|
--- |
|
model_name: QwenMedic-v1 |
|
language: en |
|
license: apache-2.0 |
|
pipeline_tag: text-generation |
|
tags: |
|
- medical |
|
- clinical |
|
- question-answering |
|
- summarization |
|
- decision-support |
|
datasets: |
|
- FreedomIntelligence/medical-o1-reasoning-SFT |
|
- jtatman/medical-sci-instruct-1m-sharegpt |
|
--- |
|
|
|
|
|
|
|
## Model Card: QwenMedic-v1 |
|
|
|
<p align="center"> |
|
<img |
|
src="https://huggingface.co/ross-dev/QwenMedic-v1/resolve/main/assets/model_image.png" |
|
alt="Model Image" |
|
width="350" |
|
/> |
|
</p> |
|
|
|
### Overview |
|
QwenMedic-v1 is a medical-specialty adaptation of the Qwen3-1.7B causal language model, fine-tuned for clinical reasoning and instruction-following tasks. It was trained for **1 epoch** on two curated medical datasets to improve diagnostic Q&A and clinical summarization. |
|
|
|
### Base Model |
|
- **Architecture:** Qwen3-1.7B (28 layers, 16 Q / 8 KV attention heads, 32 768-token context) |
|
- **Parameters:** 1.7 billion |
|
- **Quantization:** float16 and int4 supported |
|
|
|
### Fine-Tuning Data |
|
1. **Medical Reasoning SFT** (`FreedomIntelligence/medical-o1-reasoning-SFT`) |
|
- Chain-of-thought reasoning examples on verifiable medical problems |
|
- Language: English |
|
- Split used: `train` |
|
|
|
2. **General Medical Instruction** (`jtatman/medical-sci-instruct-1m-sharegpt`) |
|
- Conversational Q&A prompts across medical topics |
|
- Sampled first 100 000 examples via `train[:100000]` |
|
|
|
### Training Configuration |
|
- **Framework:** PyTorch + Hugging Face Transformers |
|
- **Optimizer:** AdamW |
|
- **Learning Rate:** 2 × 10⁻⁵ |
|
- **Batch Size:** 16 (with gradient accumulation) |
|
- **Precision:** bfloat16 mixed precision |
|
- **Hardware:** NVIDIA RTX 3090 (24 GB) |
|
|
|
### Intended Uses |
|
- Clinical question answering & differential diagnosis |
|
- Summarization of patient notes |
|
- Medical education & decision support |
|
|
|
### Limitations & Risks |
|
- May produce **hallucinations** or plausible-sounding but incorrect advice |
|
- **Biases** due to training-data coverage |
|
- **Not FDA-approved**—should not replace professional medical judgment |
|
- Avoid feeding **patient-identifiable** data without proper de-identification |
|
|
|
### Summary of Final Training Metrics |
|
|
|
| Metric | Step | Smoothed | Raw Value | |
|
|------------------:|-----:|---------:|----------:| |
|
| **Epoch** | 1539 | 0.9979 | 0.9997 | |
|
| **Gradient Norm** | 1539 | 0.3882 | 0.3974 | |
|
| **Learning Rate** | 1539 | — | 0 | |
|
| **Training Loss** | 1539 | 1.5216 | 1.4703 | |
|
|
|
### Inference Example |
|
|
|
```python |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "Qwen/QwenMedic-v1" |
|
|
|
# load the tokenizer and the model |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
# prepare the model input |
|
prompt = "A 55-year-old male with Type 2 diabetes presents with sudden chest pain " |
|
"and diaphoresis. What are the top differential diagnoses?" |
|
messages = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
enable_thinking=True # Switches between thinking and non-thinking modes. Default is True. |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
# conduct text completion |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
max_new_tokens=32768 |
|
) |
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist() |
|
|
|
# parsing thinking content |
|
try: |
|
# rindex finding 151668 (</think>) |
|
index = len(output_ids) - output_ids[::-1].index(151668) |
|
except ValueError: |
|
index = 0 |
|
|
|
thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n") |
|
content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n") |
|
|
|
print("thinking content:", thinking_content) |
|
print("content:", content) |
|
``` |
|
|
|
### Contact |
|
- **Creator:** Andre Ross |
|
- **Company:** Ross Technologies |
|
- **Email:** [email protected] |
|
|