jaffe_V2_20_1

This model is a fine-tuned version of WinKawaks/vit-tiny-patch16-224 on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5014
  • Accuracy: 0.4333

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 1 2.4111 0.1333
No log 2.0 2 2.0318 0.1667
No log 3.0 3 2.0433 0.1667
No log 4.0 4 2.0298 0.1
No log 5.0 5 1.9400 0.2
No log 6.0 6 1.8599 0.2667
No log 7.0 7 1.7569 0.2333
No log 8.0 8 1.8134 0.1333
No log 9.0 9 1.6201 0.3667
1.971 10.0 10 1.6919 0.2667
1.971 11.0 11 1.6849 0.2667
1.971 12.0 12 1.6344 0.3333
1.971 13.0 13 1.6805 0.3
1.971 14.0 14 1.5784 0.4667
1.971 15.0 15 1.5104 0.4667
1.971 16.0 16 1.4978 0.4333
1.971 17.0 17 1.5169 0.4
1.971 18.0 18 1.4790 0.4
1.971 19.0 19 1.4223 0.6
1.5094 20.0 20 1.5014 0.4333

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.3.1
  • Tokenizers 0.21.0
Downloads last month
2
Safetensors
Model size
5.53M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for ricardoSLabs/jaffe_V2_20_1

Finetuned
(38)
this model

Evaluation results