tags:
- sentence-transformers
- sentence-similarity
- dataset_size:120000
- multilingual
base_model: Alibaba-NLP/gte-multilingual-base
widget:
- source_sentence: Who is filming along?
sentences:
- Wién filmt mat?
- >-
Weider huet den Tatarescu drop higewisen, datt Rumänien durch seng
krichsbedélegong op de 6eite vun den allie'erten 110.000 mann verluer
hätt.
- Brambilla 130.08.03 St.
- source_sentence: 'Four potential scenarios could still play out: Jean Asselborn.'
sentences:
- >-
Dann ass nach eng Antenne hei um Kierchbierg virgesi Richtung RTL Gebai,
do gëtt jo een ganz neie Wunnquartier gebaut.
- >-
D'bedélegong un de wählen wir ganz stärk gewiéscht a munche ge'genden
wor re eso'gucr me' we' 90 prozent.
- Jean Asselborn gesäit 4 Méiglechkeeten, wéi et kéint virugoen.
- source_sentence: >-
Non-profit organisation Passerell, which provides legal council to
refugees in Luxembourg, announced that it has to make four employees
redundant in August due to a lack of funding.
sentences:
- Oetringen nach Remich....8.20» 215»
- >-
D'ASBL Passerell, déi sech ëm d'Berodung vu Refugiéeën a Saache
Rechtsfroe këmmert, wäert am August mussen hir véier fix Salariéen
entloossen.
- D'Regierung huet allerdéngs "just" 180.041 Doudeger verzeechent.
- source_sentence: This regulation was temporarily lifted during the Covid pandemic.
sentences:
- Six Jours vu New-York si fir d’équipe Girgetti — Debacco
- Dës Reegelung gouf wärend der Covid-Pandemie ausgesat.
- ING-Marathon ouni gréisser Tëschefäll ofgelaf - 18 Leit hospitaliséiert.
- source_sentence: The cross-border workers should also receive more wages.
sentences:
- D'grenzarbechetr missten och me' lo'n kre'en.
- >-
De Néckel: Firun! Dât ass jo ailes, wèll 't get dach neischt un der
Bréck gemâcht!
- >-
D'Grande-Duchesse Josephine Charlotte an hir Ministeren hunn d'Land
verlooss, et war den Optakt vun der Zäit am Exil.
pipeline_tag: sentence-similarity
library_name: sentence-transformers
model-index:
- name: SentenceTransformer based on Alibaba-NLP/gte-multilingual-base
results:
- task:
type: contemporary-lb
name: Contemporary-lb
dataset:
name: Contemporary-lb
type: contemporary-lb
metrics:
- type: accuracy
value: 0.6216
name: SIB-200(LB) accuracy
- type: accuracy
value: 0.6282
name: ParaLUX accuracy
- task:
type: bitext-mining
name: LBHistoricalBitextMining
dataset:
name: LBHistoricalBitextMining
type: lb-en
metrics:
- type: accuracy
value: 0.9683
name: LB<->FR accuracy
- type: accuracy
value: 0.9715
name: LB<->EN accuracy
- type: mean_accuracy
value: 0.9793
name: LB<->DE accuracy
license: agpl-3.0
datasets:
- impresso-project/HistLuxAlign
- fredxlpy/LuxAlign
language:
- lb
Luxembourgish adaptation of Alibaba-NLP/gte-multilingual-base
This is a sentence-transformers model finetuned from Alibaba-NLP/gte-multilingual-base further adapted to support Historical and Contemporary Luxembourgish. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for (cross-lingual) semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
This model is specialised to perform cross-lingual semantic search to and from Historical/Contemporary Luxembourgish. This model would be particularly useful for libraries and archives that want to perform semantic search and longitudinal studies within their collections.
This is an Alibaba-NLP/gte-multilingual-base model that was further adapted by (Michail et al., 2025)
Limitations
Whilst this model natively supports inputs up to 8192, all of our evaluations are on sentence level so there are no guarantees on it's longer text embedding capabilities of Historical Luxembourgish.
We also release a model that performs better (18pp) on ParaLUX. If finding monolingual exact matches within adversarial collections is of at-most importance, please use histlux-paraphrase-multilingual-mpnet-base-v2
Model Description
- Model Type: GTE-Multilingual-Base
- Base model: Alibaba-NLP/gte-multilingual-base
- Maximum Sequence Length: 8192 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- LB-EN (Hist-TR, RTL-M)
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('impresso-project/histlux-gte-multilingual-base', trust_remote_code=True)
embeddings = model.encode(sentences)
print(embeddings)
Evaluation Results
Metrics
(see introducing paper) Historical Bitext Mining (Accuracy):
LB -> FR: 96.8
FR -> LB: 96.9
LB -> EN: 97.2
EN -> LB: 97.2
LB -> DE: 98.0
DE -> LB: 91.8
Contemporary LB (Accuracy): ParaLUX: 62.82
SIB-200(LB): 62.16
Training Details
Training Dataset
The parallel sentences data mix is the following:
impresso-project/HistLuxAlign:
- LB-FR (x20,000)
- LB-EN (x20,000)
- LB-DE (x20,000)
fredxlpy/LuxAlign:
- LB-FR (x40,000)
- LB-EN (x20,000)
Total: 120 000 Sentence pairs in mixed batches of size 8
Contrastive Training
The model was trained with the parameters:
**Loss**:
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{ "epochs": 1, "evaluation_steps": 520, "max_grad_norm": 1, "optimizer_class": "<class 'torch.optim.adamw.AdamW'>", "optimizer_params": { "lr": 2e-05 }, "scheduler": "WarmupLinear", }
Citation
BibTeX
Adapting Multilingual Embedding Models to Historical Luxembourgish (introducing paper)
@misc{michail2025adaptingmultilingualembeddingmodels,
title={Adapting Multilingual Embedding Models to Historical Luxembourgish},
author={Andrianos Michail and Corina Julia Raclé and Juri Opitz and Simon Clematide},
year={2025},
eprint={2502.07938},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2502.07938},
}
Original Multilingual GTE Model
@inproceedings{zhang2024mgte,
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track},
pages={1393--1412},
year={2024}
}