Stable-Diffusion-v2.1: Optimized for Mobile Deployment

State-of-the-art generative AI model used to generate detailed images conditioned on text descriptions

Generates high resolution images from text prompts using a latent diffusion model. This model uses CLIP ViT-L/14 as text encoder, U-Net based latent denoising, and VAE based decoder to generate the final image.

This model is an implementation of Stable-Diffusion-v2.1 found here.

This repository provides scripts to run Stable-Diffusion-v2.1 on Qualcomm® devices. More details on model performance across various devices, can be found here.

Model Details

  • Model Type: Image generation
  • Model Stats:
    • Input: Text prompt to generate image
    • Text Encoder Number of parameters: 340M
    • UNet Number of parameters: 865M
    • VAE Decoder Number of parameters: 83M
    • Model size: 1GB
Model Device Chipset Target Runtime Inference Time (ms) Peak Memory Range (MB) Precision Primary Compute Unit Target Model
TextEncoderQuantizable Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 6.666 ms 0 - 3 MB W8A16 NPU Stable-Diffusion-v2.1.so
TextEncoderQuantizable Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 4.647 ms 0 - 20 MB W8A16 NPU Stable-Diffusion-v2.1.so
TextEncoderQuantizable Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 4.2 ms 0 - 15 MB W8A16 NPU Use Export Script
TextEncoderQuantizable Snapdragon X Elite CRD Snapdragon® X Elite QNN 6.84 ms 0 - 0 MB W8A16 NPU Use Export Script
TextEncoderQuantizable SA7255P ADP SA7255P QNN 88.113 ms 0 - 9 MB W8A16 NPU Use Export Script
TextEncoderQuantizable SA8255 (Proxy) SA8255P Proxy QNN 6.62 ms 0 - 3 MB W8A16 NPU Use Export Script
TextEncoderQuantizable SA8650 (Proxy) SA8650P Proxy QNN 6.654 ms 0 - 2 MB W8A16 NPU Use Export Script
TextEncoderQuantizable SA8775P ADP SA8775P QNN 7.869 ms 0 - 10 MB W8A16 NPU Use Export Script
TextEncoderQuantizable QCS8275 (Proxy) QCS8275 Proxy QNN 88.113 ms 0 - 9 MB W8A16 NPU Use Export Script
TextEncoderQuantizable QCS8550 (Proxy) QCS8550 Proxy QNN 6.636 ms 0 - 3 MB W8A16 NPU Use Export Script
TextEncoderQuantizable QCS9075 (Proxy) QCS9075 Proxy QNN 7.869 ms 0 - 10 MB W8A16 NPU Use Export Script
UnetQuantizable Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 96.977 ms 0 - 3 MB W8A16 NPU Stable-Diffusion-v2.1.so
UnetQuantizable Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 69.178 ms 0 - 17 MB W8A16 NPU Stable-Diffusion-v2.1.so
UnetQuantizable Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 61.668 ms 0 - 14 MB W8A16 NPU Use Export Script
UnetQuantizable Snapdragon X Elite CRD Snapdragon® X Elite QNN 99.461 ms 0 - 0 MB W8A16 NPU Use Export Script
UnetQuantizable SA7255P ADP SA7255P QNN 1467.935 ms 0 - 7 MB W8A16 NPU Use Export Script
UnetQuantizable SA8255 (Proxy) SA8255P Proxy QNN 98.746 ms 0 - 2 MB W8A16 NPU Use Export Script
UnetQuantizable SA8650 (Proxy) SA8650P Proxy QNN 97.177 ms 1 - 3 MB W8A16 NPU Use Export Script
UnetQuantizable SA8775P ADP SA8775P QNN 110.665 ms 0 - 8 MB W8A16 NPU Use Export Script
UnetQuantizable QCS8275 (Proxy) QCS8275 Proxy QNN 1467.935 ms 0 - 7 MB W8A16 NPU Use Export Script
UnetQuantizable QCS8550 (Proxy) QCS8550 Proxy QNN 97.457 ms 0 - 3 MB W8A16 NPU Use Export Script
UnetQuantizable QCS9075 (Proxy) QCS9075 Proxy QNN 110.665 ms 0 - 8 MB W8A16 NPU Use Export Script
VaeDecoderQuantizable Samsung Galaxy S23 Snapdragon® 8 Gen 2 QNN 295.307 ms 0 - 71 MB W8A16 NPU Stable-Diffusion-v2.1.so
VaeDecoderQuantizable Samsung Galaxy S24 Snapdragon® 8 Gen 3 QNN 223.33 ms 0 - 312 MB W8A16 NPU Stable-Diffusion-v2.1.so
VaeDecoderQuantizable Snapdragon 8 Elite QRD Snapdragon® 8 Elite QNN 189.418 ms 0 - 356 MB W8A16 NPU Use Export Script
VaeDecoderQuantizable Snapdragon X Elite CRD Snapdragon® X Elite QNN 267.095 ms 0 - 0 MB W8A16 NPU Use Export Script
VaeDecoderQuantizable SA7255P ADP SA7255P QNN 4460.526 ms 0 - 10 MB W8A16 NPU Use Export Script
VaeDecoderQuantizable SA8255 (Proxy) SA8255P Proxy QNN 274.71 ms 0 - 2 MB W8A16 NPU Use Export Script
VaeDecoderQuantizable SA8650 (Proxy) SA8650P Proxy QNN 269.652 ms 0 - 2 MB W8A16 NPU Use Export Script
VaeDecoderQuantizable SA8775P ADP SA8775P QNN 301.141 ms 0 - 10 MB W8A16 NPU Use Export Script
VaeDecoderQuantizable QCS8275 (Proxy) QCS8275 Proxy QNN 4460.526 ms 0 - 10 MB W8A16 NPU Use Export Script
VaeDecoderQuantizable QCS8550 (Proxy) QCS8550 Proxy QNN 271.222 ms 0 - 3 MB W8A16 NPU Use Export Script
VaeDecoderQuantizable QCS9075 (Proxy) QCS9075 Proxy QNN 301.141 ms 0 - 10 MB W8A16 NPU Use Export Script

Installation

Install the package via pip:

pip install "qai-hub-models[stable-diffusion-v2-1-quantized]" -f https://qaihub-public-python-wheels.s3.us-west-2.amazonaws.com/index.html

Configure Qualcomm® AI Hub to run this model on a cloud-hosted device

Sign-in to Qualcomm® AI Hub with your Qualcomm® ID. Once signed in navigate to Account -> Settings -> API Token.

With this API token, you can configure your client to run models on the cloud hosted devices.

qai-hub configure --api_token API_TOKEN

Navigate to docs for more information.

Demo off target

The package contains a simple end-to-end demo that downloads pre-trained weights and runs this model on a sample input.

python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo

The above demo runs a reference implementation of pre-processing, model inference, and post processing.

NOTE: If you want running in a Jupyter Notebook or Google Colab like environment, please add the following to your cell (instead of the above).

%run -m qai_hub_models.models.stable_diffusion_v2_1_quantized.demo

Run model on a cloud-hosted device

In addition to the demo, you can also run the model on a cloud-hosted Qualcomm® device. This script does the following:

  • Performance check on-device on a cloud-hosted device
  • Downloads compiled assets that can be deployed on-device for Android.
  • Accuracy check between PyTorch and on-device outputs.
python -m qai_hub_models.models.stable_diffusion_v2_1_quantized.export
Profiling Results
------------------------------------------------------------
TextEncoderQuantizable
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 6.7                    
Estimated peak memory usage (MB): [0, 3]                 
Total # Ops                     : 787                    
Compute Unit(s)                 : NPU (787 ops)          

------------------------------------------------------------
UnetQuantizable
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 97.0                   
Estimated peak memory usage (MB): [0, 3]                 
Total # Ops                     : 5891                   
Compute Unit(s)                 : NPU (5891 ops)         

------------------------------------------------------------
VaeDecoderQuantizable
Device                          : Samsung Galaxy S23 (13)
Runtime                         : QNN                    
Estimated inference time (ms)   : 295.3                  
Estimated peak memory usage (MB): [0, 71]                
Total # Ops                     : 189                    
Compute Unit(s)                 : NPU (189 ops)          

Deploying compiled model to Android

The models can be deployed using multiple runtimes:

  • TensorFlow Lite (.tflite export): This tutorial provides a guide to deploy the .tflite model in an Android application.

  • QNN (.so export ): This sample app provides instructions on how to use the .so shared library in an Android application.

View on Qualcomm® AI Hub

Get more details on Stable-Diffusion-v2.1's performance across various devices here. Explore all available models on Qualcomm® AI Hub

License

  • The license for the original implementation of Stable-Diffusion-v2.1 can be found here.
  • The license for the compiled assets for on-device deployment can be found here

References

Community

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 1 Ask for provider support