|
--- |
|
license: mit |
|
datasets: |
|
- observerw/ChiseLLM-Completion |
|
- observerw/ChiseLLM-Decompile |
|
base_model: |
|
- Qwen/Qwen2.5-Coder-7B-Instruct |
|
--- |
|
|
|
# ChiseLLM Models |
|
|
|
<img src="https://raw.githubusercontent.com/observerw/ChiseLLM/refs/heads/main/assets/logo.svg" alt="ChiseLLM" style="width:30%"> |
|
|
|
[GitHub](https://github.com/observerw/ChiseLLM) |
|
|
|
ChiseLLM is a series of **large reasoning models specifically trained for the [Chisel Hardware Construction language](https://www.chisel-lang.org)**, aimed at revolutionizing HCL-Baed Agile Hardware Development Methodology (AHDM). |
|
|
|
Built on [Qwen/Qwen2.5-Coder-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct) with domain-adaptive fine-tuning, the model combines high-quality reasoning datasets and specific thinking patterns to significantly enhance performance in hardware design tasks. |
|
|
|
ChiseLLM Models can: |
|
|
|
- **Transform natural language specifications into high-quality Chisel code** (Spec-to-Chisel) |
|
- **Intelligently translate Verilog code into enhanced Chisel implementations** (Decompile-to-Chisel) |
|
- **Generate hardware designs with superior variability and extensibility**, surpassing traditional design approaches |
|
|
|
### Use Cases |
|
|
|
ChiseLLM Models is particularly suited for the following applications: |
|
|
|
- **Rapid Hardware Design Prototyping**: Dramatically shortens the design cycle from specification to implementation |
|
- **Verilog Code Modernization**: Intelligently converts legacy Verilog code into extensible Chisel implementations |
|
- **Hardware Architecture Exploration**: Generates multiple design variants for the same functional requirements |
|
- **Design Refactoring and Optimization**: Leverages Chisel's advanced features to improve existing hardware designs |
|
- **Agile Hardware Development Education**: Serves as an assistive tool for learning Chisel and modern hardware design methods |
|
|
|
### Training results |
|
|
|
Spec-to-Chisel task on VerilogEval: |
|
|
|
| Models | pass@1 | pass@3 | pass@5 | syntax(%) | |
|
| ------------------------------ | --------- | --------- | --------- | --------- | |
|
| Llama3.1-8B-Instruct | 4.33 | 9.90 | 13.21 | 9.02 | |
|
| Qwen2.5-Coder-7B-Instruct | 21.94 | 31.87 | 36.73 | 37.08 | |
|
| \*Deepseek-R1-Distill-Llama-8B | 9.31 | 15.44 | 17.72 | 16.01 | |
|
| \*ChiseLLM-7B | **29.41** | **47.08** | **54.04** | **58.82** | |
|
|
|
| Models | pass@1 | pass@3 | pass@5 | syntax(%) | |
|
| ------------------------------- | --------- | --------- | --------- | --------- | |
|
| Qwen2.5-Coder-32B-Instruct | 41.02 | 53.85 | 58.79 | 73.47 | |
|
| Qwen2.5-72B-Instruct | 39.74 | 49.30 | 52.90 | 61.31 | |
|
| Llama-3.3-70B-Instruct | 38.14 | 44.90 | 48.02 | 65.97 | |
|
| \*Deepseek-R1-Distill-Qwen-32B | 38.50 | 54.58 | 61.16 | 52.19 | |
|
| \*Deepseek-R1-Distill-Llama-70B | 36.62 | 52.28 | 59.90 | 51.72 | |
|
| \*ChiseLLM-32B | **51.43** | **68.29** | **72.78** | **76.45** | |
|
|
|
| Models | pass@1 | pass@3 | pass@5 | syntax(%) | |
|
| ------------- | --------- | --------- | --------- | --------- | |
|
| Deepseek-V3 | 50.16 | 63.44 | 67.32 | 76.37 | |
|
| GPT-4o | 42.04 | 60.16 | 65.17 | 69.76 | |
|
| \*Deepseek-R1 | **62.74** | **76.05** | **80.16** | **82.85** | |
|
|
|
Decompile-to-Chisel task on VerilogEval: |
|
|
|
| Models | pass@1 | pass@3 | pass@5 | syntax(%) | |
|
| ------------------------------ | --------- | --------- | --------- | --------- | |
|
| Llama3.1-8B-Instruct | 5.43 | 12.29 | 16.08 | 11.15 | |
|
| Qwen2.5-Coder-7B-Instruct | 27.60 | 34.58 | 37.19 | 43.23 | |
|
| \*Deepseek-R1-Distill-Llama-8B | 10.05 | 16.15 | 18.13 | 12.03 | |
|
| \* ChiseLLM-7B | **50.47** | **70.99** | **78.08** | **59.19** | |
|
|
|
| Models | pass@1 | pass@3 | pass@5 | syntax(%) | |
|
| ------------------------------- | --------- | --------- | --------- | --------- | |
|
| Qwen2.5-Coder-32B-Instruct | 41.19 | 48.96 | 51.59 | 53.93 | |
|
| Qwen2.5-72B-Instruct | 40.54 | 47.32 | 49.83 | 59.30 | |
|
| Llama-3.3-70B-Instruct | 38.38 | 46.96 | 51.36 | 48.00 | |
|
| \*Deepseek-R1-Distill-Qwen-32B | 45.03 | 63.02 | 70.18 | 53.17 | |
|
| \*Deepseek-R1-Distill-Llama-70B | 37.50 | 55.05 | 63.84 | 45.59 | |
|
| \*ChiseLLM-32B | **56.41** | **72.00** | **77.67** | **64.71** | |
|
|
|
| Models | pass@1 | pass@3 | pass@5 | syntax(%) | |
|
| ------------- | --------- | --------- | --------- | --------- | |
|
| Deepseek-V3 | **54.57** | 63.19 | 66.71 | **66.19** | |
|
| GPT-4o | 42.39 | 65.75 | 71.83 | 53.77 | |
|
| \*Deepseek-R1 | 53.45 | **71.50** | **77.91** | 59.13 | |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.51.0 |
|
- Pytorch 2.6.0a0+df5bbc09d1.nv24.12 |
|
- Datasets 3.4.1 |
|
- Tokenizers 0.21.0 |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
|
|
- learning_rate: 1e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 8 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 128 |
|
- total_eval_batch_size: 64 |
|
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.05 |
|
- num_epochs: 3.0 |
|
|
|
## Citation |
|
|
|
If you are interested in our work, please consider citing this, it would be greatly appreciated! |
|
|
|
```bibtex |
|
@misc{wang2025chisellmunleashingpowerreasoning, |
|
title={ChiseLLM: Unleashing the Power of Reasoning LLMs for Chisel Agile Hardware Development}, |
|
author={Bowei Wang and Jiaran Gao and Yelai Feng and Renzhi Chen and Shanshan Li and Lei Wang}, |
|
year={2025}, |
|
eprint={2504.19144}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.AI}, |
|
url={https://arxiv.org/abs/2504.19144}, |
|
} |
|
``` |