metadata
library_name: peft
license: apache-2.0
base_model: unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit
tags:
- generated_from_trainer
datasets:
- instruction_solution_to_thought_dataset.jsonl
model-index:
- name: outputs_solution_to_thought
results: []
See axolotl config
axolotl version: 0.7.0
# Base model configuration
base_model: unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit
load_in_4bit: true
# Dataset configuration
datasets:
- path: instruction_solution_to_thought_dataset.jsonl
type: chat_template
# Chat template
chat_template: chatml
# LoRA adapter configuration
adapter: lora
lora_r: 16
lora_alpha: 16
lora_dropout: 0
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
- gate_proj
- up_proj
- down_proj
# Training hyperparameters
max_seq_length: 128000
micro_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 3e-5
num_epochs: 2
warmup_steps: 100
optimizer: adamw_8bit
weight_decay: 0.01
lr_scheduler_type: cosine
max_grad_norm: 1.0
output_dir: ./outputs_solution_to_thought
seed: 3407
merge_lora: true
hf_upload: true
hf_repo: secemp9/TraceBack-12b
xformers_attention:
flash_attention: True
#lora_mlp_kernel: true
#lora_qkv_kernel: true
#lora_o_kernel: true
#fp16: true
#load_in_8bit: true # Enable 8-bit loading for LoRA finetuning
bf16: true # Enable BF16 mixed precision
# Multi-GPU training with DeepSpeed
deepspeed: deepspeed_configs/zero2.json
# Optional: Enable gradient checkpointing
gradient_checkpointing: true
outputs_solution_to_thought
This model is a fine-tuned version of unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit on the instruction_solution_to_thought_dataset.jsonl dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 3407
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- total_eval_batch_size: 16
- optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 2.0
Training results
Framework versions
- PEFT 0.14.0
- Transformers 4.48.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0