ratish/DBERT_CleanDesc_MAKE_v10.1

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.1668
  • Validation Loss: 0.7903
  • Train Accuracy: 0.8
  • Epoch: 14

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': {'class_name': 'PolynomialDecay', 'config': {'initial_learning_rate': 2e-05, 'decay_steps': 3090, 'end_learning_rate': 0.0, 'power': 1.0, 'cycle': False, 'name': None}}, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-08, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Accuracy Epoch
2.2016 1.9470 0.425 0
1.6623 1.5632 0.575 1
1.2367 1.2743 0.575 2
0.9547 1.1049 0.75 3
0.7787 1.0268 0.725 4
0.6138 0.8950 0.75 5
0.5122 0.9161 0.75 6
0.4713 0.8417 0.8 7
0.4282 0.7698 0.75 8
0.3625 0.7982 0.75 9
0.2912 0.8342 0.775 10
0.2440 0.7864 0.775 11
0.2136 0.7688 0.775 12
0.1914 0.7626 0.8 13
0.1668 0.7903 0.8 14

Framework versions

  • Transformers 4.28.1
  • TensorFlow 2.12.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3
Downloads last month
11
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support