Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: unsloth/tinyllama
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - ee984ace1fb84d60_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/ee984ace1fb84d60_train_data.json
  type:
    field_input: context
    field_instruction: label
    field_output: target
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 100
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: fats-fme/0e1a6df9-5aea-48c4-a737-e428a8bc5730
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 5.0e-05
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 10
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 130GB
max_steps: 200
micro_batch_size: 2
mlflow_experiment_name: /tmp/ee984ace1fb84d60_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 100
saves_per_epoch: null
sequence_len: 2048
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9970e7dd-8fd1-41c1-9f38-ad04b3bb6a65
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 9970e7dd-8fd1-41c1-9f38-ad04b3bb6a65
warmup_steps: 200
weight_decay: 0.01
xformers_attention: null

0e1a6df9-5aea-48c4-a737-e428a8bc5730

This model is a fine-tuned version of unsloth/tinyllama on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 200
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
No log 0.0000 1 2.3659
1.1988 0.0023 100 1.1847
1.2195 0.0046 200 1.1274

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for fats-fme/0e1a6df9-5aea-48c4-a737-e428a8bc5730

Base model

unsloth/tinyllama
Adapter
(313)
this model