glot500_model_en_ewt
This model is a fine-tuned version of cis-lmu/glot500-base on the universal_dependencies dataset. It achieves the following results on the evaluation set:
- Loss: 0.2101
- Precision: 0.9401
- Recall: 0.9421
- F1: 0.9411
- Accuracy: 0.9484
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
1.0519 | 1.0 | 625 | 0.2891 | 0.9291 | 0.9298 | 0.9295 | 0.9396 |
0.2366 | 2.0 | 1250 | 0.2101 | 0.9401 | 0.9421 | 0.9411 | 0.9484 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ibrahimbukhari1998/glot500_model_en_ewt
Base model
cis-lmu/glot500-baseDataset used to train ibrahimbukhari1998/glot500_model_en_ewt
Evaluation results
- Precision on universal_dependenciestest set self-reported0.940
- Recall on universal_dependenciestest set self-reported0.942
- F1 on universal_dependenciestest set self-reported0.941
- Accuracy on universal_dependenciestest set self-reported0.948