nickmuchi's picture
update model card README.md
e845cd9
|
raw
history blame
3.36 kB
metadata
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: finbert-tone-finetuned-fintwitter-classification
    results: []

finbert-tone-finetuned-fintwitter-classification

This model is a fine-tuned version of yiyanghkust/finbert-tone on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4236
  • Accuracy: 0.8823
  • F1: 0.8823
  • Precision: 0.8825
  • Recall: 0.8823

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.6385 1.0 597 0.3688 0.8668 0.8693 0.8744 0.8668
0.3044 2.0 1194 0.3994 0.8744 0.8726 0.8739 0.8744
0.1833 3.0 1791 0.6212 0.8781 0.8764 0.8762 0.8781
0.1189 4.0 2388 0.8370 0.8740 0.8743 0.8748 0.8740
0.0759 5.0 2985 0.9107 0.8807 0.8798 0.8796 0.8807
0.0291 6.0 3582 0.9711 0.8836 0.8825 0.8821 0.8836
0.0314 7.0 4179 1.1305 0.8819 0.8811 0.8812 0.8819
0.0217 8.0 4776 1.0190 0.8811 0.8813 0.8816 0.8811
0.0227 9.0 5373 1.1940 0.8844 0.8832 0.8838 0.8844
0.0156 10.0 5970 1.2595 0.8752 0.8768 0.8801 0.8752
0.0135 11.0 6567 1.1931 0.8760 0.8768 0.8780 0.8760
0.009 12.0 7164 1.2154 0.8857 0.8852 0.8848 0.8857
0.0058 13.0 7761 1.3874 0.8748 0.8759 0.8776 0.8748
0.009 14.0 8358 1.4193 0.8740 0.8754 0.8780 0.8740
0.0042 15.0 8955 1.2999 0.8807 0.8800 0.8796 0.8807
0.0028 16.0 9552 1.3428 0.8802 0.8805 0.8817 0.8802
0.0029 17.0 10149 1.3959 0.8807 0.8807 0.8810 0.8807
0.0022 18.0 10746 1.4149 0.8827 0.8823 0.8824 0.8827
0.0037 19.0 11343 1.4078 0.8840 0.8838 0.8838 0.8840
0.001 20.0 11940 1.4236 0.8823 0.8823 0.8825 0.8823

Framework versions

  • Transformers 4.25.1
  • Pytorch 1.13.0+cu116
  • Datasets 2.8.0
  • Tokenizers 0.13.2