domenicrosati's picture
deberta-v3-xsmall-beavertails-harmful-qa-classifier
b37cf4a verified
metadata
license: mit
base_model: microsoft/deberta-v3-xsmall
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: deberta-v3-xsmall-beavertails-harmful-qa-classifier
    results: []

deberta-v3-xsmall-beavertails-harmful-qa-classifier

This model is a fine-tuned version of microsoft/deberta-v3-xsmall on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3043
  • Accuracy: 0.8716
  • Macro F1: 0.8716
  • Macro Precision: 0.8738
  • Macro Recall: 0.8736
  • Micro F1: 0.8716
  • Micro Precision: 0.8716
  • Micro Recall: 0.8716

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-06
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 4
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Macro F1 Macro Precision Macro Recall Micro F1 Micro Precision Micro Recall
0.3726 1.0 2349 0.3409 0.8573 0.8573 0.8581 0.8587 0.8573 0.8573 0.8573
0.3299 2.0 4698 0.3186 0.8669 0.8669 0.8697 0.8692 0.8669 0.8669 0.8669
0.3181 3.0 7047 0.3092 0.8683 0.8682 0.8715 0.8707 0.8683 0.8683 0.8683
0.3064 4.0 9396 0.3043 0.8716 0.8716 0.8738 0.8736 0.8716 0.8716 0.8716

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu121
  • Datasets 2.19.0
  • Tokenizers 0.19.1