metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- common_voice_17_0
metrics:
- wer
model-index:
- name: whisper-small-el
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_17_0
type: common_voice_17_0
config: el
split: None
args: el
metrics:
- name: Wer
type: wer
value: 30.64381658175081
whisper-small-el
This model is a fine-tuned version of openai/whisper-small on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.3865
- Model Preparation Time: 0.0041
- Wer: 30.6438
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 2000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Model Preparation Time | Wer |
---|---|---|---|---|---|
0.5511 | 0.3311 | 50 | 0.3685 | 0.0041 | 39.3516 |
0.3132 | 0.6623 | 100 | 0.3168 | 0.0041 | 35.6276 |
0.2709 | 0.9934 | 150 | 0.2897 | 0.0041 | 33.4785 |
0.1634 | 1.3245 | 200 | 0.2829 | 0.0041 | 33.1450 |
0.1551 | 1.6556 | 250 | 0.2746 | 0.0041 | 32.5614 |
0.1559 | 1.9868 | 300 | 0.2683 | 0.0041 | 31.8481 |
0.0818 | 2.3179 | 350 | 0.2735 | 0.0041 | 31.3942 |
0.0808 | 2.6490 | 400 | 0.2735 | 0.0041 | 31.9592 |
0.0799 | 2.9801 | 450 | 0.2765 | 0.0041 | 32.4595 |
0.0451 | 3.3113 | 500 | 0.2922 | 0.0041 | 31.4590 |
0.0436 | 3.6424 | 550 | 0.2892 | 0.0041 | 31.0514 |
0.0436 | 3.9735 | 600 | 0.2902 | 0.0041 | 31.3942 |
0.0241 | 4.3046 | 650 | 0.3117 | 0.0041 | 31.2552 |
0.0212 | 4.6358 | 700 | 0.3162 | 0.0041 | 31.0699 |
0.0226 | 4.9669 | 750 | 0.3172 | 0.0041 | 30.8754 |
0.0127 | 5.2980 | 800 | 0.3521 | 0.0041 | 32.5336 |
0.0125 | 5.6291 | 850 | 0.3432 | 0.0041 | 31.1996 |
0.0123 | 5.9603 | 900 | 0.3463 | 0.0041 | 31.4034 |
0.0077 | 6.2914 | 950 | 0.3764 | 0.0041 | 31.0699 |
0.0071 | 6.6225 | 1000 | 0.3607 | 0.0041 | 32.4317 |
0.0062 | 6.9536 | 1050 | 0.3698 | 0.0041 | 30.8754 |
0.0045 | 7.2848 | 1100 | 0.3758 | 0.0041 | 30.9588 |
0.0035 | 7.6159 | 1150 | 0.3865 | 0.0041 | 30.6438 |
0.0038 | 7.9470 | 1200 | 0.3856 | 0.0041 | 31.2830 |
0.0027 | 8.2781 | 1250 | 0.3800 | 0.0041 | 30.8569 |
0.0021 | 8.6093 | 1300 | 0.3858 | 0.0041 | 30.6901 |
0.0022 | 8.9404 | 1350 | 0.3949 | 0.0041 | 31.1996 |
0.0017 | 9.2715 | 1400 | 0.4020 | 0.0041 | 30.7920 |
0.0016 | 9.6026 | 1450 | 0.4061 | 0.0041 | 30.9588 |
0.0016 | 9.9338 | 1500 | 0.4111 | 0.0041 | 31.0514 |
0.0014 | 10.2649 | 1550 | 0.4067 | 0.0041 | 31.1996 |
0.0013 | 10.5960 | 1600 | 0.4093 | 0.0041 | 31.0144 |
0.0013 | 10.9272 | 1650 | 0.4112 | 0.0041 | 30.8661 |
0.0012 | 11.2583 | 1700 | 0.4126 | 0.0041 | 30.9680 |
0.0012 | 11.5894 | 1750 | 0.4134 | 0.0041 | 30.9588 |
0.0012 | 11.9205 | 1800 | 0.4145 | 0.0041 | 30.9217 |
0.0011 | 12.2517 | 1850 | 0.4155 | 0.0041 | 30.8384 |
0.0011 | 12.5828 | 1900 | 0.4160 | 0.0041 | 30.8939 |
0.0011 | 12.9139 | 1950 | 0.4163 | 0.0041 | 30.8754 |
0.0011 | 13.2450 | 2000 | 0.4164 | 0.0041 | 30.8754 |
Framework versions
- Transformers 4.48.0
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0