Fer_vit_jaffe_crop_GOOGLE_0
This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:
- Loss: 0.4370
- Accuracy: 0.9
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 0
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 1 | 2.4680 | 0.1333 |
No log | 2.0 | 2 | 2.2791 | 0.2333 |
No log | 3.0 | 3 | 2.2505 | 0.1667 |
No log | 4.0 | 4 | 2.0650 | 0.1 |
No log | 5.0 | 5 | 2.1205 | 0.0333 |
No log | 6.0 | 6 | 2.0198 | 0.1 |
No log | 7.0 | 7 | 2.0317 | 0.1333 |
No log | 8.0 | 8 | 1.9863 | 0.2333 |
No log | 9.0 | 9 | 1.9390 | 0.3 |
2.1093 | 10.0 | 10 | 1.8465 | 0.2667 |
2.1093 | 11.0 | 11 | 1.6948 | 0.4333 |
2.1093 | 12.0 | 12 | 1.6453 | 0.4333 |
2.1093 | 13.0 | 13 | 1.6213 | 0.3333 |
2.1093 | 14.0 | 14 | 1.6045 | 0.3667 |
2.1093 | 15.0 | 15 | 1.5593 | 0.4333 |
2.1093 | 16.0 | 16 | 1.5160 | 0.5 |
2.1093 | 17.0 | 17 | 1.5322 | 0.4667 |
2.1093 | 18.0 | 18 | 1.4750 | 0.5 |
2.1093 | 19.0 | 19 | 1.3553 | 0.5333 |
1.3827 | 20.0 | 20 | 1.2704 | 0.4667 |
1.3827 | 21.0 | 21 | 1.2823 | 0.4667 |
1.3827 | 22.0 | 22 | 1.3789 | 0.5333 |
1.3827 | 23.0 | 23 | 1.2368 | 0.5667 |
1.3827 | 24.0 | 24 | 1.0561 | 0.6 |
1.3827 | 25.0 | 25 | 1.2039 | 0.5333 |
1.3827 | 26.0 | 26 | 1.2061 | 0.5333 |
1.3827 | 27.0 | 27 | 0.9144 | 0.6333 |
1.3827 | 28.0 | 28 | 1.0374 | 0.6 |
1.3827 | 29.0 | 29 | 1.0670 | 0.6333 |
0.6174 | 30.0 | 30 | 1.0691 | 0.6667 |
0.6174 | 31.0 | 31 | 0.9445 | 0.6667 |
0.6174 | 32.0 | 32 | 0.8885 | 0.5667 |
0.6174 | 33.0 | 33 | 0.9647 | 0.6 |
0.6174 | 34.0 | 34 | 1.0187 | 0.5667 |
0.6174 | 35.0 | 35 | 0.9037 | 0.6333 |
0.6174 | 36.0 | 36 | 0.9069 | 0.6 |
0.6174 | 37.0 | 37 | 0.8999 | 0.6333 |
0.6174 | 38.0 | 38 | 0.6198 | 0.7667 |
0.6174 | 39.0 | 39 | 0.8034 | 0.6667 |
0.2248 | 40.0 | 40 | 0.9049 | 0.6667 |
0.2248 | 41.0 | 41 | 0.7231 | 0.6667 |
0.2248 | 42.0 | 42 | 0.6554 | 0.7 |
0.2248 | 43.0 | 43 | 0.6591 | 0.8 |
0.2248 | 44.0 | 44 | 0.7196 | 0.8 |
0.2248 | 45.0 | 45 | 0.7233 | 0.7 |
0.2248 | 46.0 | 46 | 0.6112 | 0.8 |
0.2248 | 47.0 | 47 | 0.4299 | 0.8667 |
0.2248 | 48.0 | 48 | 0.5479 | 0.8 |
0.2248 | 49.0 | 49 | 0.5996 | 0.8333 |
0.0773 | 50.0 | 50 | 0.6714 | 0.7333 |
0.0773 | 51.0 | 51 | 0.4989 | 0.8333 |
0.0773 | 52.0 | 52 | 0.4956 | 0.8667 |
0.0773 | 53.0 | 53 | 0.4367 | 0.8333 |
0.0773 | 54.0 | 54 | 0.4542 | 0.8333 |
0.0773 | 55.0 | 55 | 0.5991 | 0.8 |
0.0773 | 56.0 | 56 | 0.6906 | 0.7667 |
0.0773 | 57.0 | 57 | 0.6667 | 0.7333 |
0.0773 | 58.0 | 58 | 0.5142 | 0.8 |
0.0773 | 59.0 | 59 | 0.5593 | 0.8 |
0.035 | 60.0 | 60 | 0.7527 | 0.7 |
0.035 | 61.0 | 61 | 0.4706 | 0.8667 |
0.035 | 62.0 | 62 | 0.5345 | 0.8333 |
0.035 | 63.0 | 63 | 0.5804 | 0.7667 |
0.035 | 64.0 | 64 | 0.5549 | 0.7667 |
0.035 | 65.0 | 65 | 0.5665 | 0.8 |
0.035 | 66.0 | 66 | 0.3258 | 0.9333 |
0.035 | 67.0 | 67 | 0.4890 | 0.8333 |
0.035 | 68.0 | 68 | 0.4657 | 0.8333 |
0.035 | 69.0 | 69 | 0.6546 | 0.8 |
0.0192 | 70.0 | 70 | 0.4962 | 0.8667 |
0.0192 | 71.0 | 71 | 0.5801 | 0.8 |
0.0192 | 72.0 | 72 | 0.5365 | 0.8667 |
0.0192 | 73.0 | 73 | 0.3524 | 0.8667 |
0.0192 | 74.0 | 74 | 0.5291 | 0.8667 |
0.0192 | 75.0 | 75 | 0.4613 | 0.9333 |
0.0192 | 76.0 | 76 | 0.5031 | 0.8 |
0.0192 | 77.0 | 77 | 0.4986 | 0.8333 |
0.0192 | 78.0 | 78 | 0.6103 | 0.8 |
0.0192 | 79.0 | 79 | 0.5855 | 0.8333 |
0.0126 | 80.0 | 80 | 0.6136 | 0.7667 |
0.0126 | 81.0 | 81 | 0.5112 | 0.8667 |
0.0126 | 82.0 | 82 | 0.4770 | 0.8333 |
0.0126 | 83.0 | 83 | 0.4016 | 0.8667 |
0.0126 | 84.0 | 84 | 0.4946 | 0.8667 |
0.0126 | 85.0 | 85 | 0.5542 | 0.7667 |
0.0126 | 86.0 | 86 | 0.4037 | 0.8667 |
0.0126 | 87.0 | 87 | 0.4775 | 0.8 |
0.0126 | 88.0 | 88 | 0.5146 | 0.8333 |
0.0126 | 89.0 | 89 | 0.5603 | 0.7667 |
0.0072 | 90.0 | 90 | 0.5734 | 0.8 |
0.0072 | 91.0 | 91 | 0.5937 | 0.8 |
0.0072 | 92.0 | 92 | 0.5328 | 0.8 |
0.0072 | 93.0 | 93 | 0.4362 | 0.8667 |
0.0072 | 94.0 | 94 | 0.6317 | 0.7667 |
0.0072 | 95.0 | 95 | 0.4078 | 0.8667 |
0.0072 | 96.0 | 96 | 0.5680 | 0.8 |
0.0072 | 97.0 | 97 | 0.6209 | 0.8 |
0.0072 | 98.0 | 98 | 0.5360 | 0.8 |
0.0072 | 99.0 | 99 | 0.4784 | 0.8667 |
0.0093 | 100.0 | 100 | 0.4370 | 0.9 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 1
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for ricardoSLabs/Fer_vit_jaffe_crop_GOOGLE_0
Base model
WinKawaks/vit-tiny-patch16-224Evaluation results
- Accuracy on imagefoldervalidation set self-reported0.900