|
--- |
|
license: mit |
|
pipeline_tag: image-classification |
|
library_name: transformers |
|
tags: |
|
- PyTorch |
|
- Mamba |
|
- SSM |
|
--- |
|
|
|
|
|
# VMamba: Visual State Space Model |
|
|
|
VMamba is a bidirectional state-space model finetuned on Imagenet dataset. It was introduced in the paper: |
|
[VMamba: Visual State Space Model](https://arxiv.org/pdf/2401.10166) and was first released in [this repo](https://github.com/MzeroMiko/VMamba/tree/main). |
|
|
|
|
|
Disclaimer: This is not the official implementation, please refer to the [official repo](https://github.com/MzeroMiko/VMamba/tree/main). |
|
|
|
|
|
## How to Get Started with the Model |
|
|
|
Use the code below to get started with the model. |
|
|
|
```python |
|
import torch |
|
from PIL import Image |
|
import torchvision.transforms as T |
|
from transformers import AutoConfig, AutoModelForImageClassification |
|
|
|
config = AutoConfig.from_pretrained('saurabhati/VMamba_ImageNet_82.6',trust_remote_code=True) |
|
vmamba_model = AutoModelForImageClassification.from_pretrained('saurabhati/VMamba_ImageNet_82.6',trust_remote_code=True) |
|
|
|
preprocess = T.Compose([ |
|
T.Resize(224, interpolation=Image.BICUBIC), |
|
T.CenterCrop(224), |
|
T.ToTensor(), |
|
T.Normalize( |
|
mean=[0.4850, 0.4560, 0.4060], |
|
std=[0.2290, 0.2240, 0.2250] |
|
)]) |
|
|
|
input_image = Image.open('/data/sls/scratch/sbhati/data/Imagenet/train/n02009912/n02009912_16160.JPEG') |
|
input_image = preprocess(input_image) |
|
|
|
with torch.no_grad(): |
|
logits = vmamba_model(input_image.unsqueeze(0)).logits |
|
|
|
predicted_label = vmamba_model.config.id2label[logits.argmax().item()] |
|
predicted_label |
|
'crane' |
|
|
|
``` |
|
|
|
## Citation |
|
|
|
```bibtex |
|
@article{liu2024vmamba, |
|
title={VMamba: Visual State Space Model}, |
|
author={Liu, Yue and Tian, Yunjie and Zhao, Yuzhong and Yu, Hongtian and Xie, Lingxi and Wang, Yaowei and Ye, Qixiang and Liu, Yunfan}, |
|
journal={arXiv preprint arXiv:2401.10166}, |
|
year={2024} |
|
} |
|
``` |
|
|
|
|