See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: echarlaix/tiny-random-PhiForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 7462b07f6259b24d_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/7462b07f6259b24d_train_data.json
type:
field_instruction: startphrase
field_output: gold-ending
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
do_eval: true
early_stopping_patience: 3
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 500
evals_per_epoch: null
flash_attention: true
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso14/6a18706f-1f89-4af9-a79b-aa75bcf38fa7
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.000214
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 50
lora_alpha: 128
lora_dropout: 0.15
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_steps: 50000
micro_batch_size: 4
mlflow_experiment_name: /tmp/7462b07f6259b24d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 10
optimizer: adamw_torch_fused
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 500
saves_per_epoch: null
seed: 140
sequence_len: 1024
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 9611c628-3f80-4127-8fd5-47e5a88912ed
wandb_project: 14a
wandb_run: your_name
wandb_runid: 9611c628-3f80-4127-8fd5-47e5a88912ed
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
6a18706f-1f89-4af9-a79b-aa75bcf38fa7
This model is a fine-tuned version of echarlaix/tiny-random-PhiForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 6.7381
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.000214
- train_batch_size: 4
- eval_batch_size: 4
- seed: 140
- gradient_accumulation_steps: 8
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 27536
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0004 | 1 | 6.9353 |
6.8024 | 0.1816 | 500 | 6.7948 |
6.7909 | 0.3632 | 1000 | 6.7805 |
6.7839 | 0.5447 | 1500 | 6.7707 |
6.7782 | 0.7263 | 2000 | 6.7665 |
6.7752 | 0.9079 | 2500 | 6.7620 |
6.7731 | 1.0896 | 3000 | 6.7585 |
6.7665 | 1.2712 | 3500 | 6.7563 |
6.7647 | 1.4528 | 4000 | 6.7555 |
6.7693 | 1.6343 | 4500 | 6.7542 |
6.7655 | 1.8159 | 5000 | 6.7526 |
6.7691 | 1.9975 | 5500 | 6.7526 |
6.7587 | 2.1792 | 6000 | 6.7495 |
6.7598 | 2.3608 | 6500 | 6.7491 |
6.7643 | 2.5424 | 7000 | 6.7475 |
6.7603 | 2.7240 | 7500 | 6.7470 |
6.7626 | 2.9055 | 8000 | 6.7467 |
6.7655 | 3.0872 | 8500 | 6.7455 |
6.7542 | 3.2688 | 9000 | 6.7447 |
6.7588 | 3.4504 | 9500 | 6.7444 |
6.7615 | 3.6320 | 10000 | 6.7439 |
6.7594 | 3.8136 | 10500 | 6.7434 |
6.7554 | 3.9951 | 11000 | 6.7427 |
6.7579 | 4.1769 | 11500 | 6.7426 |
6.7579 | 4.3584 | 12000 | 6.7423 |
6.7618 | 4.5400 | 12500 | 6.7421 |
6.7577 | 4.7216 | 13000 | 6.7415 |
6.758 | 4.9032 | 13500 | 6.7417 |
6.7564 | 5.0849 | 14000 | 6.7413 |
6.7575 | 5.2665 | 14500 | 6.7409 |
6.7554 | 5.4480 | 15000 | 6.7403 |
6.7527 | 5.6296 | 15500 | 6.7403 |
6.7581 | 5.8112 | 16000 | 6.7402 |
6.7663 | 5.9928 | 16500 | 6.7398 |
6.765 | 6.1745 | 17000 | 6.7397 |
6.7492 | 6.3561 | 17500 | 6.7396 |
6.7621 | 6.5377 | 18000 | 6.7392 |
6.7587 | 6.7192 | 18500 | 6.7391 |
6.7595 | 6.9008 | 19000 | 6.7388 |
6.7544 | 7.0825 | 19500 | 6.7388 |
6.76 | 7.2641 | 20000 | 6.7387 |
6.7539 | 7.4457 | 20500 | 6.7386 |
6.7574 | 7.6273 | 21000 | 6.7385 |
6.7517 | 7.8088 | 21500 | 6.7384 |
6.7531 | 7.9904 | 22000 | 6.7383 |
6.756 | 8.1721 | 22500 | 6.7381 |
6.754 | 8.3537 | 23000 | 6.7381 |
6.7558 | 8.5353 | 23500 | 6.7381 |
6.7533 | 8.7169 | 24000 | 6.7380 |
6.7583 | 8.8985 | 24500 | 6.7384 |
6.7586 | 9.0802 | 25000 | 6.7384 |
6.7559 | 9.2617 | 25500 | 6.7381 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for lesso14/6a18706f-1f89-4af9-a79b-aa75bcf38fa7
Base model
echarlaix/tiny-random-PhiForCausalLM