File size: 10,391 Bytes
e167b9d 6263f7d e167b9d 6263f7d e167b9d 604fdfc e167b9d 6263f7d 604fdfc 6263f7d 604fdfc 6263f7d e167b9d 604fdfc e167b9d 604fdfc e167b9d 604fdfc e167b9d 604fdfc e167b9d 604fdfc e167b9d 604fdfc e167b9d 604fdfc e167b9d 604fdfc e167b9d 604fdfc e167b9d 604fdfc e167b9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
{
"cells": [
{
"cell_type": "markdown",
"id": "3008bf1f-df10-484b-9662-96cda681b93b",
"metadata": {},
"source": [
"```bash\n",
"git clone https://github.com/kIshizaki-sci/AutoAWQ.git\n",
"pip install -U transformers\n",
"pip install -e ./AutoAWQ\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"id": "a388d190-a611-46b0-aa8c-dcf5c97b0c1b",
"metadata": {},
"outputs": [],
"source": [
"from awq import AutoAWQForCausalLM\n",
"import torch\n",
"import transformers\n",
"from transformers import AutoProcessor"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "de7f888d-fe64-47f1-a106-75a7b911354f",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"torch version : 2.4.1+cu124\n",
"transformers version : 4.51.3\n"
]
}
],
"source": [
"print('torch version : ', torch.__version__)\n",
"print('transformers version : ', transformers.__version__)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "61623ebd-d8a4-45b6-aff3-3c16a78ecfa5",
"metadata": {},
"outputs": [],
"source": [
"quant_path = 'kishizaki-sci/Llama-4-Scout-17B-16E-Instruct-AWQ'"
]
},
{
"cell_type": "code",
"execution_count": 4,
"id": "c13b72e4-f6cd-4642-a110-040844127541",
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/workspace/AutoAWQ/awq/models/llama4.py:312: UserWarning: Multimodal input has not been implemented in Llama4AWQForConditionalGeneration yet.\n",
" warnings.warn(\"Multimodal input has not been implemented in Llama4AWQForConditionalGeneration yet.\", UserWarning)\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3ac05674ff544f0382ab12b8ffcb2b0f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Fetching 25 files: 0%| | 0/25 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "fab65ad4f784481499296cfd8ea03d3a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Replacing MoE Block...: 0%| | 0/48 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Replacing layers...: 100%|ββββββββββ| 48/48 [00:08<00:00, 5.66it/s]\n",
"/workspace/AutoAWQ/awq/models/base.py:539: UserWarning: Skipping fusing modules because AWQ extension is not installed.No module named 'awq_ext'\n",
" warnings.warn(\"Skipping fusing modules because AWQ extension is not installed.\" + msg)\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 1h 38min 56s, sys: 24min 23s, total: 2h 3min 19s\n",
"Wall time: 22min 8s\n"
]
}
],
"source": [
"%%time\n",
"model = AutoAWQForCausalLM.from_quantized(quant_path, torch_dtype=torch.float16, use_cache=True, device_map='auto')\n",
"processor = AutoProcessor.from_pretrained(quant_path)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "665ae24c-cb73-489d-bb03-35d760460070",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Sat May 3 00:13:08 2025 \n",
"+-----------------------------------------------------------------------------------------+\n",
"| NVIDIA-SMI 570.86.15 Driver Version: 570.86.15 CUDA Version: 12.8 |\n",
"|-----------------------------------------+------------------------+----------------------+\n",
"| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |\n",
"| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |\n",
"| | | MIG M. |\n",
"|=========================================+========================+======================|\n",
"| 0 NVIDIA H100 NVL On | 00000000:C7:00.0 Off | 0 |\n",
"| N/A 36C P0 92W / 310W | 60518MiB / 95830MiB | 0% Default |\n",
"| | | Disabled |\n",
"+-----------------------------------------+------------------------+----------------------+\n",
" \n",
"+-----------------------------------------------------------------------------------------+\n",
"| Processes: |\n",
"| GPU GI CI PID Type Process name GPU Memory |\n",
"| ID ID Usage |\n",
"|=========================================================================================|\n",
"+-----------------------------------------------------------------------------------------+\n"
]
}
],
"source": [
"!nvidia-smi"
]
},
{
"cell_type": "code",
"execution_count": 6,
"id": "39c8154a-08c4-485e-b136-955d1b4fbec9",
"metadata": {},
"outputs": [],
"source": [
"messages = [\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\"type\": \"text\", \"text\": \"What does means the torsion free in the general relativit?\"},\n",
" ]\n",
" },\n",
"]"
]
},
{
"cell_type": "code",
"execution_count": 7,
"id": "44c4ae97-96cf-47f7-a8e4-16d2c34bdc1b",
"metadata": {},
"outputs": [],
"source": [
"inputs = processor.apply_chat_template(\n",
" messages,\n",
" add_generation_prompt=True,\n",
" tokenize=True,\n",
" return_dict=True,\n",
" return_tensors=\"pt\",\n",
").to(model.model.device)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"id": "c6dddd7b-5382-45e8-8dd1-6ca719200f64",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CPU times: user 1min 43s, sys: 867 ms, total: 1min 44s\n",
"Wall time: 1min 44s\n"
]
}
],
"source": [
"%%time\n",
"outputs = model.generate(\n",
" **inputs,\n",
" max_new_tokens=2048,\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "ab1d4fe0-e315-40ee-b3e0-10db1e6b2023",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"A question from the realm of differential geometry and general relativity!\n",
"\n",
"In general relativity, \"torsion-free\" refers to a property of a connection on a manifold, specifically in the context of Riemannian geometry.\n",
"\n",
"**Torsion** is a measure of how much a connection \"twists\" or \"turns\" a vector as it is parallel-transported around a closed loop. In other words, it's a measure of how much the connection deviates from being \"flat\" or \"Euclidean\".\n",
"\n",
"A **torsion-free connection**, also known as a **symmetric connection**, is a connection that has zero torsion. This means that when you parallel-transport a vector around a closed loop, it returns to its original orientation, without any twisting or turning.\n",
"\n",
"In mathematical terms, a torsion-free connection satisfies the following condition:\n",
"\n",
"$$\\Gamma^i_{jk} = \\Gamma^i_{kj}$$\n",
"\n",
"where $\\Gamma^i_{jk}$ are the Christoffel symbols of the second kind, which define the connection.\n",
"\n",
"In general relativity, the Levi-Civita connection is a fundamental concept, and it is assumed to be torsion-free. This connection is used to define the covariant derivative of tensors, which is essential for describing the curvature of spacetime.\n",
"\n",
"The assumption of a torsion-free connection has important implications:\n",
"\n",
"1. **Geodesic equation**: The geodesic equation, which describes the shortest path in curved spacetime, is derived from the Levi-Civita connection. A torsion-free connection ensures that geodesics are symmetric, meaning that they have no \"twist\" or \"turn\".\n",
"2. **Riemannian geometry**: The Levi-Civita connection is a fundamental ingredient in Riemannian geometry, which is the mathematical framework for describing curved spacetime in general relativity.\n",
"3. **Einstein's field equations**: The Einstein field equations, which relate the curvature of spacetime to the distribution of mass and energy, rely on the Levi-Civita connection.\n",
"\n",
"In summary, a torsion-free connection in general relativity means that the connection used to describe the curvature of spacetime has zero torsion, which is a fundamental assumption in Riemannian geometry and leads to the Levi-Civita connection. This assumption is crucial for the mathematical formulation of general relativity, including the geodesic equation and Einstein's field equations.<|eot|>\n"
]
}
],
"source": [
"response = processor.batch_decode(outputs[:, inputs[\"input_ids\"].shape[-1]:])[0]\n",
"print(response)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5f3f1be7-6960-474e-b19d-afd2efa56174",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|