File size: 4,535 Bytes
a97c8bc
 
 
 
 
 
 
 
 
 
55914d9
18c191a
6c1a11e
833462a
 
 
 
 
3de8590
32a36a0
 
3de8590
 
 
a955d84
3de8590
 
 
 
 
 
 
 
a955d84
 
3de8590
a955d84
 
3de8590
a955d84
 
3de8590
a955d84
 
3de8590
a955d84
 
3de8590
a955d84
 
3de8590
 
 
 
 
 
 
 
a955d84
3de8590
 
 
 
 
 
 
 
a955d84
3de8590
 
a955d84
3de8590
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a955d84
 
 
 
 
 
3de8590
 
 
 
 
a955d84
 
 
 
3de8590
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: apache-2.0
language:
- en
base_model:
- prithivMLmods/Qwen3-4B-ft-bf16
pipeline_tag: text-generation
library_name: transformers
tags:
- text-generation-inference
- code
- RL
- moe
datasets:
- livecodebench/code_generation_lite
- PrimeIntellect/verifiable-coding-problems
- likaixin/TACO-verified
- open-r1/codeforces-cots
---
 
![C.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/mAaFPD5SwVwx7hoOLWvO2.png)

# **Blitzar-Coder-4B-F.1**

> **Blitzar-Coder-4B-F.1** is a high-efficiency, multi-language coding model fine-tuned on **Qwen3-4B** using **larger coding traces datasets** spanning **10+ programming languages** including Python, Java, C#, C++, C, Go, JavaScript, TypeScript, Rust, and more. This model delivers exceptional code generation, debugging, and reasoning capabilities—making it an ideal tool for developers seeking advanced programming assistance under constrained compute.

> \[!note]
> GGUF: [https://huggingface.co/prithivMLmods/Blitzar-Coder-4B-F.1-GGUF](https://huggingface.co/prithivMLmods/Blitzar-Coder-4B-F.1-GGUF)

---

## **Key Features**

1. **Multi-Language Code Mastery**
   Fine-tuned on **extensive coding traces datasets** covering **10+ programming languages** (Python, Java, C#, C++, C, Go, JavaScript, TypeScript, Rust, Swift, Kotlin, and more), enabling cross-language development and translation.

2. **Advanced Code Generation & Reasoning**
   Supports complex algorithm synthesis, code optimization, debugging workflows, and architectural design patterns across multiple paradigms—from systems programming to web development.

3. **Cross-Language Development Support**
   Seamlessly handles polyglot codebases, API integrations, and framework-specific implementations while maintaining language-specific best practices and idioms.

4. **Intelligent Code Analysis**
   Performs code reviews, identifies performance bottlenecks, suggests refactoring opportunities, and provides detailed explanations for complex programming concepts.

5. **Structured Output for Development**
   Generates clean code documentation, API specifications, configuration files, and technical documentation in various formats including **Markdown**, **JSON**, **YAML**, and inline comments.

6. **Optimized 4B Footprint for Developer Workflows**
   Balanced for performance and efficiency, deployable on **developer workstations**, **CI/CD pipelines**, and **edge development environments** without compromising code quality.

---

## **Quickstart with Transformers**

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model_name = "prithivMLmods/Blitzar-Coder-4B-F.1"

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    torch_dtype="auto",
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

prompt = "Create a REST API endpoint in Python using FastAPI that handles file uploads with validation and returns processing status."

messages = [
    {"role": "system", "content": "You are an expert programming assistant skilled in multiple languages and development practices."},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

model_inputs = tokenizer([text], return_tensors="pt").to(model.device)

generated_ids = model.generate(
    **model_inputs,
    max_new_tokens=512
)
generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```

---

## **Intended Use**

* Multi-language code generation and debugging assistance
* Cross-platform development and code translation between languages
* Code review, optimization, and refactoring suggestions
* Technical documentation and API specification generation
* Developer productivity tools and IDE integrations
* Educational coding tutorials and programming concept explanations

---

## **Limitations**

* Optimized for coding tasks—may underperform on general conversation
* Context limitations may affect analysis of very large codebases
* Focused on programming domains—creative writing capabilities are limited
* Best suited for technical development workflows rather than casual chat

---

## **References**

1. [Qwen2.5 Technical Report (2024)](https://arxiv.org/pdf/2412.15115)
2. [YaRN: Efficient Context Window Extension of Large Language Models](https://arxiv.org/pdf/2309.00071)