|
--- |
|
tags: |
|
- sentence-transformers |
|
- sentence-similarity |
|
- feature-extraction |
|
- generated_from_trainer |
|
- dataset_size:36864 |
|
- loss:MatryoshkaLoss |
|
- loss:CachedMultipleNegativesRankingLoss |
|
base_model: redis/langcache-embed-v1 |
|
widget: |
|
- source_sentence: What are civil cases and what are some examples? |
|
sentences: |
|
- What are criminal cases and what are no examples? |
|
- Civil cases involve disputes between individuals or organizations, typically seeking |
|
monetary compensation or specific performance, and *do not* include criminal prosecutions |
|
by the government. |
|
- Criminal cases involve disputes between individuals or organizations, seeking |
|
monetary damages or specific performance, while civil cases concern offenses against |
|
the state punishable by imprisonment. |
|
- What are some examples of civil cases? |
|
- source_sentence: How can you stop your palms from sweating? |
|
sentences: |
|
- How do I stop my palms from sweating a lot at random times? |
|
- How can you *make* your palms sweat? |
|
- How can you *cause* your palms to sweat? |
|
- How can you start your palms from sweating? |
|
- source_sentence: What are the pros and cons of wind turbines? |
|
sentences: |
|
- What are the pros and cons of solar panels? |
|
- What are the cons and pros of solar panels? |
|
- What are pros and cons of wind turbines? |
|
- Wind turbines have no advantages or disadvantages. |
|
- source_sentence: Will Obamacare be repealed now that trump won? |
|
sentences: |
|
- Despite Trump's victory, Obamacare remains largely intact and has not been fully |
|
repealed. |
|
- Despite Trump's repeated promises to repeal and replace the Affordable Care Act |
|
(ACA), often called Obamacare, it remains the law of the land. Numerous attempts |
|
to repeal or significantly alter the ACA failed during his presidency due to Congressional |
|
opposition. |
|
- Will Obamacare be repealed now that Biden won? |
|
- Will Obamacare be repealed / shut down soon? |
|
- source_sentence: What are some examples of crimes understood as a moral turpitude? |
|
sentences: |
|
- What actions are *not* generally considered crimes involving moral turpitude? |
|
- What are some examples of crimes understood as a legal aptitude? |
|
- What are some examples of crimes understood as a legal turpitude? |
|
- What are some examples of crimes of moral turpitude? |
|
pipeline_tag: sentence-similarity |
|
library_name: sentence-transformers |
|
--- |
|
|
|
# SentenceTransformer based on redis/langcache-embed-v1 |
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [redis/langcache-embed-v1](https://huggingface.co/redis/langcache-embed-v1) on the triplet dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** Sentence Transformer |
|
- **Base model:** [redis/langcache-embed-v1](https://huggingface.co/redis/langcache-embed-v1) <!-- at revision 80fb95b5478a6b6d068faf4452faa2f5bc9f0dfa --> |
|
- **Maximum Sequence Length:** 8192 tokens |
|
- **Output Dimensionality:** 768 dimensions |
|
- **Similarity Function:** Cosine Similarity |
|
- **Training Dataset:** |
|
- triplet |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net) |
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) |
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) |
|
|
|
### Full Model Architecture |
|
|
|
``` |
|
SentenceTransformer( |
|
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: ModernBertModel |
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) |
|
) |
|
``` |
|
|
|
## Usage |
|
|
|
### Direct Usage (Sentence Transformers) |
|
|
|
First install the Sentence Transformers library: |
|
|
|
```bash |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
# Download from the 🤗 Hub |
|
model = SentenceTransformer("redis/langcache-embed-v2") |
|
# Run inference |
|
sentences = [ |
|
'What are some examples of crimes understood as a moral turpitude?', |
|
'What are some examples of crimes of moral turpitude?', |
|
'What are some examples of crimes understood as a legal aptitude?', |
|
] |
|
embeddings = model.encode(sentences) |
|
print(embeddings.shape) |
|
# [3, 768] |
|
|
|
# Get the similarity scores for the embeddings |
|
similarities = model.similarity(embeddings, embeddings) |
|
print(similarities.shape) |
|
# [3, 3] |
|
``` |
|
|
|
<!-- |
|
### Direct Usage (Transformers) |
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Downstream Usage (Sentence Transformers) |
|
|
|
You can finetune this model on your own dataset. |
|
|
|
<details><summary>Click to expand</summary> |
|
|
|
</details> |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
* Dataset: triplet |
|
* Size: 36,864 training samples |
|
* Columns: <code>anchor</code>, <code>positive</code>, <code>negative_1</code>, <code>negative_2</code>, and <code>negative_3</code> |
|
<!-- * Approximate statistics based on the first 1000 samples: |
|
| | anchor | positive | negative_1 | negative_2 | negative_3 | |
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------| |
|
| type | string | string | string | string | string | |
|
| details | <ul><li>min: 6 tokens</li><li>mean: 13.88 tokens</li><li>max: 54 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.89 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.68 tokens</li><li>max: 118 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 19.26 tokens</li><li>max: 117 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 18.07 tokens</li><li>max: 108 tokens</li></ul> | --> |
|
* Samples: |
|
| anchor | positive | negative_1 | negative_2 | negative_3 | |
|
|:---------------------------------------------------------------------------------------------|:--------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------| |
|
| <code>Is life really what I make of it?</code> | <code>Life is what you make it?</code> | <code>Is life hardly what I take of it?</code> | <code>Life is not entirely what I make of it.</code> | <code>Is life not what I make of it?</code> | |
|
| <code>When you visit a website, can a person running the website see your IP address?</code> | <code>Does every website I visit knows my public ip address?</code> | <code>When you avoid a website, can a person hiding the website see your MAC address?</code> | <code>When you send an email, can the recipient see your physical location?</code> | <code>When you visit a website, a person running the website cannot see your IP address.</code> | |
|
| <code>What are some cool features about iOS 10?</code> | <code>What are the best new features of iOS 10?</code> | <code>iOS 10 received criticism for its initial bugs and performance issues, and some users found the redesigned apps less intuitive compared to previous versions.</code> | <code>What are the drawbacks of using Android 14?</code> | <code>iOS 10 was widely criticized for its bugs, removal of beloved features, and generally being a downgrade from previous versions.</code> | |
|
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: |
|
```json |
|
{ |
|
"loss": "CachedMultipleNegativesRankingLoss", |
|
"matryoshka_dims": [768,512,256,128,64], |
|
"matryoshka_weights": [1,1,1,1,1], |
|
"n_dims_per_step": -1 |
|
} |
|
``` |
|
|
|
### Evaluation |
|
|
|
 |
|
 |
|
 |
|
 |
|
|
|
|
|
<!-- ### Training Hyperparameters |
|
#### Non-Default Hyperparameters |
|
|
|
- `eval_strategy`: steps |
|
- `per_device_train_batch_size`: 2048 |
|
- `per_device_eval_batch_size`: 1024 |
|
- `learning_rate`: 1e-05 |
|
- `num_train_epochs`: 1 |
|
- `lr_scheduler_type`: constant |
|
- `warmup_steps`: 10 |
|
- `gradient_checkpointing`: True |
|
- `torch_compile`: True |
|
- `torch_compile_backend`: inductor |
|
- `batch_sampler`: no_duplicates --> |
|
|
|
<!-- #### All Hyperparameters |
|
<details><summary>Click to expand</summary> |
|
|
|
- `overwrite_output_dir`: False |
|
- `do_predict`: False |
|
- `eval_strategy`: steps |
|
- `prediction_loss_only`: True |
|
- `per_device_train_batch_size`: 2048 |
|
- `per_device_eval_batch_size`: 1024 |
|
- `per_gpu_train_batch_size`: None |
|
- `per_gpu_eval_batch_size`: None |
|
- `gradient_accumulation_steps`: 1 |
|
- `eval_accumulation_steps`: None |
|
- `torch_empty_cache_steps`: None |
|
- `learning_rate`: 1e-05 |
|
- `weight_decay`: 0.0 |
|
- `adam_beta1`: 0.9 |
|
- `adam_beta2`: 0.999 |
|
- `adam_epsilon`: 1e-08 |
|
- `max_grad_norm`: 1 |
|
- `num_train_epochs`: 1 |
|
- `max_steps`: -1 |
|
- `lr_scheduler_type`: constant |
|
- `lr_scheduler_kwargs`: {} |
|
- `warmup_ratio`: 0.0 |
|
- `warmup_steps`: 10 |
|
- `log_level`: passive |
|
- `log_level_replica`: warning |
|
- `log_on_each_node`: True |
|
- `logging_nan_inf_filter`: True |
|
- `save_safetensors`: True |
|
- `save_on_each_node`: False |
|
- `save_only_model`: False |
|
- `restore_callback_states_from_checkpoint`: False |
|
- `no_cuda`: False |
|
- `use_cpu`: False |
|
- `use_mps_device`: False |
|
- `seed`: 42 |
|
- `data_seed`: None |
|
- `jit_mode_eval`: False |
|
- `use_ipex`: False |
|
- `bf16`: False |
|
- `fp16`: False |
|
- `fp16_opt_level`: O1 |
|
- `half_precision_backend`: auto |
|
- `bf16_full_eval`: False |
|
- `fp16_full_eval`: False |
|
- `tf32`: None |
|
- `local_rank`: 0 |
|
- `ddp_backend`: None |
|
- `tpu_num_cores`: None |
|
- `tpu_metrics_debug`: False |
|
- `debug`: [] |
|
- `dataloader_drop_last`: False |
|
- `dataloader_num_workers`: 0 |
|
- `dataloader_prefetch_factor`: None |
|
- `past_index`: -1 |
|
- `disable_tqdm`: False |
|
- `remove_unused_columns`: True |
|
- `label_names`: None |
|
- `load_best_model_at_end`: False |
|
- `ignore_data_skip`: False |
|
- `fsdp`: [] |
|
- `fsdp_min_num_params`: 0 |
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} |
|
- `tp_size`: 0 |
|
- `fsdp_transformer_layer_cls_to_wrap`: None |
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} |
|
- `deepspeed`: None |
|
- `label_smoothing_factor`: 0.0 |
|
- `optim`: adamw_torch |
|
- `optim_args`: None |
|
- `adafactor`: False |
|
- `group_by_length`: False |
|
- `length_column_name`: length |
|
- `ddp_find_unused_parameters`: None |
|
- `ddp_bucket_cap_mb`: None |
|
- `ddp_broadcast_buffers`: False |
|
- `dataloader_pin_memory`: True |
|
- `dataloader_persistent_workers`: False |
|
- `skip_memory_metrics`: True |
|
- `use_legacy_prediction_loop`: False |
|
- `push_to_hub`: False |
|
- `resume_from_checkpoint`: None |
|
- `hub_model_id`: None |
|
- `hub_strategy`: every_save |
|
- `hub_private_repo`: None |
|
- `hub_always_push`: False |
|
- `gradient_checkpointing`: True |
|
- `gradient_checkpointing_kwargs`: None |
|
- `include_inputs_for_metrics`: False |
|
- `include_for_metrics`: [] |
|
- `eval_do_concat_batches`: True |
|
- `fp16_backend`: auto |
|
- `push_to_hub_model_id`: None |
|
- `push_to_hub_organization`: None |
|
- `mp_parameters`: |
|
- `auto_find_batch_size`: False |
|
- `full_determinism`: False |
|
- `torchdynamo`: None |
|
- `ray_scope`: last |
|
- `ddp_timeout`: 1800 |
|
- `torch_compile`: True |
|
- `torch_compile_backend`: inductor |
|
- `torch_compile_mode`: None |
|
- `include_tokens_per_second`: False |
|
- `include_num_input_tokens_seen`: False |
|
- `neftune_noise_alpha`: None |
|
- `optim_target_modules`: None |
|
- `batch_eval_metrics`: False |
|
- `eval_on_start`: False |
|
- `use_liger_kernel`: False |
|
- `eval_use_gather_object`: False |
|
- `average_tokens_across_devices`: False |
|
- `prompts`: None |
|
- `batch_sampler`: no_duplicates |
|
- `multi_dataset_batch_sampler`: proportional |
|
|
|
</details> |
|
|
|
### Training Logs |
|
| Epoch | Step | Training Loss | triplet loss | |
|
|:------:|:----:|:-------------:|:------------:| |
|
| 0.0556 | 1 | 6.4636 | - | |
|
| 0.1111 | 2 | 6.1076 | - | |
|
| 0.1667 | 3 | 5.8323 | - | |
|
| 0.2222 | 4 | 5.6861 | - | |
|
| 0.2778 | 5 | 5.5694 | - | |
|
| 0.3333 | 6 | 5.2121 | - | |
|
| 0.3889 | 7 | 5.0695 | - | |
|
| 0.4444 | 8 | 4.81 | - | |
|
| 0.5 | 9 | 4.6698 | - | |
|
| 0.5556 | 10 | 4.3546 | 1.2224 | |
|
| 0.6111 | 11 | 4.1922 | - | |
|
| 0.6667 | 12 | 4.1434 | - | |
|
| 0.7222 | 13 | 3.9918 | - | |
|
| 0.7778 | 14 | 3.702 | - | |
|
| 0.8333 | 15 | 3.6501 | - | |
|
| 0.8889 | 16 | 3.6641 | - | |
|
| 0.9444 | 17 | 3.3196 | - | |
|
| 1.0 | 18 | 2.7108 | - | |
|
|
|
|
|
### Framework Versions |
|
- Python: 3.11.11 |
|
- Sentence Transformers: 4.1.0 |
|
- Transformers: 4.51.3 |
|
- PyTorch: 2.6.0+cu124 |
|
- Accelerate: 1.6.0 |
|
- Datasets: 3.5.1 |
|
- Tokenizers: 0.21.1 --> |
|
|
|
## Citation |
|
|
|
|
|
|
|
#### Redis Langcache-embed Models |
|
|
|
We encourage you to cite our work if you use our models or build upon our findings. |
|
|
|
```bibtex |
|
@inproceedings{langcache-embed-v1, |
|
title = "Advancing Semantic Caching for LLMs with Domain-Specific Embeddings and Synthetic Data", |
|
author = "Gill, Cechmanek, Hutcherson, Rajamohan, Agarwal, Gulzar, Singh, Dion", |
|
month = "04", |
|
year = "2025", |
|
url = "https://arxiv.org/abs/2504.02268", |
|
} |
|
``` |
|
|
|
|
|
|
|
#### Sentence Transformers |
|
```bibtex |
|
@inproceedings{reimers-2019-sentence-bert, |
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", |
|
author = "Reimers, Nils and Gurevych, Iryna", |
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", |
|
month = "11", |
|
year = "2019", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://arxiv.org/abs/1908.10084", |
|
} |
|
|
|
@misc{kusupati2024matryoshka, |
|
title={Matryoshka Representation Learning}, |
|
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, |
|
year={2024}, |
|
eprint={2205.13147}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
|
|
@misc{gao2021scaling, |
|
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup}, |
|
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan}, |
|
year={2021}, |
|
eprint={2101.06983}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.LG} |
|
} |
|
``` |
|
|
|
|
|
|
|
|
|
|
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |