Fer_vit_jaffe_GOOGLE_0

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4000
  • Accuracy: 0.8667

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.2045 0.1
No log 2.0 2 2.0846 0.1333
No log 3.0 3 2.1060 0.1
No log 4.0 4 1.9913 0.1333
No log 5.0 5 1.9980 0.1
No log 6.0 6 1.8330 0.3
No log 7.0 7 1.9518 0.1333
No log 8.0 8 1.9296 0.1667
No log 9.0 9 1.8688 0.3333
1.9932 10.0 10 1.7509 0.3667
1.9932 11.0 11 1.6357 0.4
1.9932 12.0 12 1.5627 0.3667
1.9932 13.0 13 1.6459 0.3
1.9932 14.0 14 1.5215 0.4
1.9932 15.0 15 1.5421 0.3667
1.9932 16.0 16 1.4164 0.5
1.9932 17.0 17 1.4463 0.3667
1.9932 18.0 18 1.2905 0.4667
1.9932 19.0 19 1.2456 0.6
1.2161 20.0 20 1.2170 0.5667
1.2161 21.0 21 1.0307 0.6
1.2161 22.0 22 1.1198 0.6
1.2161 23.0 23 1.1648 0.5
1.2161 24.0 24 1.0260 0.6
1.2161 25.0 25 1.3020 0.5
1.2161 26.0 26 0.9796 0.6333
1.2161 27.0 27 0.9824 0.6667
1.2161 28.0 28 0.8884 0.7
1.2161 29.0 29 0.9246 0.6333
0.5116 30.0 30 0.8455 0.7333
0.5116 31.0 31 0.7960 0.7
0.5116 32.0 32 0.8179 0.7333
0.5116 33.0 33 0.8721 0.6667
0.5116 34.0 34 0.8279 0.7667
0.5116 35.0 35 0.6486 0.7667
0.5116 36.0 36 0.6816 0.7333
0.5116 37.0 37 0.8016 0.7333
0.5116 38.0 38 0.6464 0.8
0.5116 39.0 39 0.6922 0.7667
0.2101 40.0 40 0.6768 0.7667
0.2101 41.0 41 0.6408 0.7667
0.2101 42.0 42 0.5335 0.8333
0.2101 43.0 43 0.4862 0.8333
0.2101 44.0 44 0.3713 0.8667
0.2101 45.0 45 0.4382 0.8333
0.2101 46.0 46 0.6664 0.7667
0.2101 47.0 47 0.4865 0.8333
0.2101 48.0 48 0.4411 0.8
0.2101 49.0 49 0.4707 0.8667
0.0921 50.0 50 0.6355 0.7667
0.0921 51.0 51 0.3975 0.9
0.0921 52.0 52 0.4261 0.8333
0.0921 53.0 53 0.3944 0.8
0.0921 54.0 54 0.2987 0.9333
0.0921 55.0 55 0.4845 0.8667
0.0921 56.0 56 0.5880 0.7667
0.0921 57.0 57 0.6478 0.8333
0.0921 58.0 58 0.4498 0.8
0.0921 59.0 59 0.3165 0.8667
0.0488 60.0 60 0.5294 0.8333
0.0488 61.0 61 0.6030 0.8333
0.0488 62.0 62 0.4018 0.8333
0.0488 63.0 63 0.5076 0.8333
0.0488 64.0 64 0.5128 0.8667
0.0488 65.0 65 0.5164 0.8667
0.0488 66.0 66 0.4238 0.8333
0.0488 67.0 67 0.5057 0.8333
0.0488 68.0 68 0.6507 0.7667
0.0488 69.0 69 0.4623 0.8667
0.0336 70.0 70 0.4230 0.8333
0.0336 71.0 71 0.4669 0.8333
0.0336 72.0 72 0.4836 0.8333
0.0336 73.0 73 0.3458 0.9333
0.0336 74.0 74 0.4629 0.8667
0.0336 75.0 75 0.4426 0.7667
0.0336 76.0 76 0.4735 0.8
0.0336 77.0 77 0.5138 0.7667
0.0336 78.0 78 0.4728 0.8333
0.0336 79.0 79 0.3224 0.8667
0.0204 80.0 80 0.2733 0.8667
0.0204 81.0 81 0.4948 0.8333
0.0204 82.0 82 0.3923 0.9
0.0204 83.0 83 0.2380 0.9
0.0204 84.0 84 0.4343 0.8667
0.0204 85.0 85 0.4008 0.8
0.0204 86.0 86 0.3960 0.9
0.0204 87.0 87 0.4185 0.8667
0.0204 88.0 88 0.4394 0.8
0.0204 89.0 89 0.3055 0.9
0.0113 90.0 90 0.4782 0.7333
0.0113 91.0 91 0.4763 0.8667
0.0113 92.0 92 0.4404 0.9
0.0113 93.0 93 0.2787 0.9
0.0113 94.0 94 0.3599 0.9
0.0113 95.0 95 0.5665 0.8333
0.0113 96.0 96 0.3193 0.9333
0.0113 97.0 97 0.3259 0.8667
0.0113 98.0 98 0.3528 0.9333
0.0113 99.0 99 0.3905 0.8667
0.009 100.0 100 0.4000 0.8667

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
4
Safetensors
Model size
5.53M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ricardoSLabs/Fer_vit_jaffe_GOOGLE_0

Finetuned
(42)
this model

Evaluation results