See axolotl config
axolotl version: 0.8.0
base_model: mistralai/Mistral-Nemo-Instruct-2407
model_type: MistralForCausalLM
hub_model_id: Alignment-Lab-AI/linabot
strict: false
chat_template: tokenizer_default
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_glu_activation: true
liger_layer_norm: true
liger_fused_linear_cross_entropy: true
datasets:
- path: linabot/train_data
type: chat_template
field_messages: messages
message_property_mappings:
role: role
content: content
roles_to_train: ['assistant', 'user']
train_on_eos: turn
learning_rate: 2e-5
lr_scheduler: cosine
weight_decay: 0.03
warmup_steps: 450
dataset_prepared_path:
val_set_size: 0.2
output_dir: ./outputs/out
sequence_len: 10400
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: true
wandb_project: linabot
wandb_entity:
wandb_watch: all
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 1
micro_batch_size: 4
num_epochs: 5
optimizer: adalomo
lr_scheduler: cosine
learning_rate: 0.0002024
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true
torch_compile_mode: "max-autotune"
bf16: auto
tf32: false
gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
evals_per_epoch: 8
saves_per_epoch: 1
weight_decay: 0.03
special_tokens:
bos_token: "<s>"
eos_token: "</s>"
pad_token: "<pad>"
linabot
This model is a fine-tuned version of mistralai/Mistral-Nemo-Instruct-2407 on the linabot/train_data dataset. It achieves the following results on the evaluation set:
- Loss: 0.0558
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002024
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use OptimizerNames.ADALOMO and the args are: No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 450
- num_epochs: 5.0
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.526 | 0.0083 | 1 | 1.5474 |
1.5934 | 0.125 | 15 | 1.5472 |
1.5242 | 0.25 | 30 | 1.5454 |
1.5296 | 0.375 | 45 | 1.5408 |
1.5087 | 0.5 | 60 | 1.5322 |
1.486 | 0.625 | 75 | 1.5188 |
1.4314 | 0.75 | 90 | 1.5005 |
1.4311 | 0.875 | 105 | 1.4782 |
1.4532 | 1.0 | 120 | 1.4513 |
1.4215 | 1.125 | 135 | 1.4198 |
1.3248 | 1.25 | 150 | 1.3825 |
1.2697 | 1.375 | 165 | 1.3386 |
1.3281 | 1.5 | 180 | 1.2880 |
1.2428 | 1.625 | 195 | 1.2296 |
1.1533 | 1.75 | 210 | 1.1596 |
1.1038 | 1.875 | 225 | 1.0747 |
1.0226 | 2.0 | 240 | 0.9723 |
0.8858 | 2.125 | 255 | 0.8467 |
0.6762 | 2.25 | 270 | 0.7047 |
0.6433 | 2.375 | 285 | 0.5626 |
0.4017 | 2.5 | 300 | 0.4283 |
0.2875 | 2.625 | 315 | 0.3072 |
0.2244 | 2.75 | 330 | 0.2161 |
0.1445 | 2.875 | 345 | 0.1572 |
0.0898 | 3.0 | 360 | 0.1192 |
0.0666 | 3.125 | 375 | 0.0991 |
0.0605 | 3.25 | 390 | 0.0855 |
0.0457 | 3.375 | 405 | 0.0757 |
0.052 | 3.5 | 420 | 0.0700 |
0.0634 | 3.625 | 435 | 0.0658 |
0.0364 | 3.75 | 450 | 0.0623 |
0.045 | 3.875 | 465 | 0.0601 |
0.0395 | 4.0 | 480 | 0.0582 |
0.0558 | 4.125 | 495 | 0.0573 |
0.0468 | 4.25 | 510 | 0.0566 |
0.0399 | 4.375 | 525 | 0.0562 |
0.0337 | 4.5 | 540 | 0.0560 |
0.0413 | 4.625 | 555 | 0.0559 |
0.0318 | 4.75 | 570 | 0.0558 |
0.0435 | 4.875 | 585 | 0.0558 |
0.0445 | 5.0 | 600 | 0.0558 |
Framework versions
- Transformers 4.51.1
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support
Model tree for linabot/linabot-final
Base model
mistralai/Mistral-Nemo-Base-2407
Finetuned
mistralai/Mistral-Nemo-Instruct-2407