my-bert-classifier2

This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0001
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Accuracy
0.0249 1.0 60 0.0205 0.9958
0.0011 2.0 120 0.0009 1.0
0.0006 3.0 180 0.0005 1.0
0.0004 4.0 240 0.0003 1.0
0.0003 5.0 300 0.0002 1.0
0.0002 6.0 360 0.0002 1.0
0.0002 7.0 420 0.0001 1.0
0.0002 8.0 480 0.0001 1.0
0.0001 9.0 540 0.0001 1.0
0.0001 10.0 600 0.0001 1.0
0.0001 11.0 660 0.0001 1.0
0.0001 12.0 720 0.0001 1.0
0.0001 13.0 780 0.0001 1.0
0.0001 14.0 840 0.0001 1.0
0.0001 15.0 900 0.0001 1.0
0.0001 16.0 960 0.0001 1.0
0.0001 17.0 1020 0.0001 1.0
0.0001 18.0 1080 0.0001 1.0
0.0001 19.0 1140 0.0001 1.0
0.0001 20.0 1200 0.0001 1.0

Framework versions

  • Transformers 4.50.0
  • Pytorch 2.6.0+cu124
  • Tokenizers 0.21.1
Downloads last month
11
Safetensors
Model size
109M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for singhshiva/my-bert-classifier2

Finetuned
(4706)
this model