|
---
|
|
base_model: sentence-transformers/all-mpnet-base-v2
|
|
datasets: []
|
|
language: []
|
|
library_name: sentence-transformers
|
|
pipeline_tag: sentence-similarity
|
|
tags:
|
|
- sentence-transformers
|
|
- sentence-similarity
|
|
- feature-extraction
|
|
- generated_from_trainer
|
|
- dataset_size:9306
|
|
- loss:CoSENTLoss
|
|
widget:
|
|
- source_sentence: What are the name, population, and life expectancy of the largest
|
|
Asian country by land?
|
|
sentences:
|
|
- Find the names and phone numbers of customers living in California state.
|
|
- What is the age of the doctor named Zach?
|
|
- What are the name and location of the cinema with the largest capacity?
|
|
- source_sentence: What are the titles of the cartoons sorted alphabetically?
|
|
sentences:
|
|
- What are the names of wines, sorted in alphabetical order?
|
|
- Find the first and last names of people who payed more than the rooms' base prices.
|
|
- What is the name of the track that has had the greatest number of races?
|
|
- source_sentence: What is the name of each continent and how many car makers are
|
|
there in each one?
|
|
sentences:
|
|
- What are the allergy types and how many allergies correspond to each one?
|
|
- List all people names in the order of their date of birth from old to young.
|
|
- Which city has the most customers living in?
|
|
- source_sentence: Give the flight numbers of flights arriving in Aberdeen.
|
|
sentences:
|
|
- Return the device carriers that do not have Android as their software platform.
|
|
- What are the names of the pilots that have not won any matches in Australia?
|
|
- Give the phones for departments in room 268.
|
|
- source_sentence: How many total tours were there for each ranking date?
|
|
sentences:
|
|
- What is the carrier of the most expensive phone?
|
|
- How many total pounds were purchased in the year 2018 at all London branches?
|
|
- Find the number of students for the cities where have more than one student.
|
|
---
|
|
|
|
# SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
|
|
|
|
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
|
|
|
## Model Details
|
|
|
|
### Model Description
|
|
- **Model Type:** Sentence Transformer
|
|
- **Base model:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) <!-- at revision 84f2bcc00d77236f9e89c8a360a00fb1139bf47d -->
|
|
- **Maximum Sequence Length:** 384 tokens
|
|
- **Output Dimensionality:** 768 tokens
|
|
- **Similarity Function:** Cosine Similarity
|
|
<!-- - **Training Dataset:** Unknown -->
|
|
<!-- - **Language:** Unknown -->
|
|
<!-- - **License:** Unknown -->
|
|
|
|
### Model Sources
|
|
|
|
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
|
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
|
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
|
|
|
### Full Model Architecture
|
|
|
|
```
|
|
SentenceTransformer(
|
|
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
|
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
|
(2): Normalize()
|
|
)
|
|
```
|
|
|
|
## Usage
|
|
|
|
### Direct Usage (Sentence Transformers)
|
|
|
|
First install the Sentence Transformers library:
|
|
|
|
```bash
|
|
pip install -U sentence-transformers
|
|
```
|
|
|
|
Then you can load this model and run inference.
|
|
```python
|
|
from sentence_transformers import SentenceTransformer
|
|
|
|
# Download from the 🤗 Hub
|
|
model = SentenceTransformer("s2593817/sft-question-embedding")
|
|
# Run inference
|
|
sentences = [
|
|
'How many total tours were there for each ranking date?',
|
|
'How many total pounds were purchased in the year 2018 at all London branches?',
|
|
'What is the carrier of the most expensive phone?',
|
|
]
|
|
embeddings = model.encode(sentences)
|
|
print(embeddings.shape)
|
|
# [3, 768]
|
|
|
|
# Get the similarity scores for the embeddings
|
|
similarities = model.similarity(embeddings, embeddings)
|
|
print(similarities.shape)
|
|
# [3, 3]
|
|
```
|
|
|
|
<!--
|
|
### Direct Usage (Transformers)
|
|
|
|
<details><summary>Click to see the direct usage in Transformers</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Downstream Usage (Sentence Transformers)
|
|
|
|
You can finetune this model on your own dataset.
|
|
|
|
<details><summary>Click to expand</summary>
|
|
|
|
</details>
|
|
-->
|
|
|
|
<!--
|
|
### Out-of-Scope Use
|
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
|
-->
|
|
|
|
<!--
|
|
## Bias, Risks and Limitations
|
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
|
-->
|
|
|
|
<!--
|
|
### Recommendations
|
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
|
-->
|
|
|
|
## Training Details
|
|
|
|
### Training Dataset
|
|
|
|
#### Unnamed Dataset
|
|
|
|
|
|
* Size: 9,306 training samples
|
|
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
|
* Approximate statistics based on the first 1000 samples:
|
|
| | sentence1 | sentence2 | score |
|
|
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------|
|
|
| type | string | string | int |
|
|
| details | <ul><li>min: 7 tokens</li><li>mean: 16.25 tokens</li><li>max: 36 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 15.23 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>-1: ~25.20%</li><li>1: ~74.80%</li></ul> |
|
|
* Samples:
|
|
| sentence1 | sentence2 | score |
|
|
|:-----------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------|:---------------|
|
|
| <code>How many singers do we have?</code> | <code>How many aircrafts do we have?</code> | <code>1</code> |
|
|
| <code>What is the total number of singers?</code> | <code>What is the total number of students?</code> | <code>1</code> |
|
|
| <code>Show name, country, age for all singers ordered by age from the oldest to the youngest.</code> | <code>List all people names in the order of their date of birth from old to young.</code> | <code>1</code> |
|
|
* Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
|
|
```json
|
|
{
|
|
"scale": 20.0,
|
|
"similarity_fct": "pairwise_cos_sim"
|
|
}
|
|
```
|
|
|
|
### Training Hyperparameters
|
|
#### Non-Default Hyperparameters
|
|
|
|
- `per_device_train_batch_size`: 160
|
|
- `learning_rate`: 2e-05
|
|
- `num_train_epochs`: 100
|
|
- `warmup_ratio`: 0.2
|
|
- `fp16`: True
|
|
- `dataloader_num_workers`: 16
|
|
- `batch_sampler`: no_duplicates
|
|
|
|
#### All Hyperparameters
|
|
<details><summary>Click to expand</summary>
|
|
|
|
- `overwrite_output_dir`: False
|
|
- `do_predict`: False
|
|
- `eval_strategy`: no
|
|
- `prediction_loss_only`: True
|
|
- `per_device_train_batch_size`: 160
|
|
- `per_device_eval_batch_size`: 8
|
|
- `per_gpu_train_batch_size`: None
|
|
- `per_gpu_eval_batch_size`: None
|
|
- `gradient_accumulation_steps`: 1
|
|
- `eval_accumulation_steps`: None
|
|
- `learning_rate`: 2e-05
|
|
- `weight_decay`: 0.0
|
|
- `adam_beta1`: 0.9
|
|
- `adam_beta2`: 0.999
|
|
- `adam_epsilon`: 1e-08
|
|
- `max_grad_norm`: 1.0
|
|
- `num_train_epochs`: 100
|
|
- `max_steps`: -1
|
|
- `lr_scheduler_type`: linear
|
|
- `lr_scheduler_kwargs`: {}
|
|
- `warmup_ratio`: 0.2
|
|
- `warmup_steps`: 0
|
|
- `log_level`: passive
|
|
- `log_level_replica`: warning
|
|
- `log_on_each_node`: True
|
|
- `logging_nan_inf_filter`: True
|
|
- `save_safetensors`: True
|
|
- `save_on_each_node`: False
|
|
- `save_only_model`: False
|
|
- `restore_callback_states_from_checkpoint`: False
|
|
- `no_cuda`: False
|
|
- `use_cpu`: False
|
|
- `use_mps_device`: False
|
|
- `seed`: 42
|
|
- `data_seed`: None
|
|
- `jit_mode_eval`: False
|
|
- `use_ipex`: False
|
|
- `bf16`: False
|
|
- `fp16`: True
|
|
- `fp16_opt_level`: O1
|
|
- `half_precision_backend`: auto
|
|
- `bf16_full_eval`: False
|
|
- `fp16_full_eval`: False
|
|
- `tf32`: None
|
|
- `local_rank`: 0
|
|
- `ddp_backend`: None
|
|
- `tpu_num_cores`: None
|
|
- `tpu_metrics_debug`: False
|
|
- `debug`: []
|
|
- `dataloader_drop_last`: False
|
|
- `dataloader_num_workers`: 16
|
|
- `dataloader_prefetch_factor`: None
|
|
- `past_index`: -1
|
|
- `disable_tqdm`: False
|
|
- `remove_unused_columns`: True
|
|
- `label_names`: None
|
|
- `load_best_model_at_end`: False
|
|
- `ignore_data_skip`: False
|
|
- `fsdp`: []
|
|
- `fsdp_min_num_params`: 0
|
|
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
|
- `fsdp_transformer_layer_cls_to_wrap`: None
|
|
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
|
- `deepspeed`: None
|
|
- `label_smoothing_factor`: 0.0
|
|
- `optim`: adamw_torch
|
|
- `optim_args`: None
|
|
- `adafactor`: False
|
|
- `group_by_length`: False
|
|
- `length_column_name`: length
|
|
- `ddp_find_unused_parameters`: None
|
|
- `ddp_bucket_cap_mb`: None
|
|
- `ddp_broadcast_buffers`: False
|
|
- `dataloader_pin_memory`: True
|
|
- `dataloader_persistent_workers`: False
|
|
- `skip_memory_metrics`: True
|
|
- `use_legacy_prediction_loop`: False
|
|
- `push_to_hub`: False
|
|
- `resume_from_checkpoint`: None
|
|
- `hub_model_id`: None
|
|
- `hub_strategy`: every_save
|
|
- `hub_private_repo`: False
|
|
- `hub_always_push`: False
|
|
- `gradient_checkpointing`: False
|
|
- `gradient_checkpointing_kwargs`: None
|
|
- `include_inputs_for_metrics`: False
|
|
- `eval_do_concat_batches`: True
|
|
- `fp16_backend`: auto
|
|
- `push_to_hub_model_id`: None
|
|
- `push_to_hub_organization`: None
|
|
- `mp_parameters`:
|
|
- `auto_find_batch_size`: False
|
|
- `full_determinism`: False
|
|
- `torchdynamo`: None
|
|
- `ray_scope`: last
|
|
- `ddp_timeout`: 1800
|
|
- `torch_compile`: False
|
|
- `torch_compile_backend`: None
|
|
- `torch_compile_mode`: None
|
|
- `dispatch_batches`: None
|
|
- `split_batches`: None
|
|
- `include_tokens_per_second`: False
|
|
- `include_num_input_tokens_seen`: False
|
|
- `neftune_noise_alpha`: None
|
|
- `optim_target_modules`: None
|
|
- `batch_eval_metrics`: False
|
|
- `eval_on_start`: False
|
|
- `batch_sampler`: no_duplicates
|
|
- `multi_dataset_batch_sampler`: proportional
|
|
|
|
</details>
|
|
|
|
### Training Logs
|
|
| Epoch | Step | Training Loss |
|
|
|:-------:|:----:|:-------------:|
|
|
| 1.6949 | 100 | 9.4942 |
|
|
| 2.4407 | 200 | 8.3205 |
|
|
| 3.1864 | 300 | 6.3257 |
|
|
| 3.9322 | 400 | 4.7354 |
|
|
| 4.6780 | 500 | 3.6898 |
|
|
| 5.4237 | 600 | 3.3736 |
|
|
| 6.1695 | 700 | 3.0906 |
|
|
| 7.8644 | 800 | 3.1459 |
|
|
| 8.6102 | 900 | 3.4447 |
|
|
| 9.3559 | 1000 | 3.219 |
|
|
| 10.1017 | 1100 | 2.9808 |
|
|
| 10.8475 | 1200 | 2.505 |
|
|
| 11.5932 | 1300 | 2.0372 |
|
|
| 12.3390 | 1400 | 1.8879 |
|
|
| 13.0847 | 1500 | 1.8852 |
|
|
| 14.7797 | 1600 | 2.1867 |
|
|
| 15.5254 | 1700 | 2.0583 |
|
|
| 16.2712 | 1800 | 2.0132 |
|
|
| 17.0169 | 1900 | 1.8906 |
|
|
| 17.7627 | 2000 | 1.4556 |
|
|
| 18.5085 | 2100 | 1.2575 |
|
|
| 19.2542 | 2200 | 1.258 |
|
|
| 20.9492 | 2300 | 0.9423 |
|
|
| 21.6949 | 2400 | 1.398 |
|
|
| 22.4407 | 2500 | 1.2811 |
|
|
| 23.1864 | 2600 | 1.2602 |
|
|
| 23.9322 | 2700 | 1.2178 |
|
|
| 24.6780 | 2800 | 1.0895 |
|
|
| 25.4237 | 2900 | 0.9186 |
|
|
| 26.1695 | 3000 | 0.7916 |
|
|
| 27.8644 | 3100 | 0.7777 |
|
|
| 28.6102 | 3200 | 1.0487 |
|
|
| 29.3559 | 3300 | 0.9255 |
|
|
| 30.1017 | 3400 | 0.9655 |
|
|
| 30.8475 | 3500 | 0.897 |
|
|
| 31.5932 | 3600 | 0.7444 |
|
|
| 32.3390 | 3700 | 0.6445 |
|
|
| 33.0847 | 3800 | 0.5025 |
|
|
| 34.7797 | 3900 | 0.681 |
|
|
| 35.5254 | 4000 | 0.9227 |
|
|
| 36.2712 | 4100 | 0.8631 |
|
|
| 37.0169 | 4200 | 0.8573 |
|
|
| 37.7627 | 4300 | 0.9496 |
|
|
| 38.5085 | 4400 | 0.7243 |
|
|
| 39.2542 | 4500 | 0.7024 |
|
|
| 40.9492 | 4600 | 0.4793 |
|
|
| 41.6949 | 4700 | 0.8076 |
|
|
| 42.4407 | 4800 | 0.825 |
|
|
| 43.1864 | 4900 | 0.7553 |
|
|
| 43.9322 | 5000 | 0.6861 |
|
|
| 44.6780 | 5100 | 0.6589 |
|
|
| 45.4237 | 5200 | 0.5023 |
|
|
| 46.1695 | 5300 | 0.4013 |
|
|
| 47.8644 | 5400 | 0.4524 |
|
|
| 48.6102 | 5500 | 0.5891 |
|
|
| 49.3559 | 5600 | 0.5765 |
|
|
| 50.1017 | 5700 | 0.5708 |
|
|
| 50.8475 | 5800 | 0.479 |
|
|
| 51.5932 | 5900 | 0.4671 |
|
|
|
|
|
|
### Framework Versions
|
|
- Python: 3.10.12
|
|
- Sentence Transformers: 3.0.1
|
|
- Transformers: 4.42.4
|
|
- PyTorch: 2.3.1+cu121
|
|
- Accelerate: 0.33.0
|
|
- Datasets: 2.20.0
|
|
- Tokenizers: 0.19.1
|
|
|
|
## Citation
|
|
|
|
### BibTeX
|
|
|
|
#### Sentence Transformers
|
|
```bibtex
|
|
@inproceedings{reimers-2019-sentence-bert,
|
|
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
|
author = "Reimers, Nils and Gurevych, Iryna",
|
|
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
|
month = "11",
|
|
year = "2019",
|
|
publisher = "Association for Computational Linguistics",
|
|
url = "https://arxiv.org/abs/1908.10084",
|
|
}
|
|
```
|
|
|
|
#### CoSENTLoss
|
|
```bibtex
|
|
@online{kexuefm-8847,
|
|
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
|
author={Su Jianlin},
|
|
year={2022},
|
|
month={Jan},
|
|
url={https://kexue.fm/archives/8847},
|
|
}
|
|
```
|
|
|
|
<!--
|
|
## Glossary
|
|
|
|
*Clearly define terms in order to be accessible across audiences.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Authors
|
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
|
-->
|
|
|
|
<!--
|
|
## Model Card Contact
|
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
|
--> |