Fer_vit_jaffe_crop_GOOGLE_0

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4370
  • Accuracy: 0.9

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 100

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.4680 0.1333
No log 2.0 2 2.2791 0.2333
No log 3.0 3 2.2505 0.1667
No log 4.0 4 2.0650 0.1
No log 5.0 5 2.1205 0.0333
No log 6.0 6 2.0198 0.1
No log 7.0 7 2.0317 0.1333
No log 8.0 8 1.9863 0.2333
No log 9.0 9 1.9390 0.3
2.1093 10.0 10 1.8465 0.2667
2.1093 11.0 11 1.6948 0.4333
2.1093 12.0 12 1.6453 0.4333
2.1093 13.0 13 1.6213 0.3333
2.1093 14.0 14 1.6045 0.3667
2.1093 15.0 15 1.5593 0.4333
2.1093 16.0 16 1.5160 0.5
2.1093 17.0 17 1.5322 0.4667
2.1093 18.0 18 1.4750 0.5
2.1093 19.0 19 1.3553 0.5333
1.3827 20.0 20 1.2704 0.4667
1.3827 21.0 21 1.2823 0.4667
1.3827 22.0 22 1.3789 0.5333
1.3827 23.0 23 1.2368 0.5667
1.3827 24.0 24 1.0561 0.6
1.3827 25.0 25 1.2039 0.5333
1.3827 26.0 26 1.2061 0.5333
1.3827 27.0 27 0.9144 0.6333
1.3827 28.0 28 1.0374 0.6
1.3827 29.0 29 1.0670 0.6333
0.6174 30.0 30 1.0691 0.6667
0.6174 31.0 31 0.9445 0.6667
0.6174 32.0 32 0.8885 0.5667
0.6174 33.0 33 0.9647 0.6
0.6174 34.0 34 1.0187 0.5667
0.6174 35.0 35 0.9037 0.6333
0.6174 36.0 36 0.9069 0.6
0.6174 37.0 37 0.8999 0.6333
0.6174 38.0 38 0.6198 0.7667
0.6174 39.0 39 0.8034 0.6667
0.2248 40.0 40 0.9049 0.6667
0.2248 41.0 41 0.7231 0.6667
0.2248 42.0 42 0.6554 0.7
0.2248 43.0 43 0.6591 0.8
0.2248 44.0 44 0.7196 0.8
0.2248 45.0 45 0.7233 0.7
0.2248 46.0 46 0.6112 0.8
0.2248 47.0 47 0.4299 0.8667
0.2248 48.0 48 0.5479 0.8
0.2248 49.0 49 0.5996 0.8333
0.0773 50.0 50 0.6714 0.7333
0.0773 51.0 51 0.4989 0.8333
0.0773 52.0 52 0.4956 0.8667
0.0773 53.0 53 0.4367 0.8333
0.0773 54.0 54 0.4542 0.8333
0.0773 55.0 55 0.5991 0.8
0.0773 56.0 56 0.6906 0.7667
0.0773 57.0 57 0.6667 0.7333
0.0773 58.0 58 0.5142 0.8
0.0773 59.0 59 0.5593 0.8
0.035 60.0 60 0.7527 0.7
0.035 61.0 61 0.4706 0.8667
0.035 62.0 62 0.5345 0.8333
0.035 63.0 63 0.5804 0.7667
0.035 64.0 64 0.5549 0.7667
0.035 65.0 65 0.5665 0.8
0.035 66.0 66 0.3258 0.9333
0.035 67.0 67 0.4890 0.8333
0.035 68.0 68 0.4657 0.8333
0.035 69.0 69 0.6546 0.8
0.0192 70.0 70 0.4962 0.8667
0.0192 71.0 71 0.5801 0.8
0.0192 72.0 72 0.5365 0.8667
0.0192 73.0 73 0.3524 0.8667
0.0192 74.0 74 0.5291 0.8667
0.0192 75.0 75 0.4613 0.9333
0.0192 76.0 76 0.5031 0.8
0.0192 77.0 77 0.4986 0.8333
0.0192 78.0 78 0.6103 0.8
0.0192 79.0 79 0.5855 0.8333
0.0126 80.0 80 0.6136 0.7667
0.0126 81.0 81 0.5112 0.8667
0.0126 82.0 82 0.4770 0.8333
0.0126 83.0 83 0.4016 0.8667
0.0126 84.0 84 0.4946 0.8667
0.0126 85.0 85 0.5542 0.7667
0.0126 86.0 86 0.4037 0.8667
0.0126 87.0 87 0.4775 0.8
0.0126 88.0 88 0.5146 0.8333
0.0126 89.0 89 0.5603 0.7667
0.0072 90.0 90 0.5734 0.8
0.0072 91.0 91 0.5937 0.8
0.0072 92.0 92 0.5328 0.8
0.0072 93.0 93 0.4362 0.8667
0.0072 94.0 94 0.6317 0.7667
0.0072 95.0 95 0.4078 0.8667
0.0072 96.0 96 0.5680 0.8
0.0072 97.0 97 0.6209 0.8
0.0072 98.0 98 0.5360 0.8
0.0072 99.0 99 0.4784 0.8667
0.0093 100.0 100 0.4370 0.9

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
1
Safetensors
Model size
5.53M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ricardoSLabs/Fer_vit_jaffe_crop_GOOGLE_0

Finetuned
(46)
this model

Evaluation results