This model will take a instruction template in the format of FineTemplates and a document and return an instantiated instruction and answer pair.
The output will be a JSON object.
Simple Usage Example
import json
import re
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
# Helper to expand excerpts in the answer
def expand(document, text):
excerpt_pattern = r"<excerpt>(.*?)<\.\.\.>(.*?)</excerpt>"
matches = re.findall(excerpt_pattern, text, flags=re.DOTALL)
replacements = {}
for prefix, suffix in matches:
match = re.search(
re.escape(prefix) + r" (.*?) " + re.escape(suffix),
document,
flags=re.DOTALL,
)
try:
if match:
replacements[f"<excerpt>{prefix}<...>{suffix}</excerpt>"] = match.group(
0
)
else:
return None
except Exception:
return None
for old, new in replacements.items():
text = text.replace(old, new)
return text
# Load tokenizer and model
tokenizer = AutoTokenizer.from_pretrained('fineinstructions/template_instantiator', revision=None)
tokenizer.padding_side = 'left'
model = AutoModelForCausalLM.from_pretrained('fineinstructions/template_instantiator', revision=None)
pipe = pipeline('text-generation', model=model, tokenizer=tokenizer, pad_token_id=tokenizer.pad_token_id, return_full_text=False)
# Run inference to instantiate the instruction template and generate an answer
inputs = [json.dumps({
"instruction_template": "...",
"document": "..."
}, indent=2)]
prompts = [tokenizer.apply_chat_template([{'role': 'user', 'content': i}], tokenize=False, add_generation_prompt=True) for i in inputs]
generations = pipe(prompts, max_length=131072, truncation=True, temperature=None, top_p=None, do_sample=False)
output = generations[0][0]['generated_text']
output_json = json.loads()
# Expand the answer
output_json["answer"] = expand(document=inputs[0]["document"], text=output_json["answer"])
# Print the output JSON
print(output_json)
##### Output JSON:
# {
# ..
# }
#
This model was trained with a synthetic dataset with DataDreamer ๐ค๐ค. The synthetic dataset card and model card can be found here. The training arguments can be found here.
- Downloads last month
- 5
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
HF Inference deployability: The model has no library tag.
Model tree for fineinstructions/template_instantiator
Base model
meta-llama/Llama-3.2-1B-Instruct