Fer_vit_jaffe_GOOGLE_0
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4000
- Accuracy: 0.8667
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 2.2045 | 0.1 |
No log | 2.0 | 2 | 2.0846 | 0.1333 |
No log | 3.0 | 3 | 2.1060 | 0.1 |
No log | 4.0 | 4 | 1.9913 | 0.1333 |
No log | 5.0 | 5 | 1.9980 | 0.1 |
No log | 6.0 | 6 | 1.8330 | 0.3 |
No log | 7.0 | 7 | 1.9518 | 0.1333 |
No log | 8.0 | 8 | 1.9296 | 0.1667 |
No log | 9.0 | 9 | 1.8688 | 0.3333 |
1.9932 | 10.0 | 10 | 1.7509 | 0.3667 |
1.9932 | 11.0 | 11 | 1.6357 | 0.4 |
1.9932 | 12.0 | 12 | 1.5627 | 0.3667 |
1.9932 | 13.0 | 13 | 1.6459 | 0.3 |
1.9932 | 14.0 | 14 | 1.5215 | 0.4 |
1.9932 | 15.0 | 15 | 1.5421 | 0.3667 |
1.9932 | 16.0 | 16 | 1.4164 | 0.5 |
1.9932 | 17.0 | 17 | 1.4463 | 0.3667 |
1.9932 | 18.0 | 18 | 1.2905 | 0.4667 |
1.9932 | 19.0 | 19 | 1.2456 | 0.6 |
1.2161 | 20.0 | 20 | 1.2170 | 0.5667 |
1.2161 | 21.0 | 21 | 1.0307 | 0.6 |
1.2161 | 22.0 | 22 | 1.1198 | 0.6 |
1.2161 | 23.0 | 23 | 1.1648 | 0.5 |
1.2161 | 24.0 | 24 | 1.0260 | 0.6 |
1.2161 | 25.0 | 25 | 1.3020 | 0.5 |
1.2161 | 26.0 | 26 | 0.9796 | 0.6333 |
1.2161 | 27.0 | 27 | 0.9824 | 0.6667 |
1.2161 | 28.0 | 28 | 0.8884 | 0.7 |
1.2161 | 29.0 | 29 | 0.9246 | 0.6333 |
0.5116 | 30.0 | 30 | 0.8455 | 0.7333 |
0.5116 | 31.0 | 31 | 0.7960 | 0.7 |
0.5116 | 32.0 | 32 | 0.8179 | 0.7333 |
0.5116 | 33.0 | 33 | 0.8721 | 0.6667 |
0.5116 | 34.0 | 34 | 0.8279 | 0.7667 |
0.5116 | 35.0 | 35 | 0.6486 | 0.7667 |
0.5116 | 36.0 | 36 | 0.6816 | 0.7333 |
0.5116 | 37.0 | 37 | 0.8016 | 0.7333 |
0.5116 | 38.0 | 38 | 0.6464 | 0.8 |
0.5116 | 39.0 | 39 | 0.6922 | 0.7667 |
0.2101 | 40.0 | 40 | 0.6768 | 0.7667 |
0.2101 | 41.0 | 41 | 0.6408 | 0.7667 |
0.2101 | 42.0 | 42 | 0.5335 | 0.8333 |
0.2101 | 43.0 | 43 | 0.4862 | 0.8333 |
0.2101 | 44.0 | 44 | 0.3713 | 0.8667 |
0.2101 | 45.0 | 45 | 0.4382 | 0.8333 |
0.2101 | 46.0 | 46 | 0.6664 | 0.7667 |
0.2101 | 47.0 | 47 | 0.4865 | 0.8333 |
0.2101 | 48.0 | 48 | 0.4411 | 0.8 |
0.2101 | 49.0 | 49 | 0.4707 | 0.8667 |
0.0921 | 50.0 | 50 | 0.6355 | 0.7667 |
0.0921 | 51.0 | 51 | 0.3975 | 0.9 |
0.0921 | 52.0 | 52 | 0.4261 | 0.8333 |
0.0921 | 53.0 | 53 | 0.3944 | 0.8 |
0.0921 | 54.0 | 54 | 0.2987 | 0.9333 |
0.0921 | 55.0 | 55 | 0.4845 | 0.8667 |
0.0921 | 56.0 | 56 | 0.5880 | 0.7667 |
0.0921 | 57.0 | 57 | 0.6478 | 0.8333 |
0.0921 | 58.0 | 58 | 0.4498 | 0.8 |
0.0921 | 59.0 | 59 | 0.3165 | 0.8667 |
0.0488 | 60.0 | 60 | 0.5294 | 0.8333 |
0.0488 | 61.0 | 61 | 0.6030 | 0.8333 |
0.0488 | 62.0 | 62 | 0.4018 | 0.8333 |
0.0488 | 63.0 | 63 | 0.5076 | 0.8333 |
0.0488 | 64.0 | 64 | 0.5128 | 0.8667 |
0.0488 | 65.0 | 65 | 0.5164 | 0.8667 |
0.0488 | 66.0 | 66 | 0.4238 | 0.8333 |
0.0488 | 67.0 | 67 | 0.5057 | 0.8333 |
0.0488 | 68.0 | 68 | 0.6507 | 0.7667 |
0.0488 | 69.0 | 69 | 0.4623 | 0.8667 |
0.0336 | 70.0 | 70 | 0.4230 | 0.8333 |
0.0336 | 71.0 | 71 | 0.4669 | 0.8333 |
0.0336 | 72.0 | 72 | 0.4836 | 0.8333 |
0.0336 | 73.0 | 73 | 0.3458 | 0.9333 |
0.0336 | 74.0 | 74 | 0.4629 | 0.8667 |
0.0336 | 75.0 | 75 | 0.4426 | 0.7667 |
0.0336 | 76.0 | 76 | 0.4735 | 0.8 |
0.0336 | 77.0 | 77 | 0.5138 | 0.7667 |
0.0336 | 78.0 | 78 | 0.4728 | 0.8333 |
0.0336 | 79.0 | 79 | 0.3224 | 0.8667 |
0.0204 | 80.0 | 80 | 0.2733 | 0.8667 |
0.0204 | 81.0 | 81 | 0.4948 | 0.8333 |
0.0204 | 82.0 | 82 | 0.3923 | 0.9 |
0.0204 | 83.0 | 83 | 0.2380 | 0.9 |
0.0204 | 84.0 | 84 | 0.4343 | 0.8667 |
0.0204 | 85.0 | 85 | 0.4008 | 0.8 |
0.0204 | 86.0 | 86 | 0.3960 | 0.9 |
0.0204 | 87.0 | 87 | 0.4185 | 0.8667 |
0.0204 | 88.0 | 88 | 0.4394 | 0.8 |
0.0204 | 89.0 | 89 | 0.3055 | 0.9 |
0.0113 | 90.0 | 90 | 0.4782 | 0.7333 |
0.0113 | 91.0 | 91 | 0.4763 | 0.8667 |
0.0113 | 92.0 | 92 | 0.4404 | 0.9 |
0.0113 | 93.0 | 93 | 0.2787 | 0.9 |
0.0113 | 94.0 | 94 | 0.3599 | 0.9 |
0.0113 | 95.0 | 95 | 0.5665 | 0.8333 |
0.0113 | 96.0 | 96 | 0.3193 | 0.9333 |
0.0113 | 97.0 | 97 | 0.3259 | 0.8667 |
0.0113 | 98.0 | 98 | 0.3528 | 0.9333 |
0.0113 | 99.0 | 99 | 0.3905 | 0.8667 |
0.009 | 100.0 | 100 | 0.4000 | 0.8667 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ricardoSLabs/Fer_vit_jaffe_GOOGLE_0
Base model
WinKawaks/vit-tiny-patch16-224Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.867