whisper-small-el / README.md
kostissz's picture
End of training
f1e07b7 verified
|
raw
history blame
5.41 kB
metadata
library_name: transformers
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - common_voice_17_0
metrics:
  - wer
model-index:
  - name: whisper-small-el
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: el
          split: None
          args: el
        metrics:
          - name: Wer
            type: wer
            value: 30.64381658175081

whisper-small-el

This model is a fine-tuned version of openai/whisper-small on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3865
  • Model Preparation Time: 0.0041
  • Wer: 30.6438

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 24
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Model Preparation Time Wer
0.5511 0.3311 50 0.3685 0.0041 39.3516
0.3132 0.6623 100 0.3168 0.0041 35.6276
0.2709 0.9934 150 0.2897 0.0041 33.4785
0.1634 1.3245 200 0.2829 0.0041 33.1450
0.1551 1.6556 250 0.2746 0.0041 32.5614
0.1559 1.9868 300 0.2683 0.0041 31.8481
0.0818 2.3179 350 0.2735 0.0041 31.3942
0.0808 2.6490 400 0.2735 0.0041 31.9592
0.0799 2.9801 450 0.2765 0.0041 32.4595
0.0451 3.3113 500 0.2922 0.0041 31.4590
0.0436 3.6424 550 0.2892 0.0041 31.0514
0.0436 3.9735 600 0.2902 0.0041 31.3942
0.0241 4.3046 650 0.3117 0.0041 31.2552
0.0212 4.6358 700 0.3162 0.0041 31.0699
0.0226 4.9669 750 0.3172 0.0041 30.8754
0.0127 5.2980 800 0.3521 0.0041 32.5336
0.0125 5.6291 850 0.3432 0.0041 31.1996
0.0123 5.9603 900 0.3463 0.0041 31.4034
0.0077 6.2914 950 0.3764 0.0041 31.0699
0.0071 6.6225 1000 0.3607 0.0041 32.4317
0.0062 6.9536 1050 0.3698 0.0041 30.8754
0.0045 7.2848 1100 0.3758 0.0041 30.9588
0.0035 7.6159 1150 0.3865 0.0041 30.6438
0.0038 7.9470 1200 0.3856 0.0041 31.2830
0.0027 8.2781 1250 0.3800 0.0041 30.8569
0.0021 8.6093 1300 0.3858 0.0041 30.6901
0.0022 8.9404 1350 0.3949 0.0041 31.1996
0.0017 9.2715 1400 0.4020 0.0041 30.7920
0.0016 9.6026 1450 0.4061 0.0041 30.9588
0.0016 9.9338 1500 0.4111 0.0041 31.0514
0.0014 10.2649 1550 0.4067 0.0041 31.1996
0.0013 10.5960 1600 0.4093 0.0041 31.0144
0.0013 10.9272 1650 0.4112 0.0041 30.8661
0.0012 11.2583 1700 0.4126 0.0041 30.9680
0.0012 11.5894 1750 0.4134 0.0041 30.9588
0.0012 11.9205 1800 0.4145 0.0041 30.9217
0.0011 12.2517 1850 0.4155 0.0041 30.8384
0.0011 12.5828 1900 0.4160 0.0041 30.8939
0.0011 12.9139 1950 0.4163 0.0041 30.8754
0.0011 13.2450 2000 0.4164 0.0041 30.8754

Framework versions

  • Transformers 4.48.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0