my-bert-classifier2
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0001
- Accuracy: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 20
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.0249 | 1.0 | 60 | 0.0205 | 0.9958 |
0.0011 | 2.0 | 120 | 0.0009 | 1.0 |
0.0006 | 3.0 | 180 | 0.0005 | 1.0 |
0.0004 | 4.0 | 240 | 0.0003 | 1.0 |
0.0003 | 5.0 | 300 | 0.0002 | 1.0 |
0.0002 | 6.0 | 360 | 0.0002 | 1.0 |
0.0002 | 7.0 | 420 | 0.0001 | 1.0 |
0.0002 | 8.0 | 480 | 0.0001 | 1.0 |
0.0001 | 9.0 | 540 | 0.0001 | 1.0 |
0.0001 | 10.0 | 600 | 0.0001 | 1.0 |
0.0001 | 11.0 | 660 | 0.0001 | 1.0 |
0.0001 | 12.0 | 720 | 0.0001 | 1.0 |
0.0001 | 13.0 | 780 | 0.0001 | 1.0 |
0.0001 | 14.0 | 840 | 0.0001 | 1.0 |
0.0001 | 15.0 | 900 | 0.0001 | 1.0 |
0.0001 | 16.0 | 960 | 0.0001 | 1.0 |
0.0001 | 17.0 | 1020 | 0.0001 | 1.0 |
0.0001 | 18.0 | 1080 | 0.0001 | 1.0 |
0.0001 | 19.0 | 1140 | 0.0001 | 1.0 |
0.0001 | 20.0 | 1200 | 0.0001 | 1.0 |
Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Tokenizers 0.21.1
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for singhshiva/my-bert-classifier2
Base model
google-bert/bert-base-uncased