THIS IS WORK IN PROGRESS
Docling Layout Model
docling-layout-heron
is the Layout Model of Docling project.
This model uses the RT-DETRv2 architecture and has been trained from scratch on a variety of document datasets.
Inference code example
Prerequisites:
pip install transformers Pillow torch requests
Prediction:
import requests
from transformers import RTDetrV2ForObjectDetection, RTDetrImageProcessor
import torch
from PIL import Image
classes_map = {
0: "Caption",
1: "Footnote",
2: "Formula",
3: "List-item",
4: "Page-footer",
5: "Page-header",
6: "Picture",
7: "Section-header",
8: "Table",
9: "Text",
10: "Title",
11: "Document Index",
12: "Code",
13: "Checkbox-Selected",
14: "Checkbox-Unselected",
15: "Form",
16: "Key-Value Region",
}
image_url = "https://huggingface.co/spaces/ds4sd/SmolDocling-256M-Demo/resolve/main/example_images/annual_rep_14.png"
model_name = "ds4sd/docling-layout-heron"
threshold = 0.6
# Download the image
image = Image.open(requests.get(image_url, stream=True).raw)
image = image.convert("RGB")
# Initialize the model
image_processor = RTDetrImageProcessor.from_pretrained(model_name)
model = RTDetrV2ForObjectDetection.from_pretrained(model_name)
# Run the prediction pipeline
inputs = image_processor(images=[image], return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
results = image_processor.post_process_object_detection(
outputs,
target_sizes=torch.tensor([image.size[::-1]]),
threshold=threshold,
)
# Get the results
for result in results:
for score, label_id, box in zip(
result["scores"], result["labels"], result["boxes"]
):
score = round(score.item(), 2)
label = classes_map[label_id.item()]
box = [round(i, 2) for i in box.tolist()]
print(f"{label}:{score} {box}")
References
@techreport{Docling,
author = {Deep Search Team},
month = {8},
title = {Docling Technical Report},
url = {https://arxiv.org/abs/2408.09869v4},
eprint = {2408.09869},
doi = {10.48550/arXiv.2408.09869},
version = {1.0.0},
year = {2024}
}
@misc{lv2024rtdetrv2improvedbaselinebagoffreebies,
title={RT-DETRv2: Improved Baseline with Bag-of-Freebies for Real-Time Detection Transformer},
author={Wenyu Lv and Yian Zhao and Qinyao Chang and Kui Huang and Guanzhong Wang and Yi Liu},
year={2024},
eprint={2407.17140},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2407.17140},
}
- Downloads last month
- 49
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support