|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: t5-small-asqa-ob |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t5-small-asqa-ob |
|
|
|
This model is a fine-tuned version of [google/t5-small-ssm-nq](https://huggingface.co/google/t5-small-ssm-nq) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.9381 |
|
- Rouge1: 0.1633 |
|
- Rouge2: 0.0907 |
|
- Rougel: 0.1394 |
|
- Rougelsum: 0.1393 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0005 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 50 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | |
|
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|:------:|:---------:| |
|
| 3.8212 | 1.0 | 710 | 2.7920 | 0.1248 | 0.0624 | 0.1064 | 0.1063 | |
|
| 3.0559 | 2.0 | 1420 | 2.5937 | 0.1319 | 0.0715 | 0.1139 | 0.1138 | |
|
| 2.568 | 3.0 | 2130 | 2.4971 | 0.1398 | 0.0754 | 0.1206 | 0.1204 | |
|
| 2.384 | 4.0 | 2840 | 2.5024 | 0.1473 | 0.0817 | 0.1273 | 0.1271 | |
|
| 2.1599 | 5.0 | 3550 | 2.4947 | 0.1498 | 0.0824 | 0.1288 | 0.1287 | |
|
| 2.0444 | 6.0 | 4260 | 2.5305 | 0.1502 | 0.0837 | 0.1291 | 0.1290 | |
|
| 1.9219 | 7.0 | 4970 | 2.5486 | 0.1599 | 0.0890 | 0.1376 | 0.1373 | |
|
| 1.7532 | 8.0 | 5680 | 2.5772 | 0.1647 | 0.0914 | 0.1413 | 0.1411 | |
|
| 1.6895 | 9.0 | 6390 | 2.6346 | 0.1630 | 0.0911 | 0.1397 | 0.1395 | |
|
| 1.5751 | 10.0 | 7100 | 2.6650 | 0.1700 | 0.0944 | 0.1450 | 0.1449 | |
|
| 1.4616 | 11.0 | 7810 | 2.6705 | 0.1571 | 0.0874 | 0.1348 | 0.1346 | |
|
| 1.3923 | 12.0 | 8520 | 2.7767 | 0.1695 | 0.0951 | 0.1453 | 0.1450 | |
|
| 1.3043 | 13.0 | 9230 | 2.8091 | 0.1704 | 0.0943 | 0.1460 | 0.1457 | |
|
| 1.2868 | 14.0 | 9940 | 2.8390 | 0.1553 | 0.0854 | 0.1327 | 0.1324 | |
|
| 1.176 | 15.0 | 10650 | 2.9381 | 0.1633 | 0.0907 | 0.1394 | 0.1393 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.0.dev0 |
|
- Pytorch 1.12.1+cu102 |
|
- Datasets 2.5.1 |
|
- Tokenizers 0.12.1 |
|
|