Model Details
⚠️ EXPERIMENTAL IMPLEMENTATION - NOT PRODUCTION-READY ⚠️
Proof-of-concept model for research purposes only
Model Type: This model is a fine-tuned version of qwen3-0.6b
for generating product attributes and entities from product titles in Persian.
Fine-tuning Dataset: The model was fine-tuned on 20,000 samples from the BaSalam/entity-attribute-sft-dataset-GPT-4.0-generated-v1
dataset, which contains GPT-4 generated data for higher quality responses.
Training Environment:
- GPU: Kaggle P100 GPU with 16GB memory
- Epochs: 1
- Library: Unsloth library was used for fine-tuning
Intended Use
This model is designed to take a product title in Persian and generate a JSON output containing the product entity and its attributes. It is particularly useful for applications that require structured product information extraction from unstructured text.
Example Usage
Input:
prompt = """instruction': \"here is a product title from a Iranian marketplace. \n give me the Product Entity and Attributes of this product in Persian language.\n give the output in this json format: {'attributes': {'attribute_name' : <attribute value>, ...}, 'product_entity': '<product entity>'}.\n Don't make assumptions about what values to plug into json. Just give Json not a single word more.\n \nproduct title:"""
title = """: ست شابلون ژله ای دو قلو صریر 20سانتی 1 عدد
1 عدد ست شابلون ژله ای دو قلو سریر 20سانتی متر
با کیفیت مناسب و صادراتی
شامل دو تکه شابلون ژله ای
در چهار رنگ سبز، قرمز، نارنجی و آبی موجود است.
پخش لوازم التحریر کیان""""
Output
{
"attributes": {
"تعداد در بستهبندی": ["1 عدد"],
"ابعاد": ["20 سانتی متر"],
"رنگ": ["سبز", "قرمز", "نارنجی", "آبی"],
"کیفیت": ["مناسب و صادراتی"],
"محتویات بستهبندی": ["دو تکه شابلون ژله ای"]
},
"product_entity": ["لوازم التحریر کیان"]
}
- Downloads last month
- 25
8-bit
Model tree for mansoorhamidzadeh/qwen3-0.6b-entity-attr-basalam-gguf
Base model
Qwen/Qwen3-0.6B-Base