File size: 44,250 Bytes
61c93f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:17198
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: How should we proceed if the installed valve or its appurtenances
    do not conform to the City's criteria, and what steps are involved in remedying
    the situation?
  sentences:
  - '1.1 SUMMARY:

    2. The valve shall perform as intended with no deformation, leaking or damage
    of any kind for the pressure ranges indicated.

    3. Before acceptance of the installed valve, provide the City the opportunity
    to inspect and operate the valve.

    a. The City will assess the ease of operating the ball valves and corporation
    stops, where applicable.

    4. The Combination Air Valve assembly shall be free from any leaks.

    B. Non-Conforming Work

    1. Ifaccess and operation of the valve or its appurtenances does not meet the
    City''s criteria, the Contractor will remedy the situation until it meets the
    City''s criteria, at the Contractor''s expense.

    3.8. SYSTEM STARTUP [NOT USED]

    3.9 ADJUSTING [NOT USED]

    3.10 CLEANING [NOT USED]

    3.11 CLOSEOUT ACTIVITIES [NOT USED]

    3.12, PROTECTION [NOT USED]

    3.13 MAINTENANCE [NOT USED]

    3.14 ATTACHMENTS [NOT USED]'
  - 'b. Miscellaneous Areas:

    layer.. , 1 = . , 2 = 3). , 3 = Take corrective action if an adequate bond does
    not exist between the. , 1 = . , 2 = . , 3 = current and underlying layer to ensure
    an adequate bond will be achieved. , 1 = . , 2 = . , 3 = during subsequent placement
    operations.. , 1 = . , 2 = 4). , 3 = The untrimmed core height must be in accordance
    with the requirements in. , 1 = . , 2 = . , 3 = Table 17.. , 1 = . , 2 = 5). ,
    3 = If the cores are an acceptable height, trim the cores immediately after. ,
    1 = . , 2 = . , 3 = obtaining the cores in accordance with Tex-207-F.. , 1 = .
    , 2 = . , 3 = Any core that does not meet the requirements in Table 17 will be
    rejected.. , 1 = . , 2 = 6). , 3 = more. , 1 = . , 2 = . , 3 = The City may request
    additional cores to be taken within the area. If. , 1 = . , 2 = 7). , 3 = than
    2 cores are'
  - '4. Other Activities:

    a. Rental of storage units, rental of storage space for recreational vehicles
    (RV) and boats, and the sale of moving related items are allowed uses.

    b. No other land use or business activity within storage units is allowed.

    c. The rental of moving trucks and moving related equipment shall constitute an
    Equipment Sales and Rental use.

    d. The sale and leasing of recreational vehicles (RVs) and boats shall constitute
    an Automotive Sales and Leasing use.'
- source_sentence: How do the setback regulations in the R1 District affect the design
    and placement of structures on the lot?
  sentences:
  - 'B. R11 District Dimensional Standards:

    Table 3.2-B: R1 District Dimensional Standards, 1 = Table 3.2-B: R1 District Dimensional
    Standards. Table 3.2-B: R1 District Dimensional Standards, 2 = Table 3.2-B: R1
    District Dimensional Standards. Table 3.2-B: R1 District Dimensional Standards,
    3 = Table 3.2-B: R1 District Dimensional Standards. Dimensional Standards, 1 =
    Dimensional Standards. Dimensional Standards, 2 = Dimensional Standards. Dimensional
    Standards, 3 = Additional Standards. LOT DIMENSIONS (MINIMUM), 1 = LOT DIMENSIONS
    (MINIMUM). LOT DIMENSIONS (MINIMUM), 2 = LOT DIMENSIONS (MINIMUM). LOT DIMENSIONS
    (MINIMUM), 3 = LOT DIMENSIONS (MINIMUM). oN, 1 = Lot area. oN, 2 = 32,000 sq ft.
    oN, 3 = 3.7.2: Lot and Site Requirements. iam, 1 = Lot width. iam, 2 = 80 feet.
    iam, 3 = 3.7.2: Lot and Site Requirements. fem, 1 = Lot depth 100. fem, 2 = feet.
    fem, 3 = 3.7.2: Lot and Site Requirements. SETBACKS'
  - '1. R7 Zoning District:

    Self-service laundry facilities shall only be permitted as an accessory use to
    multifamily dwellings, and such use shall be located within a multifamily structure.'
  - '1.3 > REFERENCES:

    NY, 1 = A.. NY, 2 = Abbreviations and Acronyms 1. AWG: American wire gauge 2..
    Fw, 1 = . Fw, 2 = PVC: polyvinyl chloride. UN, 1 = Reference Standards. UN, 2
    = Reference Standards. COAINID, 1 = 1.. COAINID, 2 = Reference standards cited
    in this Section refer to the current reference standard published at the time
    of the latest revision date logged at the end of this Section unless a date is
    cited.. , 1 = 2.. , 2 = specifically Texas Department of Transportation, Standard
    Specifications for Construction and Maintenance of Highways, Streets and Bridges
    (TxDOT):. , 1 = a.. , 2 = Item 684, Traffic Signal Cables. 3. TxDOT Departmental
    Materials Specification:. , 1 = 4.. , 2 = Underwriters Laboratories, Inc.. , 1
    = . , 2 = (UL).. , 1 = 5.. , 2 = International Municipal Signal Association (IMSA)..
    , 1 = ADMINISTRATIVE REQUIREMENTS [NOT USED]. , 2 = ADMINISTRATIVE REQUIREMENTS
    [NOT USED]. , 1 = SUBMITTALS. , 2 = SUBMITTALS.'
- source_sentence: How do the Dimensional Standards apply to our development project
    in the specified zoning districts?
  sentences:
  - 'v = Entire Site = Development Impact Area Only:

    . . Dimensional Standards, DDC Reference = Subchapter 3: Zoning Districts. . .
    Dimensional Standards, New A Construction = Vv. . . Dimensional Standards, Minor:
    Tier 1 = 0). . . Dimensional Standards, Major: Tier 2 = v. Land-Disturbing Activities,
    DDC Reference = 7.2. Land-Disturbing Activities, New A Construction = All development,
    see Section 7.2. Land-Disturbing Activities, Minor: Tier 1 = All development,
    see Section 7.2. Land-Disturbing Activities, Major: Tier 2 = All development,
    see Section 7.2. Environmentally Sensitive Areas, DDC Reference = 74. Environmentally
    Sensitive Areas, New A Construction = All development, see Section 7.4. Environmentally
    Sensitive Areas, Minor: Tier 1 = . Environmentally Sensitive Areas, Major: Tier
    2 = . Drainage, DDC Reference = 74. Drainage, New A Construction = All development,
    see Section 7.4. Drainage, Minor: Tier 1 = . Drainage, Major: Tier 2 = . Water
    and Wastewater, DDC Reference = 7.6. Water and Wastewater, New A Construction
    = All development,'
  - '3. Step 3: Determination of Procedure:

    Upon receipt of a complete application for a Certificate of Design Consistency,
    the Director must determine the appropriate review procedure prescribed by sections
    2.10.1.D.3.a-d below.

    Denton, Texas — Denton Development Code

    Print Date: August 30, 2024

    136'
  - '4B A. Tests and Inspections:

    CITY OF DENTON STANDARD CONSTRUCTION SPECIFICATION DOCUMENTS Revised October 22,
    2020

    Effective

    July 1, 2024

    [Insert Bid Number] [Insert Engineering Project Number]

    3.5

    REPAIR

    33 31 23

    COMBINATION AIR VALVE ASSEMBLIES FOR SEWER FORCE MAINS

    Page 6 of 7

    1. Testing and inspection of Combination Air Valves shall be in accordance with
    AWWA C512.'
- source_sentence: How do the regulations for Light Industrial (LI) and Heavy Industrial
    (HI) districts differ in terms of permitted uses and development standards?
  sentences:
  - 'This print version includes the following Code amendments::

    Other Nonresidential Districts. , 3 = . , 1 = 3.5.1 GO - General Office... , 2
    = 3.5.1 GO - General Office... , 3 = . , 1 = - LI - Light Industrial. , 2 = -
    LI - Light Industrial. , 3 = . , 1 = 3.5.2. , 2 = . , 3 = . , 1 = 3.5.3.. , 2
    = HI - Heavy Industrial. , 3 = . , 1 = 3.5.4. , 2 = PF - Public Facilities.. ,
    3 = oa. , 1 = Summary -. , 2 = Summary -. , 3 = . 3.6, 1 = PD Planned Development
    District. 3.6, 2 = PD Planned Development District. 3.6, 3 = . , 1 = 3.6.1 Purpose...
    seeesesnsnseeeenens Review Procedure ... esse. , 2 = 3.6.1 Purpose... seeesesnsnseeeenens
    Review Procedure ... esse. , 3 = . , 1 = 3.6.2. , 2 = .'
  - '1.1 SUMMARY:

    AADUNAPWNK, 1 = . AADUNAPWNK, 2 = . AADUNAPWNK, 3 = ensure the conduit is clean
    and free from obstructions.. , 1 = . , 2 = . , 3 = 17) Conduits shall be placed
    in an open trench at a minimum 24 inches (612. , 1 = . , 2 = . , 3 = mm) depth
    below the curb grade in the sidewalk areas, or 18 inches (450 mm) below the finished
    street grade in the street area.. PW CUO, 1 = . PW CUO, 2 = 18). PW CUO, 3 = Conduit
    placed for concrete encasement shall be secured and supported in. HP, 1 = . HP,
    2 = . HP, 3 = such a manner the alignment will not be disturbed during placement
    of the. , 1 = . , 2 = . , 3 = concrete.. CPAIANDNAHBPWNYRK, 1 = . CPAIANDNAHBPWNYRK,
    2 = . CPAIANDNAHBPWNYRK, 3 = Noconcrete shall be until all conduit ends have been
    and. , 1 = . ,'
  - 'E. Water Control:

    1. Surface Water

    a. Furnish all materials and equipment and perform all incidental work required
    to direct surface water away from the excavation.'
- source_sentence: How can I ensure that the curing compound we receive at the job
    site meets the required specifications with the manufacturer's original containers
    and labels intact?
  sentences:
  - 'B. Exemptions:

    Unless otherwise provided in this DDC, the following shall be exempt from the
    provisions of this Section 7.3: Land-Disturbing Activities:

    1. Grading and clearing in emergency situations involving immediate danger to
    life and property or substantial fire hazards;

    2. Any activity where the total volume of material disturbed, stored, disposed
    of or used as fill does not exceed 25 cubic yards and the area disturbed does
    not exceed 2,000 square feet, provided it does not obstruct a watercourse and
    is not located in a floodplain or other environmentally sensitive area;

    3. Soil-disturbing activities, excluding tree removal, that are associated with
    normal agricultural crop operations; or

    4. Stockpiling and handling of earth material associated with commercial quarry
    and landfill operations licensed under the state.

    Denton, Texas — Denton Development Code

    Print Date: August 30, 2024

    353'
  - '8. Curing:

    03 00 00

    CONCRETE AND CONCRETE REINFORCING

    Page 10 of 18

    6) Curing compound to be delivered to the job site in the manufacturer''s original
    containers only, with original label containing the following:

    a) Manufacturer''s name

    b) Trade name of the material

    c) Batch number or symbol with which test samples may be correlated'
  - '2. For Large Wind Energy Systems:

    a. The minimum acreage for a large wind system shall be established based on the
    setbacks of the turbine(s) and the height of the turbine(s);

    b. All turbines located within the same large wind system property shall be of
    a similar tower design, including the type, number of blades, and direction of
    blade rotation;

    c. Large wind systems shall be setback at least one and one-half times the height
    of the turbine and rotor diameter from the property line. Large wind systems shall
    also be setback at least one and one-half times the height of the turbine from
    above ground telephone, electrical lines, and other uninhabitable structures;

    d. Towers shall not be climbable up to 15 feet above ground level.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@1
- cosine_ndcg@3
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_mrr@1
- cosine_mrr@3
- cosine_mrr@5
- cosine_mrr@10
- cosine_map@100
model-index:
- name: worksphere
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 1024
      type: dim_1024
    metrics:
    - type: cosine_accuracy@1
      value: 0.030697674418604652
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.3986046511627907
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5774418604651163
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7881395348837209
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.030697674418604652
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.13286821705426355
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11548837209302326
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07881395348837208
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.030697674418604652
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.3986046511627907
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5774418604651163
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7881395348837209
      name: Cosine Recall@10
    - type: cosine_ndcg@1
      value: 0.030697674418604652
      name: Cosine Ndcg@1
    - type: cosine_ndcg@3
      value: 0.23179382587458858
      name: Cosine Ndcg@3
    - type: cosine_ndcg@5
      value: 0.3040553564598666
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.37531956376470604
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.030697674418604652
      name: Cosine Mrr@1
    - type: cosine_mrr@3
      value: 0.17515503875969318
      name: Cosine Mrr@3
    - type: cosine_mrr@5
      value: 0.21443410852713862
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.24572388335179296
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2550755013176846
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.030697674418604652
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.3986046511627907
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5774418604651163
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7881395348837209
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.030697674418604652
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.13286821705426355
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11548837209302326
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07881395348837208
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.030697674418604652
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.3986046511627907
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5774418604651163
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7881395348837209
      name: Cosine Recall@10
    - type: cosine_ndcg@1
      value: 0.030697674418604652
      name: Cosine Ndcg@1
    - type: cosine_ndcg@3
      value: 0.23179382587458858
      name: Cosine Ndcg@3
    - type: cosine_ndcg@5
      value: 0.3040553564598666
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.37531956376470604
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.030697674418604652
      name: Cosine Mrr@1
    - type: cosine_mrr@3
      value: 0.17515503875969318
      name: Cosine Mrr@3
    - type: cosine_mrr@5
      value: 0.21443410852713862
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.24572388335179296
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2550755013176846
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.03
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.39069767441860465
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5644186046511628
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.781860465116279
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.03
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.13023255813953488
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11288372093023255
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.0781860465116279
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.03
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.39069767441860465
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5644186046511628
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.781860465116279
      name: Cosine Recall@10
    - type: cosine_ndcg@1
      value: 0.03
      name: Cosine Ndcg@1
    - type: cosine_ndcg@3
      value: 0.22663893445598368
      name: Cosine Ndcg@3
    - type: cosine_ndcg@5
      value: 0.2968091108509391
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.37060640353852903
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.03
      name: Cosine Mrr@1
    - type: cosine_mrr@3
      value: 0.17096899224806486
      name: Cosine Mrr@3
    - type: cosine_mrr@5
      value: 0.20909689922481253
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.2416426725729079
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2512032580492767
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.029534883720930234
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.3774418604651163
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.5502325581395349
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 0.7644186046511627
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.029534883720930234
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.1258139534883721
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.11004651162790699
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.07644186046511628
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.029534883720930234
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.3774418604651163
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.5502325581395349
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 0.7644186046511627
      name: Cosine Recall@10
    - type: cosine_ndcg@1
      value: 0.029534883720930234
      name: Cosine Ndcg@1
    - type: cosine_ndcg@3
      value: 0.21910859618189715
      name: Cosine Ndcg@3
    - type: cosine_ndcg@5
      value: 0.2887354612410299
      name: Cosine Ndcg@5
    - type: cosine_ndcg@10
      value: 0.3613007541197287
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.029534883720930234
      name: Cosine Mrr@1
    - type: cosine_mrr@3
      value: 0.16538759689922747
      name: Cosine Mrr@3
    - type: cosine_mrr@5
      value: 0.20312015503876593
      name: Cosine Mrr@5
    - type: cosine_mrr@10
      value: 0.23504817275747772
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.2452995067602724
      name: Cosine Map@100
---

# worksphere

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sabber/worksphere-regulations-embedding_bge")
# Run inference
sentences = [
    "How can I ensure that the curing compound we receive at the job site meets the required specifications with the manufacturer's original containers and labels intact?",
    "8. Curing:\n03 00 00\nCONCRETE AND CONCRETE REINFORCING\nPage 10 of 18\n6) Curing compound to be delivered to the job site in the manufacturer's original containers only, with original label containing the following:\na) Manufacturer's name\nb) Trade name of the material\nc) Batch number or symbol with which test samples may be correlated",
    '2. For Large Wind Energy Systems:\na. The minimum acreage for a large wind system shall be established based on the setbacks of the turbine(s) and the height of the turbine(s);\nb. All turbines located within the same large wind system property shall be of a similar tower design, including the type, number of blades, and direction of blade rotation;\nc. Large wind systems shall be setback at least one and one-half times the height of the turbine and rotor diameter from the property line. Large wind systems shall also be setback at least one and one-half times the height of the turbine from above ground telephone, electrical lines, and other uninhabitable structures;\nd. Towers shall not be climbable up to 15 feet above ground level.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval

* Datasets: `dim_1024`, `dim_768`, `dim_512` and `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | dim_1024   | dim_768    | dim_512    | dim_256    |
|:--------------------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1   | 0.0307     | 0.0307     | 0.03       | 0.0295     |
| cosine_accuracy@3   | 0.3986     | 0.3986     | 0.3907     | 0.3774     |
| cosine_accuracy@5   | 0.5774     | 0.5774     | 0.5644     | 0.5502     |
| cosine_accuracy@10  | 0.7881     | 0.7881     | 0.7819     | 0.7644     |
| cosine_precision@1  | 0.0307     | 0.0307     | 0.03       | 0.0295     |
| cosine_precision@3  | 0.1329     | 0.1329     | 0.1302     | 0.1258     |
| cosine_precision@5  | 0.1155     | 0.1155     | 0.1129     | 0.11       |
| cosine_precision@10 | 0.0788     | 0.0788     | 0.0782     | 0.0764     |
| cosine_recall@1     | 0.0307     | 0.0307     | 0.03       | 0.0295     |
| cosine_recall@3     | 0.3986     | 0.3986     | 0.3907     | 0.3774     |
| cosine_recall@5     | 0.5774     | 0.5774     | 0.5644     | 0.5502     |
| cosine_recall@10    | 0.7881     | 0.7881     | 0.7819     | 0.7644     |
| cosine_ndcg@1       | 0.0307     | 0.0307     | 0.03       | 0.0295     |
| cosine_ndcg@3       | 0.2318     | 0.2318     | 0.2266     | 0.2191     |
| cosine_ndcg@5       | 0.3041     | 0.3041     | 0.2968     | 0.2887     |
| **cosine_ndcg@10**  | **0.3753** | **0.3753** | **0.3706** | **0.3613** |
| cosine_mrr@1        | 0.0307     | 0.0307     | 0.03       | 0.0295     |
| cosine_mrr@3        | 0.1752     | 0.1752     | 0.171      | 0.1654     |
| cosine_mrr@5        | 0.2144     | 0.2144     | 0.2091     | 0.2031     |
| cosine_mrr@10       | 0.2457     | 0.2457     | 0.2416     | 0.235      |
| cosine_map@100      | 0.2551     | 0.2551     | 0.2512     | 0.2453     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 17,198 training samples
* Columns: <code>question</code> and <code>context</code>
* Approximate statistics based on the first 1000 samples:
  |         | question                                                                          | context                                                                             |
  |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                              |
  | details | <ul><li>min: 14 tokens</li><li>mean: 26.6 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 140.8 tokens</li><li>max: 259 tokens</li></ul> |
* Samples:
  | question                                                                                                                                                                                                            | context                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
  |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>Are there any specific guidelines or requirements for the installation of tree supports as outlined in the regulations?</code>                                                                                | <code>SECTION 32 93 00:<br>Cast-in-Place 31 25 14 - Erosion and 32 13 13 - Concrete Paving. 32 13 16 - Decorative Concrete. a. Measurement 1) Measured per each Tree planted. b. Payment 1) The work performed and materials and measured as provided under price bid per each for Tree 2) Various caliper inches. The price bid shall include: 1) Furnishing and installing Tree as 2) Preparing excavation pit 3) Topsoil, fertilizer, mulch, and planting mix, 1 = . , 1 = Tree. , 1 = furnished in accordance with this item "Measurement" will be paid for at the unit for:. planted, 1 = . specified, 1 = . by the Drawings, 1 = . supports, 1 = . [Insert Bid Number], 1 = . [Insert, 1 = . 4), 1 = Plant. Number], 1 = Number]. Engineering Project, 1 = Engineering Project<br>Effective July 1, 2024<br>32 93 00<br>PLANTINGS<br>Page 2 of 24<br>eee<br>BER<br>BPRERR</code>                                                                                                                  |
  | <code>What specific information do I need to include in my application to meet the standards for grouted installations?</code>                                                                                      | <code>1.1 SUMMARY:<br>= . 36, 2 = . 36, 3 = (1) requirements a qualified testing laboratory.. 37, 1 = . 37, 2 = . 37, 3 = Submit a minimum of 3 other similar projects where the proposed grout mix. 38, 1 = . 38, 2 = . 38, 3 = design was used.. 39 40, 1 = . 39 40, 2 = . 39 40, 3 = anticipated volumes of grout to be pumped for each. , 1 = . , 2 = . , 3 = Submit application and reach grouted.. 41, 1 = 4.. 41, 2 = . 41, 3 = Additional requirements for installations of carrier pipe 24-inch and larger:. 42, 1 = . 42, 2 = a.. 42, 3 = Submit work plan describing the carrier pipe installation equipment, materials. 43 44, 1 = . 43 44, 2 = b.. 43 44, 3 = employed. For installations without holding jacks or a restrained spacer, provide buoyant<br>CITY OF DENTON STANDARD CONSTRUCTION SPECIFICATION DOCUMENTS Revised October 22, 2020 Effective July 1, 2024<br>[Insert Engineering Project Number] [Insert Bid Number]<br>eK<br>BWN<br>nA<br>20<br>21<br>22<br>23<br>24</code> |
  | <code>In the event of a quasi judicial hearing, who else besides the site owner(s) should we inform about the decision notification process, and how do we manage their requests for a copy of the decision?</code> | <code>Notice of Decision:<br>1. Within 10 days after a final decision on an application, the Director shall provide written notification of the decision, unless the applicant was present at the meeting where the decision was made or required by law.<br>2. If the review involves a quasi-judicial hearing, the Director shall, within 10 days after a final decision on the application, provide a written notification of the decision to the owner(s) of the subject site (unless the applicant was present at the meeting where the decision was made or required by law), and any other person that submitted a written request for a copy of the decision before its effective date.</code>                                                                                                                                                                                                                                                                                                  |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256
      ],
      "matryoshka_weights": [
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 8
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch      | Step    | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 |
|:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.2974     | 10      | 2.3168        | -                       | -                      | -                      | -                      |
| 0.5948     | 20      | 1.2839        | -                       | -                      | -                      | -                      |
| 0.8922     | 30      | 0.6758        | -                       | -                      | -                      | -                      |
| 0.9814     | 33      | -             | 0.3592                  | 0.3592                 | 0.3556                 | 0.3496                 |
| 1.1896     | 40      | 0.4651        | -                       | -                      | -                      | -                      |
| 1.4870     | 50      | 0.3707        | -                       | -                      | -                      | -                      |
| 1.7844     | 60      | 0.2941        | -                       | -                      | -                      | -                      |
| 1.9926     | 67      | -             | 0.3732                  | 0.3732                 | 0.3699                 | 0.3601                 |
| 2.0818     | 70      | 0.2651        | -                       | -                      | -                      | -                      |
| 2.3792     | 80      | 0.2341        | -                       | -                      | -                      | -                      |
| 2.6766     | 90      | 0.2093        | -                       | -                      | -                      | -                      |
| 2.9740     | 100     | 0.1812        | 0.3747                  | 0.3747                 | 0.3718                 | 0.3626                 |
| 3.2714     | 110     | 0.1717        | -                       | -                      | -                      | -                      |
| 3.5688     | 120     | 0.1496        | -                       | -                      | -                      | -                      |
| 3.8662     | 130     | 0.1472        | -                       | -                      | -                      | -                      |
| 3.9851     | 134     | -             | 0.3742                  | 0.3742                 | 0.3727                 | 0.3628                 |
| 4.1636     | 140     | 0.1304        | -                       | -                      | -                      | -                      |
| 4.4610     | 150     | 0.1229        | -                       | -                      | -                      | -                      |
| 4.7584     | 160     | 0.1085        | -                       | -                      | -                      | -                      |
| **4.9963** | **168** | **-**         | **0.3745**              | **0.3745**             | **0.3717**             | **0.361**              |
| 5.0558     | 170     | 0.1144        | -                       | -                      | -                      | -                      |
| 5.3532     | 180     | 0.1088        | -                       | -                      | -                      | -                      |
| 5.6506     | 190     | 0.0937        | -                       | -                      | -                      | -                      |
| 5.9480     | 200     | 0.1023        | -                       | -                      | -                      | -                      |
| 5.9777     | 201     | -             | 0.3749                  | 0.3749                 | 0.3704                 | 0.3603                 |
| 6.2454     | 210     | 0.0942        | -                       | -                      | -                      | -                      |
| 6.5428     | 220     | 0.0919        | -                       | -                      | -                      | -                      |
| 6.8401     | 230     | 0.0939        | -                       | -                      | -                      | -                      |
| 6.9888     | 235     | -             | 0.3755                  | 0.3755                 | 0.3705                 | 0.3603                 |
| 7.1375     | 240     | 0.0925        | -                       | -                      | -                      | -                      |
| 7.4349     | 250     | 0.0928        | -                       | -                      | -                      | -                      |
| 7.7323     | 260     | 0.0869        | -                       | -                      | -                      | -                      |
| 7.8513     | 264     | -             | 0.3753                  | 0.3753                 | 0.3706                 | 0.3613                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.4.1+cu124
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning},
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->