Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 7462b07f6259b24d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/7462b07f6259b24d_train_data.json
  type:
    field_instruction: startphrase
    field_output: gold-ending
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso14/6a18706f-1f89-4af9-a79b-aa75bcf38fa7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000214
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 50000
micro_batch_size: 4
mlflow_experiment_name: /tmp/7462b07f6259b24d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 140
sequence_len: 1024
special_tokens:
  pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9611c628-3f80-4127-8fd5-47e5a88912ed
wandb_project: 14a
wandb_run: your_name
wandb_runid: 9611c628-3f80-4127-8fd5-47e5a88912ed
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null

6a18706f-1f89-4af9-a79b-aa75bcf38fa7

This model is a fine-tuned version of echarlaix/tiny-random-PhiForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 6.7381

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.000214
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 140
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 100
  • training_steps: 27536

Training results

Training Loss Epoch Step Validation Loss
No log 0.0004 1 6.9353
6.8024 0.1816 500 6.7948
6.7909 0.3632 1000 6.7805
6.7839 0.5447 1500 6.7707
6.7782 0.7263 2000 6.7665
6.7752 0.9079 2500 6.7620
6.7731 1.0896 3000 6.7585
6.7665 1.2712 3500 6.7563
6.7647 1.4528 4000 6.7555
6.7693 1.6343 4500 6.7542
6.7655 1.8159 5000 6.7526
6.7691 1.9975 5500 6.7526
6.7587 2.1792 6000 6.7495
6.7598 2.3608 6500 6.7491
6.7643 2.5424 7000 6.7475
6.7603 2.7240 7500 6.7470
6.7626 2.9055 8000 6.7467
6.7655 3.0872 8500 6.7455
6.7542 3.2688 9000 6.7447
6.7588 3.4504 9500 6.7444
6.7615 3.6320 10000 6.7439
6.7594 3.8136 10500 6.7434
6.7554 3.9951 11000 6.7427
6.7579 4.1769 11500 6.7426
6.7579 4.3584 12000 6.7423
6.7618 4.5400 12500 6.7421
6.7577 4.7216 13000 6.7415
6.758 4.9032 13500 6.7417
6.7564 5.0849 14000 6.7413
6.7575 5.2665 14500 6.7409
6.7554 5.4480 15000 6.7403
6.7527 5.6296 15500 6.7403
6.7581 5.8112 16000 6.7402
6.7663 5.9928 16500 6.7398
6.765 6.1745 17000 6.7397
6.7492 6.3561 17500 6.7396
6.7621 6.5377 18000 6.7392
6.7587 6.7192 18500 6.7391
6.7595 6.9008 19000 6.7388
6.7544 7.0825 19500 6.7388
6.76 7.2641 20000 6.7387
6.7539 7.4457 20500 6.7386
6.7574 7.6273 21000 6.7385
6.7517 7.8088 21500 6.7384
6.7531 7.9904 22000 6.7383
6.756 8.1721 22500 6.7381
6.754 8.3537 23000 6.7381
6.7558 8.5353 23500 6.7381
6.7533 8.7169 24000 6.7380
6.7583 8.8985 24500 6.7384
6.7586 9.0802 25000 6.7384
6.7559 9.2617 25500 6.7381

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
1
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for lesso14/6a18706f-1f89-4af9-a79b-aa75bcf38fa7

Adapter
(224)
this model