Safetensors
qwen2
Pangea-7B / README.md
yueqis's picture
Create README.md
085034d verified
---
license: apache-2.0
datasets:
- neulab/PangeaInstruct
language:
- am
- ar
- bg
- bn
- cs
- de
- el
- en
- es
- fa
- fr
- ga
- hi
- id
- ig
- it
- iw
- ja
- jv
- ko
- nl
- mn
- ms
- no
- pl
- pt
- ro
- ru
- si
- su
- sw
- ta
- te
- th
- tr
- uk
- ur
- vi
- zh
base_model:
- Qwen/Qwen2-7B-Instruct
---
# Pangea-7B Model Card
[Pangea: A Fully Open Multilingual Multimodal LLM for 39 Languages](https://neulab.github.io/Pangea/)
๐Ÿ‡ช๐Ÿ‡น ๐Ÿ‡ธ๐Ÿ‡ฆ ๐Ÿ‡ง๐Ÿ‡ฌ ๐Ÿ‡ง๐Ÿ‡ฉ ๐Ÿ‡จ๐Ÿ‡ฟ ๐Ÿ‡ฉ๐Ÿ‡ช ๐Ÿ‡ฌ๐Ÿ‡ท ๐Ÿ‡ฌ๐Ÿ‡ง ๐Ÿ‡บ๐Ÿ‡ธ ๐Ÿ‡ช๐Ÿ‡ธ ๐Ÿ‡ฎ๐Ÿ‡ท ๐Ÿ‡ซ๐Ÿ‡ท ๐Ÿ‡ฎ๐Ÿ‡ช ๐Ÿ‡ฎ๐Ÿ‡ณ ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿ‡ณ๐Ÿ‡ฌ ๐Ÿ‡ฎ๐Ÿ‡น ๐Ÿ‡ฎ๐Ÿ‡ฑ ๐Ÿ‡ฏ๐Ÿ‡ต ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿ‡ฐ๐Ÿ‡ท ๐Ÿ‡ณ๐Ÿ‡ฑ ๐Ÿ‡ฒ๐Ÿ‡ณ ๐Ÿ‡ฒ๐Ÿ‡พ ๐Ÿ‡ณ๐Ÿ‡ด ๐Ÿ‡ต๐Ÿ‡ฑ ๐Ÿ‡ต๐Ÿ‡น ๐Ÿ‡ง๐Ÿ‡ท ๐Ÿ‡ท๐Ÿ‡ด ๐Ÿ‡ท๐Ÿ‡บ ๐Ÿ‡ฑ๐Ÿ‡ฐ ๐Ÿ‡ฎ๐Ÿ‡ฉ ๐Ÿ‡ฐ๐Ÿ‡ช ๐Ÿ‡น๐Ÿ‡ฟ ๐Ÿ‡ฑ๐Ÿ‡ฐ ๐Ÿ‡น๐Ÿ‡ญ ๐Ÿ‡น๐Ÿ‡ท ๐Ÿ‡บ๐Ÿ‡ฆ ๐Ÿ‡ต๐Ÿ‡ฐ ๐Ÿ‡ป๐Ÿ‡ณ ๐Ÿ‡จ๐Ÿ‡ณ ๐Ÿ‡น๐Ÿ‡ผ
[๐Ÿ  Homepage](https://neulab.github.io/Pangea/) | [๐Ÿค– Pangea-7B](https://huggingface.co/neulab/Pangea-7B) | [๐Ÿ“Š PangeaIns](https://huggingface.co/datasets/neulab/PangeaInstruct) | [๐Ÿงช PangeaBench](https://huggingface.co/collections/neulab/pangea-6713c3b0d78a453906eb2ed8) | [๐Ÿ’ป Github](https://github.com/neulab/Pangea/tree/main) | [๐Ÿ“„ Arxiv](https://arxiv.org/abs/2410.16153) | [๐Ÿ“• PDF](https://arxiv.org/pdf/2410.16153) | [๐Ÿ–ฅ๏ธ Demo](https://huggingface.co/spaces/neulab/Pangea)
<img src="https://cdn-uploads.huggingface.co/production/uploads/6230d750d93e84e233882dbc/ZjVTKnIsyshWpo-PWg9gM.png" alt="description" style="width:300px;">
## Model details
- **Model:** Pangea is a fully open-source Multilingual Multimodal Multicultural LLM.
- **Date:** Pangea-7B was trained in 2024.
- **Training Dataset:** [6M PangeaIns](https://huggingface.co/datasets/neulab/PangeaInstruct).
- **Architecture:** Pangea-7B follows the architecture of [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT), with a [Qwen2-7B-Instruct](https://huggingface.co/Qwen/Qwen2-7B-Instruct) backbone.
## Uses
Pangea-7B follows the architecture of [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT).
You could either (1) follow the same model loading procedures as of [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT), an example of loading Pangea-7B directly is shown in the Python code below, or (2) use our hf version of Pangea-7B: [Pangea-7B-hf]https://huggingface.co/neulab/Pangea-7B-hf
### Direct Use
First you would need to clone and install [LLaVA-NeXT](https://github.com/LLaVA-VL/LLaVA-NeXT).
```bash
git clone https://github.com/LLaVA-VL/LLaVA-NeXT
cd LLaVA-NeXT
pip install -e ".[train]"
```
Then, you could load Pangea-7B using the following code:
```python
from llava.model.builder import load_pretrained_model
model_path = 'neulab/Pangea-7B'
model_name = 'Pangea-7B-qwen'
args = {"multimodal": True}
tokenizer, model, image_processor, context_len = load_pretrained_model(model_path, None, model_name, **args)
```
Defining some helper functions for using the model:
```python
import torch
from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
from llava.utils import disable_torch_init
from llava.constants import IGNORE_INDEX, DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from typing import Dict
import transformers
import re
from PIL import Image
def preprocess_qwen(sources, tokenizer: transformers.PreTrainedTokenizer, has_image: bool = False, max_len=2048, system_message: str = "You are a helpful assistant.") -> Dict:
roles = {"human": "<|im_start|>user", "gpt": "<|im_start|>assistant"}
im_start, im_end = tokenizer.additional_special_tokens_ids
nl_tokens = tokenizer("\n").input_ids
_system = tokenizer("system").input_ids + nl_tokens
_user = tokenizer("user").input_ids + nl_tokens
_assistant = tokenizer("assistant").input_ids + nl_tokens
input_ids = []
source = sources
if roles[source[0]["from"]] != roles["human"]: source = source[1:]
input_id, target = [], []
system = [im_start] + _system + tokenizer(system_message).input_ids + [im_end] + nl_tokens
input_id += system
target += [im_start] + [IGNORE_INDEX] * (len(system) - 3) + [im_end] + nl_tokens
assert len(input_id) == len(target)
for j, sentence in enumerate(source):
role = roles[sentence["from"]]
if has_image and sentence["value"] is not None and "<image>" in sentence["value"]:
num_image = len(re.findall(DEFAULT_IMAGE_TOKEN, sentence["value"]))
texts = sentence["value"].split('<image>')
_input_id = tokenizer(role).input_ids + nl_tokens
for i,text in enumerate(texts):
_input_id += tokenizer(text).input_ids
if i<len(texts)-1: _input_id += [IMAGE_TOKEN_INDEX] + nl_tokens
_input_id += [im_end] + nl_tokens
assert sum([i==IMAGE_TOKEN_INDEX for i in _input_id])==num_image
else:
if sentence["value"] is None: _input_id = tokenizer(role).input_ids + nl_tokens
else: _input_id = tokenizer(role).input_ids + nl_tokens + tokenizer(sentence["value"]).input_ids + [im_end] + nl_tokens
input_id += _input_id
input_ids.append(input_id)
return torch.tensor(input_ids, dtype=torch.long)
def generate_output(prompt, image=None, do_sample=False, temperature=0, top_p=0.5, num_beams=1, max_new_tokens=1024):
image_tensors = []
prompt = "<image>\n" + prompt
image = Image.open(image)
image_tensor = image_processor.preprocess(image, return_tensors='pt')['pixel_values']
image_tensors.append(image_tensor.half().cuda())
input_ids = preprocess_qwen([{'from': 'human', 'value': prompt},{'from': 'gpt','value': None}], tokenizer, has_image=True).cuda()
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=image_tensors,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
use_cache=True
)
outputs = tokenizer.batch_decode(output_ids, skip_special_tokens=True)[0]
outputs = outputs.strip()
return outputs
```
Now, an example of using the model:
```python
prompt = "What did you see in the image?"
image = "image.png"
print(generate_output(prompt, image=image))
```
Note that the example above demonstrates multimodal usage. To use the model with text-only inputs, you would need to reload the model with :
```python
args = {"multimodal": True}
tokenizer, model, _, context_len = load_pretrained_model(model_path, None, model_name, **args)
def generate_output_text_only(prompt, do_sample=False, temperature=0, top_p=0.5, num_beams=1, max_new_tokens=1024):
input_ids = preprocess_qwen([{'from': 'human', 'value': prompt},{'from': 'gpt','value': None}], tokenizer, has_image=False).cuda()
with torch.inference_mode():
generated_ids = model.generate(
input_ids,
do_sample=do_sample,
temperature=temperature,
top_p=top_p,
num_beams=num_beams,
max_new_tokens=max_new_tokens,
use_cache=True
)
generated_ids = [output_ids[len(input_ids) :] for input_ids, output_ids in zip(input_ids, generated_ids)]
outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
outputs = outputs.strip()
return outputs
prompt = "Write me a python function that could sort a input integer list by descending order"
print(generate_output_text_only(prompt))
```
## Citing the Model
**BibTeX Citation:**
```
@article{yue2024pangeafullyopenmultilingual,
title={Pangea: A Fully Open Multilingual Multimodal LLM for 39 Languages},
author={Xiang Yue and Yueqi Song and Akari Asai and Seungone Kim and Jean de Dieu Nyandwi and Simran Khanuja and Anjali Kantharuban and Lintang Sutawika and Sathyanarayanan Ramamoorthy and Graham Neubig},
year={2024},
journal={arXiv preprint arXiv:2410.16153},
url={https://arxiv.org/abs/2410.16153}
}
```