Upload folder using huggingface_hub
Browse files- README.md +193 -0
- config.json +1 -0
- model.safetensors.index.json +0 -0
README.md
CHANGED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
license_link: https://huggingface.co/rednote-hilab/dots.llm1.inst/blob/main/LICENSE
|
4 |
+
pipeline_tag: text-generation
|
5 |
+
base_model: rednote-hilab/dots.llm1.base
|
6 |
+
tags:
|
7 |
+
- chat
|
8 |
+
library_name: transformers
|
9 |
+
language:
|
10 |
+
- en
|
11 |
+
- zh
|
12 |
+
---
|
13 |
+
|
14 |
+
# dots1
|
15 |
+
|
16 |
+
<p align="center">
|
17 |
+
<img src="figures/new_logo.png" width="200"/>
|
18 |
+
<p>
|
19 |
+
|
20 |
+
<p align="center">
|
21 |
+
  🤗 <a href="https://huggingface.co/rednote-hilab">Hugging Face</a>   |    📑 <a href="https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf">Paper</a>   
|
22 |
+
<br>
|
23 |
+
🖥️ <a href="https://huggingface.co/spaces/rednote-hilab/dots-demo">Demo</a>   |   💬 <a href="figures/wechat.png">WeChat (微信)</a>   |   📕 <a href="https://www.xiaohongshu.com/user/profile/683ffe42000000001d021a4c">rednote</a>  
|
24 |
+
</p>
|
25 |
+
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
Visit our Hugging Face (click links above), search checkpoints with names starting with `dots.llm1` or visit the [dots1 collection](https://huggingface.co/collections/rednote-hilab/dotsllm1-68246aaaaba3363374a8aa7c), and you will find all you need! Enjoy!
|
30 |
+
|
31 |
+
|
32 |
+
## News
|
33 |
+
|
34 |
+
- 2025.06.06: We released the `dots.llm1` series. Check our [report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf) for more details!
|
35 |
+
|
36 |
+
|
37 |
+
## 1. Introduction
|
38 |
+
|
39 |
+
|
40 |
+
The `dots.llm1` model is a large-scale MoE model that activates 14B parameters out of a total of 142B parameters, delivering performance on par with state-of-the-art models.
|
41 |
+
Leveraging our meticulously crafted and efficient data processing pipeline, `dots.llm1` achieves performance comparable to Qwen2.5-72B after pretrained on 11.2T high-quality tokens without synthetic data. To foster further research, we open-source intermediate training checkpoints at every one trillion tokens, providing valuable insights into the learning dynamics of large language models.
|
42 |
+
|
43 |
+
|
44 |
+
<p align="center">
|
45 |
+
<img width="90%" src="./figures/performance.png">
|
46 |
+
</p>
|
47 |
+
|
48 |
+
## 2. Model Summary
|
49 |
+
|
50 |
+
**This repo contains the base and instruction-tuned `dots.llm1` model**. which has the following features:
|
51 |
+
|
52 |
+
- Type: A MoE model with 14B activated and 142B total parameters trained on 11.2T tokens.
|
53 |
+
- Training Stages: Pretraining and SFT.
|
54 |
+
- Architecture: Multi-head Attention with QK-Norm in attention Layer, fine-grained MoE utilizing top-6 out of 128 routed experts, plus 2 shared experts.
|
55 |
+
- Number of Layers: 62
|
56 |
+
- Number of Attention Heads: 32
|
57 |
+
- Supported Languages: English, Chinese
|
58 |
+
- Context Length: 32,768 tokens
|
59 |
+
- License: MIT
|
60 |
+
|
61 |
+
The highlights from `dots.llm1` include:
|
62 |
+
|
63 |
+
- **Enhanced Data Processing**: We propose a scalable and fine-grained *three-stage* data processing framework designed to generate large-scale, high-quality and diverse data for pretraining.
|
64 |
+
- **No Synthetic Data during Pretraining**: *11.2 trillion* high-quality non-synthetic tokens was used in base model pretraining.
|
65 |
+
- **Performance and Cost Efficiency**: `dots.llm1` is an open-source model that activates only *14B* parameters at inference, delivering both comprehensive capabilities and high computational efficiency.
|
66 |
+
- **Infrastructure**: We introduce an innovative MoE all-to-all communication and computation overlapping recipe based on interleaved 1F1B pipeline scheduling and an efficient grouped GEMM implementation to boost computational efficiency.
|
67 |
+
- **Open Accessibility to Model Dynamics**: Intermediate model checkpoints for *every 1T tokens* trained are released, facilitating future research into the learning dynamics of large language models.
|
68 |
+
|
69 |
+
## 3. Example Usage
|
70 |
+
|
71 |
+
### Model Downloads
|
72 |
+
|
73 |
+
<div align="center">
|
74 |
+
|
75 |
+
| **Model** | **#Total Params** | **#Activated Params** | **Context Length** | **Download Link** |
|
76 |
+
| :------------: | :------------: | :------------: | :------------: | :------------: |
|
77 |
+
| dots.llm1.base | 142B | 14B | 32K | [🤗 Hugging Face](https://huggingface.co/rednote-hilab/dots.llm1.base) |
|
78 |
+
| dots.llm1.inst | 142B | 14B | 32K | [🤗 Hugging Face](https://huggingface.co/rednote-hilab/dots.llm1.inst) |
|
79 |
+
|
80 |
+
</div>
|
81 |
+
|
82 |
+
### Docker (recommended)
|
83 |
+
|
84 |
+
|
85 |
+
The docker images are available on [Docker Hub](https://hub.docker.com/repository/docker/rednotehilab/dots1/tags), based on the official images.
|
86 |
+
|
87 |
+
You can start a server via vllm.
|
88 |
+
|
89 |
+
```shell
|
90 |
+
docker run --gpus all \
|
91 |
+
-v ~/.cache/huggingface:/root/.cache/huggingface \
|
92 |
+
-p 8000:8000 \
|
93 |
+
--ipc=host \
|
94 |
+
rednotehilab/dots1:vllm-openai-v0.9.0.1 \
|
95 |
+
--model rednote-hilab/dots.llm1.inst \
|
96 |
+
--tensor-parallel-size 8 \
|
97 |
+
--trust-remote-code \
|
98 |
+
--served-model-name dots1
|
99 |
+
```
|
100 |
+
|
101 |
+
Then you can verify whether the model is running successfully in the following way.
|
102 |
+
|
103 |
+
```shell
|
104 |
+
curl http://localhost:8000/v1/chat/completions \
|
105 |
+
-H "Content-Type: application/json" \
|
106 |
+
-d '{
|
107 |
+
"model": "dots1",
|
108 |
+
"messages": [
|
109 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
110 |
+
{"role": "user", "content": "Who won the world series in 2020?"}
|
111 |
+
],
|
112 |
+
"max_tokens": 32,
|
113 |
+
"temperature": 0
|
114 |
+
}'
|
115 |
+
```
|
116 |
+
|
117 |
+
|
118 |
+
### Inference with huggingface
|
119 |
+
|
120 |
+
#### Text Completion
|
121 |
+
|
122 |
+
```python
|
123 |
+
import torch
|
124 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
125 |
+
|
126 |
+
model_name = "rednote-hilab/dots.llm1.base"
|
127 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
128 |
+
|
129 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
|
130 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
131 |
+
|
132 |
+
text = "An attention function can be described as mapping a query and a set of key-value pairs to an output, where the query, keys, values, and output are all vectors. The output is"
|
133 |
+
inputs = tokenizer(text, return_tensors="pt")
|
134 |
+
outputs = model.generate(**inputs.to(model.device), max_new_tokens=100)
|
135 |
+
result = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
136 |
+
print(result)
|
137 |
+
```
|
138 |
+
|
139 |
+
#### Chat Completion
|
140 |
+
|
141 |
+
```python
|
142 |
+
import torch
|
143 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
144 |
+
|
145 |
+
model_name = "rednote-hilab/dots.llm1.inst"
|
146 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
147 |
+
|
148 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.bfloat16, attn_implementation="eager")
|
149 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
150 |
+
|
151 |
+
messages = [
|
152 |
+
{"role": "user", "content": "Write a piece of quicksort code in C++"}
|
153 |
+
]
|
154 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
155 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=200)
|
156 |
+
|
157 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
158 |
+
print(result)
|
159 |
+
```
|
160 |
+
|
161 |
+
|
162 |
+
### Inference with sglang
|
163 |
+
[SGLang](https://github.com/sgl-project/sglang) is a fast serving framework for large language models and vision language models. SGLang could be used to launch a server with OpenAI-compatible API service. `sglang>=***` is required. It is as easy as
|
164 |
+
|
165 |
+
```shell
|
166 |
+
python -m sglang.launch_server --model-path dots.llm1.inst --tp 8 --host 0.0.0.0 --port 8000
|
167 |
+
```
|
168 |
+
An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
|
169 |
+
|
170 |
+
### Inference with vllm
|
171 |
+
[vLLM](https://github.com/vllm-project/vllm) is a high-throughput and memory-efficient inference and serving engine for LLMs. `vllm>=***` is recommended.
|
172 |
+
|
173 |
+
```shell
|
174 |
+
vllm serve dots.llm1.inst --port 8000 --tensor-parallel-size 8
|
175 |
+
```
|
176 |
+
An OpenAI-compatible API will be available at `http://localhost:8000/v1`.
|
177 |
+
|
178 |
+
## 4. Evaluation Results
|
179 |
+
|
180 |
+
Detailed evaluation results are reported in this [📑 report](https://github.com/rednote-hilab/dots.llm1/blob/main/dots1_tech_report.pdf).
|
181 |
+
|
182 |
+
## Citation
|
183 |
+
|
184 |
+
If you find `dots.llm1` is useful or want to use in your projects, please kindly cite our paper:
|
185 |
+
|
186 |
+
```
|
187 |
+
@article{dots1,
|
188 |
+
title={dots.llm1 Technical Report},
|
189 |
+
author={rednote-hilab},
|
190 |
+
journal={arXiv preprint arXiv:TBD},
|
191 |
+
year={2025}
|
192 |
+
}
|
193 |
+
```
|
config.json
CHANGED
@@ -14,6 +14,7 @@
|
|
14 |
"max_position_embeddings": 32768,
|
15 |
"model_type": "dots1",
|
16 |
"moe_intermediate_size": 1408,
|
|
|
17 |
"n_routed_experts": 128,
|
18 |
"n_shared_experts": 2,
|
19 |
"norm_topk_prob": true,
|
|
|
14 |
"max_position_embeddings": 32768,
|
15 |
"model_type": "dots1",
|
16 |
"moe_intermediate_size": 1408,
|
17 |
+
"moe_layer_freq": 1,
|
18 |
"n_routed_experts": 128,
|
19 |
"n_shared_experts": 2,
|
20 |
"norm_topk_prob": true,
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|