
∀ (z : γ × α), (z ∈ Finset.biUnion s fun x => map (Function.Embedding.sectr x α) (t x)) ↔ z.fst ∈ s ∧ z.snd ∈ t z.fst
⊢ ∏ x in s, ∏ y in t x, f x y = ∏ y in t', ∏ x in s' y, f x y
[PROOFSTEP]
exact
(prod_finset_product' _ _ _ this).symm.trans
((prod_finset_product_right' _ _ _) fun ⟨x, y⟩ => (this _).trans ((h x y).trans and_comm))
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : CommMonoid γ
r : β → γ → Prop
f : α → β
g : α → γ
s : Finset α
h₁ : r 1 1
h₂ : ∀ (a : α) (b : β) (c : γ), r b c → r (f a * b) (g a * c)
⊢ r (∏ x in s, f x) (∏ x in s, g x)
[PROOFSTEP]
delta Finset.prod
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : CommMonoid γ
r : β → γ → Prop
f : α → β
g : α → γ
s : Finset α
h₁ : r 1 1
h₂ : ∀ (a : α) (b : β) (c : γ), r b c → r (f a * b) (g a * c)
⊢ r (Multiset.prod (Multiset.map (fun x => f x) s.val)) (Multiset.prod (Multiset.map (fun x => g x) s.val))
[PROOFSTEP]
apply Multiset.prod_hom_rel
[GOAL]
case h₁
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : CommMonoid γ
r : β → γ → Prop
f : α → β
g : α → γ
s : Finset α
h₁ : r 1 1
h₂ : ∀ (a : α) (b : β) (c : γ), r b c → r (f a * b) (g a * c)
⊢ r 1 1
[PROOFSTEP]
assumption
[GOAL]
case h₂
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : CommMonoid γ
r : β → γ → Prop
f : α → β
g : α → γ
s : Finset α
h₁ : r 1 1
h₂ : ∀ (a : α) (b : β) (c : γ), r b c → r (f a * b) (g a * c)
⊢ ∀ ⦃a : α⦄ ⦃b : β⦄ ⦃c : γ⦄, r b c → r (f a * b) (g a * c)
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
h : s₁ ⊆ s₂
hg : ∀ (x : α), x ∈ s₂ \ s₁ → g x = 1
hfg : ∀ (x : α), x ∈ s₁ → f x = g x
⊢ ∏ i in s₁, f i = ∏ i in s₂, g i
[PROOFSTEP]
rw [← prod_sdiff h, prod_eq_one hg, one_mul]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
h : s₁ ⊆ s₂
hg : ∀ (x : α), x ∈ s₂ \ s₁ → g x = 1
hfg : ∀ (x : α), x ∈ s₁ → f x = g x
⊢ ∏ i in s₁, f i = ∏ x in s₁, g x
[PROOFSTEP]
exact prod_congr rfl hfg
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h : s₁ ⊆ s₂
hf : ∀ (x : α), x ∈ s₂ → ¬x ∈ s₁ → f x = 1
this : DecidableEq α
⊢ ∀ (x : α), x ∈ s₂ \ s₁ → f x = 1
[PROOFSTEP]
simpa
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ (x : α), x ∈ s → f x ≠ 1 → p x
x : α
⊢ x ∈ s → ¬x ∈ filter p s → f x = 1
[PROOFSTEP]
classical
rw [not_imp_comm, mem_filter]
exact fun h₁ h₂ => ⟨h₁, by simpa using hp _ h₁ h₂⟩
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ (x : α), x ∈ s → f x ≠ 1 → p x
x : α
⊢ x ∈ s → ¬x ∈ filter p s → f x = 1
[PROOFSTEP]
rw [not_imp_comm, mem_filter]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ (x : α), x ∈ s → f x ≠ 1 → p x
x : α
⊢ x ∈ s → ¬f x = 1 → x ∈ s ∧ p x
[PROOFSTEP]
exact fun h₁ h₂ => ⟨h₁, by simpa using hp _ h₁ h₂⟩
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
hp : ∀ (x : α), x ∈ s → f x ≠ 1 → p x
x : α
h₁ : x ∈ s
h₂ : ¬f x = 1
⊢ p x
[PROOFSTEP]
simpa using hp _ h₁ h₂
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
f : α → β
a : α
h : a ∈ filter p s
⊢ f a = if p a then f a else 1
[PROOFSTEP]
rw [if_pos]
[GOAL]
case hc
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
f : α → β
a : α
h : a ∈ filter p s
⊢ p a
[PROOFSTEP]
simpa using (mem_filter.1 h).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
f : α → β
⊢ (∏ a in filter p s, if p a then f a else 1) = ∏ a in s, if p a then f a else 1
[PROOFSTEP]
{ refine' prod_subset (filter_subset _ s) fun x hs h => _
rw [mem_filter, not_and] at h
exact if_neg (by simpa using h hs)
}
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
f : α → β
⊢ (∏ a in filter p s, if p a then f a else 1) = ∏ a in s, if p a then f a else 1
[PROOFSTEP]
refine' prod_subset (filter_subset _ s) fun x hs h => _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
f : α → β
x : α
hs : x ∈ s
h : ¬x ∈ filter p s
⊢ (if p x then f x else 1) = 1
[PROOFSTEP]
rw [mem_filter, not_and] at h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
f : α → β
x : α
hs : x ∈ s
h : x ∈ s → ¬p x
⊢ (if p x then f x else 1) = 1
[PROOFSTEP]
exact if_neg (by simpa using h hs)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
p : α → Prop
inst✝ : DecidablePred p
f : α → β
x : α
hs : x ∈ s
h : x ∈ s → ¬p x
⊢ ¬p x
[PROOFSTEP]
simpa using h hs
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
h : a ∈ s
h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1
⊢ ∏ x in s, f x = f a
[PROOFSTEP]
haveI := Classical.decEq α
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
h : a ∈ s
h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1
this : DecidableEq α
⊢ ∏ x in s, f x = f a
[PROOFSTEP]
calc
∏ x in s, f x = ∏ x in { a }, f x := by {
refine' (prod_subset _ _).symm
· intro _ H
rwa [mem_singleton.1 H]
· simpa only [mem_singleton]
}
_ = f a := prod_singleton
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
h : a ∈ s
h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1
this : DecidableEq α
⊢ ∏ x in s, f x = ∏ x in {a}, f x
[PROOFSTEP]
{ refine' (prod_subset _ _).symm
· intro _ H
rwa [mem_singleton.1 H]
· simpa only [mem_singleton]
}
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
h : a ∈ s
h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1
this : DecidableEq α
⊢ ∏ x in s, f x = ∏ x in {a}, f x
[PROOFSTEP]
refine' (prod_subset _ _).symm
[GOAL]
case refine'_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
h : a ∈ s
h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1
this : DecidableEq α
⊢ {a} ⊆ s
[PROOFSTEP]
intro _ H
[GOAL]
case refine'_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
h : a ∈ s
h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1
this : DecidableEq α
a✝ : α
H : a✝ ∈ {a}
⊢ a✝ ∈ s
[PROOFSTEP]
rwa [mem_singleton.1 H]
[GOAL]
case refine'_2
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
h : a ∈ s
h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1
this : DecidableEq α
⊢ ∀ (x : α), x ∈ s → ¬x ∈ {a} → f x = 1
[PROOFSTEP]
simpa only [mem_singleton]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
h₀ : ∀ (b : α), b ∈ s → b ≠ a → f b = 1
h₁ : ¬a ∈ s → f a = 1
this✝ : DecidableEq α
this : ¬a ∈ s
b : α
hb : b ∈ s
⊢ b ≠ a
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
this✝ : DecidableEq α
b : α
hb : b ∈ s
h₀ : ∀ (b_1 : α), b_1 ∈ s → b_1 ≠ b → f b_1 = 1
h₁ : ¬b ∈ s → f b = 1
this : ¬b ∈ s
⊢ False
[PROOFSTEP]
exact this hb
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
haveI := Classical.decEq α
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
let s' := ({ a, b } : Finset α)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
have hu : s' ⊆ s := by
refine' insert_subset_iff.mpr _
apply And.intro ha
apply singleton_subset_iff.mpr hb
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
⊢ s' ⊆ s
[PROOFSTEP]
refine' insert_subset_iff.mpr _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
⊢ a ∈ s ∧ {b} ⊆ s
[PROOFSTEP]
apply And.intro ha
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
⊢ {b} ⊆ s
[PROOFSTEP]
apply singleton_subset_iff.mpr hb
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
have hf : ∀ c ∈ s, c ∉ s' → f c = 1 := by
intro c hc hcs
apply h₀ c hc
apply not_or.mp
intro hab
apply hcs
apply mem_insert.mpr
rw [mem_singleton]
exact hab
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
⊢ ∀ (c : α), c ∈ s → ¬c ∈ s' → f c = 1
[PROOFSTEP]
intro c hc hcs
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
c : α
hc : c ∈ s
hcs : ¬c ∈ s'
⊢ f c = 1
[PROOFSTEP]
apply h₀ c hc
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
c : α
hc : c ∈ s
hcs : ¬c ∈ s'
⊢ c ≠ a ∧ c ≠ b
[PROOFSTEP]
apply not_or.mp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
c : α
hc : c ∈ s
hcs : ¬c ∈ s'
⊢ ¬(c = a ∨ c = b)
[PROOFSTEP]
intro hab
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
c : α
hc : c ∈ s
hcs : ¬c ∈ s'
hab : c = a ∨ c = b
⊢ False
[PROOFSTEP]
apply hcs
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
c : α
hc : c ∈ s
hcs : ¬c ∈ s'
hab : c = a ∨ c = b
⊢ c ∈ s'
[PROOFSTEP]
apply mem_insert.mpr
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
c : α
hc : c ∈ s
hcs : ¬c ∈ s'
hab : c = a ∨ c = b
⊢ c = a ∨ c ∈ {b}
[PROOFSTEP]
rw [mem_singleton]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
c : α
hc : c ∈ s
hcs : ¬c ∈ s'
hab : c = a ∨ c = b
⊢ c = a ∨ c = b
[PROOFSTEP]
exact hab
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
hf : ∀ (c : α), c ∈ s → ¬c ∈ s' → f c = 1
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
rw [← prod_subset hu hf]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
ha : a ∈ s
hb : b ∈ s
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
this : DecidableEq α
s' : Finset α := {a, b}
hu : s' ⊆ s
hf : ∀ (c : α), c ∈ s → ¬c ∈ s' → f c = 1
⊢ ∏ x in s', f x = f a * f b
[PROOFSTEP]
exact Finset.prod_pair hn
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
haveI := Classical.decEq α
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
by_cases h₁ : a ∈ s
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : a ∈ s
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
by_cases h₂ : b ∈ s
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : ¬a ∈ s
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
by_cases h₂ : b ∈ s
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : a ∈ s
h₂ : b ∈ s
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
exact prod_eq_mul_of_mem a b h₁ h₂ hn h₀
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : a ∈ s
h₂ : ¬b ∈ s
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
rw [hb h₂, mul_one]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : a ∈ s
h₂ : ¬b ∈ s
⊢ ∏ x in s, f x = f a
[PROOFSTEP]
apply prod_eq_single_of_mem a h₁
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : a ∈ s
h₂ : ¬b ∈ s
⊢ ∀ (b : α), b ∈ s → b ≠ a → f b = 1
[PROOFSTEP]
exact fun c hc hca => h₀ c hc ⟨hca, ne_of_mem_of_not_mem hc h₂⟩
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : ¬a ∈ s
h₂ : b ∈ s
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
rw [ha h₁, one_mul]
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : ¬a ∈ s
h₂ : b ∈ s
⊢ ∏ x in s, f x = f b
[PROOFSTEP]
apply prod_eq_single_of_mem b h₂
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : ¬a ∈ s
h₂ : b ∈ s
⊢ ∀ (b_1 : α), b_1 ∈ s → b_1 ≠ b → f b_1 = 1
[PROOFSTEP]
exact fun c hc hcb => h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, hcb⟩
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : ¬a ∈ s
h₂ : ¬b ∈ s
⊢ ∏ x in s, f x = f a * f b
[PROOFSTEP]
rw [ha h₁, hb h₂, mul_one]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a b : α
hn : a ≠ b
h₀ : ∀ (c : α), c ∈ s → c ≠ a ∧ c ≠ b → f c = 1
ha : ¬a ∈ s → f a = 1
hb : ¬b ∈ s → f b = 1
this : DecidableEq α
h₁ : ¬a ∈ s
h₂ : ¬b ∈ s
⊢ ∏ x in s, f x = 1
[PROOFSTEP]
exact
_root_.trans (prod_congr rfl fun c hc => h₀ c hc ⟨ne_of_mem_of_not_mem hc h₁, ne_of_mem_of_not_mem hc h₂⟩)
prod_const_one
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : α → β
this : DecidableEq α
⊢ ∏ x in attach s, f ↑x = ∏ x in image Subtype.val (attach s), f x
[PROOFSTEP]
{rw [prod_image]; exact fun x _ y _ => Subtype.eq
}
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : α → β
this : DecidableEq α
⊢ ∏ x in attach s, f ↑x = ∏ x in image Subtype.val (attach s), f x
[PROOFSTEP]
rw [prod_image]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : α → β
this : DecidableEq α
⊢ ∀ (x : { x // x ∈ s }), x ∈ attach s → ∀ (y : { x // x ∈ s }), y ∈ attach s → ↑x = ↑y → x = y
[PROOFSTEP]
exact fun x _ y _ => Subtype.eq
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : α → β
this : DecidableEq α
⊢ ∏ x in image Subtype.val (attach s), f x = ∏ x in s, f x
[PROOFSTEP]
rw [attach_image_val]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → β
p : α → Prop
inst✝ : DecidablePred p
⊢ ∏ x in Finset.subtype p s, f ↑x = ∏ x in filter p s, f x
[PROOFSTEP]
conv_lhs => erw [← prod_map (s.subtype p) (Function.Embedding.subtype _) f]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → β
p : α → Prop
inst✝ : DecidablePred p
| ∏ x in Finset.subtype p s, f ↑x
[PROOFSTEP]
erw [← prod_map (s.subtype p) (Function.Embedding.subtype _) f]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → β
p : α → Prop
inst✝ : DecidablePred p
| ∏ x in Finset.subtype p s, f ↑x
[PROOFSTEP]
erw [← prod_map (s.subtype p) (Function.Embedding.subtype _) f]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → β
p : α → Prop
inst✝ : DecidablePred p
| ∏ x in Finset.subtype p s, f ↑x
[PROOFSTEP]
erw [← prod_map (s.subtype p) (Function.Embedding.subtype _) f]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → β
p : α → Prop
inst✝ : DecidablePred p
⊢ ∏ x in map (Function.Embedding.subtype p) (Finset.subtype p s), f x = ∏ x in filter p s, f x
[PROOFSTEP]
exact prod_congr (subtype_map _) fun x _hx => rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → β
p : α → Prop
inst✝ : DecidablePred p
h : ∀ (x : α), x ∈ s → p x
⊢ ∏ x in Finset.subtype p s, f ↑x = ∏ x in s, f x
[PROOFSTEP]
rw [prod_subtype_eq_prod_filter, filter_true_of_mem]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → β
p : α → Prop
inst✝ : DecidablePred p
h : ∀ (x : α), x ∈ s → p x
⊢ ∀ (x : α), x ∈ s → p x
[PROOFSTEP]
simpa using h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
s : Finset { x // p x }
f : { x // p x } → β
g : α → β
h : ∀ (x : { x // p x }), x ∈ s → g ↑x = f x
⊢ ∏ x in map (Function.Embedding.subtype fun x => p x) s, g x = ∏ x in s, f x
[PROOFSTEP]
rw [Finset.prod_map]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
s : Finset { x // p x }
f : { x // p x } → β
g : α → β
h : ∀ (x : { x // p x }), x ∈ s → g ↑x = f x
⊢ ∏ x in s, g (↑(Function.Embedding.subtype fun x => p x) x) = ∏ x in s, f x
[PROOFSTEP]
exact Finset.prod_congr rfl h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
p : α → Prop
F : Fintype (Subtype p)
s : Finset α
h : ∀ (x : α), x ∈ s ↔ p x
f : α → β
⊢ ∏ a in s, f a = ∏ a : Subtype p, f ↑a
[PROOFSTEP]
have : (· ∈ s) = p := Set.ext h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
p : α → Prop
F : Fintype (Subtype p)
s : Finset α
h : ∀ (x : α), x ∈ s ↔ p x
f : α → β
this : (fun x => x ∈ s) = p
⊢ ∏ a in s, f a = ∏ a : Subtype p, f ↑a
[PROOFSTEP]
subst p
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
F : Fintype { x // x ∈ s }
h : ∀ (x : α), x ∈ s ↔ (fun x => x ∈ s) x
⊢ ∏ a in s, f a = ∏ a : { x // x ∈ s }, f ↑a
[PROOFSTEP]
rw [← prod_coe_sort]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
F : Fintype { x // x ∈ s }
h : ∀ (x : α), x ∈ s ↔ (fun x => x ∈ s) x
⊢ ∏ i : { x // x ∈ s }, f ↑i = ∏ a : { x // x ∈ s }, f ↑a
[PROOFSTEP]
congr!
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g✝ : α✝ → β✝
inst✝³ : CommMonoid β✝
α : Type u_2
inst✝² : CommMonoid α
β : Type u_3
inst✝¹ : Fintype β
s : Set β
inst✝ : DecidablePred fun x => x ∈ s
f : β → α
g : ↑s → α
w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h }
w' : ∀ (x : β), ¬x ∈ s → f x = 1
⊢ Finset.prod univ f = Finset.prod univ g
[PROOFSTEP]
rw [← @Finset.prod_subset _ _ s.toFinset Finset.univ f _ (by simp)]
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g✝ : α✝ → β✝
inst✝³ : CommMonoid β✝
α : Type u_2
inst✝² : CommMonoid α
β : Type u_3
inst✝¹ : Fintype β
s : Set β
inst✝ : DecidablePred fun x => x ∈ s
f : β → α
g : ↑s → α
w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h }
w' : ∀ (x : β), ¬x ∈ s → f x = 1
⊢ Set.toFinset s ⊆ univ
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g✝ : α✝ → β✝
inst✝³ : CommMonoid β✝
α : Type u_2
inst✝² : CommMonoid α
β : Type u_3
inst✝¹ : Fintype β
s : Set β
inst✝ : DecidablePred fun x => x ∈ s
f : β → α
g : ↑s → α
w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h }
w' : ∀ (x : β), ¬x ∈ s → f x = 1
⊢ ∏ x in Set.toFinset s, f x = Finset.prod univ g
[PROOFSTEP]
rw [Finset.prod_subtype]
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g✝ : α✝ → β✝
inst✝³ : CommMonoid β✝
α : Type u_2
inst✝² : CommMonoid α
β : Type u_3
inst✝¹ : Fintype β
s : Set β
inst✝ : DecidablePred fun x => x ∈ s
f : β → α
g : ↑s → α
w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h }
w' : ∀ (x : β), ¬x ∈ s → f x = 1
⊢ ∏ a : Subtype ?m.393471, f ↑a = Finset.prod univ g
[PROOFSTEP]
apply Finset.prod_congr rfl
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g✝ : α✝ → β✝
inst✝³ : CommMonoid β✝
α : Type u_2
inst✝² : CommMonoid α
β : Type u_3
inst✝¹ : Fintype β
s : Set β
inst✝ : DecidablePred fun x => x ∈ s
f : β → α
g : ↑s → α
w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h }
w' : ∀ (x : β), ¬x ∈ s → f x = 1
⊢ ∀ (x : { x // x ∈ s }), x ∈ univ → f ↑x = g x
[PROOFSTEP]
exact fun ⟨x, h⟩ _ => w x h
[GOAL]
case h
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g✝ : α✝ → β✝
inst✝³ : CommMonoid β✝
α : Type u_2
inst✝² : CommMonoid α
β : Type u_3
inst✝¹ : Fintype β
s : Set β
inst✝ : DecidablePred fun x => x ∈ s
f : β → α
g : ↑s → α
w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h }
w' : ∀ (x : β), ¬x ∈ s → f x = 1
⊢ ∀ (x : β), x ∈ Set.toFinset s ↔ x ∈ s
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g✝ : α✝ → β✝
inst✝³ : CommMonoid β✝
α : Type u_2
inst✝² : CommMonoid α
β : Type u_3
inst✝¹ : Fintype β
s : Set β
inst✝ : DecidablePred fun x => x ∈ s
f : β → α
g : ↑s → α
w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h }
w' : ∀ (x : β), ¬x ∈ s → f x = 1
⊢ ∀ (x : β), x ∈ univ → ¬x ∈ Set.toFinset s → f x = 1
[PROOFSTEP]
rintro x _ h
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g✝ : α✝ → β✝
inst✝³ : CommMonoid β✝
α : Type u_2
inst✝² : CommMonoid α
β : Type u_3
inst✝¹ : Fintype β
s : Set β
inst✝ : DecidablePred fun x => x ∈ s
f : β → α
g : ↑s → α
w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h }
w' : ∀ (x : β), ¬x ∈ s → f x = 1
x : β
a✝ : x ∈ univ
h : ¬x ∈ Set.toFinset s
⊢ f x = 1
[PROOFSTEP]
exact w' x (by simpa using h)
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g✝ : α✝ → β✝
inst✝³ : CommMonoid β✝
α : Type u_2
inst✝² : CommMonoid α
β : Type u_3
inst✝¹ : Fintype β
s : Set β
inst✝ : DecidablePred fun x => x ∈ s
f : β → α
g : ↑s → α
w : ∀ (x : β) (h : x ∈ s), f x = g { val := x, property := h }
w' : ∀ (x : β), ¬x ∈ s → f x = 1
x : β
a✝ : x ∈ univ
h : ¬x ∈ Set.toFinset s
⊢ ¬x ∈ s
[PROOFSTEP]
simpa using h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
inst✝ : DecidablePred fun x => ¬p x
f : (x : α) → p x → γ
g : (x : α) → ¬p x → γ
h : γ → β
x : { x // x ∈ filter p s }
⊢ p ↑x
[PROOFSTEP]
simpa using (mem_filter.mp x.2).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
inst✝ : DecidablePred fun x => ¬p x
f : (x : α) → p x → γ
g : (x : α) → ¬p x → γ
h : γ → β
x : { x // x ∈ filter (fun x => ¬p x) s }
⊢ ¬p ↑x
[PROOFSTEP]
simpa using (mem_filter.mp x.2).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
inst✝ : DecidablePred fun x => ¬p x
f : (x : α) → p x → γ
g : (x : α) → ¬p x → γ
h : γ → β
x : { x // x ∈ filter p s }
⊢ p ↑x
[PROOFSTEP]
simpa using (mem_filter.mp x.2).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
inst✝ : DecidablePred fun x => ¬p x
f : (x : α) → p x → γ
g : (x : α) → ¬p x → γ
h : γ → β
x : { x // x ∈ filter (fun x => ¬p x) s }
⊢ ¬p ↑x
[PROOFSTEP]
simpa using (mem_filter.mp x.2).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
inst✝ : DecidablePred fun x => ¬p x
f : (x : α) → p x → γ
g : (x : α) → ¬p x → γ
h : γ → β
x : { x // x ∈ filter p s }
_hx : x ∈ attach (filter p s)
⊢ p ↑x
[PROOFSTEP]
simpa using (mem_filter.mp x.2).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
inst✝ : DecidablePred fun x => ¬p x
f : (x : α) → p x → γ
g : (x : α) → ¬p x → γ
h : γ → β
x : { x // x ∈ filter (fun x => ¬p x) s }
_hx : x ∈ attach (filter (fun x => ¬p x) s)
⊢ ¬p ↑x
[PROOFSTEP]
simpa using (mem_filter.mp x.2).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
x : { x // x ∈ filter p s }
⊢ p ↑x
[PROOFSTEP]
simpa using (mem_filter.mp x.2).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
x : { x // x ∈ filter (fun x => ¬p x) s }
⊢ ¬p ↑x
[PROOFSTEP]
simpa using (mem_filter.mp x.2).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
⊢ (∏ x in s, if hx : p x then f x hx else g x hx) =
(∏ x in attach (filter p s), f ↑x (_ : p ↑x)) * ∏ x in attach (filter (fun x => ¬p x) s), g ↑x (_ : ¬p ↑x)
[PROOFSTEP]
simp [prod_apply_dite _ _ fun x => x]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
p : α → Prop
hp : DecidablePred p
f g : α → β
⊢ (∏ x in s, if p x then f x else g x) = (∏ x in filter p s, f x) * ∏ x in filter (fun x => ¬p x) s, g x
[PROOFSTEP]
simp [prod_apply_ite _ _ fun x => x]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
⊢ (∏ x in s, if p x then f x else g x) = ∏ x in s, g x
[PROOFSTEP]
rw [prod_ite, filter_false_of_mem, filter_true_of_mem]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
⊢ (∏ x in ∅, f x) * ∏ x in s, g x = ∏ x in s, g x
[PROOFSTEP]
simp only [prod_empty, one_mul]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
⊢ ∀ (x : α), x ∈ s → ¬p x
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
⊢ ∀ (x : α), x ∈ s → ¬p x
[PROOFSTEP]
all_goals intros; apply h; assumption
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
⊢ ∀ (x : α), x ∈ s → ¬p x
[PROOFSTEP]
intros
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
x✝ : α
a✝ : x✝ ∈ s
⊢ ¬p x✝
[PROOFSTEP]
apply h
[GOAL]
case a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
x✝ : α
a✝ : x✝ ∈ s
⊢ x✝ ∈ s
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
⊢ ∀ (x : α), x ∈ s → ¬p x
[PROOFSTEP]
intros
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
x✝ : α
a✝ : x✝ ∈ s
⊢ ¬p x✝
[PROOFSTEP]
apply h
[GOAL]
case a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → ¬p x
x✝ : α
a✝ : x✝ ∈ s
⊢ x✝ ∈ s
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → p x
⊢ (∏ x in s, if p x then f x else g x) = ∏ x in s, f x
[PROOFSTEP]
simp_rw [← ite_not (p _)]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → p x
⊢ (∏ x in s, if ¬p x then g x else f x) = ∏ x in s, f x
[PROOFSTEP]
apply prod_ite_of_false
[GOAL]
case h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → β
h : ∀ (x : α), x ∈ s → p x
⊢ ∀ (x : α), x ∈ s → ¬¬p x
[PROOFSTEP]
simpa
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → γ
k : γ → β
h : ∀ (x : α), x ∈ s → ¬p x
⊢ ∏ x in s, k (if p x then f x else g x) = ∏ x in s, k (g x)
[PROOFSTEP]
simp_rw [apply_ite k]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → γ
k : γ → β
h : ∀ (x : α), x ∈ s → ¬p x
⊢ (∏ x in s, if p x then k (f x) else k (g x)) = ∏ x in s, k (g x)
[PROOFSTEP]
exact prod_ite_of_false _ _ h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → γ
k : γ → β
h : ∀ (x : α), x ∈ s → p x
⊢ ∏ x in s, k (if p x then f x else g x) = ∏ x in s, k (f x)
[PROOFSTEP]
simp_rw [apply_ite k]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
f g : α → γ
k : γ → β
h : ∀ (x : α), x ∈ s → p x
⊢ (∏ x in s, if p x then k (f x) else k (g x)) = ∏ x in s, k (f x)
[PROOFSTEP]
exact prod_ite_of_true _ _ h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s t : Finset α
f : α → β
⊢ (∏ i in s, if i ∈ t then f i else 1) = ∏ i in s ∩ t, f i
[PROOFSTEP]
rw [← Finset.prod_filter, Finset.filter_mem_eq_inter]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
⊢ (∏ x in s, if h : a = x then b x h else 1) = if a ∈ s then b a (_ : a = a) else 1
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h : a ∈ s
⊢ (∏ x in s, if h : a = x then b x h else 1) = b a (_ : a = a)
[PROOFSTEP]
rw [Finset.prod_eq_single a, dif_pos rfl]
[GOAL]
case pos.h₀
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h : a ∈ s
⊢ ∀ (b_1 : α), b_1 ∈ s → b_1 ≠ a → (if h : a = b_1 then b b_1 h else 1) = 1
[PROOFSTEP]
intros _ _ h
[GOAL]
case pos.h₀
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h✝ : a ∈ s
b✝ : α
a✝ : b✝ ∈ s
h : b✝ ≠ a
⊢ (if h : a = b✝ then b b✝ h else 1) = 1
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case pos.h₀.hnc
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h✝ : a ∈ s
b✝ : α
a✝ : b✝ ∈ s
h : b✝ ≠ a
⊢ ¬a = b✝
[PROOFSTEP]
exact h.symm
[GOAL]
case pos.h₁
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h : a ∈ s
⊢ ¬a ∈ s → (if h : a = a then b a h else 1) = 1
[PROOFSTEP]
simp [h]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h : ¬a ∈ s
⊢ (∏ x in s, if h : a = x then b x h else 1) = 1
[PROOFSTEP]
rw [Finset.prod_eq_one]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h : ¬a ∈ s
⊢ ∀ (x : α), x ∈ s → (if h : a = x then b x h else 1) = 1
[PROOFSTEP]
intros
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h : ¬a ∈ s
x✝ : α
a✝ : x✝ ∈ s
⊢ (if h : a = x✝ then b x✝ h else 1) = 1
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case neg.hnc
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h : ¬a ∈ s
x✝ : α
a✝ : x✝ ∈ s
⊢ ¬a = x✝
[PROOFSTEP]
rintro rfl
[GOAL]
case neg.hnc
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → a = x → β
h : ¬a ∈ s
a✝ : a ∈ s
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
⊢ (∏ x in s, if h : x = a then b x h else 1) = if a ∈ s then b a (_ : a = a) else 1
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
h : a ∈ s
⊢ (∏ x in s, if h : x = a then b x h else 1) = b a (_ : a = a)
[PROOFSTEP]
rw [Finset.prod_eq_single a, dif_pos rfl]
[GOAL]
case pos.h₀
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
h : a ∈ s
⊢ ∀ (b_1 : α), b_1 ∈ s → b_1 ≠ a → (if h : b_1 = a then b b_1 h else 1) = 1
[PROOFSTEP]
intros _ _ h
[GOAL]
case pos.h₀
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
h✝ : a ∈ s
b✝ : α
a✝ : b✝ ∈ s
h : b✝ ≠ a
⊢ (if h : b✝ = a then b b✝ h else 1) = 1
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case pos.h₀.hnc
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
h✝ : a ∈ s
b✝ : α
a✝ : b✝ ∈ s
h : b✝ ≠ a
⊢ ¬b✝ = a
[PROOFSTEP]
exact h
[GOAL]
case pos.h₁
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
h : a ∈ s
⊢ ¬a ∈ s → (if h : a = a then b a h else 1) = 1
[PROOFSTEP]
simp [h]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
h : ¬a ∈ s
⊢ (∏ x in s, if h : x = a then b x h else 1) = 1
[PROOFSTEP]
rw [Finset.prod_eq_one]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
h : ¬a ∈ s
⊢ ∀ (x : α), x ∈ s → (if h : x = a then b x h else 1) = 1
[PROOFSTEP]
intros
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
h : ¬a ∈ s
x✝ : α
a✝ : x✝ ∈ s
⊢ (if h : x✝ = a then b x✝ h else 1) = 1
[PROOFSTEP]
rw [dif_neg]
[GOAL]
case neg.hnc
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝¹ : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
a : α
b : (x : α) → x = a → β
h : ¬a ∈ s
x✝ : α
a✝ : x✝ ∈ s
⊢ ¬x✝ = a
[PROOFSTEP]
rintro rfl
[GOAL]
case neg.hnc
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
x✝ : α
a✝ : x✝ ∈ s
b : (x : α) → x = x✝ → β
h : ¬x✝ ∈ s
⊢ False
[PROOFSTEP]
contradiction
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
p : Prop
inst✝ : Decidable p
s : Finset α
f g : α → β
⊢ (∏ x in s, if p then f x else g x) = if p then ∏ x in s, f x else ∏ x in s, g x
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
p : Prop
inst✝ : Decidable p
s : Finset α
f g : α → β
h : p
⊢ ∏ x in s, f x = ∏ x in s, f x
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
p : Prop
inst✝ : Decidable p
s : Finset α
f g : α → β
h : ¬p
⊢ ∏ x in s, g x = ∏ x in s, g x
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
p : Prop
inst✝ : Decidable p
s : Finset α
f : p → α → β
g : ¬p → α → β
⊢ (∏ x in s, if h : p then f h x else g h x) = if h : p then ∏ x in s, f h x else ∏ x in s, g h x
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
p : Prop
inst✝ : Decidable p
s : Finset α
f : p → α → β
g : ¬p → α → β
h : p
⊢ ∏ x in s, f h x = ∏ x in s, f h x
[PROOFSTEP]
rfl
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
p : Prop
inst✝ : Decidable p
s : Finset α
f : p → α → β
g : ¬p → α → β
h : ¬p
⊢ ∏ x in s, g h x = ∏ x in s, g h x
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
⊢ ∏ x in s, f x = ∏ x in t, g x
[PROOFSTEP]
classical
calc
∏ x in s, f x = ∏ x in s.filter fun x => f x ≠ 1, f x := prod_filter_ne_one.symm
_ = ∏ x in t.filter fun x => g x ≠ 1, g x :=
(prod_bij (fun a ha => i a (mem_filter.mp ha).1 $ by simpa using (mem_filter.mp ha).2) ?_ ?_ ?_ ?_)
_ = ∏ x in t, g x := prod_filter_ne_one
· intros a ha
refine' (mem_filter.mp ha).elim _
intros h₁ h₂
refine (mem_filter.mpr ⟨hi a h₁ _, ?_⟩)
specialize h a h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂
rwa [← h]
· refine' (fun a ha => (mem_filter.mp ha).elim fun h₁ h₂ ↦ _)
exact h a h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂
· intros a₁ a₂ ha₁ ha₂
refine' (mem_filter.mp ha₁).elim fun _ha₁₁ _ha₁₂ ↦ _
refine' (mem_filter.mp ha₂).elim fun _ha₂₁ _ha₂₂ ↦ _
apply i_inj
· intros b hb
refine' (mem_filter.mp hb).elim fun h₁ h₂ ↦ _
obtain ⟨a, ha₁, ha₂, eq⟩ := i_surj b h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂
exact ⟨a, mem_filter.mpr ⟨ha₁, ha₂⟩, eq⟩
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
⊢ ∏ x in s, f x = ∏ x in t, g x
[PROOFSTEP]
calc
∏ x in s, f x = ∏ x in s.filter fun x => f x ≠ 1, f x := prod_filter_ne_one.symm
_ = ∏ x in t.filter fun x => g x ≠ 1, g x :=
(prod_bij (fun a ha => i a (mem_filter.mp ha).1 $ by simpa using (mem_filter.mp ha).2) ?_ ?_ ?_ ?_)
_ = ∏ x in t, g x := prod_filter_ne_one
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
⊢ f a ≠ 1
[PROOFSTEP]
simpa using (mem_filter.mp ha).2
[GOAL]
case calc_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
⊢ ∀ (a : α) (ha : a ∈ filter (fun x => f x ≠ 1) s),
(fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha ∈ filter (fun x => g x ≠ 1) t
[PROOFSTEP]
intros a ha
[GOAL]
case calc_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha ∈ filter (fun x => g x ≠ 1) t
[PROOFSTEP]
refine' (mem_filter.mp ha).elim _
[GOAL]
case calc_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
⊢ a ∈ s → f a ≠ 1 → (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha ∈ filter (fun x => g x ≠ 1) t
[PROOFSTEP]
intros h₁ h₂
[GOAL]
case calc_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
h₁ : a ∈ s
h₂ : f a ≠ 1
⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha ∈ filter (fun x => g x ≠ 1) t
[PROOFSTEP]
refine (mem_filter.mpr ⟨hi a h₁ _, ?_⟩)
[GOAL]
case calc_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
h₁ : a ∈ s
h₂ : f a ≠ 1
⊢ g ((fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha) ≠ 1
[PROOFSTEP]
specialize h a h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
h₁ : a ∈ s
h₂ : f a ≠ 1
H : f a = 1
⊢ False
[PROOFSTEP]
rw [H] at h₂
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
h₁ : a ∈ s
h₂ : 1 ≠ 1
H : f a = 1
⊢ False
[PROOFSTEP]
simp at h₂
[GOAL]
case calc_1
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
h₁ : a ∈ s
h₂ : f a ≠ 1
h : f a = g (i a h₁ (_ : f a = 1 → False))
⊢ g ((fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha) ≠ 1
[PROOFSTEP]
rwa [← h]
[GOAL]
case calc_2
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
⊢ ∀ (a : α) (ha : a ∈ filter (fun x => f x ≠ 1) s), f a = g ((fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha)
[PROOFSTEP]
refine' (fun a ha => (mem_filter.mp ha).elim fun h₁ h₂ ↦ _)
[GOAL]
case calc_2
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
h₁ : a ∈ s
h₂ : f a ≠ 1
⊢ f a = g ((fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha)
[PROOFSTEP]
exact h a h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
h₁ : a ∈ s
h₂ : f a ≠ 1
H : f a = 1
⊢ False
[PROOFSTEP]
rw [H] at h₂
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a : α
ha : a ∈ filter (fun x => f x ≠ 1) s
h₁ : a ∈ s
h₂ : 1 ≠ 1
H : f a = 1
⊢ False
[PROOFSTEP]
simp at h₂
[GOAL]
case calc_3
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
⊢ ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ filter (fun x => f x ≠ 1) s) (ha₂ : a₂ ∈ filter (fun x => f x ≠ 1) s),
(fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₁ ha₁ = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₂ ha₂ → a₁ = a₂
[PROOFSTEP]
intros a₁ a₂ ha₁ ha₂
[GOAL]
case calc_3
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a₁ a₂ : α
ha₁ : a₁ ∈ filter (fun x => f x ≠ 1) s
ha₂ : a₂ ∈ filter (fun x => f x ≠ 1) s
⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₁ ha₁ = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₂ ha₂ → a₁ = a₂
[PROOFSTEP]
refine' (mem_filter.mp ha₁).elim fun _ha₁₁ _ha₁₂ ↦ _
[GOAL]
case calc_3
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a₁ a₂ : α
ha₁ : a₁ ∈ filter (fun x => f x ≠ 1) s
ha₂ : a₂ ∈ filter (fun x => f x ≠ 1) s
_ha₁₁ : a₁ ∈ s
_ha₁₂ : f a₁ ≠ 1
⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₁ ha₁ = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₂ ha₂ → a₁ = a₂
[PROOFSTEP]
refine' (mem_filter.mp ha₂).elim fun _ha₂₁ _ha₂₂ ↦ _
[GOAL]
case calc_3
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
a₁ a₂ : α
ha₁ : a₁ ∈ filter (fun x => f x ≠ 1) s
ha₂ : a₂ ∈ filter (fun x => f x ≠ 1) s
_ha₁₁ : a₁ ∈ s
_ha₁₂ : f a₁ ≠ 1
_ha₂₁ : a₂ ∈ s
_ha₂₂ : f a₂ ≠ 1
⊢ (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₁ ha₁ = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a₂ ha₂ → a₁ = a₂
[PROOFSTEP]
apply i_inj
[GOAL]
case calc_4
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
⊢ ∀ (b : γ), b ∈ filter (fun x => g x ≠ 1) t → ∃ a ha, b = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha
[PROOFSTEP]
intros b hb
[GOAL]
case calc_4
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
b : γ
hb : b ∈ filter (fun x => g x ≠ 1) t
⊢ ∃ a ha, b = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha
[PROOFSTEP]
refine' (mem_filter.mp hb).elim fun h₁ h₂ ↦ _
[GOAL]
case calc_4
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
b : γ
hb : b ∈ filter (fun x => g x ≠ 1) t
h₁ : b ∈ t
h₂ : g b ≠ 1
⊢ ∃ a ha, b = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha
[PROOFSTEP]
obtain ⟨a, ha₁, ha₂, eq⟩ := i_surj b h₁ fun H ↦ by rw [H] at h₂ ; simp at h₂
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
b : γ
hb : b ∈ filter (fun x => g x ≠ 1) t
h₁ : b ∈ t
h₂ : g b ≠ 1
H : g b = 1
⊢ False
[PROOFSTEP]
rw [H] at h₂
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
b : γ
hb : b ∈ filter (fun x => g x ≠ 1) t
h₁ : b ∈ t
h₂ : 1 ≠ 1
H : g b = 1
⊢ False
[PROOFSTEP]
simp at h₂
[GOAL]
case calc_4.intro.intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s : Finset α
t : Finset γ
f : α → β
g : γ → β
i : (a : α) → a ∈ s → f a ≠ 1 → γ
hi : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), i a h₁ h₂ ∈ t
i_inj :
∀ (a₁ a₂ : α) (h₁₁ : a₁ ∈ s) (h₁₂ : f a₁ ≠ 1) (h₂₁ : a₂ ∈ s) (h₂₂ : f a₂ ≠ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂ → a₁ = a₂
i_surj : ∀ (b : γ), b ∈ t → g b ≠ 1 → ∃ a h₁ h₂, b = i a h₁ h₂
h : ∀ (a : α) (h₁ : a ∈ s) (h₂ : f a ≠ 1), f a = g (i a h₁ h₂)
b : γ
hb : b ∈ filter (fun x => g x ≠ 1) t
h₁ : b ∈ t
h₂ : g b ≠ 1
a : α
ha₁ : a ∈ s
ha₂ : f a ≠ 1
eq : b = i a ha₁ ha₂
⊢ ∃ a ha, b = (fun a ha => i a (_ : a ∈ s) (_ : f a ≠ 1)) a ha
[PROOFSTEP]
exact ⟨a, mem_filter.mpr ⟨ha₁, ha₂⟩, eq⟩
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
h : ∀ (x : α), x ∈ s → ¬p x
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
x : α
hx : x ∈ s
⊢ (fun x hx => { val := x, property := hx }) x hx ∈ univ
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
h : ∀ (x : α), x ∈ s → ¬p x
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
a : α
ha : a ∈ s
⊢ (if hx : p a then f a hx else g a hx) =
g ↑((fun x hx => { val := x, property := hx }) a ha) (_ : ¬p ↑((fun x hx => { val := x, property := hx }) a ha))
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
h : ∀ (x : α), x ∈ s → ¬p x
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
a : α
ha : a ∈ s
⊢ (if hx : p a then f a hx else g a hx) = g a (_ : ¬p a)
[PROOFSTEP]
rw [dif_neg]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
h : ∀ (x : α), x ∈ s → ¬p x
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
b : { x // x ∈ s }
_hb : b ∈ univ
⊢ b = (fun x hx => { val := x, property := hx }) ↑b (_ : ↑b ∈ s)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
h : ∀ (x : α), x ∈ s → p x
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
x : α
hx : x ∈ s
⊢ (fun x hx => { val := x, property := hx }) x hx ∈ univ
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
h : ∀ (x : α), x ∈ s → p x
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
a : α
ha : a ∈ s
⊢ (if hx : p a then f a hx else g a hx) =
f ↑((fun x hx => { val := x, property := hx }) a ha) (_ : p ↑((fun x hx => { val := x, property := hx }) a ha))
[PROOFSTEP]
dsimp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
h : ∀ (x : α), x ∈ s → p x
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
a : α
ha : a ∈ s
⊢ (if hx : p a then f a hx else g a hx) = f a (_ : p a)
[PROOFSTEP]
rw [dif_pos]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
p : α → Prop
hp : DecidablePred p
h : ∀ (x : α), x ∈ s → p x
f : (x : α) → p x → β
g : (x : α) → ¬p x → β
b : { x // x ∈ s }
_hb : b ∈ univ
⊢ b = (fun x hx => { val := x, property := hx }) ↑b (_ : ↑b ∈ s)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h : ∏ x in s, f x ≠ 1
⊢ ∃ a, a ∈ s ∧ f a ≠ 1
[PROOFSTEP]
classical
rw [← prod_filter_ne_one] at h
rcases nonempty_of_prod_ne_one h with ⟨x, hx⟩
exact ⟨x, (mem_filter.1 hx).1, by simpa using (mem_filter.1 hx).2⟩
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h : ∏ x in s, f x ≠ 1
⊢ ∃ a, a ∈ s ∧ f a ≠ 1
[PROOFSTEP]
rw [← prod_filter_ne_one] at h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h✝ : ∏ x in s, f x ≠ 1
h : ∏ x in filter (fun x => f x ≠ 1) s, f x ≠ 1
⊢ ∃ a, a ∈ s ∧ f a ≠ 1
[PROOFSTEP]
rcases nonempty_of_prod_ne_one h with ⟨x, hx⟩
[GOAL]
case intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h✝ : ∏ x in s, f x ≠ 1
h : ∏ x in filter (fun x => f x ≠ 1) s, f x ≠ 1
x : α
hx : x ∈ filter (fun x => f x ≠ 1) s
⊢ ∃ a, a ∈ s ∧ f a ≠ 1
[PROOFSTEP]
exact ⟨x, (mem_filter.1 hx).1, by simpa using (mem_filter.1 hx).2⟩
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
h✝ : ∏ x in s, f x ≠ 1
h : ∏ x in filter (fun x => f x ≠ 1) s, f x ≠ 1
x : α
hx : x ∈ filter (fun x => f x ≠ 1) s
⊢ f x ≠ 1
[PROOFSTEP]
simpa using (mem_filter.1 hx).2
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
n : ℕ
⊢ ∏ x in range (n + 1), f x = f n * ∏ x in range n, f x
[PROOFSTEP]
rw [range_succ, prod_insert not_mem_range_self]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
n : ℕ
⊢ ∏ x in range (n + 1), f x = (∏ x in range n, f x) * f n
[PROOFSTEP]
simp only [mul_comm, prod_range_succ_comm]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
n : ℕ
⊢ ∏ k in range (n + 1 + 1), f k = (∏ k in range (n + 1), f (k + 1)) * f 0
[PROOFSTEP]
rw [prod_range_succ _ n, mul_right_comm, ← prod_range_succ' _ n, prod_range_succ]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
u : ℕ → β
N : ℕ
hu : ∀ (n : ℕ), n ≥ N → u n = 1
n : ℕ
hn : N ≤ n
⊢ ∏ k in range (n + 1), u k = ∏ k in range (N + 1), u k
[PROOFSTEP]
obtain ⟨m, rfl : n = N + m⟩ := le_iff_exists_add.mp hn
[GOAL]
case intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
u : ℕ → β
N : ℕ
hu : ∀ (n : ℕ), n ≥ N → u n = 1
m : ℕ
hn : N ≤ N + m
⊢ ∏ k in range (N + m + 1), u k = ∏ k in range (N + 1), u k
[PROOFSTEP]
clear hn
[GOAL]
case intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
u : ℕ → β
N : ℕ
hu : ∀ (n : ℕ), n ≥ N → u n = 1
m : ℕ
⊢ ∏ k in range (N + m + 1), u k = ∏ k in range (N + 1), u k
[PROOFSTEP]
induction' m with m hm
[GOAL]
case intro.zero
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
u : ℕ → β
N : ℕ
hu : ∀ (n : ℕ), n ≥ N → u n = 1
⊢ ∏ k in range (N + Nat.zero + 1), u k = ∏ k in range (N + 1), u k
[PROOFSTEP]
simp
[GOAL]
case intro.succ
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
u : ℕ → β
N : ℕ
hu : ∀ (n : ℕ), n ≥ N → u n = 1
m : ℕ
hm : ∏ k in range (N + m + 1), u k = ∏ k in range (N + 1), u k
⊢ ∏ k in range (N + Nat.succ m + 1), u k = ∏ k in range (N + 1), u k
[PROOFSTEP]
erw [prod_range_succ, hm]
[GOAL]
case intro.succ
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
u : ℕ → β
N : ℕ
hu : ∀ (n : ℕ), n ≥ N → u n = 1
m : ℕ
hm : ∏ k in range (N + m + 1), u k = ∏ k in range (N + 1), u k
⊢ (∏ k in range (N + 1), u k) * u (N + Nat.succ m) = ∏ k in range (N + 1), u k
[PROOFSTEP]
simp [hu, @zero_le' ℕ]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
n m : ℕ
⊢ ∏ x in range (n + m), f x = (∏ x in range n, f x) * ∏ x in range m, f (n + x)
[PROOFSTEP]
induction' m with m hm
[GOAL]
case zero
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
n : ℕ
⊢ ∏ x in range (n + Nat.zero), f x = (∏ x in range n, f x) * ∏ x in range Nat.zero, f (n + x)
[PROOFSTEP]
simp
[GOAL]
case succ
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
n m : ℕ
hm : ∏ x in range (n + m), f x = (∏ x in range n, f x) * ∏ x in range m, f (n + x)
⊢ ∏ x in range (n + Nat.succ m), f x = (∏ x in range n, f x) * ∏ x in range (Nat.succ m), f (n + x)
[PROOFSTEP]
erw [Nat.add_succ, prod_range_succ, prod_range_succ, hm, mul_assoc]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
⊢ ∏ k in range 0, f k = 1
[PROOFSTEP]
rw [range_zero, prod_empty]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
⊢ ∏ k in range 1, f k = f 0
[PROOFSTEP]
rw [range_one]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
⊢ ∏ k in {0}, f k = f 0
[PROOFSTEP]
apply @prod_singleton β ℕ 0 f
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
l : List α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
⊢ prod (List.map f l) = ∏ m in toFinset l, f m ^ count m l
[PROOFSTEP]
induction' l with a s IH
[GOAL]
case nil
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
⊢ prod (List.map f []) = ∏ m in toFinset [], f m ^ count m []
[PROOFSTEP]
simp only [map_nil, prod_nil, count_nil, pow_zero, prod_const_one]
[GOAL]
case cons
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
⊢ prod (List.map f (a :: s)) = ∏ m in toFinset (a :: s), f m ^ count m (a :: s)
[PROOFSTEP]
simp only [List.map, List.prod_cons, toFinset_cons, IH]
[GOAL]
case cons
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
⊢ f a * ∏ m in toFinset s, f m ^ count m s = ∏ x in insert a (toFinset s), f x ^ count x (a :: s)
[PROOFSTEP]
by_cases has : a ∈ s.toFinset
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
has : a ∈ toFinset s
⊢ f a * ∏ m in toFinset s, f m ^ count m s = ∏ x in insert a (toFinset s), f x ^ count x (a :: s)
[PROOFSTEP]
rw [insert_eq_of_mem has, ← insert_erase has, prod_insert (not_mem_erase _ _), prod_insert (not_mem_erase _ _), ←
mul_assoc, count_cons_self, pow_succ]
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
has : a ∈ toFinset s
⊢ f a * f a ^ count a s * ∏ x in erase (toFinset s) a, f x ^ count x s =
f a * f a ^ count a s * ∏ x in erase (toFinset s) a, f x ^ count x (a :: s)
[PROOFSTEP]
congr 1
[GOAL]
case pos.e_a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
has : a ∈ toFinset s
⊢ ∏ x in erase (toFinset s) a, f x ^ count x s = ∏ x in erase (toFinset s) a, f x ^ count x (a :: s)
[PROOFSTEP]
refine' prod_congr rfl fun x hx => _
[GOAL]
case pos.e_a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
has : a ∈ toFinset s
x : α
hx : x ∈ erase (toFinset s) a
⊢ f x ^ count x s = f x ^ count x (a :: s)
[PROOFSTEP]
rw [count_cons_of_ne (ne_of_mem_erase hx)]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
has : ¬a ∈ toFinset s
⊢ f a * ∏ m in toFinset s, f m ^ count m s = ∏ x in insert a (toFinset s), f x ^ count x (a :: s)
[PROOFSTEP]
rw [prod_insert has, count_cons_self, count_eq_zero_of_not_mem (mt mem_toFinset.2 has), pow_one]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
has : ¬a ∈ toFinset s
⊢ f a * ∏ m in toFinset s, f m ^ count m s = f a * ∏ x in toFinset s, f x ^ count x (a :: s)
[PROOFSTEP]
congr 1
[GOAL]
case neg.e_a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
has : ¬a ∈ toFinset s
⊢ ∏ m in toFinset s, f m ^ count m s = ∏ x in toFinset s, f x ^ count x (a :: s)
[PROOFSTEP]
refine' prod_congr rfl fun x hx => _
[GOAL]
case neg.e_a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
has : ¬a ∈ toFinset s
x : α
hx : x ∈ toFinset s
⊢ f x ^ count x s = f x ^ count x (a :: s)
[PROOFSTEP]
rw [count_cons_of_ne]
[GOAL]
case neg.e_a.h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
a : α
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
has : ¬a ∈ toFinset s
x : α
hx : x ∈ toFinset s
⊢ x ≠ a
[PROOFSTEP]
rintro rfl
[GOAL]
case neg.e_a.h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
s : List α
IH : prod (List.map f s) = ∏ m in toFinset s, f m ^ count m s
x : α
hx : x ∈ toFinset s
has : ¬x ∈ toFinset s
⊢ False
[PROOFSTEP]
exact has hx
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
s : List α
⊢ prod s = ∏ m in toFinset s, m ^ count m s
[PROOFSTEP]
simpa using prod_list_map_count s id
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
m : List α
s : Finset α
hs : toFinset m ⊆ s
⊢ prod m = ∏ i in s, i ^ count i m
[PROOFSTEP]
rw [prod_list_count]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
m : List α
s : Finset α
hs : toFinset m ⊆ s
⊢ ∏ m_1 in toFinset m, m_1 ^ count m_1 m = ∏ i in s, i ^ count i m
[PROOFSTEP]
refine' prod_subset hs fun x _ hx => _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
m : List α
s : Finset α
hs : toFinset m ⊆ s
x : α
x✝ : x ∈ s
hx : ¬x ∈ toFinset m
⊢ x ^ count x m = 1
[PROOFSTEP]
rw [mem_toFinset] at hx
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
m : List α
s : Finset α
hs : toFinset m ⊆ s
x : α
x✝ : x ∈ s
hx : ¬x ∈ m
⊢ x ^ count x m = 1
[PROOFSTEP]
rw [count_eq_zero_of_not_mem hx, pow_zero]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
p : α → Prop
inst✝ : DecidablePred p
l : List α
⊢ ∑ x in filter p (toFinset l), count x l = countp (fun b => decide (p b)) l
[PROOFSTEP]
simp [Finset.sum, sum_map_count_dedup_filter_eq_countp p l]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
s : Multiset α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
⊢ Multiset.prod (Multiset.map f s) = ∏ m in Multiset.toFinset s, f m ^ Multiset.count m s
[PROOFSTEP]
refine' Quot.induction_on s fun l => _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
s : Multiset α
M : Type u_2
inst✝ : CommMonoid M
f : α → M
l : List α
⊢ Multiset.prod (Multiset.map f (Quot.mk Setoid.r l)) =
∏ m in Multiset.toFinset (Quot.mk Setoid.r l), f m ^ Multiset.count m (Quot.mk Setoid.r l)
[PROOFSTEP]
simp [prod_list_map_count l f]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
s : Multiset α
⊢ Multiset.prod s = ∏ m in Multiset.toFinset s, m ^ Multiset.count m s
[PROOFSTEP]
convert prod_multiset_map_count s id
[GOAL]
case h.e'_2.h.e'_3
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
s : Multiset α
⊢ s = Multiset.map id s
[PROOFSTEP]
rw [Multiset.map_id]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
m : Multiset α
s : Finset α
hs : Multiset.toFinset m ⊆ s
⊢ Multiset.prod m = ∏ i in s, i ^ Multiset.count i m
[PROOFSTEP]
revert hs
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
m : Multiset α
s : Finset α
⊢ Multiset.toFinset m ⊆ s → Multiset.prod m = ∏ i in s, i ^ Multiset.count i m
[PROOFSTEP]
refine' Quot.induction_on m fun l => _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
m : Multiset α
s : Finset α
l : List α
⊢ Multiset.toFinset (Quot.mk Setoid.r l) ⊆ s →
Multiset.prod (Quot.mk Setoid.r l) = ∏ i in s, i ^ Multiset.count i (Quot.mk Setoid.r l)
[PROOFSTEP]
simp only [quot_mk_to_coe'', coe_prod, coe_count]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoid β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
m : Multiset α
s : Finset α
l : List α
⊢ Multiset.toFinset ↑l ⊆ s → List.prod l = ∏ x in s, x ^ List.count x l
[PROOFSTEP]
apply prod_list_count_of_subset l s
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
m : Multiset α
f : { x // x ∈ m } → β
g : α → β
hfg : ∀ (x : { x // x ∈ m }), f x = g ↑x
x✝³ x✝² : { x // x ∈ m }
x✝¹ : x✝³ ∈ univ
x✝ : x✝² ∈ univ
h : (fun x x_1 => ↑x) x✝³ x✝¹ = (fun x x_1 => ↑x) x✝² x✝
⊢ x✝³ = x✝²
[PROOFSTEP]
ext
[GOAL]
case a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
m : Multiset α
f : { x // x ∈ m } → β
g : α → β
hfg : ∀ (x : { x // x ∈ m }), f x = g ↑x
x✝³ x✝² : { x // x ∈ m }
x✝¹ : x✝³ ∈ univ
x✝ : x✝² ∈ univ
h : (fun x x_1 => ↑x) x✝³ x✝¹ = (fun x x_1 => ↑x) x✝² x✝
⊢ ↑x✝³ = ↑x✝²
[PROOFSTEP]
assumption
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommMonoid M
f : α → M
p : M → Prop
hom : ∀ (a b : M), p a → p b → p (a * b)
nonempty : Finset.Nonempty s
base : ∀ (x : α), x ∈ s → p (f x)
⊢ Multiset.map (fun x => f x) s.val ≠ ∅
[PROOFSTEP]
simp [nonempty_iff_ne_empty.mp nonempty]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f s : ℕ → β
base : s 0 = 1
step : ∀ (n : ℕ), s (n + 1) = s n * f n
n : ℕ
⊢ ∏ k in range n, f k = s n
[PROOFSTEP]
induction' n with k hk
[GOAL]
case zero
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f s : ℕ → β
base : s 0 = 1
step : ∀ (n : ℕ), s (n + 1) = s n * f n
⊢ ∏ k in range Nat.zero, f k = s Nat.zero
[PROOFSTEP]
rw [Finset.prod_range_zero, base]
[GOAL]
case succ
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f s : ℕ → β
base : s 0 = 1
step : ∀ (n : ℕ), s (n + 1) = s n * f n
k : ℕ
hk : ∏ k in range k, f k = s k
⊢ ∏ k in range (Nat.succ k), f k = s (Nat.succ k)
[PROOFSTEP]
simp only [hk, Finset.prod_range_succ, step, mul_comm]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
⊢ ∏ i in range n, f (i + 1) / f i = f n / f 0
[PROOFSTEP]
apply prod_range_induction
[GOAL]
case base
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
⊢ f 0 / f 0 = 1
[PROOFSTEP]
simp
[GOAL]
case step
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
⊢ ∀ (n : ℕ), f (n + 1) / f 0 = f n / f 0 * (f (n + 1) / f n)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
⊢ ∏ i in range n, f i / f (i + 1) = f 0 / f n
[PROOFSTEP]
apply prod_range_induction
[GOAL]
case base
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
⊢ f 0 / f 0 = 1
[PROOFSTEP]
simp
[GOAL]
case step
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
⊢ ∀ (n : ℕ), f 0 / f (n + 1) = f 0 / f n * (f n / f (n + 1))
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
⊢ f n = f 0 * ∏ i in range n, f (i + 1) / f i
[PROOFSTEP]
rw [prod_range_div, mul_div_cancel'_right]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
⊢ f n = ∏ i in range (n + 1), if i = 0 then f 0 else f i / f (i - 1)
[PROOFSTEP]
conv_lhs => rw [Finset.eq_prod_range_div f]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
| f n
[PROOFSTEP]
rw [Finset.eq_prod_range_div f]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
| f n
[PROOFSTEP]
rw [Finset.eq_prod_range_div f]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
| f n
[PROOFSTEP]
rw [Finset.eq_prod_range_div f]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
M : Type u_2
inst✝ : CommGroup M
f : ℕ → M
n : ℕ
⊢ f 0 * ∏ i in range n, f (i + 1) / f i = ∏ i in range (n + 1), if i = 0 then f 0 else f i / f (i - 1)
[PROOFSTEP]
simp [Finset.prod_range_succ', mul_comm]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n : ℕ
⊢ ∑ i in range n, (f (i + 1) - f i) = f n - f 0
[PROOFSTEP]
apply sum_range_induction
[GOAL]
case base
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n : ℕ
⊢ f 0 - f 0 = 0
case step
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n : ℕ
⊢ ∀ (n : ℕ), f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n)
[PROOFSTEP]
case base => apply tsub_self
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n : ℕ
⊢ f 0 - f 0 = 0
[PROOFSTEP]
case base => apply tsub_self
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n : ℕ
⊢ f 0 - f 0 = 0
[PROOFSTEP]
apply tsub_self
[GOAL]
case step
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n : ℕ
⊢ ∀ (n : ℕ), f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n)
[PROOFSTEP]
case step =>
intro n
have h₁ : f n ≤ f (n + 1) := h (Nat.le_succ _)
have h₂ : f 0 ≤ f n := h (Nat.zero_le _)
rw [tsub_add_eq_add_tsub h₂, add_tsub_cancel_of_le h₁]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n : ℕ
⊢ ∀ (n : ℕ), f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n)
[PROOFSTEP]
case step =>
intro n
have h₁ : f n ≤ f (n + 1) := h (Nat.le_succ _)
have h₂ : f 0 ≤ f n := h (Nat.zero_le _)
rw [tsub_add_eq_add_tsub h₂, add_tsub_cancel_of_le h₁]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n : ℕ
⊢ ∀ (n : ℕ), f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n)
[PROOFSTEP]
intro n
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n✝ n : ℕ
⊢ f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n)
[PROOFSTEP]
have h₁ : f n ≤ f (n + 1) := h (Nat.le_succ _)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n✝ n : ℕ
h₁ : f n ≤ f (n + 1)
⊢ f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n)
[PROOFSTEP]
have h₂ : f 0 ≤ f n := h (Nat.zero_le _)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝⁴ : CommMonoid β
inst✝³ : CanonicallyOrderedAddMonoid α
inst✝² : Sub α
inst✝¹ : OrderedSub α
inst✝ : ContravariantClass α α (fun x x_1 => x + x_1) fun x x_1 => x ≤ x_1
f : ℕ → α
h : Monotone f
n✝ n : ℕ
h₁ : f n ≤ f (n + 1)
h₂ : f 0 ≤ f n
⊢ f (n + 1) - f 0 = f n - f 0 + (f (n + 1) - f n)
[PROOFSTEP]
rw [tsub_add_eq_add_tsub h₂, add_tsub_cancel_of_le h₁]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
b : β
⊢ ∀ (n : ℕ), b ^ n = ∏ _k in range n, b
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
n : ℕ
f : ℕ → β
⊢ ∏ r in range (n + 1), f (n - r) = ∏ k in range (n + 1), f k
[PROOFSTEP]
induction' n with n ih
[GOAL]
case zero
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
⊢ ∏ r in range (Nat.zero + 1), f (Nat.zero - r) = ∏ k in range (Nat.zero + 1), f k
[PROOFSTEP]
rw [prod_range_one, prod_range_one]
[GOAL]
case succ
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
n : ℕ
ih : ∏ r in range (n + 1), f (n - r) = ∏ k in range (n + 1), f k
⊢ ∏ r in range (Nat.succ n + 1), f (Nat.succ n - r) = ∏ k in range (Nat.succ n + 1), f k
[PROOFSTEP]
rw [prod_range_succ', prod_range_succ _ (Nat.succ n)]
[GOAL]
case succ
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
f : ℕ → β
n : ℕ
ih : ∏ r in range (n + 1), f (n - r) = ∏ k in range (n + 1), f k
⊢ (∏ k in range (n + 1), f (Nat.succ n - (k + 1))) * f (Nat.succ n - 0) =
(∏ x in range (Nat.succ n), f x) * f (Nat.succ n)
[PROOFSTEP]
simp [← ih]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
⊢ ∀ (g : (a : α) → a ∈ s → α),
(∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s),
(∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a) → ∏ x in s, f x = 1
[PROOFSTEP]
haveI := Classical.decEq α
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
this : DecidableEq α
⊢ ∀ (g : (a : α) → a ∈ s → α),
(∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s),
(∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a) → ∏ x in s, f x = 1
[PROOFSTEP]
haveI := Classical.decEq β
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
this✝ : DecidableEq α
this : DecidableEq β
⊢ ∀ (g : (a : α) → a ∈ s → α),
(∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s),
(∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a) → ∏ x in s, f x = 1
[PROOFSTEP]
exact
Finset.strongInductionOn s fun s ih g h g_ne g_mem g_inv =>
s.eq_empty_or_nonempty.elim (fun hs => hs.symm ▸ rfl) fun ⟨x, hx⟩ =>
have hmem : ∀ y ∈ (s.erase x).erase (g x hx), y ∈ s := fun y hy => mem_of_mem_erase (mem_of_mem_erase hy)
have g_inj : ∀ {x hx y hy}, g x hx = g y hy → x = y := fun {x hx y hy} h => by rw [← g_inv x hx, ← g_inv y hy];
simp [h]
have ih' : (∏ y in erase (erase s x) (g x hx), f y) = (1 : β) :=
ih ((s.erase x).erase (g x hx))
⟨Subset.trans (erase_subset _ _) (erase_subset _ _), fun h =>
not_mem_erase (g x hx) (s.erase x) (h (g_mem x hx))⟩
(fun y hy => g y (hmem y hy)) (fun y hy => h y (hmem y hy)) (fun y hy => g_ne y (hmem y hy))
(fun y hy =>
mem_erase.2
⟨fun h : g y _ = g x hx => by simp [g_inj h] at hy ,
mem_erase.2
⟨fun h : g y _ = x => by
have : y = g x hx := g_inv y (hmem y hy) ▸ by simp [h]
simp [this] at hy , g_mem y (hmem y hy)⟩⟩)
fun y hy => g_inv y (hmem y hy)
if hx1 : f x = 1 then
ih' ▸
Eq.symm
(prod_subset hmem fun y hy hy₁ =>
have : y = x ∨ y = g x hx := by simpa [hy, -not_and, mem_erase, not_and_or, or_comm] using hy₁
this.elim (fun hy => hy.symm ▸ hx1) fun hy => h x hx ▸ hy ▸ hx1.symm ▸ (one_mul _).symm)
else by
rw [← insert_erase hx, prod_insert (not_mem_erase _ _), ←
insert_erase (mem_erase.2 ⟨g_ne x hx hx1, g_mem x hx⟩), prod_insert (not_mem_erase _ _), ih', mul_one, h x hx]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s✝ : Finset α
f : α → β
this✝ : DecidableEq α
this : DecidableEq β
s : Finset α
ih :
∀ (t : Finset α),
t ⊂ s →
∀ (g : (a : α) → a ∈ t → α),
(∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t),
(∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1
g : (a : α) → a ∈ s → α
h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1
g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a
g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s
g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a
x✝¹ : Finset.Nonempty s
x✝ : α
hx✝ : x✝ ∈ s
hmem : ∀ (y : α), y ∈ erase (erase s x✝) (g x✝ hx✝) → y ∈ s
x : α
hx : x ∈ s
y : α
hy : y ∈ s
h : g x hx = g y hy
⊢ x = y
[PROOFSTEP]
rw [← g_inv x hx, ← g_inv y hy]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s✝ : Finset α
f : α → β
this✝ : DecidableEq α
this : DecidableEq β
s : Finset α
ih :
∀ (t : Finset α),
t ⊂ s →
∀ (g : (a : α) → a ∈ t → α),
(∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t),
(∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1
g : (a : α) → a ∈ s → α
h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1
g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a
g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s
g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a
x✝¹ : Finset.Nonempty s
x✝ : α
hx✝ : x✝ ∈ s
hmem : ∀ (y : α), y ∈ erase (erase s x✝) (g x✝ hx✝) → y ∈ s
x : α
hx : x ∈ s
y : α
hy : y ∈ s
h : g x hx = g y hy
⊢ g (g x hx) (_ : g x hx ∈ s) = g (g y hy) (_ : g y hy ∈ s)
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s✝ : Finset α
f : α → β
this✝ : DecidableEq α
this : DecidableEq β
s : Finset α
ih :
∀ (t : Finset α),
t ⊂ s →
∀ (g : (a : α) → a ∈ t → α),
(∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t),
(∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1
g : (a : α) → a ∈ s → α
h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1
g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a
g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s
g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a
x✝ : Finset.Nonempty s
x : α
hx : x ∈ s
hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s
g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y
y : α
hy : y ∈ erase (erase s x) (g x hx)
h : g y (_ : y ∈ s) = g x hx
⊢ False
[PROOFSTEP]
simp [g_inj h] at hy
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s✝ : Finset α
f : α → β
this✝ : DecidableEq α
this : DecidableEq β
s : Finset α
ih :
∀ (t : Finset α),
t ⊂ s →
∀ (g : (a : α) → a ∈ t → α),
(∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t),
(∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1
g : (a : α) → a ∈ s → α
h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1
g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a
g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s
g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a
x✝ : Finset.Nonempty s
x : α
hx : x ∈ s
hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s
g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y
y : α
hy : y ∈ erase (erase s x) (g x hx)
h : g y (_ : y ∈ s) = x
⊢ False
[PROOFSTEP]
have : y = g x hx := g_inv y (hmem y hy) ▸ by simp [h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s✝ : Finset α
f : α → β
this✝ : DecidableEq α
this : DecidableEq β
s : Finset α
ih :
∀ (t : Finset α),
t ⊂ s →
∀ (g : (a : α) → a ∈ t → α),
(∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t),
(∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1
g : (a : α) → a ∈ s → α
h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1
g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a
g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s
g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a
x✝ : Finset.Nonempty s
x : α
hx : x ∈ s
hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s
g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y
y : α
hy : y ∈ erase (erase s x) (g x hx)
h : g y (_ : y ∈ s) = x
⊢ g (g y (_ : y ∈ s)) (_ : g y (_ : y ∈ s) ∈ s) = g x hx
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s✝ : Finset α
f : α → β
this✝¹ : DecidableEq α
this✝ : DecidableEq β
s : Finset α
ih :
∀ (t : Finset α),
t ⊂ s →
∀ (g : (a : α) → a ∈ t → α),
(∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t),
(∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1
g : (a : α) → a ∈ s → α
h✝ : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1
g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a
g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s
g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a
x✝ : Finset.Nonempty s
x : α
hx : x ∈ s
hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s
g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y
y : α
hy : y ∈ erase (erase s x) (g x hx)
h : g y (_ : y ∈ s) = x
this : y = g x hx
⊢ False
[PROOFSTEP]
simp [this] at hy
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s✝ : Finset α
f : α → β
this✝ : DecidableEq α
this : DecidableEq β
s : Finset α
ih :
∀ (t : Finset α),
t ⊂ s →
∀ (g : (a : α) → a ∈ t → α),
(∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t),
(∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1
g : (a : α) → a ∈ s → α
h : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1
g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a
g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s
g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a
x✝ : Finset.Nonempty s
x : α
hx : x ∈ s
hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s
g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y
ih' : ∏ y in erase (erase s x) (g x hx), f y = 1
hx1 : f x = 1
y : α
hy : y ∈ s
hy₁ : ¬y ∈ erase (erase s x) (g x hx)
⊢ y = x ∨ y = g x hx
[PROOFSTEP]
simpa [hy, -not_and, mem_erase, not_and_or, or_comm] using hy₁
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommMonoid β
s✝ : Finset α
f : α → β
this✝ : DecidableEq α
this : DecidableEq β
s : Finset α
ih :
∀ (t : Finset α),
t ⊂ s →
∀ (g : (a : α) → a ∈ t → α),
(∀ (a : α) (ha : a ∈ t), f a * f (g a ha) = 1) →
(∀ (a : α) (ha : a ∈ t), f a ≠ 1 → g a ha ≠ a) →
∀ (g_mem : ∀ (a : α) (ha : a ∈ t), g a ha ∈ t),
(∀ (a : α) (ha : a ∈ t), g (g a ha) (_ : g a ha ∈ t) = a) → ∏ x in t, f x = 1
g : (a : α) → a ∈ s → α
h : ∀ (a : α) (ha : a ∈ s), f a * f (g a ha) = 1
g_ne : ∀ (a : α) (ha : a ∈ s), f a ≠ 1 → g a ha ≠ a
g_mem : ∀ (a : α) (ha : a ∈ s), g a ha ∈ s
g_inv : ∀ (a : α) (ha : a ∈ s), g (g a ha) (_ : g a ha ∈ s) = a
x✝ : Finset.Nonempty s
x : α
hx : x ∈ s
hmem : ∀ (y : α), y ∈ erase (erase s x) (g x hx) → y ∈ s
g_inj : ∀ {x : α} {hx : x ∈ s} {y : α} {hy : y ∈ s}, g x hx = g y hy → x = y
ih' : ∏ y in erase (erase s x) (g x hx), f y = 1
hx1 : ¬f x = 1
⊢ ∏ x in s, f x = 1
[PROOFSTEP]
rw [← insert_erase hx, prod_insert (not_mem_erase _ _), ← insert_erase (mem_erase.2 ⟨g_ne x hx hx1, g_mem x hx⟩),
prod_insert (not_mem_erase _ _), ih', mul_one, h x hx]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq γ
f : γ → β
g : α → γ
⊢ ∀ (a : α) (ha : a ∈ s),
(fun a _ha => { fst := g a, snd := a }) a ha ∈ Finset.sigma (image g s) fun b => filter (fun a => g a = b) s
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq γ
f : γ → β
g : α → γ
⊢ ∀ (a : α), a ∈ s → (∃ a_1, a_1 ∈ s ∧ g a_1 = g a) ∧ a ∈ s
[PROOFSTEP]
tauto
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq γ
f : γ → β
g : α → γ
⊢ ∀ (a₁ a₂ : α) (ha₁ : a₁ ∈ s) (ha₂ : a₂ ∈ s),
(fun a _ha => { fst := g a, snd := a }) a₁ ha₁ = (fun a _ha => { fst := g a, snd := a }) a₂ ha₂ → a₁ = a₂
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq γ
f : γ → β
g : α → γ
⊢ ∀ (b : (_ : γ) × α),
(b ∈ Finset.sigma (image g s) fun b => filter (fun a => g a = b) s) →
∃ a ha, b = (fun a _ha => { fst := g a, snd := a }) a ha
[PROOFSTEP]
rintro ⟨b_fst, b_snd⟩ H
[GOAL]
case mk
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq γ
f : γ → β
g : α → γ
b_fst : γ
b_snd : α
H : { fst := b_fst, snd := b_snd } ∈ Finset.sigma (image g s) fun b => filter (fun a => g a = b) s
⊢ ∃ a ha, { fst := b_fst, snd := b_snd } = (fun a _ha => { fst := g a, snd := a }) a ha
[PROOFSTEP]
simp only [mem_image, exists_prop, mem_filter, mem_sigma, decide_eq_true_eq] at H
[GOAL]
case mk
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq γ
f : γ → β
g : α → γ
b_fst : γ
b_snd : α
H : (∃ a, a ∈ s ∧ g a = b_fst) ∧ b_snd ∈ s ∧ g b_snd = b_fst
⊢ ∃ a ha, { fst := b_fst, snd := b_snd } = (fun a _ha => { fst := g a, snd := a }) a ha
[PROOFSTEP]
tauto
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq γ
f : γ → β
g : α → γ
b : γ
_hb : b ∈ image g s
⊢ ∀ (x : α), x ∈ filter (fun a => g a = b) s → f (g x) = f b
[PROOFSTEP]
simp (config := { contextual := true })
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s t : Finset α
f g : α → β
⊢ ∏ x in s, piecewise t f g x = (∏ x in s ∩ t, f x) * ∏ x in s \ t, g x
[PROOFSTEP]
erw [prod_ite, filter_mem_eq_inter, ← sdiff_eq_filter]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s t : Finset α
f : α → β
⊢ (∏ x in s ∩ t, f x) * ∏ x in s \ t, f x = ∏ x in s, f x
[PROOFSTEP]
convert (s.prod_piecewise t f f).symm
[GOAL]
case h.e'_3.a.h.e
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s t : Finset α
f : α → β
x✝ : α
a✝ : x✝ ∈ s
⊢ f = piecewise t f f
[PROOFSTEP]
simp [Finset.piecewise]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : i ∈ s
f : α → β
⊢ ∏ x in s, f x = f i * ∏ x in s \ {i}, f x
[PROOFSTEP]
convert (s.prod_inter_mul_prod_diff { i } f).symm
[GOAL]
case h.e'_3.h.e'_5
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : i ∈ s
f : α → β
⊢ f i = ∏ x in s ∩ {i}, f x
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : i ∈ s
f : α → β
⊢ ∏ x in s, f x = (∏ x in s \ {i}, f x) * f i
[PROOFSTEP]
rw [prod_eq_mul_prod_diff_singleton h, mul_comm]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
f : α → β
a : α
s : Finset α
ha : a ∈ s
⊢ f a ∣ ∏ i in s, f i
[PROOFSTEP]
classical
rw [Finset.prod_eq_mul_prod_diff_singleton ha]
exact dvd_mul_right _ _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
f : α → β
a : α
s : Finset α
ha : a ∈ s
⊢ f a ∣ ∏ i in s, f i
[PROOFSTEP]
rw [Finset.prod_eq_mul_prod_diff_singleton ha]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
f : α → β
a : α
s : Finset α
ha : a ∈ s
⊢ f a ∣ f a * ∏ x in s \ {a}, f x
[PROOFSTEP]
exact dvd_mul_right _ _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
R : Setoid α
inst✝ : DecidableRel Setoid.r
⊢ ∏ x in s, f x = ∏ xbar in image Quotient.mk'' s, ∏ y in filter (fun x => Quotient.mk R x = xbar) s, f y
[PROOFSTEP]
refine' (Finset.prod_image' f fun x _hx => _).symm
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
R : Setoid α
inst✝ : DecidableRel Setoid.r
x : α
_hx : x ∈ s
⊢ ∏ y in filter (fun x_1 => Quotient.mk R x_1 = Quotient.mk'' x) s, f y =
∏ x in filter (fun c' => Quotient.mk'' c' = Quotient.mk'' x) s, f x
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
R : Setoid α
inst✝ : DecidableRel Setoid.r
h : ∀ (x : α), x ∈ s → ∏ a in filter (fun y => y ≈ x) s, f a = 1
⊢ ∏ x in s, f x = 1
[PROOFSTEP]
rw [prod_partition R, ← Finset.prod_eq_one]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
R : Setoid α
inst✝ : DecidableRel Setoid.r
h : ∀ (x : α), x ∈ s → ∏ a in filter (fun y => y ≈ x) s, f a = 1
⊢ ∀ (x : Quotient R), x ∈ image Quotient.mk'' s → ∏ y in filter (fun x_1 => Quotient.mk R x_1 = x) s, f y = 1
[PROOFSTEP]
intro xbar xbar_in_s
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
R : Setoid α
inst✝ : DecidableRel Setoid.r
h : ∀ (x : α), x ∈ s → ∏ a in filter (fun y => y ≈ x) s, f a = 1
xbar : Quotient R
xbar_in_s : xbar ∈ image Quotient.mk'' s
⊢ ∏ y in filter (fun x => Quotient.mk R x = xbar) s, f y = 1
[PROOFSTEP]
obtain ⟨x, x_in_s, rfl⟩ := mem_image.mp xbar_in_s
[GOAL]
case intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
R : Setoid α
inst✝ : DecidableRel Setoid.r
h : ∀ (x : α), x ∈ s → ∏ a in filter (fun y => y ≈ x) s, f a = 1
x : α
x_in_s : x ∈ s
xbar_in_s : Quotient.mk'' x ∈ image Quotient.mk'' s
⊢ ∏ y in filter (fun x_1 => Quotient.mk R x_1 = Quotient.mk'' x) s, f y = 1
[PROOFSTEP]
simp only [← Quotient.eq] at h
[GOAL]
case intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoid β
R : Setoid α
inst✝ : DecidableRel Setoid.r
x : α
x_in_s : x ∈ s
xbar_in_s : Quotient.mk'' x ∈ image Quotient.mk'' s
h : ∀ (x : α), x ∈ s → ∏ x in filter (fun y => Quotient.mk R y = Quotient.mk R x) s, f x = 1
⊢ ∏ y in filter (fun x_1 => Quotient.mk R x_1 = Quotient.mk'' x) s, f y = 1
[PROOFSTEP]
exact h x x_in_s
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : ¬i ∈ s
f : α → β
b : β
⊢ ∏ x in s, Function.update f i b x = ∏ x in s, f x
[PROOFSTEP]
apply prod_congr rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : ¬i ∈ s
f : α → β
b : β
⊢ ∀ (x : α), x ∈ s → Function.update f i b x = f x
[PROOFSTEP]
intros j hj
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : ¬i ∈ s
f : α → β
b : β
j : α
hj : j ∈ s
⊢ Function.update f i b j = f j
[PROOFSTEP]
have : j ≠ i := by
rintro rfl
exact h hj
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : ¬i ∈ s
f : α → β
b : β
j : α
hj : j ∈ s
⊢ j ≠ i
[PROOFSTEP]
rintro rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
f : α → β
b : β
j : α
hj : j ∈ s
h : ¬j ∈ s
⊢ False
[PROOFSTEP]
exact h hj
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : ¬i ∈ s
f : α → β
b : β
j : α
hj : j ∈ s
this : j ≠ i
⊢ Function.update f i b j = f j
[PROOFSTEP]
simp [this]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : i ∈ s
f : α → β
b : β
⊢ ∏ x in s, Function.update f i b x = b * ∏ x in s \ {i}, f x
[PROOFSTEP]
rw [update_eq_piecewise, prod_piecewise]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
i : α
h : i ∈ s
f : α → β
b : β
⊢ (∏ x in s ∩ {i}, b) * ∏ x in s \ {i}, f x = b * ∏ x in s \ {i}, f x
[PROOFSTEP]
simp [h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
h : ∏ x in s, f x = b
⊢ ∀ (x : α), x ∈ s → f x = b
[PROOFSTEP]
intro x hx
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
h : ∏ x in s, f x = b
x : α
hx : x ∈ s
⊢ f x = b
[PROOFSTEP]
by_cases hc0 : s.card = 0
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
h : ∏ x in s, f x = b
x : α
hx : x ∈ s
hc0 : card s = 0
⊢ f x = b
[PROOFSTEP]
exact False.elim (card_ne_zero_of_mem hx hc0)
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
h : ∏ x in s, f x = b
x : α
hx : x ∈ s
hc0 : ¬card s = 0
⊢ f x = b
[PROOFSTEP]
have h1 : s.card = 1 := le_antisymm hc (Nat.one_le_of_lt (Nat.pos_of_ne_zero hc0))
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
h : ∏ x in s, f x = b
x : α
hx : x ∈ s
hc0 : ¬card s = 0
h1 : card s = 1
⊢ f x = b
[PROOFSTEP]
rw [card_eq_one] at h1
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
h : ∏ x in s, f x = b
x : α
hx : x ∈ s
hc0 : ¬card s = 0
h1 : ∃ a, s = {a}
⊢ f x = b
[PROOFSTEP]
cases' h1 with x2 hx2
[GOAL]
case neg.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
h : ∏ x in s, f x = b
x : α
hx : x ∈ s
hc0 : ¬card s = 0
x2 : α
hx2 : s = {x2}
⊢ f x = b
[PROOFSTEP]
rw [hx2, mem_singleton] at hx
[GOAL]
case neg.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
h : ∏ x in s, f x = b
x : α
hc0 : ¬card s = 0
x2 : α
hx : x = x2
hx2 : s = {x2}
⊢ f x = b
[PROOFSTEP]
simp_rw [hx2] at h
[GOAL]
case neg.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
x : α
hc0 : ¬card s = 0
x2 : α
hx : x = x2
hx2 : s = {x2}
h : ∏ x in {x2}, f x = b
⊢ f x = b
[PROOFSTEP]
rw [hx]
[GOAL]
case neg.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
x : α
hc0 : ¬card s = 0
x2 : α
hx : x = x2
hx2 : s = {x2}
h : ∏ x in {x2}, f x = b
⊢ f x2 = b
[PROOFSTEP]
rw [prod_singleton] at h
[GOAL]
case neg.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
hc : card s ≤ 1
f : α → β
b : β
x : α
hc0 : ¬card s = 0
x2 : α
hx : x = x2
hx2 : s = {x2}
h : f x2 = b
⊢ f x2 = b
[PROOFSTEP]
exact h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
f : α → β
a : α
h : a ∈ s
⊢ f a * ∏ x in erase s a, f x = ∏ x in s, f x
[PROOFSTEP]
rw [← prod_insert (not_mem_erase a s), insert_erase h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
f : α → β
a : α
h : a ∈ s
⊢ (∏ x in erase s a, f x) * f a = ∏ x in s, f x
[PROOFSTEP]
rw [mul_comm, mul_prod_erase s f h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
f : α → β
a : α
h : f a = 1
⊢ ∏ x in erase s a, f x = ∏ x in s, f x
[PROOFSTEP]
rw [← sdiff_singleton_eq_erase]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
f : α → β
a : α
h : f a = 1
⊢ ∏ x in s \ {a}, f x = ∏ x in s, f x
[PROOFSTEP]
refine' prod_subset (sdiff_subset _ _) fun x hx hnx => _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
f : α → β
a : α
h : f a = 1
x : α
hx : x ∈ s
hnx : ¬x ∈ s \ {a}
⊢ f x = 1
[PROOFSTEP]
rw [sdiff_singleton_eq_erase] at hnx
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
f : α → β
a : α
h : f a = 1
x : α
hx : x ∈ s
hnx : ¬x ∈ erase s a
⊢ f x = 1
[PROOFSTEP]
rwa [eq_of_mem_of_not_mem_erase hx hnx]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → Prop
inst✝ : DecidablePred f
hf : Set.PairwiseDisjoint (↑s) f
a : β
⊢ (∏ i in s, if f i then a else 1) = if ∃ i, i ∈ s ∧ f i then a else 1
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → Prop
inst✝ : DecidablePred f
hf : Set.PairwiseDisjoint (↑s) f
a : β
h : ∃ i, i ∈ s ∧ f i
⊢ (∏ i in s, if f i then a else 1) = a
[PROOFSTEP]
obtain ⟨i, hi, hfi⟩ := h
[GOAL]
case pos.intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → Prop
inst✝ : DecidablePred f
hf : Set.PairwiseDisjoint (↑s) f
a : β
i : α
hi : i ∈ s
hfi : f i
⊢ (∏ i in s, if f i then a else 1) = a
[PROOFSTEP]
rw [prod_eq_single_of_mem _ hi, if_pos hfi]
[GOAL]
case pos.intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → Prop
inst✝ : DecidablePred f
hf : Set.PairwiseDisjoint (↑s) f
a : β
i : α
hi : i ∈ s
hfi : f i
⊢ ∀ (b : α), b ∈ s → b ≠ i → (if f b then a else 1) = 1
[PROOFSTEP]
exact fun j hj h => if_neg fun hfj => (hf hj hi h).le_bot ⟨hfj, hfi⟩
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → Prop
inst✝ : DecidablePred f
hf : Set.PairwiseDisjoint (↑s) f
a : β
h : ¬∃ i, i ∈ s ∧ f i
⊢ (∏ i in s, if f i then a else 1) = 1
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → Prop
inst✝ : DecidablePred f
hf : Set.PairwiseDisjoint (↑s) f
a : β
h : ∀ (i : α), i ∈ s → ¬f i
⊢ (∏ i in s, if f i then a else 1) = 1
[PROOFSTEP]
rw [prod_eq_one]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
f : α → Prop
inst✝ : DecidablePred f
hf : Set.PairwiseDisjoint (↑s) f
a : β
h : ∀ (i : α), i ∈ s → ¬f i
⊢ ∀ (x : α), x ∈ s → (if f x then a else 1) = 1
[PROOFSTEP]
exact fun i hi => if_neg (h i hi)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ✝ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝³ : CommMonoid β
γ : Type u_2
inst✝² : DecidableEq α
inst✝¹ : OrderedCommMonoid γ
inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1
s : Finset α
d : α
hd : d ∈ s
f : α → γ
hdf : 1 < f d
⊢ ∏ m in erase s d, f m < ∏ m in s, f m
[PROOFSTEP]
conv in ∏ m in s, f m => rw [← Finset.insert_erase hd]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ✝ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝³ : CommMonoid β
γ : Type u_2
inst✝² : DecidableEq α
inst✝¹ : OrderedCommMonoid γ
inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1
s : Finset α
d : α
hd : d ∈ s
f : α → γ
hdf : 1 < f d
| ∏ m in s, f m
[PROOFSTEP]
rw [← Finset.insert_erase hd]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ✝ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝³ : CommMonoid β
γ : Type u_2
inst✝² : DecidableEq α
inst✝¹ : OrderedCommMonoid γ
inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1
s : Finset α
d : α
hd : d ∈ s
f : α → γ
hdf : 1 < f d
| ∏ m in s, f m
[PROOFSTEP]
rw [← Finset.insert_erase hd]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ✝ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝³ : CommMonoid β
γ : Type u_2
inst✝² : DecidableEq α
inst✝¹ : OrderedCommMonoid γ
inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1
s : Finset α
d : α
hd : d ∈ s
f : α → γ
hdf : 1 < f d
| ∏ m in s, f m
[PROOFSTEP]
rw [← Finset.insert_erase hd]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ✝ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝³ : CommMonoid β
γ : Type u_2
inst✝² : DecidableEq α
inst✝¹ : OrderedCommMonoid γ
inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1
s : Finset α
d : α
hd : d ∈ s
f : α → γ
hdf : 1 < f d
⊢ ∏ m in erase s d, f m < ∏ m in insert d (erase s d), f m
[PROOFSTEP]
rw [Finset.prod_insert (Finset.not_mem_erase d s)]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ✝ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝³ : CommMonoid β
γ : Type u_2
inst✝² : DecidableEq α
inst✝¹ : OrderedCommMonoid γ
inst✝ : CovariantClass γ γ (fun x x_1 => x * x_1) fun x x_1 => x < x_1
s : Finset α
d : α
hd : d ∈ s
f : α → γ
hdf : 1 < f d
⊢ ∏ m in erase s d, f m < f d * ∏ x in erase s d, f x
[PROOFSTEP]
exact lt_mul_of_one_lt_left' _ hdf
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
hp : ∏ x in s, f x = 1
h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1
⊢ ∀ (x : α), x ∈ s → f x = 1
[PROOFSTEP]
intro x hx
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
hp : ∏ x in s, f x = 1
h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1
x : α
hx : x ∈ s
⊢ f x = 1
[PROOFSTEP]
classical
by_cases h : x = a
· rw [h]
rw [h] at hx
rw [← prod_subset (singleton_subset_iff.2 hx) fun t ht ha => h1 t ht (not_mem_singleton.1 ha), prod_singleton] at hp
exact hp
· exact h1 x hx h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
hp : ∏ x in s, f x = 1
h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1
x : α
hx : x ∈ s
⊢ f x = 1
[PROOFSTEP]
by_cases h : x = a
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
hp : ∏ x in s, f x = 1
h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1
x : α
hx : x ∈ s
h : x = a
⊢ f x = 1
[PROOFSTEP]
rw [h]
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
hp : ∏ x in s, f x = 1
h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1
x : α
hx : x ∈ s
h : x = a
⊢ f a = 1
[PROOFSTEP]
rw [h] at hx
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
hp : ∏ x in s, f x = 1
h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1
x : α
hx : a ∈ s
h : x = a
⊢ f a = 1
[PROOFSTEP]
rw [← prod_subset (singleton_subset_iff.2 hx) fun t ht ha => h1 t ht (not_mem_singleton.1 ha), prod_singleton] at hp
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
hp : f a = 1
h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1
x : α
hx : a ∈ s
h : x = a
⊢ f a = 1
[PROOFSTEP]
exact hp
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : CommMonoid β
s : Finset α
f : α → β
a : α
hp : ∏ x in s, f x = 1
h1 : ∀ (x : α), x ∈ s → x ≠ a → f x = 1
x : α
hx : x ∈ s
h : ¬x = a
⊢ f x = 1
[PROOFSTEP]
exact h1 x hx h
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝¹ : CommMonoid β
inst✝ : DecidableEq α
s : Finset α
f : α → β
a : α
⊢ (∏ x in s, f x ^ if a = x then 1 else 0) = if a ∈ s then f a else 1
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
S : Finset α
g1 g2 : α → β
h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a
⊢ Finset.prod S g1 ∣ Finset.prod S g2
[PROOFSTEP]
classical
induction' S using Finset.induction_on' with a T _haS _hTS haT IH
· simp
rw [Finset.prod_insert haT, Finset.prod_insert haT]
exact mul_dvd_mul (h a $ T.mem_insert_self a) (IH fun b hb ↦ h b $ Finset.mem_insert_of_mem hb)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
S : Finset α
g1 g2 : α → β
h : ∀ (a : α), a ∈ S → g1 a ∣ g2 a
⊢ Finset.prod S g1 ∣ Finset.prod S g2
[PROOFSTEP]
induction' S using Finset.induction_on' with a T _haS _hTS haT IH
[GOAL]
case h₁
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid β
S : Finset α
g1 g2 : α → β
h✝ : ∀ (a : α), a ∈ S → g1 a ∣ g2 a
h : ∀ (a : α), a ∈ ∅ → g1 a ∣ g2 a
⊢ Finset.prod ∅ g1 ∣ Finset.prod ∅ g2
[PROOFSTEP]
simp
[GOAL]
case h₂
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝ : CommMonoid β
S : Finset α
g1 g2 : α → β
h✝ : ∀ (a : α), a ∈ S → g1 a ∣ g2 a
a : α
T : Finset α
_haS : a ∈ S
_hTS : T ⊆ S
haT : ¬a ∈ T
IH : (∀ (a : α), a ∈ T → g1 a ∣ g2 a) → Finset.prod T g1 ∣ Finset.prod T g2
h : ∀ (a_1 : α), a_1 ∈ insert a T → g1 a_1 ∣ g2 a_1
⊢ Finset.prod (insert a T) g1 ∣ Finset.prod (insert a T) g2
[PROOFSTEP]
rw [Finset.prod_insert haT, Finset.prod_insert haT]
[GOAL]
case h₂
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝ : CommMonoid β
S : Finset α
g1 g2 : α → β
h✝ : ∀ (a : α), a ∈ S → g1 a ∣ g2 a
a : α
T : Finset α
_haS : a ∈ S
_hTS : T ⊆ S
haT : ¬a ∈ T
IH : (∀ (a : α), a ∈ T → g1 a ∣ g2 a) → Finset.prod T g1 ∣ Finset.prod T g2
h : ∀ (a_1 : α), a_1 ∈ insert a T → g1 a_1 ∣ g2 a_1
⊢ g1 a * ∏ x in T, g1 x ∣ g2 a * ∏ x in T, g2 x
[PROOFSTEP]
exact mul_dvd_mul (h a $ T.mem_insert_self a) (IH fun b hb ↦ h b $ Finset.mem_insert_of_mem hb)
[GOAL]
ι✝ : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝¹ : CommMonoid β
ι : Type u_2
M : Type u_3
inst✝ : CommMonoid M
s t : Finset ι
f : ι → M
h : s ⊆ t
⊢ s.val ≤ t.val
[PROOFSTEP]
simpa
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommSemiring β
s : Finset α
i : α
f g h : α → β
hi : i ∈ s
h1 : g i + h i = f i
h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j
h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j
⊢ ∏ i in s, g i + ∏ i in s, h i = ∏ i in s, f i
[PROOFSTEP]
classical
simp_rw [prod_eq_mul_prod_diff_singleton hi, ← h1, right_distrib]
congr 2 <;> apply prod_congr rfl <;> simpa
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommSemiring β
s : Finset α
i : α
f g h : α → β
hi : i ∈ s
h1 : g i + h i = f i
h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j
h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j
⊢ ∏ i in s, g i + ∏ i in s, h i = ∏ i in s, f i
[PROOFSTEP]
simp_rw [prod_eq_mul_prod_diff_singleton hi, ← h1, right_distrib]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommSemiring β
s : Finset α
i : α
f g h : α → β
hi : i ∈ s
h1 : g i + h i = f i
h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j
h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j
⊢ g i * ∏ i in s \ {i}, g i + h i * ∏ i in s \ {i}, h i = g i * ∏ i in s \ {i}, f i + h i * ∏ i in s \ {i}, f i
[PROOFSTEP]
congr 2
[GOAL]
case e_a.e_a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommSemiring β
s : Finset α
i : α
f g h : α → β
hi : i ∈ s
h1 : g i + h i = f i
h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j
h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j
⊢ ∏ i in s \ {i}, g i = ∏ i in s \ {i}, f i
[PROOFSTEP]
apply prod_congr rfl
[GOAL]
case e_a.e_a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommSemiring β
s : Finset α
i : α
f g h : α → β
hi : i ∈ s
h1 : g i + h i = f i
h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j
h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j
⊢ ∏ i in s \ {i}, h i = ∏ i in s \ {i}, f i
[PROOFSTEP]
apply prod_congr rfl
[GOAL]
case e_a.e_a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommSemiring β
s : Finset α
i : α
f g h : α → β
hi : i ∈ s
h1 : g i + h i = f i
h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j
h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j
⊢ ∀ (x : α), x ∈ s \ {i} → g x = f x
[PROOFSTEP]
simpa
[GOAL]
case e_a.e_a
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g✝ : α → β
inst✝ : CommSemiring β
s : Finset α
i : α
f g h : α → β
hi : i ∈ s
h1 : g i + h i = f i
h2 : ∀ (j : α), j ∈ s → j ≠ i → g j = f j
h3 : ∀ (j : α), j ∈ s → j ≠ i → h j = f j
⊢ ∀ (x : α), x ∈ s \ {i} → h x = f x
[PROOFSTEP]
simpa
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
s : Finset α
⊢ card s = ∑ x in s, 1
[PROOFSTEP]
rw [sum_const, smul_eq_mul, mul_one]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
m : ℕ
f : α → ℕ
h₁ : ∀ (x : α), x ∈ s → f x = m
⊢ ∑ x in s, f x = card s * m
[PROOFSTEP]
rw [← Nat.nsmul_eq_mul, ← sum_const]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
m : ℕ
f : α → ℕ
h₁ : ∀ (x : α), x ∈ s → f x = m
⊢ ∑ x in s, f x = ∑ _x in s, m
[PROOFSTEP]
apply sum_congr rfl h₁
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
s : Finset α
p : α → Prop
inst✝ : NonAssocSemiring β
hp : DecidablePred p
⊢ (∑ x in s, if p x then 1 else 0) = ↑(card (filter p s))
[PROOFSTEP]
simp only [add_zero, mul_one, Finset.sum_const, nsmul_eq_mul, eq_self_iff_true, Finset.sum_const_zero, Finset.sum_ite,
mul_zero]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : NonUnitalNonAssocSemiring β
s : Finset α
f : α → β
b✝ : β
h : ∀ (i : α), i ∈ s → Commute b✝ (f i)
b : β
hb : b ∈ Multiset.map (fun i => f i) s.val
⊢ Commute b✝ b
[PROOFSTEP]
obtain ⟨i, hi, rfl⟩ := Multiset.mem_map.mp hb
[GOAL]
case intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : NonUnitalNonAssocSemiring β
s : Finset α
f : α → β
b : β
h : ∀ (i : α), i ∈ s → Commute b (f i)
i : α
hi : i ∈ s.val
hb : f i ∈ Multiset.map (fun i => f i) s.val
⊢ Commute b (f i)
[PROOFSTEP]
exact h _ hi
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommGroup β
inst✝ : DecidableEq α
h : s₁ ⊆ s₂
⊢ ∏ x in s₂ \ s₁, f x = (∏ x in s₂, f x) / ∏ x in s₁, f x
[PROOFSTEP]
rw [eq_div_iff_mul_eq', prod_sdiff h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommGroup β
inst✝ : DecidableEq α
⊢ (∏ x in s₂ \ s₁, f x) / ∏ x in s₁ \ s₂, f x = (∏ x in s₂, f x) / ∏ x in s₁, f x
[PROOFSTEP]
simp [← Finset.prod_sdiff (@inf_le_left _ _ s₁ s₂), ← Finset.prod_sdiff (@inf_le_right _ _ s₁ s₂)]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝¹ : CommGroup β
inst✝ : DecidableEq α
a : α
h : a ∈ s
⊢ ∏ x in erase s a, f x = (∏ x in s, f x) / f a
[PROOFSTEP]
rw [eq_div_iff_mul_eq', prod_erase_mul _ _ h]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq β
s : Finset α
t : α → Finset β
h : ∀ (x : α), x ∈ s → ∀ (y : α), y ∈ s → x ≠ y → Disjoint (t x) (t y)
⊢ ∑ a in s, ∑ _i in t a, 1 = ∑ u in s, card (t u)
[PROOFSTEP]
simp_rw [card_eq_sum_ones]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq β
s : Finset α
t : α → Finset β
this : DecidableEq α
⊢ card (Finset.biUnion ∅ t) ≤ ∑ a in ∅, card (t a)
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝ : DecidableEq β
s✝ : Finset α
t : α → Finset β
this : DecidableEq α
a : α
s : Finset α
has : ¬a ∈ s
ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a)
⊢ card (Finset.biUnion (insert a s) t) ≤ card (t a) + card (Finset.biUnion s t)
[PROOFSTEP]
{rw [biUnion_insert]; exact Finset.card_union_le _ _
}
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝ : DecidableEq β
s✝ : Finset α
t : α → Finset β
this : DecidableEq α
a : α
s : Finset α
has : ¬a ∈ s
ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a)
⊢ card (Finset.biUnion (insert a s) t) ≤ card (t a) + card (Finset.biUnion s t)
[PROOFSTEP]
rw [biUnion_insert]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝ : DecidableEq β
s✝ : Finset α
t : α → Finset β
this : DecidableEq α
a : α
s : Finset α
has : ¬a ∈ s
ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a)
⊢ card (t a ∪ Finset.biUnion s t) ≤ card (t a) + card (Finset.biUnion s t)
[PROOFSTEP]
exact Finset.card_union_le _ _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝ : DecidableEq β
s✝ : Finset α
t : α → Finset β
this : DecidableEq α
a : α
s : Finset α
has : ¬a ∈ s
ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a)
⊢ card (t a) + card (Finset.biUnion s t) ≤ ∑ a in insert a s, card (t a)
[PROOFSTEP]
rw [sum_insert has]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝¹ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝ : DecidableEq β
s✝ : Finset α
t : α → Finset β
this : DecidableEq α
a : α
s : Finset α
has : ¬a ∈ s
ih : card (Finset.biUnion s t) ≤ ∑ a in s, card (t a)
⊢ card (t a) + card (Finset.biUnion s t) ≤ card (t a) + ∑ x in s, card (t x)
[PROOFSTEP]
exact add_le_add_left ih _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : DecidableEq β
f : α → β
s : Finset α
t : Finset β
H : ∀ (x : α), x ∈ s → f x ∈ t
⊢ card s = ∑ a in t, card (filter (fun x => f x = a) s)
[PROOFSTEP]
simp only [card_eq_sum_ones, sum_fiberwise_of_maps_to H]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
f : α → Multiset β
s : Finset α
b : β
⊢ b ∈ ∑ x in s, f x ↔ ∃ a, a ∈ s ∧ b ∈ f a
[PROOFSTEP]
classical
refine' s.induction_on (by simp) _
· intro a t hi ih
simp [sum_insert hi, ih, or_and_right, exists_or]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
f : α → Multiset β
s : Finset α
b : β
⊢ b ∈ ∑ x in s, f x ↔ ∃ a, a ∈ s ∧ b ∈ f a
[PROOFSTEP]
refine' s.induction_on (by simp) _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
f : α → Multiset β
s : Finset α
b : β
⊢ b ∈ ∑ x in ∅, f x ↔ ∃ a, a ∈ ∅ ∧ b ∈ f a
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
f : α → Multiset β
s : Finset α
b : β
⊢ ∀ ⦃a : α⦄ {s : Finset α},
¬a ∈ s →
(b ∈ ∑ x in s, f x ↔ ∃ a, a ∈ s ∧ b ∈ f a) → (b ∈ ∑ x in insert a s, f x ↔ ∃ a_3, a_3 ∈ insert a s ∧ b ∈ f a_3)
[PROOFSTEP]
intro a t hi ih
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
f : α → Multiset β
s : Finset α
b : β
a : α
t : Finset α
hi : ¬a ∈ t
ih : b ∈ ∑ x in t, f x ↔ ∃ a, a ∈ t ∧ b ∈ f a
⊢ b ∈ ∑ x in insert a t, f x ↔ ∃ a_1, a_1 ∈ insert a t ∧ b ∈ f a_1
[PROOFSTEP]
simp [sum_insert hi, ih, or_and_right, exists_or]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoidWithZero β
ha : a ∈ s
h : f a = 0
⊢ ∏ x in s, f x = 0
[PROOFSTEP]
haveI := Classical.decEq α
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoidWithZero β
ha : a ∈ s
h : f a = 0
this : DecidableEq α
⊢ ∏ x in s, f x = 0
[PROOFSTEP]
rw [← prod_erase_mul _ _ ha, h, mul_zero]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoidWithZero β
s : Finset α
p : α → Prop
inst✝ : DecidablePred p
⊢ (∏ i in s, if p i then 1 else 0) = if ∀ (i : α), i ∈ s → p i then 1 else 0
[PROOFSTEP]
split_ifs with h
[GOAL]
case pos
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoidWithZero β
s : Finset α
p : α → Prop
inst✝ : DecidablePred p
h : ∀ (i : α), i ∈ s → p i
⊢ (∏ i in s, if p i then 1 else 0) = 1
[PROOFSTEP]
apply prod_eq_one
[GOAL]
case pos.h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoidWithZero β
s : Finset α
p : α → Prop
inst✝ : DecidablePred p
h : ∀ (i : α), i ∈ s → p i
⊢ ∀ (x : α), x ∈ s → (if p x then 1 else 0) = 1
[PROOFSTEP]
intro i hi
[GOAL]
case pos.h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoidWithZero β
s : Finset α
p : α → Prop
inst✝ : DecidablePred p
h : ∀ (i : α), i ∈ s → p i
i : α
hi : i ∈ s
⊢ (if p i then 1 else 0) = 1
[PROOFSTEP]
rw [if_pos (h i hi)]
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoidWithZero β
s : Finset α
p : α → Prop
inst✝ : DecidablePred p
h : ¬∀ (i : α), i ∈ s → p i
⊢ (∏ i in s, if p i then 1 else 0) = 0
[PROOFSTEP]
push_neg at h
[GOAL]
case neg
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoidWithZero β
s : Finset α
p : α → Prop
inst✝ : DecidablePred p
h : ∃ i, i ∈ s ∧ ¬p i
⊢ (∏ i in s, if p i then 1 else 0) = 0
[PROOFSTEP]
rcases h with ⟨i, hi, hq⟩
[GOAL]
case neg.intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoidWithZero β
s : Finset α
p : α → Prop
inst✝ : DecidablePred p
i : α
hi : i ∈ s
hq : ¬p i
⊢ (∏ i in s, if p i then 1 else 0) = 0
[PROOFSTEP]
apply prod_eq_zero hi
[GOAL]
case neg.intro.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : CommMonoidWithZero β
s : Finset α
p : α → Prop
inst✝ : DecidablePred p
i : α
hi : i ∈ s
hq : ¬p i
⊢ (if p i then 1 else 0) = 0
[PROOFSTEP]
rw [if_neg hq]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoidWithZero β
inst✝¹ : Nontrivial β
inst✝ : NoZeroDivisors β
⊢ ∏ x in s, f x = 0 ↔ ∃ a, a ∈ s ∧ f a = 0
[PROOFSTEP]
classical
induction' s using Finset.induction_on with a s ha ih
· exact ⟨Not.elim one_ne_zero, fun ⟨_, H, _⟩ => by simp at H ⟩
· rw [prod_insert ha, mul_eq_zero, exists_mem_insert, ih, ← bex_def]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoidWithZero β
inst✝¹ : Nontrivial β
inst✝ : NoZeroDivisors β
⊢ ∏ x in s, f x = 0 ↔ ∃ a, a ∈ s ∧ f a = 0
[PROOFSTEP]
induction' s using Finset.induction_on with a s ha ih
[GOAL]
case empty
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoidWithZero β
inst✝¹ : Nontrivial β
inst✝ : NoZeroDivisors β
⊢ ∏ x in ∅, f x = 0 ↔ ∃ a, a ∈ ∅ ∧ f a = 0
[PROOFSTEP]
exact ⟨Not.elim one_ne_zero, fun ⟨_, H, _⟩ => by simp at H ⟩
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoidWithZero β
inst✝¹ : Nontrivial β
inst✝ : NoZeroDivisors β
x✝ : ∃ a, a ∈ ∅ ∧ f a = 0
w✝ : α
H : w✝ ∈ ∅
right✝ : f w✝ = 0
⊢ ∏ x in ∅, f x = 0
[PROOFSTEP]
simp at H
[GOAL]
case insert
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f g : α → β
inst✝² : CommMonoidWithZero β
inst✝¹ : Nontrivial β
inst✝ : NoZeroDivisors β
a : α
s : Finset α
ha : ¬a ∈ s
ih : ∏ x in s, f x = 0 ↔ ∃ a, a ∈ s ∧ f a = 0
⊢ ∏ x in insert a s, f x = 0 ↔ ∃ a_1, a_1 ∈ insert a s ∧ f a_1 = 0
[PROOFSTEP]
rw [prod_insert ha, mul_eq_zero, exists_mem_insert, ih, ← bex_def]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoidWithZero β
inst✝¹ : Nontrivial β
inst✝ : NoZeroDivisors β
⊢ ∏ x in s, f x ≠ 0 ↔ ∀ (a : α), a ∈ s → f a ≠ 0
[PROOFSTEP]
rw [Ne, prod_eq_zero_iff]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoidWithZero β
inst✝¹ : Nontrivial β
inst✝ : NoZeroDivisors β
⊢ (¬∃ a, a ∈ s ∧ f a = 0) ↔ ∀ (a : α), a ∈ s → f a ≠ 0
[PROOFSTEP]
push_neg
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝² : CommMonoidWithZero β
inst✝¹ : Nontrivial β
inst✝ : NoZeroDivisors β
⊢ (∀ (a : α), a ∈ s → f a ≠ 0) ↔ ∀ (a : α), a ∈ s → f a ≠ 0
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝¹ : CommMonoid β
inst✝ : Unique α
s : Finset α
f : α → β
h : Finset.Nonempty s
⊢ ∏ x in s, f x = f default
[PROOFSTEP]
rw [h.eq_singleton_default, Finset.prod_singleton]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
s : Finset α
n : ℕ
f : α → ℕ
⊢ Multiset.sum (Multiset.map (fun x => x % n) (Multiset.map (fun i => f i) s.val)) % n = (∑ i in s, f i % n) % n
[PROOFSTEP]
rw [Finset.sum, Multiset.map_map]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
s : Finset α
n : ℕ
f : α → ℕ
⊢ Multiset.sum (Multiset.map ((fun x => x % n) ∘ fun i => f i) s.val) % n =
Multiset.sum (Multiset.map (fun i => f i % n) s.val) % n
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
s : Finset α
n : ℕ
f : α → ℕ
⊢ Multiset.prod (Multiset.map (fun x => x % n) (Multiset.map (fun i => f i) s.val)) % n = (∏ i in s, f i % n) % n
[PROOFSTEP]
rw [Finset.prod, Multiset.map_map]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
s : Finset α
n : ℕ
f : α → ℕ
⊢ Multiset.prod (Multiset.map ((fun x => x % n) ∘ fun i => f i) s.val) % n =
Multiset.prod (Multiset.map (fun i => f i % n) s.val) % n
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
s : Finset α
n : ℤ
f : α → ℤ
⊢ Multiset.sum (Multiset.map (fun x => x % n) (Multiset.map (fun i => f i) s.val)) % n = (∑ i in s, f i % n) % n
[PROOFSTEP]
rw [Finset.sum, Multiset.map_map]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
s : Finset α
n : ℤ
f : α → ℤ
⊢ Multiset.sum (Multiset.map ((fun x => x % n) ∘ fun i => f i) s.val) % n =
Multiset.sum (Multiset.map (fun i => f i % n) s.val) % n
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
s : Finset α
n : ℤ
f : α → ℤ
⊢ Multiset.prod (Multiset.map (fun x => x % n) (Multiset.map (fun i => f i) s.val)) % n = (∏ i in s, f i % n) % n
[PROOFSTEP]
rw [Finset.prod, Multiset.map_map]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
s : Finset α
n : ℤ
f : α → ℤ
⊢ Multiset.prod (Multiset.map ((fun x => x % n) ∘ fun i => f i) s.val) % n =
Multiset.prod (Multiset.map (fun i => f i % n) s.val) % n
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝² : CommMonoid β
inst✝¹ : Unique α
inst✝ : Fintype α
f : α → β
⊢ ∏ x : α, f x = f default
[PROOFSTEP]
rw [univ_unique, prod_singleton]
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a✝ : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝² : CommMonoid β
inst✝¹ : Subsingleton α
inst✝ : Fintype α
f : α → β
a : α
⊢ ∏ x : α, f x = f a
[PROOFSTEP]
haveI : Unique α := uniqueOfSubsingleton a
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a✝ : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝² : CommMonoid β
inst✝¹ : Subsingleton α
inst✝ : Fintype α
f : α → β
a : α
this : Unique α
⊢ ∏ x : α, f x = f a
[PROOFSTEP]
rw [prod_unique f, Subsingleton.elim default a]
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝² : Fintype α
inst✝¹ : CommMonoid β
p : α → Prop
f : α → β
inst✝ : DecidablePred p
⊢ (∏ i : { x // p x }, f ↑i) * ∏ i : { x // ¬p x }, f ↑i = ∏ i : α, f i
[PROOFSTEP]
classical
let s := {x | p x}.toFinset
rw [← Finset.prod_subtype s, ← Finset.prod_subtype sᶜ]
· exact Finset.prod_mul_prod_compl _ _
· simp
· simp
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝² : Fintype α
inst✝¹ : CommMonoid β
p : α → Prop
f : α → β
inst✝ : DecidablePred p
⊢ (∏ i : { x // p x }, f ↑i) * ∏ i : { x // ¬p x }, f ↑i = ∏ i : α, f i
[PROOFSTEP]
let s := {x | p x}.toFinset
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝² : Fintype α
inst✝¹ : CommMonoid β
p : α → Prop
f : α → β
inst✝ : DecidablePred p
s : Finset α := Set.toFinset {x | p x}
⊢ (∏ i : { x // p x }, f ↑i) * ∏ i : { x // ¬p x }, f ↑i = ∏ i : α, f i
[PROOFSTEP]
rw [← Finset.prod_subtype s, ← Finset.prod_subtype sᶜ]
[GOAL]
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝² : Fintype α
inst✝¹ : CommMonoid β
p : α → Prop
f : α → β
inst✝ : DecidablePred p
s : Finset α := Set.toFinset {x | p x}
⊢ (∏ a in s, f a) * ∏ a in sᶜ, f a = ∏ i : α, f i
[PROOFSTEP]
exact Finset.prod_mul_prod_compl _ _
[GOAL]
case h
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝² : Fintype α
inst✝¹ : CommMonoid β
p : α → Prop
f : α → β
inst✝ : DecidablePred p
s : Finset α := Set.toFinset {x | p x}
⊢ ∀ (x : α), x ∈ sᶜ ↔ ¬p x
[PROOFSTEP]
simp
[GOAL]
case h
ι : Type u_1
β✝ : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β✝
α : Type u_2
β : Type u_3
inst✝² : Fintype α
inst✝¹ : CommMonoid β
p : α → Prop
f : α → β
inst✝ : DecidablePred p
s : Finset α := Set.toFinset {x | p x}
⊢ ∀ (x : α), x ∈ s ↔ p x
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
M : Type u_2
inst✝¹ : DecidableEq α
inst✝ : CommMonoid M
f : α → M
x✝ : Nodup []
⊢ Finset.prod (toFinset []) f = prod (map f [])
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
M : Type u_2
inst✝¹ : DecidableEq α
inst✝ : CommMonoid M
f : α → M
a : α
l : List α
hl : Nodup (a :: l)
⊢ Finset.prod (toFinset (a :: l)) f = prod (map f (a :: l))
[PROOFSTEP]
let ⟨not_mem, hl⟩ := List.nodup_cons.mp hl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
M : Type u_2
inst✝¹ : DecidableEq α
inst✝ : CommMonoid M
f : α → M
a : α
l : List α
hl✝ : Nodup (a :: l)
not_mem : ¬a ∈ l
hl : Nodup l
⊢ Finset.prod (toFinset (a :: l)) f = prod (map f (a :: l))
[PROOFSTEP]
simp [Finset.prod_insert (mt List.mem_toFinset.mp not_mem), prod_toFinset _ hl]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
a : Multiset α
l : List (Multiset α)
⊢ Disjoint (List.sum l) a ↔ ∀ (b : Multiset α), b ∈ l → Disjoint b a
[PROOFSTEP]
induction' l with b bs ih
[GOAL]
case nil
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
a : Multiset α
⊢ Disjoint (List.sum []) a ↔ ∀ (b : Multiset α), b ∈ [] → Disjoint b a
[PROOFSTEP]
simp only [zero_disjoint, List.not_mem_nil, IsEmpty.forall_iff, forall_const, List.sum_nil]
[GOAL]
case cons
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
a b : Multiset α
bs : List (Multiset α)
ih : Disjoint (List.sum bs) a ↔ ∀ (b : Multiset α), b ∈ bs → Disjoint b a
⊢ Disjoint (List.sum (b :: bs)) a ↔ ∀ (b_1 : Multiset α), b_1 ∈ b :: bs → Disjoint b_1 a
[PROOFSTEP]
simp_rw [List.sum_cons, disjoint_add_left, List.mem_cons, forall_eq_or_imp]
[GOAL]
case cons
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
a b : Multiset α
bs : List (Multiset α)
ih : Disjoint (List.sum bs) a ↔ ∀ (b : Multiset α), b ∈ bs → Disjoint b a
⊢ Disjoint b a ∧ Disjoint (List.sum bs) a ↔ Disjoint b a ∧ ∀ (a_1 : Multiset α), a_1 ∈ bs → Disjoint a_1 a
[PROOFSTEP]
simp [and_congr_left_iff, iff_self_iff, ih]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
a : Multiset α
l : List (Multiset α)
⊢ Disjoint a (List.sum l) ↔ ∀ (b : Multiset α), b ∈ l → Disjoint a b
[PROOFSTEP]
simpa only [@disjoint_comm _ a] using disjoint_list_sum_left
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
a : Multiset α
i : Multiset (Multiset α)
l : List (Multiset α)
⊢ Disjoint (sum (Quotient.mk (List.isSetoid (Multiset α)) l)) a ↔
∀ (b : Multiset α), b ∈ Quotient.mk (List.isSetoid (Multiset α)) l → Disjoint b a
[PROOFSTEP]
rw [quot_mk_to_coe, Multiset.coe_sum]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
a : Multiset α
i : Multiset (Multiset α)
l : List (Multiset α)
⊢ Disjoint (List.sum l) a ↔ ∀ (b : Multiset α), b ∈ ↑l → Disjoint b a
[PROOFSTEP]
exact disjoint_list_sum_left
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f g : α → β
a : Multiset α
i : Multiset (Multiset α)
⊢ Disjoint a (sum i) ↔ ∀ (b : Multiset α), b ∈ i → Disjoint a b
[PROOFSTEP]
simpa only [@disjoint_comm _ a] using disjoint_sum_left
[GOAL]
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β✝
β : Type u_2
i : Finset β
f : β → Multiset α
a : Multiset α
⊢ Disjoint (Finset.sum i f) a ↔ ∀ (b : β), b ∈ i → Disjoint (f b) a
[PROOFSTEP]
convert @disjoint_sum_left _ a (map f i.val)
[GOAL]
case h.e'_2.a
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β✝
β : Type u_2
i : Finset β
f : β → Multiset α
a : Multiset α
⊢ (∀ (b : β), b ∈ i → Disjoint (f b) a) ↔ ∀ (b : Multiset α), b ∈ map f i.val → Disjoint b a
[PROOFSTEP]
simp [and_congr_left_iff, iff_self_iff]
[GOAL]
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β✝
β : Type u_2
i : Finset β
f : β → Multiset α
a : Multiset α
⊢ Disjoint a (Finset.sum i f) ↔ ∀ (b : β), b ∈ i → Disjoint a (f b)
[PROOFSTEP]
simpa only [disjoint_comm] using disjoint_finset_sum_left
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x y z : Multiset α
h : y ≤ x
⊢ z + x = z ∪ y ↔ Disjoint z x ∧ x = y
[PROOFSTEP]
rw [← add_eq_union_iff_disjoint]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x y z : Multiset α
h : y ≤ x
⊢ z + x = z ∪ y ↔ z + x = z ∪ x ∧ x = y
[PROOFSTEP]
constructor
[GOAL]
case mp
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x y z : Multiset α
h : y ≤ x
⊢ z + x = z ∪ y → z + x = z ∪ x ∧ x = y
[PROOFSTEP]
intro h0
[GOAL]
case mp
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x y z : Multiset α
h : y ≤ x
h0 : z + x = z ∪ y
⊢ z + x = z ∪ x ∧ x = y
[PROOFSTEP]
rw [and_iff_right_of_imp]
[GOAL]
case mp
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x y z : Multiset α
h : y ≤ x
h0 : z + x = z ∪ y
⊢ x = y
[PROOFSTEP]
exact (le_of_add_le_add_left <| h0.trans_le <| union_le_add z y).antisymm h
[GOAL]
case mp
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x y z : Multiset α
h : y ≤ x
h0 : z + x = z ∪ y
⊢ x = y → z + x = z ∪ x
[PROOFSTEP]
rintro rfl
[GOAL]
case mp
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x z : Multiset α
h : x ≤ x
h0 : z + x = z ∪ x
⊢ z + x = z ∪ x
[PROOFSTEP]
exact h0
[GOAL]
case mpr
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x y z : Multiset α
h : y ≤ x
⊢ z + x = z ∪ x ∧ x = y → z + x = z ∪ y
[PROOFSTEP]
rintro ⟨h0, rfl⟩
[GOAL]
case mpr.intro
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x z : Multiset α
h0 : z + x = z ∪ x
h : x ≤ x
⊢ z + x = z ∪ x
[PROOFSTEP]
exact h0
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
x y z : Multiset α
h : z ≤ y
⊢ x + y = x ∪ z ↔ y = z ∧ Disjoint x y
[PROOFSTEP]
simpa only [and_comm] using add_eq_union_left_of_le h
[GOAL]
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β✝
inst✝ : DecidableEq α
β : Type u_2
i : Finset β
f : β → Multiset α
⊢ Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y)
[PROOFSTEP]
induction' i using Finset.cons_induction_on with z i hz hr
[GOAL]
case h₁
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β✝
inst✝ : DecidableEq α
β : Type u_2
f : β → Multiset α
⊢ Finset.sum ∅ f = Finset.sup ∅ f ↔ ∀ (x : β), x ∈ ∅ → ∀ (y : β), y ∈ ∅ → x ≠ y → Disjoint (f x) (f y)
[PROOFSTEP]
simp only [Finset.not_mem_empty, IsEmpty.forall_iff, imp_true_iff, Finset.sum_empty, Finset.sup_empty, bot_eq_zero,
eq_self_iff_true]
[GOAL]
case h₂
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β✝
inst✝ : DecidableEq α
β : Type u_2
f : β → Multiset α
z : β
i : Finset β
hz : ¬z ∈ i
hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y)
⊢ Finset.sum (Finset.cons z i hz) f = Finset.sup (Finset.cons z i hz) f ↔
∀ (x : β), x ∈ Finset.cons z i hz → ∀ (y : β), y ∈ Finset.cons z i hz → x ≠ y → Disjoint (f x) (f y)
[PROOFSTEP]
simp_rw [Finset.sum_cons hz, Finset.sup_cons, Finset.mem_cons, Multiset.sup_eq_union, forall_eq_or_imp, Ne.def,
IsEmpty.forall_iff, true_and_iff, imp_and, forall_and, ← hr, @eq_comm _ z]
[GOAL]
case h₂
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β✝
inst✝ : DecidableEq α
β : Type u_2
f : β → Multiset α
z : β
i : Finset β
hz : ¬z ∈ i
hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y)
⊢ f z + ∑ x in i, f x = f z ∪ Finset.sup i f ↔
(∀ (a : β), a ∈ i → ¬a = z → Disjoint (f z) (f a)) ∧
(∀ (x : β), x ∈ i → ¬x = z → Disjoint (f x) (f z)) ∧ Finset.sum i f = Finset.sup i f
[PROOFSTEP]
have := fun x (H : x ∈ i) => ne_of_mem_of_not_mem H hz
[GOAL]
case h₂
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β✝
inst✝ : DecidableEq α
β : Type u_2
f : β → Multiset α
z : β
i : Finset β
hz : ¬z ∈ i
hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y)
this : ∀ (x : β), x ∈ i → x ≠ z
⊢ f z + ∑ x in i, f x = f z ∪ Finset.sup i f ↔
(∀ (a : β), a ∈ i → ¬a = z → Disjoint (f z) (f a)) ∧
(∀ (x : β), x ∈ i → ¬x = z → Disjoint (f x) (f z)) ∧ Finset.sum i f = Finset.sup i f
[PROOFSTEP]
simp (config := { contextual := true }) only [this, not_false_iff, true_imp_iff]
[GOAL]
case h₂
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β✝
inst✝ : DecidableEq α
β : Type u_2
f : β → Multiset α
z : β
i : Finset β
hz : ¬z ∈ i
hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y)
this : ∀ (x : β), x ∈ i → x ≠ z
⊢ f z + ∑ x in i, f x = f z ∪ Finset.sup i f ↔
(∀ (a : β), a ∈ i → Disjoint (f z) (f a)) ∧
(∀ (x : β), x ∈ i → Disjoint (f x) (f z)) ∧ Finset.sum i f = Finset.sup i f
[PROOFSTEP]
simp_rw [← disjoint_finset_sum_left, ← disjoint_finset_sum_right, disjoint_comm, ← and_assoc, and_self_iff]
[GOAL]
case h₂
ι : Type u_1
β✝ : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β✝
inst✝ : DecidableEq α
β : Type u_2
f : β → Multiset α
z : β
i : Finset β
hz : ¬z ∈ i
hr : Finset.sum i f = Finset.sup i f ↔ ∀ (x : β), x ∈ i → ∀ (y : β), y ∈ i → x ≠ y → Disjoint (f x) (f y)
this : ∀ (x : β), x ∈ i → x ≠ z
⊢ f z + ∑ x in i, f x = f z ∪ Finset.sup i f ↔ Disjoint (f z) (∑ x in i, f x) ∧ Finset.sum i f = Finset.sup i f
[PROOFSTEP]
exact add_eq_union_left_of_le (Finset.sup_le fun x hx => le_sum_of_mem (mem_map_of_mem f hx))
[GOAL]
ι : Type u_1
β : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a : α✝
f g : α✝ → β
inst✝¹ : DecidableEq α✝
α : Type u_2
inst✝ : DecidableEq α
x : Multiset α
⊢ (Finset.sup (Finset.range (↑card x + 1)) fun k => powersetLen k x) = powerset x
[PROOFSTEP]
convert bind_powerset_len x using 1
[GOAL]
case h.e'_2
ι : Type u_1
β : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a : α✝
f g : α✝ → β
inst✝¹ : DecidableEq α✝
α : Type u_2
inst✝ : DecidableEq α
x : Multiset α
⊢ (Finset.sup (Finset.range (↑card x + 1)) fun k => powersetLen k x) =
bind (range (↑card x + 1)) fun k => powersetLen k x
[PROOFSTEP]
rw [Multiset.bind, Multiset.join, ← Finset.range_val, ← Finset.sum_eq_multiset_sum]
[GOAL]
case h.e'_2
ι : Type u_1
β : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a : α✝
f g : α✝ → β
inst✝¹ : DecidableEq α✝
α : Type u_2
inst✝ : DecidableEq α
x : Multiset α
⊢ (Finset.sup (Finset.range (↑card x + 1)) fun k => powersetLen k x) =
∑ x_1 in Finset.range (↑card x + 1), powersetLen x_1 x
[PROOFSTEP]
exact Eq.symm (finset_sum_eq_sup_iff_disjoint.mpr fun _ _ _ _ h => pairwise_disjoint_powersetLen x h)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
⊢ ∑ a in toFinset s, count a s = ∑ a in toFinset s, count a s • 1
[PROOFSTEP]
{simp only [smul_eq_mul, mul_one]
}
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
⊢ ∑ a in toFinset s, count a s = ∑ a in toFinset s, count a s • 1
[PROOFSTEP]
simp only [smul_eq_mul, mul_one]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
⊢ sum (map (fun x => 1) s) = ↑card s
[PROOFSTEP]
simp
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : DecidableEq α
s : Finset β
a : α
f : β → Multiset α
⊢ count a (∑ x in s, f x) = ∑ x in s, count a (f x)
[PROOFSTEP]
dsimp only [Finset.sum]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a✝ : α
f✝ g : α → β
inst✝ : DecidableEq α
s : Finset β
a : α
f : β → Multiset α
⊢ count a (sum (map (fun x => f x) s.val)) = sum (map (fun x => count a (f x)) s.val)
[PROOFSTEP]
rw [count_sum]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
⊢ ∑ a in toFinset s, count a s • {a} = s
[PROOFSTEP]
rw [← Finset.sum_multiset_map_count, Multiset.sum_map_singleton]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
k : ℕ
h : ∀ (a : α), a ∈ s → k ∣ count a s
⊢ ∃ u, s = k • u
[PROOFSTEP]
use∑ a in s.toFinset, (s.count a / k) • { a }
[GOAL]
case h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
k : ℕ
h : ∀ (a : α), a ∈ s → k ∣ count a s
⊢ s = k • ∑ a in toFinset s, (count a s / k) • {a}
[PROOFSTEP]
have h₂ :
(∑ x : α in s.toFinset, k • (count x s / k) • ({ x } : Multiset α)) = ∑ x : α in s.toFinset, count x s • { x } :=
by
apply Finset.sum_congr rfl
intro x hx
rw [← mul_nsmul', Nat.mul_div_cancel' (h x (mem_toFinset.mp hx))]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
k : ℕ
h : ∀ (a : α), a ∈ s → k ∣ count a s
⊢ ∑ x in toFinset s, k • (count x s / k) • {x} = ∑ x in toFinset s, count x s • {x}
[PROOFSTEP]
apply Finset.sum_congr rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
k : ℕ
h : ∀ (a : α), a ∈ s → k ∣ count a s
⊢ ∀ (x : α), x ∈ toFinset s → k • (count x s / k) • {x} = count x s • {x}
[PROOFSTEP]
intro x hx
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
k : ℕ
h : ∀ (a : α), a ∈ s → k ∣ count a s
x : α
hx : x ∈ toFinset s
⊢ k • (count x s / k) • {x} = count x s • {x}
[PROOFSTEP]
rw [← mul_nsmul', Nat.mul_div_cancel' (h x (mem_toFinset.mp hx))]
[GOAL]
case h
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : DecidableEq α
s : Multiset α
k : ℕ
h : ∀ (a : α), a ∈ s → k ∣ count a s
h₂ : ∑ x in toFinset s, k • (count x s / k) • {x} = ∑ x in toFinset s, count x s • {x}
⊢ s = k • ∑ a in toFinset s, (count a s / k) • {a}
[PROOFSTEP]
rw [← Finset.sum_nsmul, h₂, toFinset_sum_count_nsmul_eq]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
S : Multiset α
⊢ Finset.prod (toFinset S) id ∣ prod S
[PROOFSTEP]
rw [Finset.prod_eq_multiset_prod]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
S : Multiset α
⊢ prod (map (fun x => id x) (toFinset S).val) ∣ prod S
[PROOFSTEP]
refine' Multiset.prod_dvd_prod_of_le _
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f g : α → β
inst✝¹ : DecidableEq α
inst✝ : CommMonoid α
S : Multiset α
⊢ map (fun x => id x) (toFinset S).val ≤ S
[PROOFSTEP]
simp [Multiset.dedup_le S]
[GOAL]
ι✝ : Type u_1
β : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β
inst✝¹ : DecidableEq α✝
α : Type u_2
ι : Type u_3
inst✝ : CommMonoid α
f : ι → Multiset α
s : Finset ι
⊢ prod (∑ x in s, f x) = ∏ x in s, prod (f x)
[PROOFSTEP]
classical
induction' s using Finset.induction_on with a t hat ih
· rw [Finset.sum_empty, Finset.prod_empty, Multiset.prod_zero]
· rw [Finset.sum_insert hat, Finset.prod_insert hat, Multiset.prod_add, ih]
[GOAL]
ι✝ : Type u_1
β : Type u
α✝ : Type v
γ : Type w
s✝ s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β
inst✝¹ : DecidableEq α✝
α : Type u_2
ι : Type u_3
inst✝ : CommMonoid α
f : ι → Multiset α
s : Finset ι
⊢ prod (∑ x in s, f x) = ∏ x in s, prod (f x)
[PROOFSTEP]
induction' s using Finset.induction_on with a t hat ih
[GOAL]
case empty
ι✝ : Type u_1
β : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a : α✝
f✝ g : α✝ → β
inst✝¹ : DecidableEq α✝
α : Type u_2
ι : Type u_3
inst✝ : CommMonoid α
f : ι → Multiset α
⊢ prod (∑ x in ∅, f x) = ∏ x in ∅, prod (f x)
[PROOFSTEP]
rw [Finset.sum_empty, Finset.prod_empty, Multiset.prod_zero]
[GOAL]
case insert
ι✝ : Type u_1
β : Type u
α✝ : Type v
γ : Type w
s s₁ s₂ : Finset α✝
a✝ : α✝
f✝ g : α✝ → β
inst✝¹ : DecidableEq α✝
α : Type u_2
ι : Type u_3
inst✝ : CommMonoid α
f : ι → Multiset α
a : ι
t : Finset ι
hat : ¬a ∈ t
ih : prod (∑ x in t, f x) = ∏ x in t, prod (f x)
⊢ prod (∑ x in insert a t, f x) = ∏ x in insert a t, prod (f x)
[PROOFSTEP]
rw [Finset.sum_insert hat, Finset.prod_insert hat, Multiset.prod_add, ih]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommGroupWithZero β
s : Finset α
f : α → β
h : ∏ b in s, f b ≠ 0
⊢ mk0 (∏ b in s, f b) h = ∏ b in Finset.attach s, mk0 (f ↑b) (_ : f ↑b = 0 → False)
[PROOFSTEP]
classical induction s using Finset.induction_on <;> simp [*]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommGroupWithZero β
s : Finset α
f : α → β
h : ∏ b in s, f b ≠ 0
⊢ mk0 (∏ b in s, f b) h = ∏ b in Finset.attach s, mk0 (f ↑b) (_ : f ↑b = 0 → False)
[PROOFSTEP]
induction s using Finset.induction_on
[GOAL]
case empty
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommGroupWithZero β
f : α → β
h : ∏ b in ∅, f b ≠ 0
⊢ mk0 (∏ b in ∅, f b) h = ∏ b in Finset.attach ∅, mk0 (f ↑b) (_ : f ↑b = 0 → False)
[PROOFSTEP]
simp [*]
[GOAL]
case insert
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
inst✝ : CommGroupWithZero β
f : α → β
a✝² : α
s✝ : Finset α
a✝¹ : ¬a✝² ∈ s✝
a✝ : ∀ (h : ∏ b in s✝, f b ≠ 0), mk0 (∏ b in s✝, f b) h = ∏ b in Finset.attach s✝, mk0 (f ↑b) (_ : f ↑b = 0 → False)
h : ∏ b in insert a✝² s✝, f b ≠ 0
⊢ mk0 (∏ b in insert a✝² s✝, f b) h = ∏ b in Finset.attach (insert a✝² s✝), mk0 (f ↑b) (_ : f ↑b = 0 → False)
[PROOFSTEP]
simp [*]
[GOAL]
ι✝ : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
ι : Type u_2
s : Finset ι
f : ι → ℤ
⊢ Int.natAbs (∑ i in s, f i) ≤ ∑ i in s, Int.natAbs (f i)
[PROOFSTEP]
classical
induction' s using Finset.induction_on with i s his IH
· simp only [Finset.sum_empty, Int.natAbs_zero]
· simp only [his, Finset.sum_insert, not_false_iff]
exact (Int.natAbs_add_le _ _).trans (add_le_add le_rfl IH)
[GOAL]
ι✝ : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
ι : Type u_2
s : Finset ι
f : ι → ℤ
⊢ Int.natAbs (∑ i in s, f i) ≤ ∑ i in s, Int.natAbs (f i)
[PROOFSTEP]
induction' s using Finset.induction_on with i s his IH
[GOAL]
case empty
ι✝ : Type u_1
β : Type u
α : Type v
γ : Type w
s s₁ s₂ : Finset α
a : α
f✝ g : α → β
ι : Type u_2
f : ι → ℤ
⊢ Int.natAbs (∑ i in ∅, f i) ≤ ∑ i in ∅, Int.natAbs (f i)
[PROOFSTEP]
simp only [Finset.sum_empty, Int.natAbs_zero]
[GOAL]
case insert
ι✝ : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
ι : Type u_2
f : ι → ℤ
i : ι
s : Finset ι
his : ¬i ∈ s
IH : Int.natAbs (∑ i in s, f i) ≤ ∑ i in s, Int.natAbs (f i)
⊢ Int.natAbs (∑ i in insert i s, f i) ≤ ∑ i in insert i s, Int.natAbs (f i)
[PROOFSTEP]
simp only [his, Finset.sum_insert, not_false_iff]
[GOAL]
case insert
ι✝ : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f✝ g : α → β
ι : Type u_2
f : ι → ℤ
i : ι
s : Finset ι
his : ¬i ∈ s
IH : Int.natAbs (∑ i in s, f i) ≤ ∑ i in s, Int.natAbs (f i)
⊢ Int.natAbs (f i + ∑ i in s, f i) ≤ Int.natAbs (f i) + ∑ i in s, Int.natAbs (f i)
[PROOFSTEP]
exact (Int.natAbs_add_le _ _).trans (add_le_add le_rfl IH)
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : Monoid α
s : List α
⊢ ↑ofMul (List.prod s) = List.sum (List.map (↑ofMul) s)
[PROOFSTEP]
simp [ofMul]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : Monoid α
s : List α
⊢ List.prod s = List.sum s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : Monoid α
s : List (Additive α)
⊢ ↑toMul (List.sum s) = List.prod (List.map (↑toMul) s)
[PROOFSTEP]
simp [toMul, ofMul]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : Monoid α
s : List (Additive α)
⊢ List.sum s = List.prod s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddMonoid α
s : List α
⊢ ↑ofAdd (List.sum s) = List.prod (List.map (↑ofAdd) s)
[PROOFSTEP]
simp [ofAdd]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddMonoid α
s : List α
⊢ List.sum s = List.prod s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddMonoid α
s : List (Multiplicative α)
⊢ ↑toAdd (List.prod s) = List.sum (List.map (↑toAdd) s)
[PROOFSTEP]
simp [toAdd, ofAdd]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddMonoid α
s : List (Multiplicative α)
⊢ List.prod s = List.sum s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid α
s : Multiset α
⊢ ↑ofMul (Multiset.prod s) = Multiset.sum (Multiset.map (↑ofMul) s)
[PROOFSTEP]
simp [ofMul]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid α
s : Multiset α
⊢ Multiset.prod s = Multiset.sum s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid α
s : Multiset (Additive α)
⊢ ↑toMul (Multiset.sum s) = Multiset.prod (Multiset.map (↑toMul) s)
[PROOFSTEP]
simp [toMul, ofMul]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : CommMonoid α
s : Multiset (Additive α)
⊢ Multiset.sum s = Multiset.prod s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddCommMonoid α
s : Multiset α
⊢ ↑ofAdd (Multiset.sum s) = Multiset.prod (Multiset.map (↑ofAdd) s)
[PROOFSTEP]
simp [ofAdd]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddCommMonoid α
s : Multiset α
⊢ Multiset.sum s = Multiset.prod s
[PROOFSTEP]
rfl
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddCommMonoid α
s : Multiset (Multiplicative α)
⊢ ↑toAdd (Multiset.prod s) = Multiset.sum (Multiset.map (↑toAdd) s)
[PROOFSTEP]
simp [toAdd, ofAdd]
[GOAL]
ι : Type u_1
β : Type u
α : Type v
γ : Type w
s✝ s₁ s₂ : Finset α
a : α
f g : α → β
inst✝ : AddCommMonoid α
s : Multiset (Multiplicative α)
⊢ Multiset.prod s = Multiset.sum s
[PROOFSTEP]
rfl
| {"mathlib_filename": "Mathlib.Algebra.BigOperators.Basic", "llama_tokens": 109875} |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.