Fer_vit_jaffe_GOOGLE_1

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4137
  • Accuracy: 0.8333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 1
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.4981 0.1333
No log 2.0 2 2.4022 0.1333
No log 3.0 3 2.2167 0.1
No log 4.0 4 2.0743 0.1333
No log 5.0 5 1.9393 0.1
No log 6.0 6 2.0201 0.1667
No log 7.0 7 1.9793 0.1667
No log 8.0 8 1.9287 0.2
No log 9.0 9 1.8316 0.1667
2.1031 10.0 10 1.6923 0.4667
2.1031 11.0 11 1.7380 0.2667
2.1031 12.0 12 1.7164 0.3333
2.1031 13.0 13 1.6525 0.3333
2.1031 14.0 14 1.5759 0.3333
2.1031 15.0 15 1.5251 0.3333
2.1031 16.0 16 1.4557 0.4333
2.1031 17.0 17 1.3619 0.4333
2.1031 18.0 18 1.2880 0.4333
2.1031 19.0 19 1.2356 0.5667
1.2981 20.0 20 1.1369 0.6
1.2981 21.0 21 1.1489 0.5
1.2981 22.0 22 1.0756 0.7
1.2981 23.0 23 1.0136 0.5333
1.2981 24.0 24 1.0509 0.5333
1.2981 25.0 25 0.9975 0.6
1.2981 26.0 26 0.9895 0.6
1.2981 27.0 27 0.9735 0.6
1.2981 28.0 28 0.9328 0.6
1.2981 29.0 29 0.9559 0.6667
0.5735 30.0 30 0.8359 0.7667
0.5735 31.0 31 0.8023 0.7667
0.5735 32.0 32 0.8285 0.6333
0.5735 33.0 33 0.7287 0.7
0.5735 34.0 34 0.7043 0.7667
0.5735 35.0 35 0.8992 0.7333
0.5735 36.0 36 0.8664 0.7667
0.5735 37.0 37 0.8023 0.7333
0.5735 38.0 38 0.6910 0.7667
0.5735 39.0 39 0.8197 0.6667
0.2477 40.0 40 0.5915 0.7667
0.2477 41.0 41 0.9184 0.6333
0.2477 42.0 42 0.6734 0.7
0.2477 43.0 43 0.9225 0.7
0.2477 44.0 44 0.5961 0.8
0.2477 45.0 45 0.7012 0.7
0.2477 46.0 46 0.9223 0.6
0.2477 47.0 47 0.5819 0.7
0.2477 48.0 48 0.7171 0.7333
0.2477 49.0 49 0.6416 0.7667
0.1117 50.0 50 0.8718 0.7
0.1117 51.0 51 0.4941 0.8
0.1117 52.0 52 0.7385 0.8
0.1117 53.0 53 0.6660 0.8333
0.1117 54.0 54 0.6988 0.8667
0.1117 55.0 55 0.7074 0.7667
0.1117 56.0 56 0.5847 0.8
0.1117 57.0 57 0.6636 0.8
0.1117 58.0 58 0.5520 0.8333
0.1117 59.0 59 0.6299 0.7667
0.0591 60.0 60 0.6717 0.7667
0.0591 61.0 61 0.4874 0.8333
0.0591 62.0 62 0.4603 0.8
0.0591 63.0 63 0.5516 0.7333
0.0591 64.0 64 0.4729 0.8
0.0591 65.0 65 0.5710 0.7667
0.0591 66.0 66 0.8985 0.7
0.0591 67.0 67 0.8074 0.7667
0.0591 68.0 68 0.5652 0.8
0.0591 69.0 69 0.5538 0.8333
0.0296 70.0 70 0.5727 0.7333
0.0296 71.0 71 0.6359 0.8
0.0296 72.0 72 0.6932 0.7333
0.0296 73.0 73 0.9025 0.6667
0.0296 74.0 74 0.6639 0.7333
0.0296 75.0 75 0.8385 0.7333
0.0296 76.0 76 0.5827 0.8
0.0296 77.0 77 0.5443 0.8667
0.0296 78.0 78 0.6330 0.8333
0.0296 79.0 79 0.6706 0.7333
0.0175 80.0 80 0.7803 0.8
0.0175 81.0 81 0.5401 0.8
0.0175 82.0 82 0.6806 0.8333
0.0175 83.0 83 0.3827 0.8
0.0175 84.0 84 0.7853 0.8
0.0175 85.0 85 0.4391 0.8333
0.0175 86.0 86 0.6061 0.8
0.0175 87.0 87 0.4797 0.8
0.0175 88.0 88 0.4386 0.8333
0.0175 89.0 89 0.6556 0.8
0.0121 90.0 90 0.7927 0.8
0.0121 91.0 91 0.4925 0.8333
0.0121 92.0 92 0.6280 0.7667
0.0121 93.0 93 0.3561 0.9
0.0121 94.0 94 0.6058 0.8333
0.0121 95.0 95 0.5086 0.8
0.0121 96.0 96 0.3854 0.8667
0.0121 97.0 97 0.8370 0.7667
0.0121 98.0 98 0.6506 0.7333
0.0121 99.0 99 0.6100 0.7667
0.0088 100.0 100 0.4137 0.8333

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
2
Safetensors
Model size
5.53M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ricardoSLabs/Fer_vit_jaffe_GOOGLE_1

Finetuned
(42)
this model

Evaluation results