File size: 44,250 Bytes
61c93f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:17198
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: BAAI/bge-base-en-v1.5
widget:
- source_sentence: How should we proceed if the installed valve or its appurtenances
do not conform to the City's criteria, and what steps are involved in remedying
the situation?
sentences:
- '1.1 SUMMARY:
2. The valve shall perform as intended with no deformation, leaking or damage
of any kind for the pressure ranges indicated.
3. Before acceptance of the installed valve, provide the City the opportunity
to inspect and operate the valve.
a. The City will assess the ease of operating the ball valves and corporation
stops, where applicable.
4. The Combination Air Valve assembly shall be free from any leaks.
B. Non-Conforming Work
1. Ifaccess and operation of the valve or its appurtenances does not meet the
City''s criteria, the Contractor will remedy the situation until it meets the
City''s criteria, at the Contractor''s expense.
3.8. SYSTEM STARTUP [NOT USED]
3.9 ADJUSTING [NOT USED]
3.10 CLEANING [NOT USED]
3.11 CLOSEOUT ACTIVITIES [NOT USED]
3.12, PROTECTION [NOT USED]
3.13 MAINTENANCE [NOT USED]
3.14 ATTACHMENTS [NOT USED]'
- 'b. Miscellaneous Areas:
layer.. , 1 = . , 2 = 3). , 3 = Take corrective action if an adequate bond does
not exist between the. , 1 = . , 2 = . , 3 = current and underlying layer to ensure
an adequate bond will be achieved. , 1 = . , 2 = . , 3 = during subsequent placement
operations.. , 1 = . , 2 = 4). , 3 = The untrimmed core height must be in accordance
with the requirements in. , 1 = . , 2 = . , 3 = Table 17.. , 1 = . , 2 = 5). ,
3 = If the cores are an acceptable height, trim the cores immediately after. ,
1 = . , 2 = . , 3 = obtaining the cores in accordance with Tex-207-F.. , 1 = .
, 2 = . , 3 = Any core that does not meet the requirements in Table 17 will be
rejected.. , 1 = . , 2 = 6). , 3 = more. , 1 = . , 2 = . , 3 = The City may request
additional cores to be taken within the area. If. , 1 = . , 2 = 7). , 3 = than
2 cores are'
- '4. Other Activities:
a. Rental of storage units, rental of storage space for recreational vehicles
(RV) and boats, and the sale of moving related items are allowed uses.
b. No other land use or business activity within storage units is allowed.
c. The rental of moving trucks and moving related equipment shall constitute an
Equipment Sales and Rental use.
d. The sale and leasing of recreational vehicles (RVs) and boats shall constitute
an Automotive Sales and Leasing use.'
- source_sentence: How do the setback regulations in the R1 District affect the design
and placement of structures on the lot?
sentences:
- 'B. R11 District Dimensional Standards:
Table 3.2-B: R1 District Dimensional Standards, 1 = Table 3.2-B: R1 District Dimensional
Standards. Table 3.2-B: R1 District Dimensional Standards, 2 = Table 3.2-B: R1
District Dimensional Standards. Table 3.2-B: R1 District Dimensional Standards,
3 = Table 3.2-B: R1 District Dimensional Standards. Dimensional Standards, 1 =
Dimensional Standards. Dimensional Standards, 2 = Dimensional Standards. Dimensional
Standards, 3 = Additional Standards. LOT DIMENSIONS (MINIMUM), 1 = LOT DIMENSIONS
(MINIMUM). LOT DIMENSIONS (MINIMUM), 2 = LOT DIMENSIONS (MINIMUM). LOT DIMENSIONS
(MINIMUM), 3 = LOT DIMENSIONS (MINIMUM). oN, 1 = Lot area. oN, 2 = 32,000 sq ft.
oN, 3 = 3.7.2: Lot and Site Requirements. iam, 1 = Lot width. iam, 2 = 80 feet.
iam, 3 = 3.7.2: Lot and Site Requirements. fem, 1 = Lot depth 100. fem, 2 = feet.
fem, 3 = 3.7.2: Lot and Site Requirements. SETBACKS'
- '1. R7 Zoning District:
Self-service laundry facilities shall only be permitted as an accessory use to
multifamily dwellings, and such use shall be located within a multifamily structure.'
- '1.3 > REFERENCES:
NY, 1 = A.. NY, 2 = Abbreviations and Acronyms 1. AWG: American wire gauge 2..
Fw, 1 = . Fw, 2 = PVC: polyvinyl chloride. UN, 1 = Reference Standards. UN, 2
= Reference Standards. COAINID, 1 = 1.. COAINID, 2 = Reference standards cited
in this Section refer to the current reference standard published at the time
of the latest revision date logged at the end of this Section unless a date is
cited.. , 1 = 2.. , 2 = specifically Texas Department of Transportation, Standard
Specifications for Construction and Maintenance of Highways, Streets and Bridges
(TxDOT):. , 1 = a.. , 2 = Item 684, Traffic Signal Cables. 3. TxDOT Departmental
Materials Specification:. , 1 = 4.. , 2 = Underwriters Laboratories, Inc.. , 1
= . , 2 = (UL).. , 1 = 5.. , 2 = International Municipal Signal Association (IMSA)..
, 1 = ADMINISTRATIVE REQUIREMENTS [NOT USED]. , 2 = ADMINISTRATIVE REQUIREMENTS
[NOT USED]. , 1 = SUBMITTALS. , 2 = SUBMITTALS.'
- source_sentence: How do the Dimensional Standards apply to our development project
in the specified zoning districts?
sentences:
- 'v = Entire Site = Development Impact Area Only:
. . Dimensional Standards, DDC Reference = Subchapter 3: Zoning Districts. . .
Dimensional Standards, New A Construction = Vv. . . Dimensional Standards, Minor:
Tier 1 = 0). . . Dimensional Standards, Major: Tier 2 = v. Land-Disturbing Activities,
DDC Reference = 7.2. Land-Disturbing Activities, New A Construction = All development,
see Section 7.2. Land-Disturbing Activities, Minor: Tier 1 = All development,
see Section 7.2. Land-Disturbing Activities, Major: Tier 2 = All development,
see Section 7.2. Environmentally Sensitive Areas, DDC Reference = 74. Environmentally
Sensitive Areas, New A Construction = All development, see Section 7.4. Environmentally
Sensitive Areas, Minor: Tier 1 = . Environmentally Sensitive Areas, Major: Tier
2 = . Drainage, DDC Reference = 74. Drainage, New A Construction = All development,
see Section 7.4. Drainage, Minor: Tier 1 = . Drainage, Major: Tier 2 = . Water
and Wastewater, DDC Reference = 7.6. Water and Wastewater, New A Construction
= All development,'
- '3. Step 3: Determination of Procedure:
Upon receipt of a complete application for a Certificate of Design Consistency,
the Director must determine the appropriate review procedure prescribed by sections
2.10.1.D.3.a-d below.
Denton, Texas — Denton Development Code
Print Date: August 30, 2024
136'
- '4B A. Tests and Inspections:
CITY OF DENTON STANDARD CONSTRUCTION SPECIFICATION DOCUMENTS Revised October 22,
2020
Effective
July 1, 2024
[Insert Bid Number] [Insert Engineering Project Number]
3.5
REPAIR
33 31 23
COMBINATION AIR VALVE ASSEMBLIES FOR SEWER FORCE MAINS
Page 6 of 7
1. Testing and inspection of Combination Air Valves shall be in accordance with
AWWA C512.'
- source_sentence: How do the regulations for Light Industrial (LI) and Heavy Industrial
(HI) districts differ in terms of permitted uses and development standards?
sentences:
- 'This print version includes the following Code amendments::
Other Nonresidential Districts. , 3 = . , 1 = 3.5.1 GO - General Office... , 2
= 3.5.1 GO - General Office... , 3 = . , 1 = - LI - Light Industrial. , 2 = -
LI - Light Industrial. , 3 = . , 1 = 3.5.2. , 2 = . , 3 = . , 1 = 3.5.3.. , 2
= HI - Heavy Industrial. , 3 = . , 1 = 3.5.4. , 2 = PF - Public Facilities.. ,
3 = oa. , 1 = Summary -. , 2 = Summary -. , 3 = . 3.6, 1 = PD Planned Development
District. 3.6, 2 = PD Planned Development District. 3.6, 3 = . , 1 = 3.6.1 Purpose...
seeesesnsnseeeenens Review Procedure ... esse. , 2 = 3.6.1 Purpose... seeesesnsnseeeenens
Review Procedure ... esse. , 3 = . , 1 = 3.6.2. , 2 = .'
- '1.1 SUMMARY:
AADUNAPWNK, 1 = . AADUNAPWNK, 2 = . AADUNAPWNK, 3 = ensure the conduit is clean
and free from obstructions.. , 1 = . , 2 = . , 3 = 17) Conduits shall be placed
in an open trench at a minimum 24 inches (612. , 1 = . , 2 = . , 3 = mm) depth
below the curb grade in the sidewalk areas, or 18 inches (450 mm) below the finished
street grade in the street area.. PW CUO, 1 = . PW CUO, 2 = 18). PW CUO, 3 = Conduit
placed for concrete encasement shall be secured and supported in. HP, 1 = . HP,
2 = . HP, 3 = such a manner the alignment will not be disturbed during placement
of the. , 1 = . , 2 = . , 3 = concrete.. CPAIANDNAHBPWNYRK, 1 = . CPAIANDNAHBPWNYRK,
2 = . CPAIANDNAHBPWNYRK, 3 = Noconcrete shall be until all conduit ends have been
and. , 1 = . ,'
- 'E. Water Control:
1. Surface Water
a. Furnish all materials and equipment and perform all incidental work required
to direct surface water away from the excavation.'
- source_sentence: How can I ensure that the curing compound we receive at the job
site meets the required specifications with the manufacturer's original containers
and labels intact?
sentences:
- 'B. Exemptions:
Unless otherwise provided in this DDC, the following shall be exempt from the
provisions of this Section 7.3: Land-Disturbing Activities:
1. Grading and clearing in emergency situations involving immediate danger to
life and property or substantial fire hazards;
2. Any activity where the total volume of material disturbed, stored, disposed
of or used as fill does not exceed 25 cubic yards and the area disturbed does
not exceed 2,000 square feet, provided it does not obstruct a watercourse and
is not located in a floodplain or other environmentally sensitive area;
3. Soil-disturbing activities, excluding tree removal, that are associated with
normal agricultural crop operations; or
4. Stockpiling and handling of earth material associated with commercial quarry
and landfill operations licensed under the state.
Denton, Texas — Denton Development Code
Print Date: August 30, 2024
353'
- '8. Curing:
03 00 00
CONCRETE AND CONCRETE REINFORCING
Page 10 of 18
6) Curing compound to be delivered to the job site in the manufacturer''s original
containers only, with original label containing the following:
a) Manufacturer''s name
b) Trade name of the material
c) Batch number or symbol with which test samples may be correlated'
- '2. For Large Wind Energy Systems:
a. The minimum acreage for a large wind system shall be established based on the
setbacks of the turbine(s) and the height of the turbine(s);
b. All turbines located within the same large wind system property shall be of
a similar tower design, including the type, number of blades, and direction of
blade rotation;
c. Large wind systems shall be setback at least one and one-half times the height
of the turbine and rotor diameter from the property line. Large wind systems shall
also be setback at least one and one-half times the height of the turbine from
above ground telephone, electrical lines, and other uninhabitable structures;
d. Towers shall not be climbable up to 15 feet above ground level.'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@1
- cosine_ndcg@3
- cosine_ndcg@5
- cosine_ndcg@10
- cosine_mrr@1
- cosine_mrr@3
- cosine_mrr@5
- cosine_mrr@10
- cosine_map@100
model-index:
- name: worksphere
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 1024
type: dim_1024
metrics:
- type: cosine_accuracy@1
value: 0.030697674418604652
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3986046511627907
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5774418604651163
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7881395348837209
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.030697674418604652
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13286821705426355
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11548837209302326
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07881395348837208
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.030697674418604652
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3986046511627907
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5774418604651163
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7881395348837209
name: Cosine Recall@10
- type: cosine_ndcg@1
value: 0.030697674418604652
name: Cosine Ndcg@1
- type: cosine_ndcg@3
value: 0.23179382587458858
name: Cosine Ndcg@3
- type: cosine_ndcg@5
value: 0.3040553564598666
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.37531956376470604
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.030697674418604652
name: Cosine Mrr@1
- type: cosine_mrr@3
value: 0.17515503875969318
name: Cosine Mrr@3
- type: cosine_mrr@5
value: 0.21443410852713862
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.24572388335179296
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2550755013176846
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.030697674418604652
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3986046511627907
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5774418604651163
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7881395348837209
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.030697674418604652
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13286821705426355
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11548837209302326
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07881395348837208
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.030697674418604652
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3986046511627907
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5774418604651163
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7881395348837209
name: Cosine Recall@10
- type: cosine_ndcg@1
value: 0.030697674418604652
name: Cosine Ndcg@1
- type: cosine_ndcg@3
value: 0.23179382587458858
name: Cosine Ndcg@3
- type: cosine_ndcg@5
value: 0.3040553564598666
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.37531956376470604
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.030697674418604652
name: Cosine Mrr@1
- type: cosine_mrr@3
value: 0.17515503875969318
name: Cosine Mrr@3
- type: cosine_mrr@5
value: 0.21443410852713862
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.24572388335179296
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2550755013176846
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.03
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.39069767441860465
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5644186046511628
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.781860465116279
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.03
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.13023255813953488
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11288372093023255
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.0781860465116279
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.03
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.39069767441860465
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5644186046511628
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.781860465116279
name: Cosine Recall@10
- type: cosine_ndcg@1
value: 0.03
name: Cosine Ndcg@1
- type: cosine_ndcg@3
value: 0.22663893445598368
name: Cosine Ndcg@3
- type: cosine_ndcg@5
value: 0.2968091108509391
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.37060640353852903
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.03
name: Cosine Mrr@1
- type: cosine_mrr@3
value: 0.17096899224806486
name: Cosine Mrr@3
- type: cosine_mrr@5
value: 0.20909689922481253
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.2416426725729079
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2512032580492767
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.029534883720930234
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.3774418604651163
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.5502325581395349
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.7644186046511627
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.029534883720930234
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.1258139534883721
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.11004651162790699
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.07644186046511628
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.029534883720930234
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.3774418604651163
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.5502325581395349
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.7644186046511627
name: Cosine Recall@10
- type: cosine_ndcg@1
value: 0.029534883720930234
name: Cosine Ndcg@1
- type: cosine_ndcg@3
value: 0.21910859618189715
name: Cosine Ndcg@3
- type: cosine_ndcg@5
value: 0.2887354612410299
name: Cosine Ndcg@5
- type: cosine_ndcg@10
value: 0.3613007541197287
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.029534883720930234
name: Cosine Mrr@1
- type: cosine_mrr@3
value: 0.16538759689922747
name: Cosine Mrr@3
- type: cosine_mrr@5
value: 0.20312015503876593
name: Cosine Mrr@5
- type: cosine_mrr@10
value: 0.23504817275747772
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.2452995067602724
name: Cosine Map@100
---
# worksphere
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sabber/worksphere-regulations-embedding_bge")
# Run inference
sentences = [
"How can I ensure that the curing compound we receive at the job site meets the required specifications with the manufacturer's original containers and labels intact?",
"8. Curing:\n03 00 00\nCONCRETE AND CONCRETE REINFORCING\nPage 10 of 18\n6) Curing compound to be delivered to the job site in the manufacturer's original containers only, with original label containing the following:\na) Manufacturer's name\nb) Trade name of the material\nc) Batch number or symbol with which test samples may be correlated",
'2. For Large Wind Energy Systems:\na. The minimum acreage for a large wind system shall be established based on the setbacks of the turbine(s) and the height of the turbine(s);\nb. All turbines located within the same large wind system property shall be of a similar tower design, including the type, number of blades, and direction of blade rotation;\nc. Large wind systems shall be setback at least one and one-half times the height of the turbine and rotor diameter from the property line. Large wind systems shall also be setback at least one and one-half times the height of the turbine from above ground telephone, electrical lines, and other uninhabitable structures;\nd. Towers shall not be climbable up to 15 feet above ground level.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_1024`, `dim_768`, `dim_512` and `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_1024 | dim_768 | dim_512 | dim_256 |
|:--------------------|:-----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
| cosine_accuracy@3 | 0.3986 | 0.3986 | 0.3907 | 0.3774 |
| cosine_accuracy@5 | 0.5774 | 0.5774 | 0.5644 | 0.5502 |
| cosine_accuracy@10 | 0.7881 | 0.7881 | 0.7819 | 0.7644 |
| cosine_precision@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
| cosine_precision@3 | 0.1329 | 0.1329 | 0.1302 | 0.1258 |
| cosine_precision@5 | 0.1155 | 0.1155 | 0.1129 | 0.11 |
| cosine_precision@10 | 0.0788 | 0.0788 | 0.0782 | 0.0764 |
| cosine_recall@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
| cosine_recall@3 | 0.3986 | 0.3986 | 0.3907 | 0.3774 |
| cosine_recall@5 | 0.5774 | 0.5774 | 0.5644 | 0.5502 |
| cosine_recall@10 | 0.7881 | 0.7881 | 0.7819 | 0.7644 |
| cosine_ndcg@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
| cosine_ndcg@3 | 0.2318 | 0.2318 | 0.2266 | 0.2191 |
| cosine_ndcg@5 | 0.3041 | 0.3041 | 0.2968 | 0.2887 |
| **cosine_ndcg@10** | **0.3753** | **0.3753** | **0.3706** | **0.3613** |
| cosine_mrr@1 | 0.0307 | 0.0307 | 0.03 | 0.0295 |
| cosine_mrr@3 | 0.1752 | 0.1752 | 0.171 | 0.1654 |
| cosine_mrr@5 | 0.2144 | 0.2144 | 0.2091 | 0.2031 |
| cosine_mrr@10 | 0.2457 | 0.2457 | 0.2416 | 0.235 |
| cosine_map@100 | 0.2551 | 0.2551 | 0.2512 | 0.2453 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 17,198 training samples
* Columns: <code>question</code> and <code>context</code>
* Approximate statistics based on the first 1000 samples:
| | question | context |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 14 tokens</li><li>mean: 26.6 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 23 tokens</li><li>mean: 140.8 tokens</li><li>max: 259 tokens</li></ul> |
* Samples:
| question | context |
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>Are there any specific guidelines or requirements for the installation of tree supports as outlined in the regulations?</code> | <code>SECTION 32 93 00:<br>Cast-in-Place 31 25 14 - Erosion and 32 13 13 - Concrete Paving. 32 13 16 - Decorative Concrete. a. Measurement 1) Measured per each Tree planted. b. Payment 1) The work performed and materials and measured as provided under price bid per each for Tree 2) Various caliper inches. The price bid shall include: 1) Furnishing and installing Tree as 2) Preparing excavation pit 3) Topsoil, fertilizer, mulch, and planting mix, 1 = . , 1 = Tree. , 1 = furnished in accordance with this item "Measurement" will be paid for at the unit for:. planted, 1 = . specified, 1 = . by the Drawings, 1 = . supports, 1 = . [Insert Bid Number], 1 = . [Insert, 1 = . 4), 1 = Plant. Number], 1 = Number]. Engineering Project, 1 = Engineering Project<br>Effective July 1, 2024<br>32 93 00<br>PLANTINGS<br>Page 2 of 24<br>eee<br>BER<br>BPRERR</code> |
| <code>What specific information do I need to include in my application to meet the standards for grouted installations?</code> | <code>1.1 SUMMARY:<br>= . 36, 2 = . 36, 3 = (1) requirements a qualified testing laboratory.. 37, 1 = . 37, 2 = . 37, 3 = Submit a minimum of 3 other similar projects where the proposed grout mix. 38, 1 = . 38, 2 = . 38, 3 = design was used.. 39 40, 1 = . 39 40, 2 = . 39 40, 3 = anticipated volumes of grout to be pumped for each. , 1 = . , 2 = . , 3 = Submit application and reach grouted.. 41, 1 = 4.. 41, 2 = . 41, 3 = Additional requirements for installations of carrier pipe 24-inch and larger:. 42, 1 = . 42, 2 = a.. 42, 3 = Submit work plan describing the carrier pipe installation equipment, materials. 43 44, 1 = . 43 44, 2 = b.. 43 44, 3 = employed. For installations without holding jacks or a restrained spacer, provide buoyant<br>CITY OF DENTON STANDARD CONSTRUCTION SPECIFICATION DOCUMENTS Revised October 22, 2020 Effective July 1, 2024<br>[Insert Engineering Project Number] [Insert Bid Number]<br>eK<br>BWN<br>nA<br>20<br>21<br>22<br>23<br>24</code> |
| <code>In the event of a quasi judicial hearing, who else besides the site owner(s) should we inform about the decision notification process, and how do we manage their requests for a copy of the decision?</code> | <code>Notice of Decision:<br>1. Within 10 days after a final decision on an application, the Director shall provide written notification of the decision, unless the applicant was present at the meeting where the decision was made or required by law.<br>2. If the review involves a quasi-judicial hearing, the Director shall, within 10 days after a final decision on the application, provide a written notification of the decision to the owner(s) of the subject site (unless the applicant was present at the meeting where the decision was made or required by law), and any other person that submitted a written request for a copy of the decision before its effective date.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256
],
"matryoshka_weights": [
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 8
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 8
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_1024_cosine_ndcg@10 | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 |
|:----------:|:-------:|:-------------:|:-----------------------:|:----------------------:|:----------------------:|:----------------------:|
| 0.2974 | 10 | 2.3168 | - | - | - | - |
| 0.5948 | 20 | 1.2839 | - | - | - | - |
| 0.8922 | 30 | 0.6758 | - | - | - | - |
| 0.9814 | 33 | - | 0.3592 | 0.3592 | 0.3556 | 0.3496 |
| 1.1896 | 40 | 0.4651 | - | - | - | - |
| 1.4870 | 50 | 0.3707 | - | - | - | - |
| 1.7844 | 60 | 0.2941 | - | - | - | - |
| 1.9926 | 67 | - | 0.3732 | 0.3732 | 0.3699 | 0.3601 |
| 2.0818 | 70 | 0.2651 | - | - | - | - |
| 2.3792 | 80 | 0.2341 | - | - | - | - |
| 2.6766 | 90 | 0.2093 | - | - | - | - |
| 2.9740 | 100 | 0.1812 | 0.3747 | 0.3747 | 0.3718 | 0.3626 |
| 3.2714 | 110 | 0.1717 | - | - | - | - |
| 3.5688 | 120 | 0.1496 | - | - | - | - |
| 3.8662 | 130 | 0.1472 | - | - | - | - |
| 3.9851 | 134 | - | 0.3742 | 0.3742 | 0.3727 | 0.3628 |
| 4.1636 | 140 | 0.1304 | - | - | - | - |
| 4.4610 | 150 | 0.1229 | - | - | - | - |
| 4.7584 | 160 | 0.1085 | - | - | - | - |
| **4.9963** | **168** | **-** | **0.3745** | **0.3745** | **0.3717** | **0.361** |
| 5.0558 | 170 | 0.1144 | - | - | - | - |
| 5.3532 | 180 | 0.1088 | - | - | - | - |
| 5.6506 | 190 | 0.0937 | - | - | - | - |
| 5.9480 | 200 | 0.1023 | - | - | - | - |
| 5.9777 | 201 | - | 0.3749 | 0.3749 | 0.3704 | 0.3603 |
| 6.2454 | 210 | 0.0942 | - | - | - | - |
| 6.5428 | 220 | 0.0919 | - | - | - | - |
| 6.8401 | 230 | 0.0939 | - | - | - | - |
| 6.9888 | 235 | - | 0.3755 | 0.3755 | 0.3705 | 0.3603 |
| 7.1375 | 240 | 0.0925 | - | - | - | - |
| 7.4349 | 250 | 0.0928 | - | - | - | - |
| 7.7323 | 260 | 0.0869 | - | - | - | - |
| 7.8513 | 264 | - | 0.3753 | 0.3753 | 0.3706 | 0.3613 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.11.10
- Sentence Transformers: 3.3.1
- Transformers: 4.41.2
- PyTorch: 2.4.1+cu124
- Accelerate: 1.3.0
- Datasets: 2.19.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |