glot500_model_fr_gsd
This model is a fine-tuned version of cis-lmu/glot500-base on the universal_dependencies dataset. It achieves the following results on the evaluation set:
- Loss: 0.1267
- Precision: 0.9609
- Recall: 0.9603
- F1: 0.9606
- Accuracy: 0.9654
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.9175 | 1.0 | 904 | 0.1582 | 0.9548 | 0.9541 | 0.9544 | 0.9601 |
0.1162 | 2.0 | 1808 | 0.1267 | 0.9609 | 0.9603 | 0.9606 | 0.9654 |
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 7
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for ibrahimbukhari1998/glot500_model_fr_gsd
Base model
cis-lmu/glot500-baseDataset used to train ibrahimbukhari1998/glot500_model_fr_gsd
Evaluation results
- Precision on universal_dependenciestest set self-reported0.961
- Recall on universal_dependenciestest set self-reported0.960
- F1 on universal_dependenciestest set self-reported0.961
- Accuracy on universal_dependenciestest set self-reported0.965